Clay minerals and synthetic analogous as emulsifiers of pickering emulsions fernando wypych - Read t

Page 1


https://ebookmass.com/product/clay-minerals-and-syntheticanalogous-as-emulsifiers-of-pickering-emulsions-fernando-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanomaterials from Clay Minerals Aiqin Wang And Wenbo Wang

https://ebookmass.com/product/nanomaterials-from-clay-minerals-aiqinwang-and-wenbo-wang/

ebookmass.com

Databook of Blowing and Auxiliary Agents 1st Edition Wypych

https://ebookmass.com/product/databook-of-blowing-and-auxiliaryagents-1st-edition-wypych/

ebookmass.com

Handbook of Adhesion Promoters Wypych

https://ebookmass.com/product/handbook-of-adhesion-promoters-wypych/

ebookmass.com

A World of Public Debts: A Political History 1st Edition

https://ebookmass.com/product/a-world-of-public-debts-a-politicalhistory-1st-edition-nicolas-barreyre-editor/

ebookmass.com

Wretched Emily Mcintire

https://ebookmass.com/product/wretched-emily-mcintire/

ebookmass.com

Educational Psychology 7th Edition John W. Santrock

https://ebookmass.com/product/educational-psychology-7th-edition-johnw-santrock/

ebookmass.com

Brain Plasticity and Learning: Implications for Educational Practice 1st Edition Jennifer Anne Hawkins

https://ebookmass.com/product/brain-plasticity-and-learningimplications-for-educational-practice-1st-edition-jennifer-annehawkins/

ebookmass.com

Complete Spanish Step-By-Step, Premium Second Edition Barbara Bregstein

https://ebookmass.com/product/complete-spanish-step-by-step-premiumsecond-edition-barbara-bregstein/

ebookmass.com

Public Relations: The Profession and the Practice, 4th edition 4th Edition, (Ebook PDF)

https://ebookmass.com/product/public-relations-the-profession-and-thepractice-4th-edition-4th-edition-ebook-pdf/

ebookmass.com

Standards 1st Edition P. K. F. Pkf Internation

https://ebookmass.com/product/wiley-2023-interpretation-andapplication-of-ifrs-standards-1st-edition-p-k-f-pkf-internation/

ebookmass.com

DevelopmentsinClayScience

ClayMineralsandSyntheticAnalogous asEmulsifiersofPickeringEmulsions

Volume10

DEVELOPMENTSINCLAYSCIENCE

SeriesEditor

P.YUANANDF.BERGAYA

DevelopmentsinClayScience ClayMineralsand SyntheticAnalogous asEmulsifiersof PickeringEmulsions

Volume10

DepartmentofChemistry,FederalUniversityofParana ´ , CentroPolitecnico,Curitiba,PR,Brazil

RiltonAlvesdeFreitas

DepartmentofChemistry,FederalUniversityofParana ´ , CentroPolitecnico,Curitiba,PR,Brazil

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91858-9

ISSN:1572-4352

ForinformationonallElsevierPublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: JennetteMcClain

EditorialProjectManager: MariaElaineDesamero

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

Part1 Introduction

1.Clayminerals:Classification,structure,and properties3

1.1Basicconcepts,classification,andnomenclature3

1.1.1Aluminosilicate3

1.1.2Basalsurface3

1.1.3Basalreflection4

1.1.4Bentonite4

1.1.5Brunauer–Emmett–Teller(BET)4

1.1.6Cationexchange5

1.1.7Clay5

1.1.8Clayminerals5

1.1.9Interlayerdistance5

1.1.10Layer5

1.1.11Phyllosilicate5 1.1.12Kaolin6

1.1.13Serpentine-kaolin6

1.1.14Smectite6

1.1.15Talc-pyrophyllite7

1.2Claymineralswithneutralstructures8

1.2.1Claymineralsofthekaolin/serpentinegroup8

1.2.2Claymineralsofthetalc/pyrophyllitegroup12

1.3Claymineralswithnegativelychargedlayers13

1.3.1Claymineralsofthesmectitegroup14

1.3.2Claymineralsofthemicagroup15

1.3.3Claymineralsofthevermiculitegroup16

1.3.4Claymineralsofthechloritegroup17

1.3.5Claymineralsofthesepiolite/palygorskitegroup17

1.4Physicalandchemicalmodificationsofclayminerals18

1.5Concludingremarks30 Acknowledgments31 References31

2.Fundamentalsofemulsionformationandstability37

CarolineE.P.SilvaandWatsonLoh

2.1Definitions37

2.2Thermodynamicsofemulsification40

2.3Kineticstability(metastability)ofemulsions41

2.4Instabilityphenomenainemulsions42

2.4.1Sedimentationandcreaming:Gravitation separation43

2.4.2Flocculation44

2.4.3Ostwaldripening44

2.4.4Coalescence45

2.5Preparationandstabilizationofemulsions46

2.5.1Disruptingdropletsbymechanicalenergy (comminutionmethods)46

2.5.2Low-energyemulsificationmethods50

2.5.3Protectingtheoil–waterinterface51

2.5.4Electrostaticstabilization52

2.5.5Stericstabilization52

2.5.6Choosingtheemulsifieraccordingtothetypeof emulsion53

2.5.7Rheologymodifiers55 References56

3.Pickeringemulsions:Historyandfundamentals61

BaptisteRobin,FlorenceAgnely,NicolasTsapis,and NicolasHuang

3.1AbriefhistoryofPickeringemulsions61

3.1.11990s:Theoriginsofsolid-stabilizedemulsions61

3.1.2Fromthe1910stothe1980s:80yearsofmodest advances62

3.1.3Fromthe1990s:TheboomofPickering emulsions63

3.2FormationandmaincharacteristicsofPickering emulsions68

3.2.1Stabilityofemulsions68

3.2.2Dropletsize75

3.2.3Emulsiontype78

3.3Conclusion79 References79

4.Experimentalmultiscaleapproachandinstrumental techniquesforthecharacterizationofPickering emulsions87

VeroniqueSchmittandValerieRavaine

4.1Introduction87

4.2Emulsioncharacterizationatthemacroscopicand mesoscopicandmicroscopiclevels88

4.2.1Abilityofparticlestostabilizeanemulsion88

4.2.2Typeofobtainedemulsions89

4.2.3Creamingorsedimentationanddispersionstateofthe emulsion90

4.2.4Dropsizedistribution95

4.2.5Limitedcoalescence95

4.3Particlesattheinterface98

4.3.1Characterizationofindividualparticlesattheliquid interface99

4.3.2Organizationofparticlesattheliquidinterface101

4.3.3Organizationofparticlesatamodelliquid interface104

4.3.4Mechanicalpropertiesofparticle-ladenmodelliquid interface105

4.3.5Mechanicalpropertiesofparticle-ladendropsurfaces inemulsions111

4.4Conclusion115 References115

Part2

Pickeringemulsionbasedonclayminerals

5.Physicalandchemicalpropertiesoflayeredclay mineralparticlesurfaces125

5.1Introduction125

5.2Surface-activeclayminerals127

5.2.1Structuralconsiderations128

5.2.2Isomorphoussubstitution129

5.2.3Surfacestructures131

5.2.4Particlemorphologies134

5.3Surfacewettabilityofclayminerals138

5.3.1Watersorptionisotherms138

5.3.2Molecularmodelingofclay-waterinteractions139

5.3.3Surfaceswithvariablehydrophobic/hydrophilic characteristics141

5.4Surfacemodification142

5.4.1Siloxanesurfaceofkaoliniteandhalloysite142

5.4.2Aluminahydroxylsurfaceofkaoliniteandhalloysite (lumen)144

5.4.3Modificationofedgesite147

5.5Particle-particleinteractions148

5.5.1SignificancetoPickeringemulsions148

5.5.2Perspectivesonthefactorscontrollingthestructure andfabricofclaydispersions149

5.6Conclusions156 References159

6.Pickeringemulsionsandfoamsstabilizationbasedon clayminerals169 YongfengZhuandAiqinWang

6.1Introduction169

6.2Pickeringemulsionorfoamstabilizedwithclaymineral171

6.2.1Layeredchainstructure171

6.2.2Tubularstructure174

6.2.3Layerstructure177

6.3Stabilizationmannerofclaymineralinpickeringemulsions orfoams184

6.3.1Synergisticallystabilizedwithclaymineralandsmall molecular185

6.3.2Synergisticallystabilizedwithclaymineraland polymers187

6.3.3Synergisticallystabilizedwiththeclaymineraland otherparticles188

6.4EffectfactorsofPickeringemulsionorfoamsstabilizedwith claymineral190

6.4.1Ionstrength190

6.4.2Claymineralparticlesconcentration192

6.4.3Claymineralparticlesize193

6.4.4Claymineralshape194

6.4.5DispersionpH196

6.5Applicationoftheclaymineralstabilizedpickeringemulsion orfoam196

6.5.1Applicationinenhancedoilrecovery(EOR)196

6.5.2Applicationinpreparationofclay-basedpolymeric nanoparticles198

6.5.3Applicationinpreparationoftheporousmaterial205

6.5.4Applicationincatalysisreaction208

6.5.5Applicationinhistoricpreservation210

6.6Conclusionandoutlook212

6.6.1Theunclearstabilizationmechanism212

6.6.2Theuniquenessofclaymineralsisunrealized213 Acknowledgments213 Declarationofcompetinginterest213 References213

7.Pickeringemulsionsbasedonlayeredclayminerals withneutralstructures,scrolls,andnanotubes morphologies229 PriscilaGrittenSieben,FernandoWypych,and RiltonAlvesdeFreitas

7.1Claymineralswithneutralstructures229

7.1.1Kaolinite231

7.1.2Halloysite232

7.1.3Talc234

7.2Claymineralswithneutralstructuresappliedin emulsions236

7.3Emulsionscontainingnonionicclaymineralsappliedin biomedicalandpharmaceuticalareas243

7.4Dermatologyandcosmeticsapplications245

7.5Environmentalapplications247

7.6Conclusion247 References248

8.Pickeringemulsionsbasedoncation-exchanged layeredclayminerals253 RiltonAlvesdeFreitasandFernandoWypych

8.1Introduction253

8.2Smectitegroupofminerals257

8.2.1Laponite262

8.2.2Montmorillonite266

8.3Conclusions271 References272

9.Roleofsurfactantsandpolymersforclaymineralsas stabilizerofPickeringemulsion277

AnneAimable,Gise ` leLecomte-Nana,andCecilePagnoux

9.1Introduction277

9.2Interactionsbetweenclaymineralsandsurfactantor polymersforPickeringemulsification278

9.2.1Shortintroductiononmainlayeredclaymineralsand descriptionoftheirsurfaceproperties278

9.2.2Characterizationtechniquestoevaluateinteractions betweensurfactantsandpolymersandclaymineral surfaces285

9.3AnonexhaustiveoverviewofPickeringemulsionsstabilized byclaymineralswithsurfactantsandpolymers292

9.3.1SomeexamplesusingkaoliniteforPickering emulsions292

9.3.2HalloysiteasaPickeringstabilizerforenhancedoil recovery293

9.3.3Montmorillonite,akeymaterialforclaystabilized Pickeringemulsions295

9.3.4Laponite,amodelclayforaversatileuseinPickering emulsions297

9.3.5Pickeringclayemulsionswithbiopolymers299

9.4NewmaterialsderivedfromclaymineralsPickering emulsions300

9.4.1Emulsionpolymerizationforthesynthesisofclay polymernanocomposites(CPN)300

9.4.2Colloidosomesandliquidmarbles303

9.4.3PorousmaterialsderivedfromPickeringclay emulsions305

9.5Conclusion307 References307

Pickeringemulsionbasedonsyntheticlayered hydroxides

10.Layereddoublehydroxidesandhydroxidesalts: Structureandproperties317

FernandoWypychandRiltonAlvesdeFreitas

10.1Layeredcompounds:Basicconceptsand nomenclature317

10.2Layereddoublehydroxides324

10.2.1Layereddoublehydroxideswiththecomposition

[M2+ 1 xM3+ x (OH)2](An )x/n yH2O324

10.2.2Layereddoublehydroxideswiththecomposition [Li(Al(OH)3)2](An )1/n yH2O326

10.2.3Layereddoublehydroxideswiththecomposition M2+(Al(OH)3)nA2 yH2O327

10.2.4Layereddoublehydroxideswiththecomposition [M2+ 6 Al3+ 3 (OH)18][B+(H2O)6(X2 )2] 6H2O327

10.3Layeredhydroxidesalts330

10.3.1Layeredhydroxidessalts:Simonkolleite: Zn5(OH)8Cl2 H2O331

10.3.2Layeredhydroxidessalts:zinchydroxidenitrate dihydrate:Zn5(OH)8(NO3)2 2H2O331

10.3.3Otherlayeredhydroxidesalts332

10.3.4Layeredhydroxidessalts:sodium-gordaite: Zn4(OH)6(SO4)Cl Na(H2O)6 332

10.3.5Layeredhydroxidessalts:Osakaite/Namuwite family:Zn4(OH)6(SO4) nH2O333

10.4Methodsofsynthesis334

10.4.1CoprecipitationwithconstantandvariablepH334

10.4.2Reconstructionorstructuralmemoryeffect337

10.4.3Mechanochemicalapproach337

10.4.4Hydrolysisofsaltsandoxides337

10.4.5Exchangereactions338

10.4.6Diadochyreactions339

10.4.7Sol/gelmethod339

10.5Someapplicationsandfutureperspectives340 Acknowledgments341 References341

11.Pickeringemulsionsbasedonlayereddouble hydroxidesandmetalhydroxides351 VanessaPrevot,CedricGastaldi,andClaudeForano

11.1Introduction351

11.1.1LDH-andLHS-stabilizingparticlesusedfor Pickeringemulsions352

11.2Oil-in-wateremulsions355

11.2.1Water-in-oilemulsions360

11.2.2Water-in-wateremulsions363

11.3ApplicationsofPickeringemulsionstabilizedbyLDH/LSH particles368

11.3.1LDHpreparation368

11.3.2Catalysis369

11.3.3PorousLDHmaterials369

11.3.4Towardnanocompositecolloids369

11.4Conclusions371 References372 Index377

Contributors

FlorenceAgnely(61),Universite Paris-Saclay,CNRS,InstitutGalienParis-Saclay, Orsay,France

AnneAimable(227),UniversityofLimoges,CNRS,IRCER,UMR7315,Limoges, France

RiltonAlvesdeFreitas(3,229,253,317),DepartmentofChemistry,Federal UniversityofParana ´ ,CentroPolitecnico,Curitiba,PR,Brazil

ClaudeForano(351),Universite ClermontAuvergne,CNRS,ICCF,ClermontFerrand,France

CedricGastaldi(351),Universite ClermontAuvergne,CNRS,ICCF,ClermontFerrand,France

NicolasHuang(61),Universite Paris-Saclay,CNRS,InstitutGalienParis-Saclay, Orsay,France

CliffT.Johnston(125),DepartmentsofEarth,AtmosphericandPlanetarySciences andAgronomy,PurdueUniversity,WestLafayette,IN,UnitedStates

Gise ` leLecomte-Nana(277),UniversityofLimoges,CNRS,IRCER,UMR7315, Limoges,France

WatsonLoh(37),DepartmentofPhysicalChemistry,InstituteofChemistry, UniversityofCampinas,Campinas,Brazil

CecilePagnoux(277),UniversityofLimoges,CNRS,IRCER,UMR7315,Limoges, France

VanessaPrevot(351),Universite ClermontAuvergne,CNRS,ICCF,ClermontFerrand,France

ValerieRavaine(87),Univ.Bordeaux,CNRS,BordeauxINP,ISM,Talence,France

BaptisteRobin(61),Universite Paris-Saclay,CNRS,InstitutGalienParis-Saclay, Orsay,France

MarikaSantagata(125),LylesSchoolofCivilEngineering,PurdueUniversity,West Lafayette,IN,UnitedStates

MohammadhasanSasar(125),LylesSchoolofCivilEngineering,PurdueUniversity, WestLafayette,IN,UnitedStates

VeroniqueSchmitt(87),CentredeRecherchePaulPascal(CRPP),Univ.Bordeaux, CNRS,Pessac,France

PriscilaGrittenSieben(229),DepartmentofChemistry,FederalUniversityofParana ´ , CentroPolitecnico,Curitiba,PR,Brazil

CarolineE.P.Silva(37),DepartmentofPhysicalChemistry,InstituteofChemistry, UniversityofCampinas,Campinas,Brazil

NicolasTsapis(61),Universite Paris-Saclay,CNRS,InstitutGalienParis-Saclay, Orsay,France

AiqinWang(169),KeyLaboratoryofClayMineralAppliedResearchofGansu Province,CenterofEco-materialandGreenChemistry,LanzhouInstituteof ChemicalPhysics,ChineseAcademyofSciences,Lanzhou,P.R.China

FernandoWypych(3,229,253,317),DepartmentofChemistry,FederalUniversityof Parana ´ ,CentroPolitecnico,Curitiba,PR,Brazil

YongfengZhu(169),KeyLaboratoryofClayMineralAppliedResearchofGansu Province,CenterofEco-materialandGreenChemistry,LanzhouInstituteof ChemicalPhysics,ChineseAcademyofSciences,Lanzhou,P.R.China

Part1 Introduction

Chapter1

Clayminerals:Classification, structure,andproperties

1.1Basicconcepts,classification,andnomenclature

Sincethedefinitionsinclaysciencearestillnotunanimous,dueespeciallyto theinterdisciplinarynatureofthisfieldofresearch,sometermsusedthroughoutthetextwillbefirstdefinedfollowingtheterminologyasindicatedby BergayaandLagaly(2013).

1.1.1Aluminosilicate

Ingeneral,silicateswhichcontaintetrahedrallycoordinatedaluminumare calledaluminosilicatesincontrasttosilicatescontainingoctahedrallycoordinatedaluminumforwhichthetermaluminumsilicateisused.Phyllosilicates aregenerallyconsideredaluminosilicates,becausemostphyllosilicatesdo haveAlsubstitutionforSi,butnotalldo(andthosemineralswithouttetrahedralAlpresent,butwithAlinotherpolyhedralcoordinationsaremoreproperlyreferredtoas“aluminumsilicates”).

1.1.2Basalsurface

Basalsurfacetheterminatingsurface(orbasalplane)paralleltotheatom planesintherepeatinglayersinclaysandlayeredminerals.Commonusage hasbroadenedthemeaningtoinclude(internal)surfacesthatparallelthe terminatingsurface.Iftherepeatinglayershaveastackingdirectionalong [001],theccrystallographicaxis,thentheatomplanesintherepeatinglayers arethe(00l)planes(paralleltotheplanecontainingthetwolateralaxes, aandb).

1.1.3Basalreflection

BasalreflectionadiffractionX-raypeakfromalayermaterialoriginatingfrom thoseatomicplaneswhichcomprisethelayers(i.e.,paralleltocleavage).For mostlayersilicates,basalreflectionsareoftheMillerindextype:00l,where lisaninteger.

1.1.4Bentonite

1.1.4.1Mineralogical/petrologicalterm

Asoft,plastic,light-coloredrockcomposedprimarilyofclaymineralsofthe smectitegroup,particularlytheclaymineralmontmorillonite,whichtypically formsfromchemicalalterationofglassyvolcanicashortuffundermarineor hydrothermalconditions.Bentonitemaycontainaccessorycrystalgrainsthat wereoriginallyphenocrystsintheparentrockaswellassecondaryantigenic mineralphasessuchasK-richfeldspar.Diageneticorlow-grademetamorphic alterationcanmodifythesmectitetoavarietyofinterstratifiedillite-smectite minerals,resultinginmaterialsknownasK-bentonites.

1.1.4.2Industrialterm

Ahighlycolloidalandplasticclaymaterial,primarilycomposedoftheclay mineralmontmorillonite,thatiscommonlyusedindrillingmud,asafoundry sandbinder,incatlitter,animalfeed,cements,ceramicsandvariousother industrialactivitiesandproducts.Sodiumbentoniteswellssignificantlywhen exposedtowater(to 12 )whereascalciumbentonitehasminimalswelling capability(to 3 ).

1.1.5Brunauer–Emmett–Teller(BET)

Forspecificsurfaceareaanalysissurfaceareadeterminationbysorptionanalysisofnon-polargases,typicallyN2,onasolid,ascalculatedfromthelinear formoftheBETequationformulti-layergasadsorptiononthesurfaceofa sampleofknownweight.Thetechniquerequiresremovalofsorbedgasesfrom thesamplepriortoBETanalysis.ObjectionsinvolvingtheuseofBETanalysis forclayscontainingH2Oinclude(1)platysurfacesofthephyllosilicateparticlesprotectunderlyingadjacentsurfacesfromgasadsorption,and(2)interlayer regionsmaybecomeinaccessibletoN2 owingtopretreatmentsthatremove interlayerH2O,whichcollapsesanyswellingclayspresent,andthusresults maybeaffectedbypreparationtechniques.Itiscommonlyconsideredtomeasureexternalsurfaceareaand,assuch,shouldnotbeusedfortotalspecificsurfaceareaorasanindicatoroftheamountofchemicallyaccessibleinternal surfacearea.

1.1.6Cationexchange

Aprocesswherebyacationboundtoasiteonasurfaceisreplacedbyacation fromasolution.Inbothphyllosilicatesandzeolites,thecationmaybelocated oneitherexternalsurfacesorinternalsurfaces;thus,thefullprocessmay involvecationsfromtheinteriorthatdiffusetowardthesurface,andarein turnreplacedbycationsfromthesolutionwhichdiffuseinward.

1.1.7Clay

Anaturallyoccurringmaterialcomposedprimarilyoffine-grainedminerals, whichisgenerallyplasticatappropriatewatercontentsandwillhardenwhen driedorfired.Althoughclayusuallycontainsphyllosilicates,itmaycontain othermaterialsthatimpartplasticityandhardenwhendriedorfired.

1.1.8Clayminerals

Referstophyllosilicatemineralsandtomineralswhichimpartplasticityto clayandwhichhardenupondryingorfiring.Claymineralsmaybeofanycrystallitesizesothattheterm“claymineral”isconsistentwiththedefinitionof “mineral,”whichisunrelatedtocrystallitesize.However,theuniqueproperties ofclaysarepartlyrelatedtotheirsmallparticlesizeandhighsurfacearea.

1.1.9Interlayerdistance

Ismoreprecisetodescribethedistancebetweentheadjacentlayers(tetrahedralsheettotetrahedralsheet,andismeasuredbytakingtheaverageofthez coordinateofthebasaloxygenplane.The“interlayerdisplacement”describes thedisplacementportionorlateralshiftfromtetrahedralsheettotetrahedral sheetacrosstheinterlayerspace.Comparelayer,layerdisplacement.

1.1.10Layer

Forphyllosilicates,alayercontainsoneormoretetrahedralsheetsandan octahedralsheet.Therearetwotypesoflayers,dependingontheratiosof thecomponentsheets:a“1:1layer”hasonetetrahedralsheetandoneoctahedralsheet,whereasa“2:1layer”hasanoctahedralsheetbetweentwoopposingtetrahedralsheets.

1.1.11Phyllosilicate

Familyofmineralscontainscontinuoustwo-dimensionaltetrahedralsheetsof compositionT2O5 (T ¼ Si,Al,Be, …)withtetrahedralinkedbysharingthree

cornersofeach,andwithafourthcornerpointinginanydirection.Thetetrahedralsheetsarelinkedintheunitstructuretooctahedralsheets,ortogroups ofcoordinatedcations,orindividualcations.Althoughcontinuoustetrahedral sheetsoftenformsixfoldrings,otherringconfigurationsareconsideredpart ofthephyllosilicatefamily.

1.1.12Kaolin

1.1.12.1Petrologicterm

Rockcomposedprimarilyofkaolinite,nacrite,dickite,orhalloysite(i.e.,mineralsofthekaolingroup).Inmostcase,theidentificationofthespecificspeciesis unknown.Therockiscommonlywhite,earthy,andsoft.

1.1.12.2Mineralogicterm

Asub-groupname(withinthegroup“serpentine-kaolin”)forthosephyllosilicatesthataredioctahedral,with1:1layers,andwithanetlayerchargeof approximately0.Speciesofthissub-groupincludekaolinite,nacrite,dickite andhalloysite.Previously,thegroupnamewas“serpentine-kaolinite,”andthe subgroupnamewas“kaolinite,”butthisschemecreatedconfusionbecauseit wasunclearif“kaolinite”wasreferringtothemoregeneralsub-grouporthe species“kaolinite.”

1.1.13Serpentine-kaolin

Agroupnameforplatyphyllosilicatesof1:1layerandalayerchargeof 0per formulaunit.Generally,the d(001)spacingisapproximately7.1–7.3A ˚ .The groupisfurtherdividedintosubgroupsthatareeithertrioctahedral(serpentine) ordioctahedral(kaolin),andthesesubgroupsarefurtherdividedintomineral speciesbasedonchemicalcomposition.The1:1layersarebondedbylong hydrogenbonds( 2.9A ˚ )andpossibleCoulombicinteractionsbetweenthe octahedralsheetsofonelayerandthetetrahedralsheetoftheadjacentlayer.

1.1.14Smectite

Smectiteagroupnameforplatyphyllosilicatesof2:1layerandalayercharge ofapproximately 0.2to 0.6performulaunit.Generallyfornaturalsamples,the d(001)spacingisapproximately14.4–15.6A ˚ ,althoughotherspacing mayoccurdependingonH2Oretentionandinterlayeroccupancy.Thegroup isfurtherdividedintosubgroupsthatareeithertrioctahedralordioctahedral withdifferentmineralspeciesbasedonchemicalcomposition.Smectite mineralshavelargespecificsurfaceareas(10–700m2/g)andexhibitahigh

expansion(swelling)capabilityinthepresenceofH2O.Smectiteandvermiculitemineralsareoftenreferredtoas“swelling”or“expandable”clayminerals.Cation-exchangecapacityorsolvationofpolarmoleculesislarge. Smectiteiscommonlyaprimaryconstituentofbentonite(seebentonitefor respectivegenesisinformation)andpeliticsediments(e.g.,shales)andoccurs insoils.Veryearly,smectitewasusedasatermforfuller’searth(initially), montmorillonite,andcertainbentoniticclaydeposits.

1.1.15Talc-pyrophyllite

Agroupnameforplatyphyllosilicatesof2:1layerandalayerchargeof 0performulaunit.Generally,the d(001)spacingisapproximately 9.1–9.4A ˚ .Thegroupisfurtherdividedintosubgroupsthatareeithertrioctahedral(talc)ordioctahedral(pyrophyllite),andthesesubgroupsarefurther dividedintomineralspeciesbasedonchemicalcomposition.Thelayersare bondedbyweakvanderWaalsinteractions.

Moredefinitionsrelatedwithlayeredmaterialsandintercalationcompoundscanbefoundin Chapter10

ThestructureoftheclaymineralswasreproducedusingtheVisualization forElectronicandStructuralAnalysis(VESTA)program,version3.4.8 (MommaandIzumi,2011),andusingtheCrystallographicInformationFile (CIF)availableintheCrystallographyOpenDatabase(http://www. crystallography.net/cod/).

Claymineralsareveryabundant,andmanydifferentaluminosilicate resourcesexistaroundtheworld.Claymineralsareverycommoninsoils andinfine-grainedsedimentaryrocks,andbelongtoaveryimportantclass ofcompoundshavingvariablechemicalcompositions.Ingeneral,theyare definedbytheircrystallographyandlayercharges.Claymineralsnormally donotoccurasasinglepurephase,insteadbeingassociatedwithdifferent impuritiessuchasquartz,amorphoussilica,cristobalite,alunite,ironoxides, anatase,magnesite,andorganicmatter.Theimpuritiesdependontheclay minerals’genesis,andtheiridentificationandremovalareveryimportantto aggregatevalueandenabletheiruseinmanyindustrialprocesses.Inspite oftheseimpurities,tofacilitatethecomprehension,claymineralsareconsideredas“pure”materialsinthepresentchapter.

Duetotheirabundance,lowprice,diversityofstructuresandproperties, lowenvironmentalimpact,andgoodmechanical/heatstability,thesematerials havebeenusedsinceantiquity.Nowadays,demandisstillstrongduetothe growingnumberofindustrialapplications,attractingincreasinginterestfrom researchersintheinterdisciplinaryareaofclaysciencedueespeciallytothe sui-generisparticleshabitsandproperties.

Twoimportantgeometricunitsarepresentinclayminerals’structures: SiO4 tetrahedrawhenSi4+ ispositionedinthecenterandO2 anionsareat

thevertices;andM(OH)6 octahedra(M ¼ M2+ orM3+,frequentlyAl3+)when metalcationsarepositionedinthecenterwithOH anionsatthecorners.In general,smallercationsoccurintetrahedralsitesandlargercationsinoctahedralsites,andwhenavailablespacesarepresentbetweentheintercalatedspecies,normallytheyarehydratedandtheoccupiedspaceismeasuredbythe hydratedcations’sizes.

WhenAl(OH)6 orMg(OH)6 octahedrasharetheedges,atwo-dimensional octahedralsheetisformed.Initially,thefirst2/3oftheoctahedraareoccupied andthestructureiscalleddioctahedral.WhenMg(OH)2 ispresent,allthe octahedralsitesareoccupiedandthestructureistrioctahedral.Moredetails aboutthestructureofgibbsite(Al(OH)3)andbrucite(Mg(OH)2)canbefound in Chapter10

TetrahedralsheetsareobtainedwhenSiO4 tetrahedrasharethethreecorners offouroxygens,composinghexagonalrings,withemptysitescalledsiloxane ditrigonalcavities.WhentheapicalO2 anionsofthetetrahedraareconnected tothecornersoftheM(OH)6 octahedra,two-dimensionallayersareobtained. Thesmallmismatchbetweenthetwounitsiscompensatedbysmallrotations oftheSiO4 tetrahedra.Whenonetetrahedral(T)sheetisconnectedtooneoctahedral(O)sheet,mineralsofthe1:1subgroupareformed(TO),andwhenone octahedralsheetisconnectedatthetopandbottomofthetetrahedralsheet, mineralsofthe2:1subgroupsareobtained(TOT).

Inanidealworld,tetrahedraandoctahedrausedasbuildingblocksinclay minerals’structureswouldberegular,butinnature,substantialstrainsand distortionsoccur.Thereasonsforthesedistortionsarethe“misfits”between theoctahedralandtetrahedralsheetsandbonddistortionsattributedtotheisomorphicsubstitutionintheoctahedraland/ortetrahedralsheets.Thesedistortionsareexpectedinthebulkandalsointheexfoliatedsinglelayers,where thesurfacesarepuckeredratherthantotallyflat.Allthesedistortionsare small,andfordidacticpurposes,theseunitscanbeconsideredasregular geometricunits.

Whenthelayersarepackedalongthebasalaxis,layeredcrystalsare formedwithhighaspectratio,whichistheratiobetweentheheightandthe diameteroftheplatelet-likeparticles.

1.2Claymineralswithneutralstructures

1.2.1Claymineralsofthekaolin/serpentinegroup

Kaolinite,withtheidealformulaAl2Si2O5(OH)4,isdioctahedralclaymineral belongingtothephyllosilicatefamilyandthekaolin/serpentinegroup.Other polymorphsalsohavethesameformulation,namelydehydratedhalloysite, dickite,andnacrite.WhenAl(OH)6 octahedrasharetheedges,two-dimensional octahedralsheetsareformedandtheelectro-neutralityofthesheetisonlypossiblewhenone-thirdoftheoctahedraareleftvacant,asingibbsite(Al(OH)3). Inkaolinite’sstructure,onetetrahedralsheetisconnectedtooneoctahedral

sheetthroughO2 /OH bonds(Fig.1.1)usingtheapicaloxygensofthe SiO4 tetrahedraandonecorneroftheAl(OH)6 octahedra(mineralsofthe1:1 typeorTO).

Kaolinitelayersareanisotropic,andthetopsideofeachlayer(asdepicted in Fig.1.1A)ispopulatedwithhydroxideanions,alongwithvacantoctahedralsites,resultinginamorehydrophilicsurface(Fig.1.1B).Theunderside ofthelayersispopulatedwithoxideanions,aditrigonalsiloxanecavityis presentandthesideofthelayersismorehydrophobic(Fig.1.1C)(Bishand VonDreele,1989).Inthetridimensionalstructure,thelayersareheldtogether byhydrogenbonds(Fig.1.1A),andtheoverallstructureiselectrostatically neutral.Inkaolinite,thepartialreplacementofAl3+ byFe3+ iscommon,givingkaoliniteatypicalyellowishcolorduetothenormallylowcontentofFe3+ (Lombardietal.,2002).

Otherimpuritieslikeferruginousandtitanoferrousminerals,ironoxides, hydroxides,oxyhydroxides,sulfides,carbonates,quartz,andanatasearealso commonlyfoundinkaolin(ChandrasekharandRamaswamy,2002).Dueto theweakhydrogenbondsbetweenthelayers,thedistortionsdescribed abovecausesomerandomdisplacementsinthestackingofthelayers,giving risetokaolinite(orotherpolymorphs)withdifferentdegreesofdisorderor crystallinities.

FIG.1.1 Schematicpolyhedralrepresentationofthekaolinitestructure,orientedalongtheindicatedaxis.Sideview(A),topview(B),andbottomview(C)(BishandVonDreele,1989).

Independentoftheparticlesizes,degreeofcrystallinity,andnumberof packedlayers(evensinglelayerswithsolventdispersion),theoctahedralside ofthekaolinitesurfacecanbegraftedwithorganicmoietiestoobtainorganic functionalizedsurfaceswithdifferentchemicalfunctionswhendispersedin organicsolvents.Anotherpossibilityistointercalatethebulkstructurewith somekeyorganicmoleculestoformkaoliniteintercalationcompounds,where theorganicmoleculesarelocatedondefinedcrystallographicpositions betweenthekaolinitelayersandstabilizedbyhydrogenbonds(Gardolinski etal.,1999,2000; Fukamachietal.,2007; Lerf,2014).

Halloysiteisascrolledpapyrus-likepolymorphicvarietyhavinghydrated (Al2Si2O5(OH)4 2H2O)anddehydratedformulas(Al2Si2O5(OH)4).Halloysite isfrequentlydescribedintheliteratureashavingtubularstructures,butthese arenotrealtubeslikeincarbonnanotubes,butratherscrolledtwo-dimensional layers.

DuetothemismatchoftheAl OandSi Obonds,thepackingofevena singlelayertendstoscrollalongthe“a” axisin preferencetothe“b” axis, formingnanoscrolls. Since theoutersurfacehasSi Obondsandtheinner surfacehasAl OHbonds,theinnersurfacecanbegraftedwithorganicmoietieswhiletheoutercannot. Innature,thenumberofscrolledlayersisaround 10–15units,andtheresultisnanoscrollswithouterdiameterof40–70nm, innerdiameterof10–40nm,andlengthsof0.2–40 μm.Thisnumbercanvary dependingonthehalloysitegenesis.

Whenkaoliniteparticlesareintercalated/graftedwithprimary n-alkylamines anddeintercalationoccursintolueneundersonication,theparticlesdelaminate/ exfoliateandnanoscrollswithminimumouterdiameterofaround25nmare obtained(GardolinskiandLagaly,2005; Kurodaetal.,2011; Yuanetal., 2013).Thissyntheticprocedurecanbeachievedwithdifferentintercalated moleculestosimulatethescrollingprocessthatoccursinnaturetogenerate halloysite.

Micrographsofkaolinite(left)andhalloysitesamples(right)fromPara ´ state,Amazonregion,Brazil,obtainedbytransmissionelectronmicroscopy (TEM),areshownin Fig.1.2.

Thedifferencesbetweenthemorphologiescanbeclearlyseen,wherekaoliniteappearsassubmicrometricplatelet-likeparticleswithsharpborderswith anglescloseto120degrees,resemblingapseudo-hexagonalstructure,while halloysiteappearsasrolledscrollswithsomedelaminatedlayersresembling crumpledsheetsofpaperorrags.Theaspectratioofkaoliniteisintherange of10–40(Weberetal.,2014).

Othermorphologiesarealsoknownforhalloysite,occurringduetoincompletescrollingprocess,orevenintheformofpseudo-spheres.Inthecaseof serpentines,twomaintrioctahedralmagnesium-richspeciescanbedescribed withthesameformula,chrysotilepolymorphsorwhiteasbestos(clinochrysotile,orthochrysotile,andparachrysotile)(Whittaker,1956a,b,c),having scrolledpapyrus-likestructures(Falinietal.,2004),andlizardite,having alternatingwave-likestructures(Fig.1.3).

FIG.1.2 Micrographsofkaolinite(left)andhalloysitesamples(B)fromtheAmazonregion, Brazil,obtainedbyTEM.

FIG.1.3 Schematicpolyhedralrepresentationofantigorite(A)andlizardite(B)structures, orientedalongtheindicatedaxis(Mellini,1982; CapitaniandMellini,2006).

TheidealcompositionofchrysotileisMg3Si2O5(OH)4,whichissimilarto kaolinite(Al2Si2O5(OH)4),whenAl3+ isreplacedwithMg2+.Duetothe highermisfitbetweenthetetrahedraofSiO4 andoctahedraofMg(OH)6,the structureisrolledintheformoffibrils,whichaggregatetoformbundles.In general,thesefiberbundlescontaintensorhundredsoffibrils,witheachfibril havingdiameterintherangeofhundredsofnanometersandhollowlumens withadiameterofabout5–8nm.Theycanbeemptyorfilledwithamorphous silicaoriron-richamorphousphases.

Thescrollingofchrysotilelayersexposestheoctahedralsheetpopulated withhydroxideanions,whichcanbemodifiedbygraftingorganicmoieties likeintheoctahedralsheetofkaolinite.Manyothervarietiesbelongtothis groupofcompounds,whensubstitutionoccursnotonlyinthetetrahedral sheetsbutalsoinoctahedralsheetsandsometimesinbothsimultaneously. OthermembersofthesamegroupareobtainedwhenpartoftheMg2+ in

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Clay minerals and synthetic analogous as emulsifiers of pickering emulsions fernando wypych - Read t by Education Libraries - Issuu