Climate observations peter domonkos - The ebook with rich content is ready for you to download

Page 1


https://ebookmass.com/product/climate-observations-peter-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Effects

of Climate Change on Birds 2nd Edition Peter O. Dunn

https://ebookmass.com/product/effects-of-climate-change-on-birds-2ndedition-peter-o-dunn/

ebookmass.com

Mixed-Phase

Clouds Observations and Modeling Constantin Andronache

https://ebookmass.com/product/mixed-phase-clouds-observations-andmodeling-constantin-andronache/

ebookmass.com

All four Peter Zeihan books Peter Zeihan

https://ebookmass.com/product/all-four-peter-zeihan-books-peterzeihan/ ebookmass.com

The Oxford Handbook on the United Nations Thomas G. Weiss

https://ebookmass.com/product/the-oxford-handbook-on-the-unitednations-thomas-g-weiss/ ebookmass.com

Legal Research, Analysis, and Writing 4th Edition

https://ebookmass.com/product/legal-research-analysis-and-writing-4thedition-william-h-putman/

ebookmass.com

The Quest for Purpose: The Collegiate Search for a Meaningful Life Perry L. Glanzer

https://ebookmass.com/product/the-quest-for-purpose-the-collegiatesearch-for-a-meaningful-life-perry-l-glanzer/

ebookmass.com

Artificial Intelligence and Deep Learning in Pathology 1st Edition Stanley Cohen Md (Editor)

https://ebookmass.com/product/artificial-intelligence-and-deeplearning-in-pathology-1st-edition-stanley-cohen-md-editor/

ebookmass.com

Palliative Care Perspectives James L. Hallenbeck

https://ebookmass.com/product/palliative-care-perspectives-james-lhallenbeck/

ebookmass.com

China and the Indo-Pacific: Maneuvers and Manifestations Swaran Singh

https://ebookmass.com/product/china-and-the-indo-pacific-maneuversand-manifestations-swaran-singh/

ebookmass.com

https://ebookmass.com/product/grace-ride-series-second-generationbook-5-megan-obrien/

ebookmass.com

ClimateObservations

SeriesEditor

PeterDomonkos

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023RoyalMeteorologicalSociety.PublishedbyElsevierInc.incooperationwith TheRoyalMeteorologicalSociety.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmay becomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-323-90487-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

ForinformationabouttheRoyalMeteorologicalSociety anditspublicationsvisit rmets.org/

Publisher: CandiceGJanco

AcquisitionsEditor: AmyMShapiro

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: RashmiManoharan

CoverDesigner: MatthewLimbert

TypesetbySTRAIVE,India

CHAPTER1Landsurfaceobservations......................................1

1.1 Globalsystemofweatherandclimateobservations.....................1

1.2 Siteselectionandinstallationofinstruments................................5

1.3 Manualandautomatedobservations.............................................6

1.4 Temperature....................................................................................9

1.5 Humidity.......................................................................................11

1.6 Precipitation..................................................................................14

1.7 Winddirectionandwindspeed...................................................18

1.8 Atmosphericpressure...................................................................20

1.9 Sunshinedurationandradiation..................................................22

1.10 Cloudiness....................................................................................24

1.11 Otherclimatevariables................................................................25

1.12 Calibrationofinstrumentsandmaintenance...............................28 References....................................................................................30

CHAPTER2Upperairobservationandremotesensing............31

2.1 Upperairobservations:Climaticcharacteristics andtoolsfortheirobservation.....................................................31

2.2 RadiosondesI.Technologyandperformance ofobservations.............................................................................34

2.3 RadiosondesII.Spatialandtemporaldensity ofobservations.............................................................................39

2.4 Remotesensing............................................................................42

2.5 Weatherradars.............................................................................44

2.6 Satellitesintheobservationofweatherandclimate..................47

2.7 Space-basedobservations.............................................................49

2.8 Otherupperairobservations........................................................53

2.9 ClosingnotestoChapter1andthischapter................................55 References....................................................................................56

CHAPTER3Dataqualitycontrolanddatasetdevelopment........59

3.1 Errorsources................................................................................59

3.2 Kindsandindicationsofdataerrors............................................61

3.3 Phasesofqualitycontrol..............................................................66

3.4 Eliminationofdataerrors............................................................69

3.5 Qualitycontrolofextremevalues...............................................69

3.6 Datarescueanddigitation...........................................................70

3.7 Datagapsandgapfilling.............................................................72

3.8 Datagridding................................................................................76

3.9 Datasetdevelopment....................................................................77 References....................................................................................79

CHAPTER4Homogenizationtaskanditsprincipal approaches.........................................................83

4.1 Timeserieshomogenizationinthesystemof scientificfields.............................................................................83

4.2 Basicconceptsoftimeserieshomogenization............................84

4.3 Kindsofinhomogeneities............................................................86

4.4 Kindsofhomogenizationtasks....................................................89

4.5 Spatialrepresentativenessofhomogenized climaticdata.................................................................................90

4.6 Relationwithgeneralqualitycontrol..........................................92

4.7 Useofdocumentedinformation(metadata)................................95

4.8 Homogeneitytest.........................................................................99

4.9 Homogenizationwithoutneighborseries....................................99 References..................................................................................102

CHAPTER5Relativehomogenization:Thebasis....................105

5.1 Conceptofrelativehomogenization..........................................105

5.2 Traditionalapproach..................................................................106

5.3 Revolutionofmethodologyfromthe1990s..............................110

5.4 Timeseriescomparison.............................................................112

5.5 Detectionoftrendinhomogeneities...........................................118

5.6 Detectionofmultiplebreakpoints............................................120

5.7 Correctionofinhomogeneities...................................................123 References..................................................................................128

CHAPTER6Relativehomogenization:Optionaltools..............131

6.1 Multistepprocedures..................................................................131

6.2 Iteration......................................................................................132

6.3 Parameterization.........................................................................140

6.4 Relativetimeseriesofdailyresolution.....................................142

6.5 Ensemblehomogenization.........................................................144

6.6 Transformationofprobabilitydistribution................................145

6.7 Infillingdatagapswithinhomogenizationprocedures.............147

6.8 Pairwisedetectioninautomatichomogenization......................150

6.9 Multivariatedetection................................................................151

6.10 Combinationofhomogenizationmethods.................................153 References..................................................................................155

CHAPTER7Relativehomogenization:Specialproblems........159

7.1 Signal-to-noiseratio...................................................................159

7.2 Systematicbiasforregionalmeans...........................................160

7.3 Autocorrelation...........................................................................161

7.4 Cyclicalcomponents..................................................................166

7.5 Thresholddistanceforspatialcomparisons..............................173

7.6 Synchronousandsemi-synchronousinhomogeneities..............174

7.7 Short-terminhomogeneities.......................................................177

7.8 Weatherdependentinhomogeneities.........................................180

7.9 Homogenizationofprobabilitydistribution..............................182

7.10 Temporalresolutionofhomogenizationresults........................186

7.11 Wideapplicabilityofadditiveinhomogeneitymodel...............188 References..................................................................................189

CHAPTER8Aselectionofstatisticalhomogenization

methods............................................................191

8.1 Methodsusingaccumulatedanomalies.....................................191

8.2 SNHT(StandardNormalHomogeneityTest)...........................195

8.3 RHtests(RelativeHomogenizationTests).................................197

8.4 MASH(MultipleAnalysisofSeries forHomogenization)..................................................................198

8.5 PHA(PairwiseHomogenizationAlgorithm).............................201

8.6 Climatol......................................................................................202

8.7 PRODIGE...................................................................................205

8.8 HOMER(HOMogenizationsoftwarEinR)..............................206

8.9 ACMANT(AppliedCaussinus-MestreAlgorithmfor homogenizingNetworksofclimaticTimeseries)....................211

8.10 Homogenizationmethodsforparticularclimaticelements......215 References..................................................................................216

CHAPTER9Accuracyofhomogenizationresults....................219

9.1 Conceptsofbenchmarking........................................................219

9.2 Constructionofbenchmarkdatasets..........................................221

9.3 Efficiencymeasures...................................................................225

9.4 Limitationsofthereliabilityoftestresults...............................228

9.5 Testsforbreakdetectionmethods.............................................230

9.6 HOMEbenchmarkexperiments................................................233

Abouttheauthors

PeterDomonkos isaHungarianclimatologistlivinginSpainsince2009.Heisan expertonstatisticalclimatology,analysisofextremeclimaticevents,dataquality control,andtimeserieshomogenization.HeisamemberoftheHungarianMeteorologicalSocietyandsecretaryofESPERE(EnvironmentalScienceforEverybody RoundtheEarth).Between2009and2015,Dr.Domonkoswasaresearcheratthe UniversityRoviraiVirgili(Tarragona,Spain)andhasbeenafreeresearchersince then.Hehasdevelopedanautomatichomogenizationmethod(ACMANT),which wasfoundtobeoneofthemostaccuratemethodsbyvariousinternationaltestexperiments.Between2013and2015,heledfourinternationaltrainingsontimeseries homogenization,sponsoredbytheWorldMeteorologicalOrganization(WMO). Hehas104printedscientificpublicationstohisname.

Ro ´ bertTo ´ th isanexperiencedmeteorologistwithademonstratedhistoryofworkingintheenvironmentalservicesindustry.Skilledinmeteorologicalmeasurements, internationalagreementsonairqualityprotection,sustainabledevelopment,environmentalcompliance,andemergencymanagement,heisastrongresearchprofessionalwithamaster’sdegreeofpublicadministrationfromtheUniversityof Economy,Budapest,Hungary.HehasbeenheadoftheUnitforDataQualityControl attheHungarianMeteorologicalServicesince2020.HeisresponsiblefortheconventionalprecipitationmonitoringnetworkandisdeputyeditorinChiefof Legkor (thequarterlyjournaloftheHungarianMeteorologicalServiceandHungarianMeteorologicalSociety).In2008–09,hewaspresidentofUNEPMontrealProtocol Bureau.Hehasgivenlecturesonmeteorologicalobservationandinstrumentsat E€ otv € osLora ´ ndUniversity,Budapest,inthe1990s.

La ´ szlo ´ Nyitrai isacertifiedmeteorologist.Hegraduatedinmeteorologyfrom EotvosLora ´ ndUniversityinBudapest,Hungary,in1985.Hehasworkedforthe HungarianMeteorologicalServiceinthefieldofmeteorologicalmeasurements,data archiving,andclimatetables.Inaddition,hehasdealtwithaspectsofionospheric physicsaffectingradiowavepropagation,collectedrecordsofionosphericconditionsforshortwaveradiosignaltransport,andcorrespondedinternationallyonthis topic.Hehasinvestigatedglobaltrends,completenessanddeficienciesofmeteorologicaltroposphericandstratosphericupperairmeasurementsandtheirpresumed economicbackgroundinrelationtotheWMOmembercountries.Hehasattempted tocalculateatmosphericmoisturetransportfromradiosondeobservationsandpresentedhisstudiesatinternationalconferences.

Introduction

Weneedobservedweatherandclimatedatatoknowhowtoprepareforoutdoor activities.Weatherforecastersneedmuchmoreobserveddatatomakereliable weatherpredictions.Andclimatescienceneedsevenmoreobserveddata,thatare denseinspaceandtime,tounderstandtherulesofweatherandclimateprocesses, toproducereliableclimatepredictions,andprovideprofessionalsupporttoapplied climatologicalresearch.Ofcourse,notonlytheamountofobserveddata,butalso theiraccuracyisimportant.Inaddition,observedclimaticdataareexpectedtobe fairlycomparablebothspatiallyandtemporally,astheyareoftenusedjointly,or toanalyzespatialandtemporalclimaticgradients.Thetemporalcomparabilityneeds alonganduninterruptedseriesofclimateobservationsperformedatthesamesites, inthesameenvironment,andfollowingfixedobservationrules.Ontheotherhand, fairspatialcomparabilityneedsnetworksofadequatelydenseanduniformly equippedobservingsites,andtheapplicationofcommonobservingrules.

Inthehistoryofinstrumentalclimateobservations,thedevelopmentofaccuracy, spatialdensity,andtheuniformityofobservingrulesaregradual.Togetherwiththe increasingspatialdensityofobservingstations,statisticalmethodshavebeendevelopedtooptimizetheinformationprovidedbythedataforclimatechangeandclimate variabilityestimations.Thesestatisticalmethodshavetwomaingroups:dataquality controlandtimeserieshomogenization.InsomeEuropeancities,timeseriesof instrumentaltemperatureandprecipitationobservationshavebeenrecordedfrom asearlyasthe18thcentury,buttheearliestrecordsarerarelyusedfortemporalgaps oftheobservationsandotherdataqualityproblems.Fromthesecondhalfofthe19th century,nationalmeteorologicalinstituteswereestablishedinmanycountries,and theyprovidespatiallycoordinatedclimateobservationsofhigh-levelprofessional standards.In1950,thecreationoftheWorldMeteorologicalOrganization (WMO)withintheUnitedNationsbroughtnewpossibilitiestotheworldwideregularizationofclimateobservationsandclimatedatamanagement.WithintheWMO, theWorldClimateDataMonitoringProgram(WCDMP)waslaunchedinthe1980s, whichreleased86documentsforimprovingtheuniformityandaccuracyofclimate observations,givingrecommendationsfordatarescue,qualitycontrol,timeseries homogenization,andotherdatamanagementissues,andgivingadviceontheuse ofobserveddataintheanalysisofclimatevariabilityandclimaticextremeevents.

Thisbookhasthreemaintopics:climateobservations,dataqualitycontrol,and timeserieshomogenization.Theintentionandpracticaleffortstoproducemore accuratedataandspatiallyandtemporallymorecorrectlycomparabledataisthe commonline,whichconnectstheseratherdifferenttopics.Thetimeserieshomogenization(referredbrieflytoashomogenization)takesthelargestplaceinthebook. Thedetailedpresentationofhomogenizationissueshasfourreasons:theirhigh potentialimpactontheaccuracyofclimatetrendestimations,thefastmethodologicaldevelopmentofhomogenizationinthemostrecentdecades,thescientific

complexityofthetopic,andthelackofalternativesourcesregardingthematically orderedandsufficientlydetailedscientificpresentationsofthistopic.

Thecompletepresentationofclimateobservationswouldhavealargerextent thantheentirebook,so,wefocusonthelandsurfaceobservationsandgivealess detailedpresentationoftheothersegmentsofclimateobservations.Thereason forthisdistinctionisthatlongtimeseriesofspatiallydenseandaccurateobservationsareaccessiblefirstforlandsurfaceobservations;hence,thehighestlevelof spatialandtemporalcomparabilitycangenerallybeachievedforsuchclimatic records.Notethatalthoughtheobservationsofchemicalcomponentsoftheatmospherearealsoclimateobservations,weskipthissubtopicduetothelargemethodologicaldifferencesincomparisonwithrecordingandanalyzingthemore traditionallyobservedclimaticelementsrelatingdirectlytoweathervariations.

Sincethelate1980sand1990s,boththescientificcommunityandthepublicare moreawareaboutthethreatsofacceleratingglobalwarming,andtheimportanceof possessingaccurateandcorrectlycomparableclimaticdataseemsobvious.However,theintentiontoimprovedataaccuracyasmuchaspossibleisfarolderthan therecognitionoftheseverityofglobalwarmingissues.Ittookmonthsforaclimate observeraspirantinthe20thcenturytolearnthecorrectperformanceofinstrumental andsubjectiveobservations.Anaspirantobserverwasregularlyaccompaniedbyan experiencedobserverwhoexplainedhundredsofrulesofthecorrectobservation practices.Certainrulessometimesseemedtoominute.However,thebestclimate observerswouldratherrecord100unimportantdetailsthantomissonly1ofthe importantones.Wewouldnothavelong,high-qualityclimatetimeserieswithout theirwork.Ibelievethatabookpresentingthebestpracticesofhigh-qualityclimate dataproductionismorethanasourceofinformation.Itisalsoahomagetotheparticipantsinvolvedintheproductionofhigh-qualityclimaticdatabases,namelyengineersandmanufacturersofprecisemeteorologicalinstruments;officialscharged withdatacollectionanddataarchiving;studentswhodigitizedahugeamountofdata tosavethemforfuturegenerations;upperairwindobserverswhofollowedvisually thetrajectoryofaballoon,keepingtheireyesgluedtotheopticalinstrument(theodolite)for30–60minunderdifferentweatherconditions;thebravemenwhotraveledtoicypolarregionstoperformclimateobservationsanddiscovernewdetailsof theEarth’sclimate;residentswhonevertraveledanywhere,astheyperformedclimateobservationsatthesameobservationsiteoneachdayoftheyearwithoutinterruptionsforholidays.

Thebookhas10chapters. Chapter1 presentsthelandsurfaceobservations.Both instrumentalandsubjectiveobservationsarediscussed,butthepresentationofthe instrumentalobservationsforsomekeyclimaticelements,i.e.,temperature,precipitationtotal,windspeed,winddirection,relativehumidity,atmosphericpressure, andsunshineduration,isdetailedmorethanthatoftheotherclimaticelements.From the1990s,thetraditionalmeteorologicalinstrumentshavebeenchangedtoautomaticweatherstations(AWS)inmostcountriesoftheworld,andwepresentboth thetraditionalandAWSinstrumentations.

In Chapter2,wedeviatefromthemaintopicofthebook,whichdealswithdata onlandsurfaceobservations,andpresenttheothersegmentsofclimateobservations. Inthischapter,theradiosondeobservationsarepresentedinmoredetail,astheyprovideinsighttothethree-dimensionalbehaviorofsomeessentialclimaticelements liketemperature,humidity,andairflowstructures.Thentheroleofmeteorological satellitesandradarsinclimateobservationsisdiscussed.Althoughtheseremote sensingobservationsaregenerallylessaccuratethanthelocalobservations,they areindispensableforclimatemonitoringinthelesspopulatedregionsoftheEarth, andalsoformonitoringsomespecialclimateproperties.

In Chapter3,themaintopicisthequalitycontroloftheobserveddata.The sourcesofdataerrors,theindicatorsthatsuggestthelikelyoccurrenceofdataerrors, andthedifferentqualitycontrolproceduresarediscussedwithseveralexamples.

From Chapter4toChapter9,theprincipaltopicisthetimeserieshomogenization.Homogenizationexaminespersistentbiases;thistopicismorecomplicatedthan thequalitycontrol,fortheaddedtimedimension.In Chapter4,thegeneralconcepts ofhomogenizationarepresented,andtheconnectionbetweenqualitycontroland homogenizationisdiscussed.

In Chapters5–7,therulesandoptionsforrelativehomogenizationarepresented. Thisisthemostimportantgroupofhomogenizationmethods.Inrelativehomogenization,persistentnon-climaticbiasesofacandidateseriesofobservedclimatic valuesaredetectedbyspatialcomparisonsbetweenthecandidateseriesandtime seriesofneighboringstations.Thereisalargevarietyofrelativehomogenization methods.Despitethescientificcomplexityofthetopic,themainrulesandconclusionsareeasytounderstand,whilethedetaileddescriptionsservepartlyasjustificationsandpartlytoofferauniqueintellectualadventureforinterestedreaders.

In Chapter8,themostfrequentlyusedhomogenizationmethodsarepresented.In addition,somemodernhomogenizationmethodsshowinghighaccuracyinmethod comparisontestsarealsopresented.

Chapter9 isdedicatedtothetopicofefficiencytestsofhomogenizationmethods. Theaccuracyofhomogenizationmethodscanbetestedonsyntheticallydeveloped testdatasets.Wediscusswithexampleswhysuchtestsareimportant,whichcharacteristicsmakeatestdatasetappropriatefortesting,andwhichfactorslimitthe potentialaccuracyofhomogenizationmethods.

Chapter10 presentsexampleswheretheaccessibilityandaccuracyofobserved climaticdataarehighlyimportant.Dataaccuracyisnotlessimportantfortheelaborationofclimatepredictionsandclimatechangescenariosthanforrevealing Earth’sclimateinthepast,andinthischapterweshowthereasonswhy.

ThebookissupplementedwithanAppendixthatdescribessomebasicstatistical conceptsandrelations.ReaderscanconsultthisAppendixatanytimeiftheyfeelthe necessitytorenewsuchknowledgewhenreadingthemainchaptersofthebook.

Themajorpartofthematerialinthisbookismyowncollection.ForthepresentationofAWSinstrumentationandupperairobservations,Ireceivedthematerial fromtwoofmyformercolleagues,Ro ´ bertTo ´ thandLa ´ szlo ´ Nyitrai,HungarianMeteorologicalService,researchfellowsintheareasoflandsurfaceobservationsand upperairobservations,respectively,andwewrotethesesectionstogether.

Landsurfaceobservations 1

Inthischapter,themaininstrumentsandmethodsoflandsurfaceobservationsare presented.Wegothroughtheactivitiesofsurfaceobservingstationsfocusingmost onclimaticelements,whichhavelongrecordsinnumerousobservingsites.These areinharmonywiththe essentialclimatevariables (ECV)determinedbytheGlobal ClimateObservingSystem(https://gcos.wmo.int)forthenearsurfacepartofthe atmosphere:temperature,watervapor,precipitation,windspeedanddirection, atmosphericpressure,andsurfaceradiationbudget(Bojinskietal.,2014).Both thetraditional,manualobservationsandthosewithautomatedinstrumentsarepresented.Inmostcasesofdetaileddescriptions,andfortheessentialclimatevariables always,thepresentedmethodologiescharacterizetheprofessionalobservations organizedbytheHungarianMeteorologicalService(HMS),asthereIwasobserver inthe1980s,andthusIhavepersonalexperiencesfromthatobservingnetwork.In Hungary,theregularinstrumentalclimateobservationsstartedin1781inBuda(part ofthelatercapitalBudapest),andthenationalmeteorologicalinstitute(laterHungarianMeteorologicalService)starteditsoperationasearlyasin1870.TheperformanceofHungarianclimateobservationshasbeenfollowinghighinternational standards;therefore,IbelievethatthepresentationoftheHungarianobservation practicesaddsaparticularvaluetothecontentofthischapter.

ReadersinterestedinawiderandmoregeneralpresentationofclimateobservationsmayconsulttherelevantandopenlyaccessibleWorldMeteorologicalOrganization(WMO)issue(WMO,2018a).

1.1 Globalsystemofweatherandclimateobservations

Climaticelementscanbeobservedwithwatchingsubjectivelytheweatherprocesses orwithreadingmeteorologicalinstruments.Forinstance,cloudtypesorraindurationcanbeobserveddirectlybyeyes,whiletheobservationofatmosphericpressure orradiationtotalisunimaginablewithoutmeteorologicalinstruments.Formany otherclimaticelements,subjectiveobservationscanprovideroughestimationsonly: Anobservermayfeelthatthetemperatureishighorlow,mayseethetracesthatlotof rainhavebeenfallen,etc.,butsuchestimationsareinsufficientforthequantitative descriptionofweatherandclimate.Inclimateobservations,theuseofmeteorologicalinstrumentsisgeneralfromthe18thcenturyforobservingtemperature,precipitationamountandatmosphericpressure,althoughthenumberofobservingsiteswas

ClimateObservations. https://doi.org/10.1016/B978-0-323-90487-2.00011-6 Copyright # 2023RoyalMeteorologicalSociety.PublishedbyElsevierInc.incooperationwithTheRoyalMeteorologicalSociety. Allrightsreserved.

verysmallbefore1850.Fromthesecondhalfofthe19thcentury,observingnetworksbecamedenser,theinstrumentalobservationsoffurtherclimaticelements havebeenestablished,andtheunificationofobservationruleshasbegunwiththe foundationofnationalmeteorologicalinstitutesinmanydevelopedcountries.

Theclimaticrecord“surfaceairtemperature ¼ 20.0°C”referstoaphysicalstate oftheairnearthegroundsurface.Ideally,agivenrecordshouldmeanthesameatany placeoftheworld,andthemeaningshouldbeindependentfromthetimeofthe observation.Manyeffortshavebeendedicatedtounifyobservingrules,firstby thenationalmeteorologicalinstitutesandthenbytheWMO,butsomegeographical differenceshavebeenremainedfortraditions,politicalreasons,andalsoformaintaininglongseriesofobservationswithoutmethodologicalchanges.Anobstacleof unifyingobservingrulesinternationallywasandhasremainedthatwhilesuchunificationsfavorthegeographicalcomparability,mightdoharminthetemporalcomparabilityofclimaterecordsofanobservingsite.Furtherproblemisthenatural differencesofgroundsurface.Unifiedobservingrulescannotalwaysbeprovided forregionsofdeserts,forests,permafrostareas,etc.

Around1990thetransitiontotheuseofautomaticweatherstations(AWS) started,andthedevelopedcountriesfinishedthistransitioninorbeforethefirst decadeofthe21stcentury.Note,however,thatmanualobservationsarestillperformedforsomeclimaticelements.Inourreviewaboutclimateobservations,the instrumentationsofboththemanualweatherstations(MWS)andAWSarepresented,butwecannotpresentthediversityofinstrumentsappliedindifferentcountriesanddifferenteras.Welimitthepresentationofclimateobservationstosome typicalMWS(AWS)instrumentsusedinthe1980s(around2020)inacentralEuropeancountry,Hungary.Theseorverysimilarinstrumentswiththesameornearlythe sameinstallationsareappliedinmanyothercountriesoftheworld.

Thischapterisgenerallydedicatedtothepresentationofthelandsurfaceclimate observations,butbeforestartingthat,herewereviewbrieflythewholesystemof climateobservations.

• Landsurfaceobservations:Theseobservationsareperformedbyobserversorby AWSs.Theinstrumentsareusuallyplacedabout1–2mheightabovetheground surface.Oftenalargenumberofclimaticelementsareobservedinagiven observingsite,andtheclimaterecordscanbelongerthan100years.

• Marineclimateobservations:Marineobservationsareperformedinships,by usingbuoys,orwithremotesensingfrommeteorologicalsatellites.Though shipobservationshavelonghistory,wededicatelittlespacetomarine observationsfortworeasons:shipobservationsprovidedastronglyuneven spatialcoverageofmarineclimaterecords,andthespatialandtemporal comparabilityofdataisgenerallypoorerthanforlandsurfacedataforthe spatiallyandtemporallychangingconditionsofmarineobservations.Inthenext chapter,somesatellite-basedmarineobservationswillbebrieflydiscussed (Section2.7),whileforreadersinterestedinshipandbuoyobservationswe recommend WMO(2018b) and Hemsley(2015)

• Radiosondes:Aradiosondecomprisesanelectricthermometer,anelectric hygrometerandatransmitter.Afterthereleaseoftheradiosondefromitshost station,itelevatesuptoabout30kmheightin60–90minbyaballoonfilledwith hydrogenorhelium,anditmonitorsandtransmitsthephysicalpropertiesofthe atmospherearoundit.Radiosondesareusedfromaboutthemiddleofthe20th century,andthemostaccurateandspatio-temporalcoherentobservationsofthe troposphereandlowerstratosphereareprovidedbythem.

• Meteorologicalsatellites:Surfaceandupperairpropertiesaremonitoredfrom meteorologicalsatellitessincethe1960s.Sensorsofmeteorologicalsatellites interceptthenaturalelectromagneticradiationemittedfromtheearthsurfaceand atmosphere,andtheevaluationofintensitydistributionaccordingtoradiation wavelengthsprovidesthetransformationfromdetectedradiationtoobserved climaticvalues.Alargevarietyofclimatevariablesandclimateindicatorsurface propertiesareobservedbythemallovertheEarth.

• Meteorologicalradars:Similarlytosatellites,radarsaremodernremotesensing toolsinmeteorology.Theyemitelectromagneticwaves,whichreflectfrom raindrops,snowflakesandiceparticlesofclouds.Weatherradarsdetectthe development,positionandintensityofthunderstorms,hailstorms,theicing conditionsincloudyareas,andalsoareaaverageprecipitationamountscanbe measuredbythem.Upperairwindscanalsobeobservedbyradars.

Radiosonde,satelliteandradarobservationswillbepresentedin Chapter2.Turning backtothepresentationoflandsurfaceobservations,thefirstthingtobeenhancedis thatdifferentkindsofobservingstationsexistwithdifferentinstrumentationsand schedulesofobservations.AWSsallowcontinuousobservationofclimaticelements, butcontinuousobservationswereperformedalsointheMWSerain synopticstations.Oneimportantroleofsynopticstationswastoprovidecontinuousobservations andfrequentdatatransmissionsforweatherforecastsandweatheralarmsystems. TheobserverofanMWScodedthemajorityoftheactuallyobservedclimatecharacteristicsineveryhour,andemittedareporthavingcomprisedaseriesofdigits.

Apartoftheclimateobservationsareoftenorganizedoutofthenationalmeteorologicalinstitutes,asclimateobservationswithspecialobjectivesservehydrological,military,agronomicalpurposes,ormonitoringlocalclimatesincitiesorcoastal areas.Suchobservationprogramsandthedatamanagementmightbeorganized jointlywithmeteorologicalinstitutes,buttheseissuesvaryaccordingtocountries andoftenalsoaccordingtohistoricalperiods.Inseveralcountries,themeteorologicalandhydrologicalmanagementsorthecivilandmilitaryservicesareunifiedinstitutionally.However,theunificationofdataobtainedbydifferentkindsof observationmanagementsmightreducethespatialandtemporalcomparabilityof climaterecords,oratleasttheunificationneedsspecialattentioninthedatamanagementprocedures.

InHungary,24synopticstationsoperatedinthe1980swiththecontinuousobservationofmanyweatherandclimateelements,whiletheprogramoffurther60 principalclimatologicalstationswereusuallylimitedtotheobservationofprecipitation,

temperature,humidityandsignificantweathereventslikefog,thunderstorm,etc. Beyondtheinstitutionallyorganizednetwork,voluntaryobserversof precipitation observingstations contributedtothespatiallydenseobservationofprecipitation andsignificantweatherevents.WiththeinstallationofAWSs,thedivisiontosynopticstationsandprincipalclimatologicalstationsceased,butthespatialdensityof observationsstillhavedifferencesaccordingtoclimaticelements.Themainreason ofthesedifferencesisthedifferencesinthedegreeofthenaturalspatialvariability accordingtoclimaticelements.

In2020,125AWSswereoperatedbyHMS,andfurther142byGeneralDirectorateofWaterManagement(GDWM).InthemajorityoftheGDWMstations,only precipitation,snowcover,andsnowwatercontentmeasurementsareperformed, althoughinafewofthemseveralotherclimaticelementsarealsoobserved.There isaclosecollaborationbetweenHMSandGDWM,HMShelpsintheprofessional controlandmaintenanceoftheGDWMinstruments,andtheobserveddataof GDWMaresharedwithHMS.

ReferenceobservingstationofHungarianMeteorologicalServiceinBudapestPestszentlo ˝ rinc (2021).Theinstrumentnearesttothecameraisalightningdetector.

TheobserveddataofAWSsarecodedandtransmittedfromtheobservingsitesinto theHMScenterinevery10minbytheAWScomputersandaWebapplicationsysteminstalledinthecenter.ThefastandhighqualityfulfillmentofcodingandtransmissionisclearlymoreassuredwiththenewAWScomputersandmodern transmissionchannelsthanwithanyearliersystem.

Precipitationobservationsneedthehigheststationdensity,firstlyforitsoutstandingimportanceinhydrology,watermanagementandagriculture,andsecondlyfor thegenerallyhighspatialvariationofthefallenprecipitation.InHungary,thesystem ofvoluntaryobserverssatisfiesthisneed.Voluntaryobserversaretrainedcivil observersworkingforprecipitationobservationstations.Thenumberofthesestationsdecreasedsincethemiddleofthe20thcenturyfrom800to430.Around 2020,approximatelyhalfoftheprecipitationobservingstationshavealreadybeen automated,andtheirdatawerecollectedbytheHMSautomaticdatatransmission system.Fromthestilloperatingmanualprecipitationobservingstations,the observerssentdailyreportsoftheamountandformofthefallenprecipitation.Voluntaryobserversareencouragedtosendareportimmediatelywhenanextraordinary weathereventhasbeenoccurred(e.g.,heavyrain,hailstorm,etc.).Thedatasentfrom precipitationobservingstationsaresubjectedtoprofessionalqualitycontrolinthe samewayasanyotherobservedclimaticdata.

IntheobservingnetworkofHMS,thevisualobservationofcloudinessandsignificantweathereventshasnotcompletelyceased,butsuchobservationsservemore weatherforecaststhanclimatologicaluse.Around2020,14professionalobservers performedvisualobservations.

1.2 Siteselectionandinstallationofinstruments

Observedclimaticcharacteristicsaregenerallyexpectedtoberepresentativeforthe regionoftheobservingsite.Therefore,asfarasitispossible,flatareaswithspatially uniformsurfaceuseandvegetationcoverareselectedtobeobservingsites.However,aswearealsointerestedinlearningtheclimateofcoastalormountainousareas, severalexceptionsoccurinpracticewherethedataofobservingsitescharacterize moretheclimateofspecificlocationsthantheregionalclimate.Thespatialrepresentativenessofobserveddatadependsalsoontheobservedclimaticelements. Forinstance,thespatialrepresentativenessisgenerallyhigh( 100km)overplanes fortemperature,irradiationandatmosphericpressurewhenlocalweatherphenomenalikeshowers,fogs,etc.donotdisturbthespatialuniformityofweathercharacteristics,whilethespatialvariabilityisthehighestforcloudinessandprecipitation amount.

Professionalmeteorologicalinstruments,eitherofMWSorAWS,areinstalledin anenclosedareaof“instrumentland,”farfromanylocalinfluence(e.g.,highbuildings,smokesource,roadswithtraffic).Therecommendedsizeofinstrumentlandis atleast25m2 25m2,butnotethatthesizemaydependfromthedistancefrom potentiallydisturbingnearbyobjects,observationprogramofthestation,and 5 1.2

sometimesalsofrompracticallimits.Thesurfaceoftheinstrumentlandiscovered byshortgrasswherethesoilandclimateallowgrasslands,orremainsbareinthe reversecase.

Inselectingtheplacesofindividualinstruments,distancekeepingfromthefence oftheinstrumentlandandpossibleothernearbyobjectsmustbeconsidered.Radiometersarethemostdemandinginstrumentsregardingtheirlocations,asanylimitationoftheincomingradiationbytheshadowofsurroundingobjectswould directlyaffecttheobservedradiation.Thelocationofwindmeasuringinstruments alsoneedsdistinguishedattention,andforthemtheheightaboveothernearby objectshaskeyimportance.Windspeedandwinddirectionareaffectedbythelocal geographicalunevennessofthesurfaceandanynaturalorhumanmadeobjectsbeing inthewayofairstreams.Therefore,itisrecommendedtoplacethewindmeasuring instrumentsatleastafewmetersabovethetopofallnearbyobjects.Thermometers andhygrometersalsocanbeaffectedbylocaldistortionsofairstreamsortheradiationofnearbyobjects,buttheimpactsofthesefactorsaregenerallylowinanappropriatelyselectedinstrumentland.Moreimportantly,thermometersandhygrometers mustbeplacedtoaclearlyhigherlevelthanthesurfaceofplantswithintheinstrumentland,andtheymustbeprotectedagainstdirectradiationeffectsandthedirect effectsofweatherphenomenalikerain,snow,icedeposition,etc.

Summarizing,thefollowingfactorsinfluencethespatialrepresentativenessofthe observedclimaticdata:

•Geographicalcharacteristicsofthesite,likeexposure,distancefromwaterbodies anddistancefromthenearesthighobjects;

•Preparationandmaintenanceofinstrumentland;

•Locationofmeteorologicalinstrumentswithintheinstrumentland;

•Heightofmeteorologicalinstrumentabovethesurfaceandaboveothernearby objects;

•Protectionofcertaininstrumentsfromdirectweathereffects.

1.3 Manualandautomatedobservations

Untilthe1990s,relativelyfewAWSswereinstalledintheworld,mainlyinplaces hardlyaccessibleforlocalinhabitants(Hartletal.,2020).Inotherplaces,theinclusionofhumanobserversfacilitatedahigherqualityandcompletenessofobservations,andMWSsweremoreeconomicthanAWSs.Withthedevelopmentof morepreciseandmoreeconomicautomatictoolsthissituationwasgraduallychanged,andAWSsbecamethebestandmosteconomicobservationtoolsaround1990. InHungary,theautomatizationofsynopticandprincipalclimatologicalstationswas completedbetween1990and2000.Inmanysynopticstations,bothAWSandMWS observationswereperformedduringsomeyearsofthetransitiontoAWSmode,and theseparallelmeasurementshelptoeliminateinhomogeneitiesfromthetimeseries ofclimaterecords.

MannedweatherstationinnorthwesternHungary(Sopron)accordingtoanoldphotograph. Intheright,thereisaStevensonscreen,inwhichthethermometersandhygrometerswere placed.Bottomintherightatraditionalprecipitationgaugestands.Ontheleftsidecablesare exposedtoobservepossibleicedepositionsfromair(hoar,rimeoricingrain).Notethelarge distancesbetweenthestationbuildingandthemeteorologicalinstruments.

Traditionalprecipitationgaugesarestillinuseinseveralprecipitationobservingstations.Thewithdrawalofobserverstafffromsynopticstationsandprincipalclimatologicalstationswasgradualandcompletedabout2015leavingonlyone professionalobservertoobservethecloudinessandweatherphenomenaover 7–10sitesofthewesternpartofcountrybywebcameras,aswellasoneobserver intheeasternpartofthecountryfor7sites.Whensignificantweatherphenomena (e.g.,fog,thunderstorm,snowfall)areexpected,allthe14officialobserversare instructedtocarryoutlocalvisualobservations.Beyondtheprincipalchangethat thecontributionofhumanobserverswasminimized,someotherimportantchanges arerelatedtotheautomatizationofobservations:(i)Newinstrumentswithnewsensorsareused;(ii)Mechanicalrecordinginstrumentsarenolongerused;(iii)Accuracyofobservedphysicalquantitieshasgenerallybeenimproved;(iv)Apartofthe visualobservationshavebeenmechanized,whileanotherpartofthemaresimplified orevenabandoned;(v)Timingsofobservationshavebecomeaccurate;(vi)In recordingdailytemperaturemaximumsandminimumsAWSsconsiderthe24h periodofcalendardays;(vii)Calculationsandcodinghavebeencomputerized;(viii) Datarecordinganddatatransmissiontothehostinstitutehavebeenmodernized.All thesechangesmayinfluencethetemporalcomparabilityofclimaterecords;therefore,wediscussthemmore.

(i) Newinstrumentswithnewsensorsareused.Thenewsensorsareoftenelectric tools,i.e.,theiroperationiseitherrelatedtothechangesofsomeelectric propertiesasaresponsetothechangesofmeteorologicalconditions,ortothe emission/absorptionofelectromagneticwaves.Thenewsensorsaregenerally moreaccurate,althoughsomeexceptionsoccur.Thenewsensorsareusually

smallerandcharacterizedbyshorterresponsetimethanthesensorsofthe MWSinstruments.Thischangeisgenerallyfavorable,butmightaffectthe temporalcomparabilitybetweenoldandnewobservations.NotethatAWSs mayincludeinstrumentswithnonelectricsensors,andinthiscase,the instrumentissuppliedwithatransducertoprovidedigitalrecording.

(ii) Mechanicalrecordinginstrumentsarenolongerused.IntheMWSera,the continuousrecordingofsomeclimateelementswassolvedbymechanical recordinginstruments.Theyoperatedwithpensandinkdrawinggraphsona chart.Thechartwasfittedoverthesurfaceofaclock-drivenrevolvingdrum.

Amechanicalbarographfrom1930(Wikimedia).

Thepensmovedverticallyinfunctionofthetransmittedsignsofthesensors, whilethedrumandthechartmovedhorizontallyaroundtheverticalaxisof thedrum.Thedrummadeawholecirclewithin1dayor1week,hencedaily orweeklychartswereproduced.Inmostcases,theseinstrumentswerelessaccuratethanthebaseinstrumentsofthestation,duetotheerrorsinmechanicaltransmissiontothepensandthefrictionbetweenthepenandthepaperofthechart.The recordsoftheseinstrumentsservedtocontrolthecorrectoperationofthebase instrumentsandtoprovidedetailsaboutthetemporalchangesoftheobserved climatevariable,buttheydidnotsubstitutethereadingsofthebaseinstruments inpredeterminedtimings.WiththetransitiontoAWSs,thecontinuousrecording ofclimateobservationsissolvedwithmoremodernandaccuratetools.

(iii) Theaccuracyofobservedphysicalquantitiescharacterizingweatherand climatehasgenerallybeenimproved.Thisimprovementhasthreesources: TheAWSinstrumentsareusuallymoreaccuratethanMWSinstruments(with someexceptions);observers’errorsareexcluded;datatransformationanddata transmissionerrorsarepracticallyexcluded.

(iv) Apartofthevisualobservationshasbeenmechanized,whileanotherpartof themissimplifiedorevenabandoned.Someclimatecharacteristicslikeair transparencyandcloud-baseheightareobservedmoreobjectively,withnewly developedinstruments,whileseveralkindsofobservationslikecloudtypes, fogpatchesoropticalphenomenaaresimplifiedorabandoned.Notethattime

seriesofthelattertypesofclimatevariableshaverarelybeenexamineddueto thediscretedatastructure.

(v) Timingsofobservationshavebecomeaccurate.InAWSs,therecordingof observedclimateiscontinuous,whileintheMWSeratheinstrumentswereread andvisualobservationswereperformedaccordingtoadefinedtimeschedule. Thescheduleofsynopticstationsprescribedthemostabundantobservation programjustbeforetheso-calledmainterminuses,i.e.,before00,06,12,and18 UTC.Themostintenseobservationprogramwasbefore06UTC.Thecoded reportmusthavebeenready10–15minbeforetheterminushavingbeenthe nominaltimeofobservations.Theobservationswereusuallyperformed10–30minbeforetheterminus,andthistimelapsewasusuallysufficienttoperform thenecessarycalculationsandcodingtotheterminusreport.However,severe weathereventssometimesmadetheobservers’workmuchmoredifficult.For instance,thesnowprecipitationmusthavebeenmeltedbeforethemeasurement ofitswatercontentandthisneededtime,causing60–100mintimelapsesinthe recordingofheavysnowevents.Incaseofharshweatherconditions,the observercouldhavebeenoverloadedwithsimultaneoustasksalsoforthe difficultaccess(snowy-icypaths)tothemeteorologicalinstrumentswhich couldhavealsobeenaffectedbysnow-icedeposition.Allsuchproblemsand errorsourceshavebeendisappearedwiththeintroductionofappropriately designedAWSs.WhendataofMWSandAWSobservationsarecompared,the averagetimelapseofMWSobservationsmustbetakenintoaccount.

(vi) Inrecordingdailytemperaturemaximumsandminimums,AWSsconsiderthe 24hperiodofcalendardays.Nothingseemstobemorenormalthantobasea dailyvaluetotheperiodbetween00and24hofthatday.However,sincemost climatologicalstationswereoperatedwithoutobservationsduringnights, thermometerswerereadat06UTCand18UTC,butnotat00UTC.Therefore, thetechnologicalchangecausedacertainincompatibilitybetweenthe recordeddailytemperatureminimums/maximumsofMWSeraandthoseof theAWSobservations(Holderetal.,2006).

(vii) Calculationsandcodinghavebeencomputerized,andwiththis,anerror sourcehasbeeneliminated.

(viii) Datarecordinganddatatransmissiontothehostinstitutehavebeen modernized.IntheMWSera,firsteverythingwasrecordedinpapers.Reports ofsynopticstationsweretransmittedbyaradiotelephonesystem,while extraordinaryweathereventswerereportedbyradiogramsfromanykindof observingstations.Reportsofsynopticstationswerecollectedandrecorded manuallyatthattime.IntheAWSera,theclimateobservationsarerecorded ondiscs,andthereportstothehostinstitutesaredeliveredviaInternet.

1.4 Temperature

Airtemperatureisobservedwiththermometerssincethe18thcentury.Itwasknown fromtheearliestperiodsofobservationsthatthermometersmustbeshelteredfrom thedirectsunshinetoobtainspatio-temporalcomparabledata.However,early

shelteringmethodswereoftenmarkedlydifferentfromthemodernstandards,e.g.,in theverybeginningsathermometerwassometimesputnearthenorthernwallofa buildingtoimpedetheeffectsofdirectsunshine.Suchaninstallationdidnotprotect againstweatherphenomenaotherthansunshine,inadditionanearbywallmayactas apositiveornegativeheatsourceimpactingthermometerobservations.

Theremightarisethequestionwhysunshineandotherweathereffectsmustbe impededduringtemperatureobservations,asinnaturalconditionsoftennothing impedessuchweathereffects.Infact,insunnydaysathermometerexposedtodirect sunshineoftenshowsvaluesclosertothehumanthermalcomfortwefeelthantothe regularlymeasuredtemperatures.Itmustbeclarifiedthattheaimoftemperature observationsistomeasurethetemperatureoftheair,whichgenerallydiffersfrom thetemperatureofanythermometerwhenitisexposedtosunshineorotherweather effects.Itisbecausethethermometerasasolidobjectreactsinadifferentwaytothe impactsofweathereffectsthanthegasesoftheatmosphere.Giventhattheweather effectsonthermometersdependonvariousfactors(size,materialandcolorofthermometeretc.),accuratetemperatureobservationsneedtheexclusionofdirectradiationandweathereffects.

Variousshelteringmethodswereappliedinthehistoryoftemperatureobservations.TheuseofStevensonscreenswasstartedinthesecondhalfofthe19thcentury, andthisshelteringmethodbecamedominantinthefirstdecadesofthe20thcentury. TheStevensonscreenisawhite,louveredbox,whichallowsairflowstogothrough byslits,butfullyexcludesradiationsfromanyobjectoutside,andeffectivelyprotectsagainstprecipitationparticles.TheexternalsurfaceofStevensonscreensis whitetominimizetheradiationabsorptionofthescreen,whichotherwisecouldelevatethetemperatureoftheinteriorofthescreenabovethetemperatureoutside.With thetransitiontoAWS,theuseofStevensonscreensceased,firstlybecausetheAWS sensorsaremuchsmaller,hencetheydonotneedsobigscreens.AWSthermometers andhygrometersareshelteredbyasmallshieldabovetheinstruments.

InaMWSsynopticstationofHMS(hereafter:inaMWS)severalthermometers wereinuse,servingdifferentpurposes.Thermometerseventookpartinairhumidity measurements(Section1.5).Inthemajorpartofthe20thcentury,mercuryinglass tubethermometerswerethemostwidelyusedinstrumentsofprofessionaltemperatureobservationsinallovertheworld.Mercurychangesitsvolumelinearlywith temperature,andresistswellagainstotherphysicalorchemicalalterations.However,fromthebeginningofthe21stcentury,theuseofmercuryhasbeenceased inallareasforitsseveretoxicityanddangertohealthandthenaturalenvironment.

TheprincipalthermometerofaMWSwasamercurythermometer,andwasread ineveryhour.Itstankwasat2mheightabovethegroundsurface(1.25minsome countries),andwasreferredtoasstationthermometer.Thesethermometerscouldbe readwith0.1°Cprecision,andtheywereveryreliableandaccurateinstruments. However,theyhadthedrawbackthattheycouldnotfollowcorrectlyfasttemperaturechangesduetotheirrelativelylargesizeandtheshelteringbyStevensonscreen.

Forclimatestudies, dailyminimumtemperatures(Tmin)and dailymaximum temperatures(Tmax)areoftenthemostimportantpiecesoftemperaturerecords. ItisbecausetheTminandTmaxseriesaregenerallyavailablefrommorestations

andforlongerperiodsthanothertemperatureobservations. Dailymeantemperature canbeapproximatedbythearithmeticalmeanofTminandTmax,orfromthereadingsofthestationthermometer.Thelatteristheoreticallymoreprecise,butitcanbe appliedonlywhenthehoursofthermometerreadingsareconstantinthestation.

InMWSs,TminandTmaxaremeasuredwithspecificinstruments.Minimum thermometersincludealcoholandafinesticklyingintheglasstube.Itisplaced inhorizontalpositionintheStevensonscreen,at2mheightabovethegroundsurface.Whentemperaturedecreases,thevolumeofthealcoholcontracts,andthealcoholdragsthestickdowninawaythattheupperendofthestickshowstheactual temperature.Whentemperatureincreases,thealcoholexpands,butitleavesthestick atthepositionofthelowesttemperatureoccurred.AfterreadingTmin,thestickpositionisfittedtotheactualtemperaturebyturningthethermometerinverticalposition forafewseconds.Classicmaximumthermometersincludedmercurywhosetop levelshowedthemaximaltemperaturesinceitslastreading,aslongastheupperpart ofthemercuryhasnotbeenshakendownmanuallytotheleveloftheactualtemperature.Inthe20thcentury,thesekindsofthermometerswerewidelyusedbyhealth servicesandindividualstocontrolfever.Minimumthermometersandmaximum thermometerswerereadat06UTCand18UTC,andtherecordedvaluesreferring totheprevious12hperiod.

Beyondthethermometersdescribedinthepreviousparagraphs,athermograph servedtoproduceweeklychartsoftheobservedtemperatures.Itssensorwasa bimetalwhosechangewithtemperaturemovedthepenupordown,viamechanical transmissionunits.

InAWSs,PT100resistancethermometersareused.Theirsensorisafineplatinumfilmclosedintoaprotectortube.Theelectricresistanceofplatinumincreases quadraticallywithgrowingtemperature,andtheparametersofthephysicalrelationshipareknownwithhighprecisenessfromlaboratorymeasurements.Thisthermometerissmall,facilitatinganotablylowerresponsetimethanMWSthermometers. Theinstrumentconvertsautomaticallytheobservedresistancetotemperature. ThenominalaccuracyofPT100thermometersis 0.3°C.Thethermometer,like theothersensorsofanAWS,isconnectedtoadatalogger,withwhichtherecording ofobserveddataispracticallycontinuous,sothatnoalternativethermometersare neededtomeasureTminandTmax.

MeanvaluesoftemperaturerecordsoriginatedfromMWSorAWSobservations aregenerallycomparablewithoutnotablesystematicbias,butitislesstrueforTmin andTmaxrecords.Especially,thelowerresponsetimeofAWSthermometersallows todetectthepeaktemperaturesofshort-termthermalfluctuations.Thismightpush upwardtherecordedTmaxvalues,althoughnotethattheAWSrecordedTminand Tmaxvaluesare1-minaverages.

1.5 Humidity

Airhumidityisanimportantmeteorologicalelement.Itinfluencesthespeedofmoisturelossofsoilandplantsandtheperceivedthermalcomfortofhumansandanimals.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.