Climate change in the anthropocene kieran d. ohara - Download the ebook today to explore every detai

Page 1


https://ebookmass.com/product/climate-change-in-theanthropocene-kieran-d-ohara/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Anthropocene Realism: Fiction in the Age of Climate Change

John Thieme

https://ebookmass.com/product/anthropocene-realism-fiction-in-the-ageof-climate-change-john-thieme/

ebookmass.com

Thinking Through Climate Change: A Philosophy of Energy in the Anthropocene Adam Briggle

https://ebookmass.com/product/thinking-through-climate-change-aphilosophy-of-energy-in-the-anthropocene-adam-briggle/

ebookmass.com

Less Heat, More Light: A Guided Tour of Weather, Climate, and Climate Change John D. Aber

https://ebookmass.com/product/less-heat-more-light-a-guided-tour-ofweather-climate-and-climate-change-john-d-aber/

ebookmass.com

Sustainable Manufacturing Kapil Gupta

https://ebookmass.com/product/sustainable-manufacturing-kapil-gupta/

ebookmass.com

Social Work in Health Settings: Practice in Context 4th Edition, (Ebook PDF)

https://ebookmass.com/product/social-work-in-health-settings-practicein-context-4th-edition-ebook-pdf/

ebookmass.com

Scandal And American Politics In The 21st Century Busby

https://ebookmass.com/product/scandal-and-american-politics-inthe-21st-century-busby/

ebookmass.com

The Social Impact Advantage: Win Customers and Talent By Harnessing Your Business For Good Tynesia Boyea-Robinson

https://ebookmass.com/product/the-social-impact-advantage-wincustomers-and-talent-by-harnessing-your-business-for-good-tynesiaboyea-robinson/ ebookmass.com

Medjugorje and the supernatural : science, mysticism, and extraordinary religious experience Klimek

https://ebookmass.com/product/medjugorje-and-the-supernatural-sciencemysticism-and-extraordinary-religious-experience-klimek/

ebookmass.com

Richard Congreve, Positivist Politics, the Victorian Press, and the British Empire Wilson

https://ebookmass.com/product/richard-congreve-positivist-politicsthe-victorian-press-and-the-british-empire-wilson/

ebookmass.com

https://ebookmass.com/product/5-steps-to-a-5-ap-physics-2-algebrabased-2024-christopher-bruhn/

ebookmass.com

CLIMATECHANGEIN THEANTHROPOCENE

CLIMATECHANGEIN THEANTHROPOCENE

KIERAND.O’HARA

UniversityofKentucky,Lexington,KY,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-820308-8

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: MarisaLaFleur

EditorialProjectManager: JosePaoloValeroso

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: ChristianJ.Bilbow

TypesetbyAptara,NewDelhi,India

Preface ix

PARTI1

1Ourgloballychangingclimate3

1.1 Introduction3

1.2 Globaltemperature4

1.3 Landsurfacetemperature5

1.4 Seasurfacetemperature6

1.5 Globalsurfacetemperature7

1.6 Trendsinglobaltemperatures7

1.7 Trendsinglobalprecipitation8

1.8 Extremeweatherevents9

1.9 Changesinthecryosphere10

1.10 Changesinsealevel14

1.11 Changesinlandprocesses14 References16

2Physicaldriversofclimatechange19

2.1 Theglobalradiationbudget19

2.2 Thegreenhouseeffect19

2.3 Radiationforcing22

2.4 Globalwarmingpotential24

2.5 Greenhousegases25

2.6 Aerosols29

2.7 Climateresponse30

2.8 Feedbacks32

2.9 Albedofeedbacks34

2.10 Oceanchemistry,ecosystems,andcirculation35

2.11 Permafrost38 References38

3Evaluationofclimatemodelperformance41

3.1 Introduction41

3.2 Modeltypes42

3.3 Modelimprovements43

3.4 Modelevaluation44

3.5 Ensembleapproachtoevaluation45

3.6 Modelintercomparisons45

3.7 Results46

3.8 Theocean48

3.9 Carboncycle52

3.10 TheParisAccords53

3.11 Representativeclimatepathways53

3.12 Near-termclimateprojections54

3.13 Long-termprojections57 References60

4Paleoclimates63

4.1 Introduction63

4.2 Preindustrialexternalradiativeforcings65

4.3 HighCO2 worlds67

4.4 Pleistoceneglacial-interglacialdynamics69

4.5 TheCLIMAPProject71

4.6 Holoceneclimate73 References76

PARTII79

5Climateimpacts:USsectorsandregions81

5.1 Introduction81

5.2 Keysectors81

5.3 Regionalclimateimpacts95 References101 6Adaptation105

6.1 Introduction105 References121

7Mitigation123

7.1 Introduction123

7.2 GHGemissiontrends125

7.3 Emissiondrivers127

7.4 Carbonintensityofenergy129

7.5 Sectors130

7.6 Buildings136

7.7 Sharedsocioeconomicpathways–quantifyingthepaths137

7.8 ComparisonofSSP1andSSP3138

7.9 SSP5.Fossilfueldevelopment139 References140

PARTIII143

81.5o Cversus2.0o Cwarming145

8.1 Introduction145

8.2 1.5o Cand2.0o Cwarming147

8.3 Naturalsystems149

8.4 Humansystems153 References155

9Gettingtonetzeroby2050157

9.1 Introduction157

9.2 Thecurrentsituation(2021)158

9.3 Roadtonet-zeroemissions2050160

9.4 PopulationandGDP161

9.5 EnergyandCO2 prices161

9.6 CO2 emissions162

9.7 Totalenergysupply162

9.8 Economicsectors163

9.9 Conclusions164 References164

10Climateengineering167

10.1 Introduction167

10.2 Solarradiationmanagement168

10.3 Aerosolinjectionintothestratosphere169

10.4 Albedoenhancementoflow-levelmarineclouds174

10.5 Surfacealbedoenhancement176

10.6 Carbondioxideremoval176

10.7 Discussion183 References184 Index 187

Preface

TheGreekwordforhumankindisanthropos.ThetermAnthropocene wasproposedovertwodecadesagobyPaulCrutzen(atmosphericscientist andNobellaureate)andEugeneStoermer(biologist)toindicateanew geologicalepochinwhichtheintensityofhumanactivitystronglyimpacted EarthSystems,therebymarkingtheendofthecurrentHoloceneepoch, andjustifyinganewepoch.TheAnthropocenehasnotbeenformalized asanewgeologicepochandeventheboundarybetweenitandtheearlier Holocenehasnotyetbeenagreedupon,butthetermneverthelesshasgained widespreadcurrencyinboththescientificandpopularliterature.

ThisbookfollowstheoriginalsuggestionthattheIndustrialRevolutionmarksthebeginningoftheAnthropocene,markedbythetransition fromapastorallifestyletoanindustrialonelargelybasedincities(circa 1800AD).Thistimeframecorrespondstoanincreaseinburningofcoal andincreasedemissionsofgreenhousegases,especiallycarbondioxide.Based onicecores,thepreindustrialatmosphericconcentrationofcarbondioxide wasabout280ppm(comparedto ∼420ppmin2020)andiscommonly usedasareferencepointwhendiscussingclimatechange.By2017,the globalmeansurfacetemperaturehadincreasedby1.0°C(± 0.2)(1.8°F)since preindustrialtimes,andbothofthesereferenceframesareusedthroughout thebook.

TheconceptoftheAnthropoceneprovidesalensthroughwhichinsight intoman’seffectsontheenvironmentcanbeviewedinastructuredhistoricalfashion.Itisworthnotingthatthegeologicalcommunityonaltering thegeologicaltimescalemovesataglacialpace:in1878,CharlesLapworth, proposedtheOrdovicianPeriodtobeplacedbetweentheyoungerSilurian PeriodandtheolderCambrianPeriod;theproposalwasformallyaccepted in1976.

ThisbookistoalargeextentbasedontheIntergovernmentalPanelon ClimateChange(IPCC)reports.TheWorldMeteorologicalOrganization (WMO)togetherwiththeUnitedNationsprovidesthebasisforthese reportswhicharepublishedapproximatelyeveryfiveorsixyears.The UnitedStatesGovernment’sFourthNationalClimateAssessment(NCA4, 2017),withinputfrom13governmentagencies,isalsoheavilyreliedupon anditsconclusionsagreecloselywiththoseoftheIPCCreports.Thefifth IPCCreport(IPCC-AR5)waspublishedin2013–2014andthelatestreport

(IPCC-AR6)waspublishedinAugustof2021,havingbeendelayedbythe globalpandemicof2020.Reportvolumesaredividedintothreeworking groups(WG1,II,III),andeachchaptercommonlyhastwentyormore internationalexpertauthorsandeachvolumeisweighty,oftenatathousand pagesormorepervolume.Thepeerreviewprocessofthesereportshas severalroundsandisextensiveandlengthy.Thisbookislargelyasummary ofthesereports.

FollowingCaesar’sGaul,thebookisdividedintothreeparts.PartI addressesthephysicalsciencebasisofclimatechangeandislargelybased onIPCC-AR5(2013).Chapter1addressesthebasicobservationsindicating climatechange,followedbythedriversofthischangeinchapter2.Chapter 3examinescomputerclimatemodelsandchapterfourlooksatpaleoclimate reconstructions.PartIIexaminesclimateimpactsinvariousregionsofthe USA(basedonNCA4,2017),followedbyadaptationandmitigationscenarios.PartIIIlooksatthedifferencebetween1.5and2.0°Cwarmingrisks (basedonIPCCSpecialReport,2018)followedbytheroadmaptonet-zero emissionsby2050(basedontheInternationalEnergyAgency2021report). Thefinalchapterexaminesclimateengineering(orgeoengineering),which iswidelyregardedasalastresortoption,andthischapterisbasedonthe currentscientificliterature.

AlthoughAnthroposappliestoallhumanity,itisclearthat,basedon geographyandsocioeconomicstatus,theimpactsofclimatechangeare relatedtosocialinequitiesandtheimpactsarenotandwillnotbedistributed evenly–thedevelopingcountriesandthepoorwillbemostaffected.The ParisAgreementof2015recognizedthisfactbutwhetherthedeveloped countrieswillfulfilltheirmonetarypromisestodevelopingnationsremains indoubt.TheUnitedStatesre-enteredtheParisagreementin2020.The UnitedNationsclimatesummitofNovember2021(COP26),heldin Glascow,agreedtoreducemethaneemissions(by30%)by2030andalso toeliminatedeforestationbythesamedate.Noagreementtoacoalbanwas reached,asChina,IndiaandRussiadidnotsignon.

1.Ourgloballychangingclimate

CHAPTER1

Ourgloballychangingclimate

1.1Introduction

TheEarthsciencesstudyamultitudeofprocessesthatshapethespatialand temporalcharacterofourenvironment(Fig.1.1).Moderndayobservations, archivesofpastclimates,climatemodelprojections,andstatisticaltools, canallbeusedtoyieldsignificantinsightintoclimatechange,resulting inconclusionsthathavevariablelevelsofconfidencefromhightolow (see Cubaschetal.,2013).TheEarth’sclimatesystemispoweredbysolar radiationabouthalfofwhichisinthevisibleandultravioletrangeofthe electromagneticspectrum.Thesunprovidesitsenergyprimarilytothe tropics,whichisredistributedtohigherlatitudesbyatmosphereandocean transportprocesses.TherelativelycooltemperatureoftheEarth’ssurface meansitreradiatesenergyinthelongwavelengthpartofthespectrum (infrared)andmuchofthisradiationisabsorbedbygasesintheatmosphere suchaswatervapor,CO2 ,CH4 ,andN2 Oaswellashalocarbons–thisisthe greenhouseeffect.GiventheEarthhashadanearconstanttemperatureover thepastfewcenturiestheincomingsolarenergymustnearlybalancethe outgoingenergytospace,andcloudsplayanimportantroleinthisenergy balance.About30%oftheshortwaveradiationisreflectedbacktospace byclouds,causingcooling.Ontheotherhand,someclouds,depending onelevation,traplongwaveradiation,heatingthesurface,andthelower atmosphere.

Climateisaverageweatheroveraprolongedperiod,commonlytaken asthreedecadesorlonger,andclimatechangereferstoachangein thestateoftheclimate(basedonstatisticaltests),suchastemperature, precipitation,ordrought.Forexample,duringthelastglaciation,stadial, andinterstadialperiodswerecharacterizedbycold/dryclimates(stadials) alternatingwithwarm/wetclimates(interstadials),onamillennialtimescale (O’Hara,2014). Fig.1.1 summarizesseveralkeyelementsoftheclimate system;elementsinteractwithoneanotherincomplexwaysinvolvingboth positiveandnegativefeedbacks(seeChapter2).Thischaptersummarizes severalindicatorsthatourplanetiscurrentlywarming.Thewarmingdates backtothebeginningoftheanthropocene,wherethemeantemperature overtheperiod1850–1900istakenasthereferenceperiod.

ClimateChangeintheAnthropocene. Copyright©2022ElsevierInc. DOI: https://doi.org/10.1016/B978-0-12-820308-8.00005-2 Allrightsreserved. 3

1.2Globaltemperature

ThefourthIPCCassessmentreport(LeTreutetal.,2007)providesahistory ofearlyattemptsatconstructingaglobaltemperaturetimeseriesforthe nineteenthandtwentiethcenturies.Theglobalaveragetemperatureisone ofthemostimportantvariablesinthestudyofclimatechangeasitcorrelates withothervariablessuchasicemelting,sealevelrise,precipitation,and becauseithasthemostrobustrecordovertime.Theconceptofaglobal averagetemperatureissimpleinprinciplebutitscalculationisfarfromtrivial (Voseetal.,2012).Althoughthethermometerwasinventedasearlyasthe 1600sitwasnotuntilthe1900sthatdifferentglobalestimatesofaverageland temperaturebegantoagreewithoneother.

TheGermanclimatologistW.Köppen(1846–1940)wasoneofthefirst torecognizethemajorproblemsinvolvedintheglobalaveragetemperature estimatesnamely,accesstodatainusableform,qualitycontroltoremove erroneousdata,standardizationtoensurefidelityofdata,andareaaveraging inareasofsubstantialdatagaps.Köppenaveragedannualobservationsfrom 100stationsintolatitudebeltstoproduceanearglobaltimeseriesasearlyas thelatenineteenthcentury.TheInternationalMeteorologicalOrganization (IMO)formedin1873,anditssuccessortheWorldMeteorologicalOrganization(WMO),stillworktopromoteandstandardizeobservations.The

Figure1.1 Summaryofmajordriversofclimatechange. (Sourcewithpermission: Cubaschetal.,2007.)

WorldWeatherRecords(WWR),formedbytheIMOin1923,provided monthlydatafortemperature(andalsopressureandprecipitation)estimates fromhundredsofstationsintheearlytwentiethcenturywithdatabeginning intheearly1800s. Callendar(1938) usedthesedatatoprovideoneofthefirst modernland-basedglobalaveragetemperaturetimeseries.Asmentionedin thePreface,theWorldMeteorologicalOrganization(WMO)togetherwith theUnitedNationstodayprovidesthebasisfortheIPCCscientificreports onclimatechangeandonwhichthisbookislargelybased.

Today,threeresearchgroupsstudyglobalseaandland-basedtemperatures puttogetherfrompiecemealrecords(Voseetal.,2012):theNationalOceanic andAtmosphericAdministration’sNationalClimaticDataCenter(NOAANCDC),theNationalAeronauticandSpaceAdministration’sGoddard InstituteforSpaceStudies(NASA-GISS)andtheMetOfficeHadley CenterandClimaticResearchUnit(HadCRUT).Eachgroupusessomewhatdifferentinputdatasetsandtheyalsoanalyzethedatawithdifferent methodologies.Forexample,GISSmakesextensiveuseofsatellitedata, whereasNCDCusesitinalimitedcapacityandHasCRUTmakesnouseof satellitedata.Similarly,GISSandNCDCprovidetemperatureestimatesin unsampledareas(usinginterpolation),whereasHasCRUTdoesnot.Despite thesedifferencesallthreegroupsreachasimilarconclusion:since1900the globalaveragesurfacetemperatureincreasehasbeenabout0.8 ± 0.2°C.The fifthIntergovernmentalPanelonClimateChange(IPCC-AR5,2013)and theUSgovernment’sFourthNationalClimateAssessment(NCA4,2017) reportsbothagreewiththisconclusionwithahighlevelofconfidence. Thesereportsalsoprojectthatbytheendofthiscentury(2100)theglobal averagetemperatureincreasewillbebetween2.0°Cand5.0°C,depending ongreenhousegasemissionsandpopulationandeconomicgrowthamong othervariables(seeChapter6).

1.3Landsurfacetemperature

ThedatasetusedbyNCDCconsistsofhistoricalmonthlydatagoingback acenturyfromover7000surfaceweatherstations.Thedatasetisreviewed forqualityassuranceandspatialinconsistencies.Landsurfacetemperatures requireadjustmentsduetoavarietyofcausessuchasstationrelocation, changeininstrumentation(e.g.,automation),urbanization(thecityheat effect)andlanduse,andmicroclimatechanges.Suchchangestypically produceanabruptjumprelativetoitsneighborstations.Theseartifacts areindentifiedautomaticallybycomparingsurroundingstationspairwise. RenoNevada,forexample,requiredanadjustmentof2°Cafterthestation

wasmovedfromdowntowntotheairport(Thorne,2016).Thetransition toelectronicsensorsintheUSinthelatetwentiethcenturyrequiredan adjustmentofabout0.25°Cnationwide(Voseetal.,2012).Averagedover theglobe,however,theseadjustmentshaveonlyaminorimpactonthelongtermLSTrecord.

Thetemperatureseriesisalsostandardizedtoaccountforelevation, latitude,coastalproximity,andseason.Ameantemperatureiscalculatedfor eachstationrelativetothereferenceperiod(1961–1990)andthenthismean issubtractedfromeachtemperaturevalueatthatstation.Theresultingvalues arereferredtoasanomaliesandthisisthemostcommonwaytheresultsare presentedingraphicform.Thisstandardizationprocedurereducesmuchof thevariabilityintheoriginaldataset.

Theunevenspatialdistributionofstationsistakenintoaccountby averagingmeasurementsin5-degreelongitudeandlatitudegridboxes.A singleaveragetemperatureiscalculatedforeachboxonamonthlyand annualbasisandthishelpspreventhigh-densitymeasurementboxestohave undueinfluence.Todaylandcoverageisabout90%andareasoflowcoverage includeforests,desertsandthepoles.Satellitedataaffordsglobalcoveragebut thedatamustbecalibratedwithgroundmeasurements;inaddition,because aninfraredspectrometerisusedfortemperaturemeasurements,theskies mustbecloud-free.

1.4Seasurfacetemperature

Theseasurfacetemperaturedatasetisprimarilyfrommarinemeteorological observationsfrombuoysandshipsintegratedfromnumeroushistorical sources.Buoyscanbeeitherdriftingormoored;buoyobservationsare givenaboutsixtimestheweightfromshipsonaccountofthenoisein thelatterobservations(e.g.,mistakesinnavigation,instrumentcalibration, datatranscription).Shiptemperaturemeasurementsshowachangein practiceovertime.Inpre-WorldWarIItimeswoodenorcanvasbuckets (someinsulated,somenot)werehauledondeckformeasurement.These measurementsrequireadjustmentsforseveralvariables:typeofbucket, heightofdeck,etc.Evaporativecooling,especiallyinhighwinds,requires adjustmentsofabout0.2°C(Thorne,2016).Lateron,themeasurements weremadeattheengine’scoolwaterintake,orsensorswereplacedonthe ship’shull.Globally,asmallergridbox(comparedtotheLSTs)of2 × 2 degreesisused.Eachboxvalueisanaverageofmeasurementsoveramonth andthemeanvalueforareferencetimeperiod(197–1990)issubtracted fromeachtemperaturemeasurement,asinthecaseforLSTs.

1.5Globalsurfacetemperature

BeforemergingtheLSTandSSTanomaliestheyareprocessedseparately becausetherearefundamentaldifferencesbetweenthetwodatasets(Vose etal.,2012).First,thespatialcoverageovertheoceansissubstantiallyless thanthatoverland(Thorne,2016)andsecondly,thedensityofocean measurementsissubstantiallylowerthanlandmeasurements.Inaddition, thetimeandspacescalesoftemperaturevariabilityoverlandareshorter comparedtotheocean,duetothehigherspecificheatofwateranditsslower speedofadvection.Beforemergingthedatasets,lowfrequencyvariations thatoccuroverlongerperiodsandhighfrequencyvariationsthatoccur overshorterperiodsareidentifiedandsmoothed,thenbothcomponentsare addedtogether.TheLSTandSSTdatasetsaremergedaftertheSSTgrid boxes(2o x2o )areaveragedinto5o x5o boxes.Thereferencetimeperiod overtheocean(1971–2000)isconvertedtothesametimeperiodastheland measurements(1961–1990).Otheradjustmentsaredescribedinmoredetail in Voseetal.(2012).Theglobalyearlyandmonthlyaveragesaresimplythe averageofallboxeshavingavalueinthatyearandmonth.Theannualglobal averagetemperatureissimplythearithmeticmeanof12monthlyaverages.

1.6Trendsinglobaltemperatures

Fig.1.2 showstheNCA4annual(top)anddecadal(bottom)averageglobal temperaturesoverlandandoceanfortheperiod1880–2016,relativeto thereferenceperiod1901–1960(Wuebblesetal.,2017).Theglobalannual averagetemperaturehasincreasedby0.7°C(1.2°F)fortheperiod1986–2016.YeartoyearfluctuationsareduetonaturalvariationssuchasElNiños andLaNiñasandvolcaniceruptions.Onadecadalscale(bottomdiagram) thesefluctuationsaresmoothedoutandeverydecadesince1966-1975 hasbeenwarmerthanthepreviousdecade.Recentdecadesshowgreater warmingduetoacceleratinggreenhousegasemissions.Sixteenofthe17 warmestyearssincethelate1800soccurredintheperiodfrom2001to2016. Ingeneral,winteriswarmingfasterthansummerandnightsarewarming fasterthandays.

Fig.1.3 showstheglobalsurfacetemperature(°F)increaseforthe period1986–2015referencedtothe1901–1960timeframe.Notethe oceansshowlesswarmingcomparedtothecontinentsonaccountoftheir higherheatcapacity.Onthecontinentsthelargestincreasesareseenin Eurasia,northwestNorthAmerica,centralSouthAmerica,andnorthwest Africa.

Figure1.2 Annual(top)anddecadal(bottom)combinedoceanandlandtemperatures fortheperiod1880–2010. (Sourcewithpermission: Wuebblesetal.,2017.)

1.7Trendsinglobalprecipitation

TheClausius-Clapeyronrelationdescribesthewaterliquid-vaporequilibriumasafunctionofpressureandtemperature.Globalatmosphericwater vaporshouldincreasebyabout6%/°Cto7%/°Candsatellitedataoverthe oceansagreewiththisestimate(Santeretal.,2007);increasesinwatervapor shouldleadtoincreasedprecipitation.Globaltimeseriesofprecipitation

Figure1.3 Globalsurfacetemperaturefortheperiod1986–2015relativetothe1901–1960mean. (Source:NOAA.)

overthepastcenturyshowaslightrisebutarenotstatisticallysignificant becauseofthesparsityofdataintheearlyrecord(Wuebblesetal.,2017).The globaldistributionmapshowsincreasedprecipitationathigherlatitudesand lowerprecipitationatlowerlatitudesduetoHadleycellcirculation.Deficits inprecipitationarenotableinAfrica,theTibetanplateauandsouthern China,westernUSA,andeasternAustralia;asexpectedtheAmazonrain forestbasinshowshigherprecipitation.

1.8Extremeweatherevents

Thedistributionofextremeweathereventscanbeapproximatedbya Normaldistributionwhereextremeevents(hotorcold)arerareand correspondtothetailsofthedistribution(Fig.1.4).Inawarmingworld themeanofthedistributioncanbeexpectedtoshifttotherightgiving risetomoreextremehoteventsandalsofewercoldevents. Fig.1.5 shows decreasingnumberofcoldnightsanddays(toptwoinsets)andincreasing numberofwarmsnightsanddays(bottomtwoinsets)fortheperiod1950–2010relativetothereferencetimeperiod196–1990.Thepatternsaresimilar

Figure1.4 Climateextremesoccuronthetailsofanormaldistribution.Coldperiods becomelesscommonandhoteventsbecomemorecommonastheaverageclimate becomeswarmer. (Sourcewithpermission: Cubsachetal.,2013.)

tothosepredictedby Fig.1.4.Increasesinfrequencyofextremeprecipitation eventsareexpectedfromanincreaseinatmosphericwatervaporandannualmaximumdailyprecipitationeventshaveincreased8.5%overthepast 110yearsoverbothwetanddryregions(Wuebblesetal.,2017).Computer climatemodels(Chapter3)alsopredictincreasedextremeprecipitation events.

1.9Changesinthecryosphere

Thecryosphereincludescontinentalicesheets(GreenlandandAntarctica), seaice(e.g.,ArcticOcean),mountainglaciers,frozenground(permafrost), lakeandrivericeandsnow(Vaughanetal.,2013; Wuebblesetal.,2017). Thesedifferentcomponentsofthecryosphererespondtochanging conditionsondifferenttimescales:riverandlakeiceandsnowrespondona dailytimescale,glaciersonanannualbasis,mountainglaciersovercenturies, andlargeicesheetsonamillennialtimescale.Changesinland-basedpartsof thecryospherehaveamajorimpactonsealevelchangeandthearealextent ofice(see Box1.1).Bothonlandandsea-basedicehaveamajorinfluence onsunlightreflectivityoralbedo(e.g.,openwater ∼5%;ice ∼50–70%and snowcoveredice ∼90%),whichinturnaffectsclimatefeedbacks.Ona morelocalscale,meltingglaciersmayaffecttourismandimpactfreshwater resources.Forexample,earlierSpringmeltingofsnowintheSierraNevada mountainsresultsinincreasedrunoff,deprivingdownstreamaquifersof replenishmentandresultinginchanginghydroelectricgenerationschedules. Thecryosphereispartofacomplexclimatesystemandisoneofthebest barometersofcurrentclimatechange. Table1.1 showsthepercentareaof

Figure1.5 Globaldecreasingcoldnightsanddays(toptwoinsets)andincreasing warmsnightsanddays(bottomtwoinsets)overtheperiod1950–2010. (Sourcewith permission: Hartmannetal.,2013.)

variouscomponentsofthecryosphereonbothlandandsea.Thesealevel equivalentiftheseicecomponentsweretomeltisalsoshownanddoes notincludesealevelriseduetothermalexpansionofwarmingoceans. Thissealevelriseissimplyicevolumemeltdividedbytheareaoftheoceans

Table1.1 Landandoceancryospherecomponents.

Iceinocean Oceanarea(%) Volume(103 km3 )

Antarcticseaiceaustralsummer(spring) 0.8(5.2) 3.4(11.1) Arcticseaiceautumn(winter) 1.7(3.9) 13.0(16.5) Total 5.3–7.3

Sourcewithpermission: adapted IPCC-AR5(2013),table4.1.

BOX1.1Polaramplification

Polaramplificationoccurswhenthemagnitudeofzonalaveragedtemperature changeathighlatitudesexceedstheglobalaveragetemperature,inresponseto climateforcings(e.g.,orbitalforcingorgreenhousegases)ontimescalesgreater thantheannualcycle.Amplificationhasimportantimplicationsforpolaricesheet stabilityandhencesealevelandalsoforthecarboncycleinvolvedinpermafrost thawing.IthasbeenknownsinceMilankovitch’stimethatorbitalforcingwas moreimportantathighlatitudes(ImbrieandImbrie,1986).Today,orbitalforcing iscommonlycalculatedat50o to60o latitudeinthenorthernhemisphere(NH). IntheArctic,theseaice/oceanalbedofeedbackisalsoimportant.Retreatingseaicedecreasesthesurfacealbedocausingoceanwarmingandfurthermelting.In continentalArcticregionssnowcoverchangealsochangesthesurfacealbedo. Surfacevegetationchangesoccuronalongertimescale(decadestocenturies) andalsoaffectthealbedo.Onglacial-interglacialtimescales(thousandsofyears), theslowretreatoftheicealsoleadstoalbedochangeandisimportanttopolar amplificationintheNH.

IntheSouthernOcean,seasurfacetemperatureisamplifiedinresponseto changesinradiativeforcings,alsoduetotheseaice/oceanalbedofeedback.But astheSouthernOceanislessstratifiedcomparedtotheArctic,itcanabsorbmuch moreheat(astratifiedoceandoesnotallowasmuchdownwardheattransport). ThismeanstheSouthernOceantemperatureresponseisdampedincomparison totheArctic.

(363 × 106 km2 ).Note:anicemeltvolumeof363Gtwouldcausea1mm riseinglobalsealevel;1Gt(109 metrictons)oficeisequivalenttoavolume of1km3

SatellitedatafromGravityRecoveryandClimateExperiment (GRACE)haveprovidedgravimetriclandicemeasurementsindicatingmass lossfromtheglobalcryosphere(VelicognaandWahr,2006a, 2006b).These measurementsindicatemasslossesfromtheAntarcticandGreenlandice sheetsandmountainglaciersaroundtheworld.Theannuallyaveragedmass lossfrom37referenceglaciershasincreasedeveryyearsince1984.Over theperiod2003–2009,19referencemountainglaciersallshowmassloss withAlaska,Greenland,SouthernAndes,CanadianArctic,andtheAsian mountainsaccountingfor80%ofglobaliceloss(Vaughanetal.,2013). Arcticseaiceextentandthicknessandvolumehavealldecreasedsince 1979whensatellitedatafirstbegan(http://nsidc.org/arcticseaicenews/). Typically,ArcticseaiceisatmaximuminMarchandaminimumin Septemberaftersummermelting.Septemberseaiceextentdecreased by13.3percentperdecadebetween1979and2016.Climatemodels (Chapter3)projectanearlyice-freeArcticOceaninsummertimebymidcentury(2050).Theloweralbedoofanice-freeArcticwouldbesubstantial andisequivalenttoaradiativeforcingof0.3Wm 2 (Chapter2).Overthe pastdecademasslossfromtheGreenlandicesheethasaccelerated,losing 244 ± 6Gtperyearbetween2003and2013.Satellitedatafor2012–2013 showedalossof562Gt,twicetheannualaverage.Greenlandicesheetmass lossisbysurfacemeltingaswellasdischargefromthebaseofthesheet.

WestAntarcticaischaracterizedbylandicethattransitionstocoastal iceandseaicesheets.Airtemperaturesaretoocoldforsurfacemeltingin Antarcticaeveninthesummer,andrecenticelossfromWestAntarcticasea iceisattributedtowarmingofthesurroundingocean.Evidencesuggeststhat theAmundsenSeasectorisexpectedtoentirelydisintegratebythiscentury, correspondingtoasealevelriseof1.2meters(Wuebblesetal.,2017).Areas ofEastAntarcticseaiceshowgainsof1.2%to1.8%since1979;thesegains aremuchsmallerthanlossesseeninArcticice.

Terrestrialpermafrostshowsatemperatureincreaseof1°Cto2°Cfrom avarietyofnorthernregionsovertheperiodfromthe1970sto2010in boreholesatadepthof5mto20m;thesedepthsarebelowseasonal temperaturevariations.Thesouthernboundaryofpermafrosthasmovedup to80kmnorthinsomehighlatitudelocations(e.g.,Siberia).Thethawingof permafrostraisesconcernsofthereleaseofbothCO2 andCH4 bybacterial activityresultinginapositivefeedbackforwarming.Otherconcernsarethe

impactoninfrastructure(instabilityofroadsandbuildings).Forexample,a fuelstoragedepotinnorthernSiberia(Norilsk)collapsedinMayof2020 spilling17,500metrictonsofdieselfuelintothelocalriverthatflowstothe ArcticOcean.Thecollapsewasattributedtothawingpermafrost.

1.10Changesinsealevel

Statisticalanalysesoftidegaugedataindicatethatglobalmeansealevel (GMS)hasincreasedby20–23cmsince1880witharateofabout1.2cm to1.5cmperdecadefrom1901to1990.However,sincetheearly1990sboth tidegaugeandsatellitealtimetershaverecordedafasterrateofabout3cm perdecade,resultinginaboutan8cmriseinGMSsincetheearly1990s. Thisriseisattributedtotwocomponents,twothirdsofwhichisdueto meltingofland-basediceandonethirdtothermalexpansionoftheoceans (Gehrels,2016).

Futureprojectionsofsealevelrisedependonwhichrepresentative climatepathway(RCP)wefollow(Cubaschetal.,2013;seealsoTable3.1), whichinturndependsoffuturegreenhouseemissions,populationgrowth, andsocietaleconomicprogressamongothervariables(Chapter6).Model projectionsforthehighscenario(RCP8.5;similartowhatissometimes termed“businessasusual”)indicateasealevelriseof0.5–1.3mby2100. Thisscenarioinvolvesaglobaltemperatureincreaseofabout4°C.Thelow scenario(RCP2.6)indicatesasealevelriseof0.24–0.8mandthisscenario involvesatemperatureincreaseofabout2°Cbyendofthecentury.

1.11Changesinlandprocesses

Changesinlandcovercanhaveimportanteffectsonclimateandconversely changesinclimatecausechangesinlandcoverleadingtofeedbackmechanismsbothpositiveandnegative.Northernhemispheresnowcoverhas decreasedbyabout0.5millionkm2 intheSpringduetoearlierSpring melting,largelyduetoglobalwarmingsincethe1970s,resultinginreduced albedoofthelandsurface.Globally,land-usechangesincethe1750shasbeen typifiedbydeforestationreplacedbyintensivefarmingandurbanization, therebyincreasingalbedo,resultinginasmallcoolingeffect(seeTable2.3 foralbedovalues).Thisdeforestationhasreleasedabout190 ± 65GtCover thistimeperiod.Overthesametimeperiodanthropogenicemissionswere 600 ± 70GtC,sothatcumulativelandusechangeamountstoabout32%of totalemissions.Tropicaldeforestationbybiomassburningemitsabout0.1–1.7GtCperyear.Globaldeforestationemitsabout3GtCperyear,butthisis

Figure1.6 Summarydiagramofglobalclimatechangeproperties.Fromtoptobottom: landsurfacetemperaturerise(4datasets),seasurfacetemperaturerise(3datasets),sea levelrise(4datasets);Insets,lefttoright:Tropospheretemperaturerise(5datasets), oceanheatcontentrise(5datasets),humidityrise(4datasets),northernhemisphere snowcoverfall(1dataset),Arcticseaicefall(annualandSeptember),glaciermassloss (1dataset). (Sourcewithpermission: Wuebblesetal.,2017.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Climate change in the anthropocene kieran d. ohara - Download the ebook today to explore every detai by Education Libraries - Issuu