Chemoinformatics and bioinformatics in the pharmaceutical sciences pawan kumar raghav (editor) - Dow

Page 1


https://ebookmass.com/product/chemoinformatics-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanotechnology in Modern Animal Biotechnology: Concepts and Applications Pawan Kumar Maurya

https://ebookmass.com/product/nanotechnology-in-modern-animalbiotechnology-concepts-and-applications-pawan-kumar-maurya/

ebookmass.com

Class 8th Physics book 1st Edition Pawan Kumar

https://ebookmass.com/product/class-8th-physics-book-1st-editionpawan-kumar/

ebookmass.com

Nanobioanalytical Approaches to Medical Diagnostics Pawan Kumar Maurya

https://ebookmass.com/product/nanobioanalytical-approaches-to-medicaldiagnostics-pawan-kumar-maurya/

ebookmass.com

Self-Publishing for Dummies 2nd Edition Jason R. Rich

https://ebookmass.com/product/self-publishing-for-dummies-2nd-editionjason-r-rich/

ebookmass.com

Handbook of Energy and Environmental Security Muhammad Asif

https://ebookmass.com/product/handbook-of-energy-and-environmentalsecurity-muhammad-asif/

ebookmass.com

Shi'ism Revisited: Ijtihad and Reformation in Contemporary Times Liyakat Takim

https://ebookmass.com/product/shiism-revisited-ijtihad-andreformation-in-contemporary-times-liyakat-takim/

ebookmass.com

Cruel Mate (The Alpha Shifter Collection Book 18) Sam Crescent

https://ebookmass.com/product/cruel-mate-the-alpha-shifter-collectionbook-18-sam-crescent/

ebookmass.com

Biomarkers in drug discovery and development: a handbook of practice, application, and strategy Second Edition Bleavins

https://ebookmass.com/product/biomarkers-in-drug-discovery-anddevelopment-a-handbook-of-practice-application-and-strategy-secondedition-bleavins/

ebookmass.com

Educational Justice: Liberal Ideals, Persistent Inequality, and the Constructive Uses of Critique 1st ed. 2020 Edition Michael S. Merry

https://ebookmass.com/product/educational-justice-liberal-idealspersistent-inequality-and-the-constructive-uses-of-critique-1sted-2020-edition-michael-s-merry/

ebookmass.com

Second Edition John Brigham Pinto

https://ebookmass.com/product/simple-the-inner-game-of-ophthalmicpractice-success-second-edition-john-brigham-pinto/

ebookmass.com

Chemoinformaticsand Bioinformaticsinthe Pharmaceutical Sciences

HimanshuOjha
PawanKumarRaghav
RameshK.Goyal

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright © 2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-821748-1

ForinformationonallAcademicPresspublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: AndreWolff

AcquisitionsEditor: ErinHill-Parks

EditorialProjectManager: BillieJeanFernandez

ProductionProjectManager: MariaBernadetteVidhya

CoverDesigner: MarkRogers

Contributors

TanmayArora

SchoolofChemicalandLifeSciences(SCLS),JamiaHamdard,NewDelhi,Delhi, India;DivisionofCBRNDefence,InstituteofNuclearMedicine&AlliedSciences, DRDO,NewDelhi,Delhi,India

ShereenBajaj

DivisionofCBRNDefence,InstituteofNuclearMedicine&AlliedSciences, DRDO,NewDelhi,Delhi,India

PrernaBansal

DepartmentofChemistry,RajdhaniCollege,UniversityofDelhi,NewDelhi,Delhi, India

AmanChandraKaushik

WuxiSchoolofMedicine,JiangnanUniversity,Wuxi,Jiangsu,China

RamanChawla

DivisionofCBRNDefence,InstituteofNuclearMedicine&AlliedSciences, DRDO,NewDelhi,Delhi,India

GuruduttaGangenahalli

StemCellandGeneTherapyResearchGroup,InstituteofNuclearMedicine& AlliedSciences(INMAS),DefenceResearchandDevelopmentOrganisation (DRDO),NewDelhi,Delhi,India

SrishtyGulati

NucleicAcidResearchLab,DepartmentofChemistry,UniversityofDelhi,North Campus,NewDelhi,Delhi,India

MonikaGulia

SchoolofMedicalandAlliedSciences,GDGoenkaUniversity,Gurugram, Haryana,India

VikasJhawat

SchoolofMedicalandAlliedSciences,GDGoenkaUniversity,Gurugram, Haryana,India

DivyaJhinjharia

SchoolofBiotechnology,GautamBuddhaUniversity,GreaterNoida,India

JayadevJoshi

GenomicMedicine,LernerResearchInstitute,ClevelandClinicFoundation, Cleveland,OH,UnitedStates

RitaKakkar

ComputationalChemistryLaboratory,DepartmentofChemistry,Universityof Delhi,NewDelhi,Delhi,India

AmanChandraKaushik

WuxiSchoolofMedicine,JiangnanUniversity,Wuxi,Jiangsu,China

ShrikantKukreti

NucleicAcidResearchLab,DepartmentofChemistry,UniversityofDelhi,North Campus,NewDelhi,Delhi,India

ShwetaKulshrestha

DivisionofCBRNDefence,InstituteofNuclearMedicine&AlliedSciences, DRDO,NewDelhi,Delhi,India

RajeshKumar

DepartmentofComputationalBiology,IndraprasthaInstituteofInformation Technology,NewDelhi,Delhi,India;BioinformaticsCentre,CSIR-Instituteof MicrobialTechnology,Chandigarh,India

SubodhKumar

StemCellandGeneTherapyResearchGroup,InstituteofNuclearMedicine& AlliedSciences(INMAS),DefenceResearchandDevelopmentOrganisation (DRDO),NewDelhi,Delhi,India

HirdeshKumar

LaboratoryofMalariaImmunologyandVaccinology,NationalInstituteofAllergy andInfectiousDiseases,NationalInstitutesofHealth,Bethesda,MD,United States

VinodKumar

DepartmentofComputationalBiology,IndraprasthaInstituteofInformation Technology,NewDelhi,Delhi,India;BioinformaticsCentre,CSIR-Instituteof MicrobialTechnology,Chandigarh,India

AnjaliLathwal

DepartmentofComputationalBiology,IndraprasthaInstituteofInformation Technology,NewDelhi,Delhi,India

AsrarA.Malik

SchoolofChemicalandLifeSciences(SCLS),JamiaHamdard,NewDelhi,Delhi, India

GandharvaNagpal

DepartmentofBioTechnology,GovernmentofIndia,NewDelhi,Delhi,India

HimanshuOjha

CBRNProtectionandDecontaminationResearchGroup,DivisionofCBRN Defence,InstituteofNuclearMedicineandAlliedSciences,NewDelhi,Delhi, India

MallikaPathak

DepartmentofChemistry,MirandaHouse,UniversityofDelhi,NewDelhi,Delhi, India

PawanKumarRaghav

DepartmentofComputationalBiology,IndraprasthaInstituteofInformation Technology,NewDelhi,Delhi,India

ShaktiSahi

SchoolofBiotechnology,GautamBuddhaUniversity,GreaterNoida,Uttar Pradesh,India

ManishaSaini

CBRNProtectionandDecontaminationResearchGroup,DivisionofCBRN Defence,InstituteofNuclearMedicineandAlliedSciences,NewDelhi,Delhi, India

ManishaSengar

DepartmentofZoology,DeshbandhuCollege,UniversityofDelhi,NewDelhi, Delhi,India

MamtaSethi

DepartmentofChemistry,MirandaHouse,UniversityofDelhi,NewDelhi,Delhi, India

V.G.ShanmugaPriya

DepartmentofBiotechnology,KLEDr.M.S.SheshgiriCollegeofEngineeringand Technology,Belagavi,Karnataka,India

VidushiSharma

DelhiInstituteofPharmaceuticalEducationandResearch,NewDelhi,Delhi, India

AnilKumarSharma

SchoolofMedicalandAlliedSciences,GDGoenkaUniversity,Gurugram, Haryana,India

MaltiSharma

DepartmentofChemistry,MirandaHouse,UniversityofDelhi,NewDelhi,Delhi, India

NavneetSharma

DepartmentofTextileandFiberEngineering,IndianInstituteofTechnology,New Delhi,Delhi,India

MdShoaib

NucleicAcidResearchLab,DepartmentofChemistry,UniversityofDelhi,North Campus,NewDelhi,Delhi,India

AnjuSingh

NucleicAcidResearchLab,DepartmentofChemistry,UniversityofDelhi,North Campus,NewDelhi,Delhi,India;DepartmentofChemistry,RamjasCollege, UniversityofDelhi,NewDelhi,Delhi,India

JyotiSingh

DepartmentofChemistry,HansrajCollege,UniversityofDelhi,NewDelhi,Delhi, India

KailasD.Sonawane

StructuralBioinformaticsUnit,DepartmentofBiochemistry,ShivajiUniversity, Kolhapur,Maharashtra,India;DepartmentofMicrobiology,ShivajiUniversity, Kolhapur,Maharashtra,India

RakhiThareja

DepartmentofChemistry,St.Stephen’sCollege,UniversityofDelhi,NewDelhi, Delhi,India

NishantTyagi

StemCellandGeneTherapyResearchGroup,InstituteofNuclearMedicine& AlliedSciences(INMAS),DefenceResearchandDevelopmentOrganisation (DRDO),NewDelhi,Delhi,India

YogeshKumarVerma

StemCellandGeneTherapyResearchGroup,InstituteofNuclearMedicine& AlliedSciences(INMAS),DefenceResearchandDevelopmentOrganisation (DRDO),NewDelhi,Delhi,India

SharadWakode

DelhiInstituteofPharmaceuticalEducationandResearch,NewDelhi,Delhi, India

Impactof chemoinformatics approachesandtoolson currentchemicalresearch

RajeshKumar1, 3, a,AnjaliLathwal1, a,GandharvaNagpal2,VinodKumar1, 3 , PawanKumarRaghav1, a

1DepartmentofComputationalBiology,IndraprasthaInstituteofInformationTechnology,New Delhi,Delhi,India; 2DepartmentofBioTechnology,GovernmentofIndia,NewDelhi,Delhi,India;

3BioinformaticsCentre,CSIR-InstituteofMicrobialTechnology,Chandigarh,India

1.1 Background

Biologicalresearchremainsatthecoreoffundamentalanalysisinthequestto understandthemolecularmechanismoflivingthings.Biologicalresearchersproduceenormousamountsofdatathatcriticallyneedtobeanalyzed.Bioinformatics isanintegrativesciencethatarisesfrommathematics,chemistry,physics,statistics, andinformatics,whichprovidesacomputationalmeanstoexploreamassive amountofbiologicaldata.Also,bioinformaticsisamultidisciplinarysciencethat includestoolsandsoftwaretoanalyzebiologicaldatasuchasgenes,proteins, molecularmodelingofbiologicalsystems,molecularmodeling,etc.ItwasPauline Hogeweg,aDutchsystembiologist,whocoinedthetermbioinformatics.Afterthe adventofuser-friendlySwissportmodels,theuseofbioinformaticsinbiological researchhasgainedmomentumatunparalleledspeed.Currently,bioinformatics hasbecomeanintegralpartofalllifescienceresearchthatassistsclinicalscientists andresearchersinidentifyingandprioritizingcandidatesfortargetedtherapies basedonpeptides,chemicalmolecules,etc.

Chemoinformaticsisaspecializedbranchofbioinformaticsthatdealswiththe applicationofdevelopedcomputationaltoolsforeasydataretrievalrelatedtochemicalcompounds,identificationofpotentialdrugtargets,andperformanceofsimulationstudies.Theseapproachesareusedtounderstandthephysical,chemical,and biologicalpropertiesofchemicalcompoundsandtheirinteractionswiththebiological systemthatcanhavethepotentialtoserveasaleadmoleculefortargetedtherapies. Althoughthesensitivityofthecomputationalmethodsisnotasreliableasexperimentalstudies,thesetoolsprovideanalternativemeansinthediscoveryprocess becauseexperimentaltechniquesaretimeconsumingandexpensive.Theprimary

ChemoinformaticsandBioinformaticsinthePharmaceuticalSciences. https://doi.org/10.1016/B978-0-12-821748-1.00001-4 Copyright © 2021ElsevierInc.Allrightsreserved.

applicationofadvancedchemoinformaticsmethodsandtoolsisthattheycanassist biologicalresearcherstoarriveatinformeddecisionswithinashortertimeframe. Amoleculewithdrug-likenesspropertiesh astopassphysicochemicalproperties suchastheLipinskiruleoffiveandabsorption,distribution,metabolism,excretion,andtoxicity(ADMET)propertiesbef oresubmittingitforclinicaltrials.If anycompoundfailstopossessreliableADMETproperties,itislikelytobe rejected.So,intheprocessofacceleratingthedrugdiscoveryprocess,researchers canusedifferentinsilicochemoinformaticscomputationalmethodsforscreening alargenumberofcompoundsfromchemicallibrariestoidentifythemostdruggablemoleculebeforelaunchingintoc linicaltrials.Asimilarapproachcanbe employedfordesigningsubunitvaccinecandidatesfromalargenumberofprotein sequencesofpathogenicbacteria.

Intheliterature,severalotherreviewarticlesfocusonspecializedpartsofbioinformatics,butthereisnosucharticledescribingtheuseofbioinformaticstoolsfor nonspecialistreaders.Thischapterdescribestheuseofdifferentbiologicalchemoinformaticstoolsanddatabasesthatcouldbeusedforidentifyingandprioritizing drugmolecules.Thekeyareasincludedinthischapteraresmallmoleculedatabases, proteinandliganddatabases,pharmacophoremodelingtechniques,andquantitative structure activityrelationship(QSAR)studies.Organizationofthetextineach sectionstartsfromasimplisticoverviewfollowedbycriticalreportsfromtheliteratureandatabulatedsummaryofrelatedtools.

1.2 Ligandandtargetresourcesinchemoinformatics

Currently,therehasbeenanenormousincreaseindatarelatedtochemicalsand medicinaldrugs.Theavailableexperimentallyvalidateddatacanbeutilizedin computer-aideddrugdesignanddiscoveryofsomenovelcompounds.However,most oftheresourceshavingsuchdatabelongstoprivatedomainsandlargepharmaceutical industries.Theseresourcesmainlyhousedatainformofchemicaldescriptorsthatmay beusedtobuilddifferentpredictivemodels.Acompleteoverviewofthechemical descriptors/featuresanddatabasescanbefoundin Tables1.1and1.2.Abriefdescriptionofeachtypeofdatabasecanbefoundinthesubsequentsubsectionsofthischapter.

1.2.1 Smallmoleculecompounddatabases

Smallmoleculecompounddatabasesholdinformationonactiveorganicandinorganicsubstances,whichcanshowsomebiologicaleffect.Thelargestrepository ofactivesmallmoleculecompoundsistheAvailableChemicalDirectory(ACD), whichstoresalmost300,000activesubstances.TheACD/Labsdatabaseprovides informationonthephysicochemicalpropertiessuchaslogP,logS,andpKavalues ofactivecompounds.AnothersuchdatabaseistheSPRESIwebdatabasecontaining morethan4.5millioncompoundsand3.5millionreactions.Anotherdatabase, CrossFireBeilstein,hasmorethan8millionorganiccompoundsand9millionactive biochemicalreactionsalongwithavarietyofproperties,includingvariousphysical properties,pharmacodynamics,andenvironmentaltoxicity.

Table1.1 Tablerepresentingstandardfeaturesandtheirtypeutilizedin quantitativestructure activityrelationship.

Descriptor typeBasisExample

Theoreticaldescriptors

0DStructuralcountMolecularweight,numberofbonds,numberof hydrogenbonds,aromaticandaliphaticbonds

1DChemicalgraph theory

2DTopological properties

3DGeometrical structural properties

Numbersoffunctionalgroups,fragmentcounts, disulfidebonds,ammoniumbond

Randicindex,wienerindex,molecularwalkcount, kappashapeindex

Autocorrelation,3D-Morse,fingerprints

4DConformationalGRID,raptor,sampleconformation

Experimentaldescriptors

ElectronicElectrostatic properties

Dissociationconstant,hammettconstant

StericStericpropertiesChartonconstant

HydrophobicHydrophobic properties logP,hydrophobicconstant

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/ scoringfunctions/descriptionavailabilitywithuniformresourcelocator(URL) andsupportedplatforms.

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

Commonlyuseddatabasesinchemoinformatics

Available Chemical Directory(ACD)

CrossFire Beilstein

Accesstometiculously examinedexperimental NuclearMagneticResonance (NMR)data,completewith assignedstructuresand referencesofmillionsof chemicalcompounds

https://www. acdlabs.com/ products/dbs/nmr_ db/index.php

Dataonmorethan320million scientificallymeasured propertiesofchemical compounds.Thelargest databaseinorganicchemistry. www. crossfirebeilstein. com

SpresiWebDataregardingmillionsof chemicalmoleculesand reactionsextractedfrom researcharticles

https://www. spresi.com/ indexunten.htm

32681440

11604014

24160861 Continued

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

ChEMBLApproximately2.1million chemicalcompoundsfrom nearly1.4millionassays

PubChemContains9.2million compoundswithactivity information

CARLSBADContainsactivityinformationof 0.43millionactivecompounds

DrugcentralProvidesinformationon4,444 pharmaceuticalingredients with1,605humanprotein targets

repoDBAstandarddatabasefordrug repurposing

PharmGKBAdatabaseforexploringthe effectofgeneticvariationon drugtargets

ZINCAcommerciallyavailable databaseforvirtualscreening

https://www.ebi. ac.uk/chembl/ 21948594

https://pubchem. ncbi.nlm.nih.gov

26400175

http://carlsbad. health.unm.edu/ carlsbad/ 23794735

http://drugcentral. org 27789690

http://apps. chiragjpgroup.org/ repoDB/ 28291243

https://www. pharmgkb.org 23824865

http://zinc.docking. org 15667143

Databasesforexploringprotein ligandinteraction

ProteinData Bank(PDB)

Cambridge Structural Database(CSD)

ProteinLigand Interaction Database(PLID)

ProteinLigand Interaction Clusters(PLIC)

Providesinformationon 166,301crystallographic identifiedstructuresof macromolecules

Providesinformationonnearly 0.8millioncompounds

Aresourceforexploringthe protein ligandinteraction fromPDB

Arepositoryforexploring nearly84,846protein ligand interactionsderivedfromPDB

CREDOAresourceprovidingprotein ligandinteractioninformation fordrugdiscovery

https://www.rcsb. org/ 10592235

https://www.ccdc. cam.ac.uk/ solutions/csdsystem/ components/csd/ 27048719

http://203.199. 182.73/gnsmmg/ databases/plid/ 18514578

http://proline. biochem.iisc.ernet. in/PLIC 24763918

http://www-cryst. bioc.cam.ac.uk/ credo 19207418

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

PDBbindAresourceforthebinding affinityofnearly5,897 protein ligandcomplexes

http://www. pdbbind.org/ 15943484

Databaseforexploringmacromolecularinteractions

DOMININOAdatabaseforexploringthe interactionbetweenprotein domainsandinterdomains

PIMAdbAresourceforexploring interchaininteractionamong proteinassemblies

PDB-eKBAcommunity-driven knowledgebaseforfunctional annotationandpredictionof PDBdata

CATHAdatabaseforclassificationof proteindomains

LIGANDAcompositedatabaseof chemicalcompounds, reactions,andenzymatic information

TheMolecular Interaction Database(MINT)

Databaseof Interacting Proteins(DIP)

The Biomolecular Interaction Network Database(BIND)

Providesinformationon experimentallyverifiedprotein proteininteractions

Adatabaseforexploring, prediction,andevolutionof protein proteininteraction, andidentificationofanetwork ofinteractions

http://dommino. org 22135305

http://caps.ncbs. res.in/pimadb 27478368

https://www.ebi. ac.uk/pdbe/pdbekb 31584092

http://www. cathdb.info 20368142

http://www. genome.ad.jp/ ligand/ 11752349

https://mint.bio. uniroma2.it/mint/ 17135203

http://dip.doe-mbi. ucla.edu 10592249

Adatabaseforexploring biomolecularinteractions www.bind.ca 2519993

Softwareusedforpharmacophoremodeling

PharmerAcomputationaltoolfor pharmacophoresearching usingbloomfingerprint

PharmaGistAserverforligand-based pharmacophoresearchingby utilizingtheMtreealgorithm

smoothdock.ccbb. pitt.edu/pharmer/ 21604800

http://bioinfo3d.cs. tau.ac.il/ PharmaGist/ 18424800

Continued

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

LiSiCAAsoftwareforligand-based virtualscreening

ZINCPharmerAtoolforpharmacophore searchingfromtheZINC database

LigandScoutAtoolforgeneratinga3D pharmacophoremodelusing sixtypesofchemicalfeatures

SchrodingerThephasefunctionof schrodingercanbeutilizedfor ligandandstructure-based pharmacophoremodeling

VirtualToxLabAllowsrationalizingprediction atthemolecularlevelby analyzingthebindingmodeof thetestedcompoundfor targetproteinsinreal-time3D/ 4D

ToolsusedinQSARmodeldevelopment

http://insilab.org/ lisica/ 26158767

http://zincpharmer. csb.pitt.edu/ 22553363

http://www. inteligand.com/ download/ InteLigand_ LigandScout_4.3_ Update.pdf 15667141

https://www. schrodinger.com/ phase 32860362

http://www. biograf.ch/index. php?id¼projects& subid¼virtualtoxlab 32244747

DPubChemSoftwareforautomated generationofaQSARmodel www.cbrc.kaust. edu.sa/dpubchem 29904147

QSAR-CoOpen-sourcesoftwarefor QSAR-basedclassification modeldevelopment https://sites. google.com/view/ qsar-co 31083984

DTClabAsuiteofsoftwareforcurating andgeneratingaQSARmodel forvirtualscreening https://dtclab. webs.com/ software-tools 31525295

EzqsarAstandaloneprogramsuitefor QSARmodeldevelopment https://github.com/ shamsaraj/ezqsar 29387275

DataWarriorAnintegratedcomputertool forgenerationandvirtual screeningofaQSARmodel http://www. openmolecules. org/datawarrior/ 30806519 6 CHAPTER1

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

FeatureselectionalgorithmusedinbuildingaQSARmodel

Waikato Environmentfor Knowledge Analysis(WEKA)

Ageneral-purpose environmentforautomatic classification,regression, clustering,andfeature selectionofcommondata miningproblemsin bioinformaticsresearch

http://www.cs. waikato.ac.nz/ml/ weka 15073010

DWFSAweb-basedtoolforfeature selection https://www.cbrc. kaust.edu.sa/dwfs/ 25719748

SciKitAPython-basedframeworkfor featureselectionandmodel optimization https://scikit-learn. org/stable/ modules/feature_ selection.html 32834983

Dockingsoftwarecommonlyusedinchemoinformatics

Autodock4GA;LGA;SA/empiricalfree energyforcefield http://autodock. scripps.edu 19399780

AutodockVinaGA,PSO,SA,Q-NM/X-Score http://vina.scripps. edu 19499576

BDTAutoGridandAutoDock http://www. quimica.urv.cat/ wpujadas/BDT/ index.html 16720587

BetaDockGA http://voronoi. hanyang.ac.kr/ software.htm 21696235

CDockerSA http://accelrys. com/services/ training/lifescience/ StructureBased Design Description.html 11922947

DARWINGA http://darwin.cirad. fr/product.php 10966571

DOCKIC/ChemScore,SAsolvation scoring,DockScore http://dock. compbio.ucsf.edu 19369428

DockoMaticAutoDock https:// sourceforge.net/ projects/ dockomatic/ 21059259

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

DockVisionMC,GA http://dockvision. sness.net/ overview/overview. html 1603810

eHiTSRBDoffragmentsfollowedby reconstruction/eHiTS www.simbiosys.cs/ ehits/index.html 16860582

FINDSITECOMB SP-score http://cssb.biology. gatech.edu/ findsitelhm 19503616

FITTEDGA/RankScore http://www.fitted. ca 17305329

FleksyFlexibleapproachtoIFD http://www.cmbi. ru.nl/software/ fleksy/ 18031000

FlexXIC/FlexXScore,PLP,Screen Score,DrugScore https://www. biosolveit.de 10584068

FlipDockGA http://flipdock. scripps.edu 17523154

FREDRBD/ScreenScore,PLP, Gaussianshapescore, ChemScore,ScreenScore, Chemgauss4scoringfunction https://docs. eyesopen.com/ oedocking/fred. html 21323318

GalaxyDockGalaxyDockBP2Score http://galaxy. seoklab.org/ softwares/ galaxydock.html

23198780, 24108416

GEMDOCKEA/empiricalscoringfunction http://gemdock. life.nctu.edu.tw/ dock/ 15048822

GlamDockMC/SA http://www.chil2. de/Glamdock.html 17585857

GlideHierarchicalfiltersandMC/ GlideScore,glidecomp https://www. schrodinger.com/ glide/ 15027865

GOLDGA/GoldScore,chemScore https://www.ccdc. cam.ac.uk/ solutions/csddiscovery/ components/gold/ 12910460

GriDockAutoDock4.0 http://159.149.85. 2/cms/index.php? Software_projects: GriDock

20623318

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools Algorithm/scoring functions/descriptionWebsiteURLPMIDs

HADDOCKSA/HADDOCKScore

HYBRIDCGO/Ligand-basedscoring function

iGEMDOCKGA/Simpleempiricalscoring functionanda pharmacophore-based scoringfunction

LeadFinderGA

LigandFitMonteCarlosampling/Lig Score,PLP,PMF, hammerhead

Mconf-DOCKDOCK5

http://haddock. science.uu.nl/ services/ HADDOCK2.2/ 12580598

https://docs. eyesopen.com/ oedocking/hybrid. html 17591764

http://gemdock. life.nctu.edu.tw/ dock/igemdock. php 15048822

http://moltech.ru 19007114

https://www. phenix-online.org/ documentation/ reference/ligandfit. html 12479928

http://www.mti. univ-paris-diderot. fr/recherche/ plateformes/ logiciels 18402678

MOEGaussianfunction http://www. chemcomp.com/ MOE-Molecular_ Operating_ Environment.htm 19075767

MolegroVirtual Docker Evolutionaryalgorithm http://www. scientificsoftwaresolutions.com/ product.php? productid¼17625 16722650

POSITSHAPEFIT https://docs. eyesopen.com/ oedocking/posit_ usage.html 21323318

RosettaLigandRosettascript https://www. rosettacommons. org/software 22183535

Continued

Table1.2 Commonlyusedtoolsandsoftwarecategorizedonalgorithms/scoring functions/descriptionavailabilitywithuniformresourcelocator(URL)andsupported platforms. cont’d

Databases/ tools

Algorithm/scoring functions/descriptionWebsiteURLPMIDs

Surflex-DockIC/Hammerhead https://omictools. com/surflex-docktool 22569590

VLifeDockGA/PLPscore,XCscore,and Steric þ Electrostaticscore http://www. vlifesciences.com/ products/ VLifeMDS/ VLifeDock.php 30124114

CommonlyusedMDsimulationstools

AbaloneSuitableforlongsimulations http://www. biomolecularmodeling.com/ Abalone/index.html 26751047

ACEMDFastestMDengine https://www. acellera.com/ products/ moleculardynamicssoftware-GPUacemd/ 26616618

AMBERUsedforsimulations http://ambermd. org/ 16200636

CHARMMAllowsmacromolecular simulations http://yuri.harvard. edu/ 31329318

DESMONDPerformshigh-performance MDsimulations https://www. deshawresearch. com/resources_ desmond.html 16222654

GROMACSWidelyusedwithexcellent performance http://www. gromacs.org/ 21866316

LAMMPSAcoarse-graintool, specificallydesignedfor materialMDsimulations http://lammps. sandia.gov/ 31749360

MOILAcompletesuiteforMD simulationsandmodeling http://clsbweb. oden.utexas.edu/ moil.html 32375019

NAMDProvidesauser-friendly interfaceandpluginsto performlargesimulations http://www.ks. uiuc.edu/ Research/namd/ 29482074

TINKERPerformsbiomoleculeand biopolymerMDsimulations http://dasher. wustl.edu/tinker/ 30176213

1.2.2 Proteinandligandinformationdatabases

3Dinformationofaligandanditsbindingresidueswithinthepocketofitstarget proteinisanessentialrequirementwhiledeveloping3D-QSAR-basedmodels. Thus,thedatabasesholdinginformationaboutmacromoleculestructuresareofgreat importanceforpharmaceuticalindustriesandresearchers.TheProteinDataBank (PDB)(Roseetal.,2017)isonesuchopen-sourcelargerepositorycontainingstructuralinformationidentifiedviacrystallographicandNuclearMagneticResonance (NMR)experimentaltechniques.ThecurrentversionofPDBholdsstructuralinformationon166,301abundantmacromolecularcompounds.ThePDBisupdated weeklywitharateofalmost100structures.Anothersuchextensivedatabaseis theCambridgeStructuralDatabase(Groometal.,2016),whichprovidesstructural informationonlargemacromoleculessuchasproteins.

1.2.3 Databasesrelatedtomacromolecularinteractions

Oftenthebiologicalactivityofaproteincanbemodulatedbybindingaligandmoleculewithinitsactivesite.Thus,identificationofmolecularinteractionsamong ligand proteinandprotein proteinisofutmostimportance.Moreover,thebiologicalpathwaysandchemicalreactionsoccurringattheprotein ligandinterfaceare alsoessentialinunderstandingdiseasepathology.LIGANDisadatabasethatprovidesinformationonenzymaticreactionsoccurringatthemacromolecularlevel (Gotoetal.,2000).Severalotherdatabases,suchastheDatabaseofInteractingProteins,BiomolecularInteractionNetworkDatabase,andMolecularInteraction Network,arealsopresentintheliterature,whichincludesinformationonprotein proteininteractions.

1.3 Pharmacophoremodeling

Theprocessofdrugdesigningdatesbackto1950(NewmanandCragg,2007).Historically,theprocessofdrugdesigningfollowsahit-and-missapproach.Ithasbeen observedthatonlyoneortwotestedcompoundsoutof40,000reachclinicalsettings,suggestingalowsuccessrate.Oftenthedevelopedleadmoleculelacks potencyandspecificity.Thetraditionaldrugdesignprocessmaytakeupto7 12 years,andapproximately$1 2billioninlaunchingasuitabledrugintothemarket. Allthissuggeststhatfindingadrugmoleculeistimeconsuming,expensive,and needstobeoptimizedinadifferentwaytoidentifythecorrectleadmolecule.These limitationsalsosignifythatthereshouldbesomenovelalternativewaystoidentify hitsthatmayleadtodrugmolecules.Soonafterdiscoveringcomputationalmethods todesignandscreenlargechemicaldatabases,theprocessofdrugdiscoveryhas primarilyshiftedfromnaturaltosynthetic(Lourencoetal.,2012).Therationalstrategiesforcreatingactivepharmaceuticalcompoundshavebecomeanexcitingarea ofresearch.Industriesandresearchinstitutionsarecontinuouslydevelopingnew

toolsthatcanaccelerateandspeedupthedrugdiscoveryprocess.Themethodology involvesidentifyingactivemoleculesvialigandoptimizationknownaspharmacophoremodelingorthestructure activityrelationshipapproach.Thissectionofthe chapterdescribesligand-basedpharmacophoremodelingindetailtofindtheactive compoundwithdesiredbiologicaleffects.

Apharmacophoreissimplyarepresentationoftheligandmolecules’structural andchemicalfeaturesthatarenecessaryforitsbiologicalactivity.Accordingtothe InternationalUnionofPureandAppliedChemistry,apharmacophoreisan ensembleofstericandelectrostaticfeaturesrequiredtoensureoptimalinteractions withspecificbiologicaltargetstoblockitsresponse.Thepharmacophoreisnota realleadmolecule,butanensembleofcommonmoleculardescriptorssharedby activeligandsofdiverseorigins.Thisway,pharmacophoremodelingcanhelpidentifytheactivefunctionalgroupswithinligandbindingsitesoftargetproteinsand providecluesonnoncovalentinteractions.Theactivepharmacophorefeatureincludeshydrogenbonddonor,acceptor,cationic,aromatic,andhydrophobiccomponentsofaligandmolecule,etc.Thecharacteristicfeaturesofactiveligandsareoften describedin3Dspacebytorsionalangle,locationdistance,andotherfeatures. Severalsoftwaretoolsareavailabletodesignthepharmacophoremodel,suchas thecatalyst,MOE,LigandScout,Phases,etc.

1.3.1 Typesofpharmacophoremodeling

Pharmacophoremodelingisbroadlyclassifiedintotwocategories:ligand-basedand structure-basedpharmacophoremodeling.Abriefaboutthemethodologyadopted byeachtypeofmodelingisshownin Fig.1.1.However,structure-basedpharmacophoremodelingexclusivelydependsonthegenerationofpharmacophoremodels basedonthereceptor-bindingsite.Still,forligand-basedpharmacophoremodeling, thebioactiveconformationoftheligandisusedtoderivethepharmacophoremodel. Thebestapproachistoconsiderthereceptor ligandcomplexandgeneratethepharmacophoremodelsfromthere.Thisprovidesexclusionvolumesthatrestrictthe ligandduringvirtualscreeningtothetargetsiteandthusisquitesuccessfulinvirtual screeningoflargechemicaldatabaselibraries.

1.3.2 Scoringschemeandstatisticalapproachesusedin pharmacophoremodeling

Severalparametersassessthequalityofdevelopedpharmacophoremodels,suchas predictivepower,identifyingnovelcompounds,costfunction,testsetprediction, receiveroperatingcharacteristic(ROC)analysis,andgoodnessoffitscore.Generally,atestsetapproachisusedtoestimatethepredictivepowerofadevelopedpharmacophoremodel.Atestsetisagroupoftheexternaldatasetofstructurallydiverse compounds.Itcheckswhetherthedevelopedmodelcanpredicttheunknown instance.Ageneralobservationisthatifadevelopedmodelshowsacorrelation coefficientgreaterthan0.70onbothtrainingandtestset,itisofgoodquality.

FIGURE1.1

Overallworkflowofthemethodologyusedindevelopingthepharmacophoremodel.(A) Ligand-basedpharmacophoremodel.(B)Structure-basedpharmacophoremodel. ROC,Receiveroperatingcharacteristic.

Thecommonlyusedstatisticalparameter,cost functionanalysis,isintegratedinto theHypoGenprogramtovalidatethepredictivepowerofthedevelopedmodel.The optimalqualitypharmacophoremodelgenerallyhasacostdifferencebetween40 and60bits.Thecostvaluesignifiesthepercentageofprobabilityofcorrelating thedatapoints.Thevaluebetween40and60bitsmeansthatthedevelopedpharmacophoremodelshowsa75% 90%probabilityofcorrelatingthedatapoints.The ROCplotgivesvisualaswellasnumericalrepresentationofthedevelopedpharmacophoremodel.Itisaquantitativemeasuretoassessthepredictivepowerofadevelopedpharmacophoremodel.TheROCcurvedependsonthetruepositive,true negative,falsepositive,andfalsenegativepredictedbythedevelopedmodel.The ROCplotcanbeplottedusing1-specificity(falsepositiverate)ontheX-axisand sensitivity(truepositiverate)ontheY-axisofthecurve.

Thedevelopedpharmacophoremodelhashugetherapeuticadvantagesinthe screeningoflargechemicaldatabases.Theidentifiedpharmacophoreutilizedby themethodologyjustmentionedandstatisticalapproachesmayservethebasisof designingactivecompoundsagainstseveraldisorders.Successfulexamplesinclude novelCXCR2agonistsagainstcancer(Cheetal.,2018),acortisolsynthesisinhibitordesignedagainstCushingsyndrome(Akrametal.,2017),designingofACE2

inhibitors(Rellaetal.,2006),andchymaseinhibitors(Aroojetal.,2013).Various softwaretoolsthatareavailablefordesigningthecorrectpharmacophoreareshown in Table1.2.Overall,wecansaythatmedicinalchemistsandresearcherscanuse pharmacophoreapproachesascomplementarytoolsfortheidentificationand optimizationofleadmoleculesforacceleratingthedrugdesigningprocess.

AQSARmodelcanbedevelopedusingessentialstatisticssuchasregression coefficientsofQSARmodelswithsignificanceatthe95%confidencelevel,the squaredcorrelationcoefficient(r2),thecross-validatedsquaredcorrelationcoefficient(Q2),thestandarddeviation(SD),theFisher’sF-value(F),andtheroot meansquarederror.Theseparameterssuggestbetterrobustnessofthepredicted QSARmodelbasedondifferentalgorithmslikesimulatedannealingandartificial neuralnetwork(ANN).Thealgorithm-basedacceptableQSARmodelisrequired tohavestatisticalparametersofhighervalueforthesquareofcorrelationcoefficient (r 2 nearto1),andFisher’sF-value(F ¼ max),whilethevalueislowerforstandard deviation(SD ¼ low).TheintercorrelationoftheseindependentparametersgeneratedfordescriptorsisrequiredtodeveloptheQSARmodel.

1.4 QSARmodels

Itisofutmostimportancetoidentifythedrug-likenessofthecompoundsobtained afterpharmacophoremodelingandvirtualscreeningofthechemicalcompound databases.QSAR-basedmachinelearningmodelsarecontinuouslybeingusedby thepharmaceuticalindustriestounderstandthestructuralfeaturesofachemical thatcaninfluencebiologicalactivity(KausarandFalcao,2018).TheQSARbasedmodelsolelydependsonthedescriptorsofthechemicalcompound.Descriptorsarethenumericalfeaturesextractedfromthestructureofacompound.The QSARmodelattemptstocorrelatebetweenthedescriptorsofthecompounds withitsbiologicalactivity.AbriefoverviewoftheQSARmethodologyusedin pharmaceuticalindustriesandresearchlaboratoriesfollows.

1.4.1 MethodologiesusedtobuildQSARmodels

TheprimarygoalofallQSARmodelsistoanalyzeanddetectthemoleculardescriptorsthatbestdescribethebiologicalactivity.Thedescriptorsofchemicalcompoundsaremainlyclassifiedintotwocategories:theoreticaldescriptorsand experimentaldescriptors(Loetal.,2018).

Thetheoreticaldescriptorsareclassifiedinto0D,1D,2D,3D,and4Dtypes, whereastheexperimentaldescriptorsareofthehydrophobic,electronic,andsteric parametertypes.Abriefdescriptionofdescriptortypesisshownin Table1.1.

Thedescriptorsusedasinputforthedevelopmentofmachinelearning-based modelspredictthepropertyofthechemicalcompound.QSARmethodsarenamed afterthetypeofdescriptorsusedasinput,suchas2D-QSAR,3D-QSAR,and4DQSARmethods.AbriefdescriptionofeachQSARmethodfollows.

1.4.2 Fragment-based2D-QSAR

Inrecentyears,theuseof2D-QSARmodelstoscreenandpredictbioactivemoleculesfromlargedatabaseshasgainedmomentuminpharmaceuticalindustriesdue totheirsimple,easy-to-use,androbustnature.ItallowsthebuildingofQSAR modelsevenwhenthe3Dstructureofthetargetismainlyunknown.AhologrambasedQSARmodelwasthefirst2D-QSARmethoddevelopedbyresearchersthat didnotdependonthealignmentbetweenthecalculateddescriptorsofacompound. First,theinputcompoundissplitintoallpossiblefragmentsfedtotheCRCalgorithm,whichthenhashesthefragmentsintobins.Thesecondstepinvolvesthe correlationanalysisofgeneratedfragmentbinswiththebiologicalactivity.The basisofthefinalmodelispartialleastregressionthatidentifiesthecorrelationof fragmentbinswithbiologicalactivity(IC50, Vmax).

1.4.3 3D-QSARmodel

3D-QSARmodelsarecomputationallyintensive,bulky,andimplementcomplexalgorithms.Theyareoftwotypes:alignmentdependentandalignmentindependent, andbothtypesrequire3Dconformationoftheligandtobuildthefinalmodel. Comparativemolecularfieldanalysis(CoMFA)andcomparativemolecularsimilarityindicesanalysis(CoMSIA)arethepopularlyused3D-QSARmethodsutilizedby pharmaceuticalindustriesformodelbuilding.TheCoMFAmethodconsidersthe electrostaticandstericfieldsinthegenerationandvalidationofa3Dmodel,while theCoMSIAutilizeshydrogenbonddonor acceptorinteractions.Then,stericand electrostaticinteractionsaremeasuredateachgridpoint.Subsequently,partialleast squaresregressionanalysiscorrelatesthemoleculardescriptorsoftheligandwith thebiologicalactivitiestomakeafinalQSARmodel.

1.4.4 Multidimensionalor4D-QSARmodels

Totacklethelimitationsof3D-QSARmethods,multidimensionalQSARmodelsare heavilyusedinthepharmaceuticalindustries.Theessentialrequirementforthe developmentof4D-QSARmethodsisthe3Dgeometryofthereceptorsandligand. Onesuch4D-QSARmethodisHopfinger’s,whichisdependentontheXMAPalgorithm.ThecommonlyusedsoftwaretoolsfordevelopingmultidimensionalQSAR modelsareQuasarandVirtualToxLabsoftware.

Beforeapplyingmachinelearning-basedQSARmodeling,thefeatureselection processfordimensionalityreductionmustensurethatonlyrelevantandbestfeatures shouldbeusedasinputinthemachinelearningprocess.Otherwise,thedeveloped QSARmodelonallrelevantandirrelevantfeatureswilldecreasethemodel’s performance.Themostwidelyusedopen-sourcefeatureselectiontoolsare WEKA,scikitinPython,DWS,FEASTinMatlab,etc.Acompletelistoffeature extractionalgorithmscommonlyusedinpharmaceuticalindustriesisshownin Table1.2.Theselectedfeaturesoftheactiveandinactivecompoundswere usedasinputfeaturesfordevelopingtheQSAR-basedmachinelearningmodel.

Machinelearning-basedstrategiestrytolearnfromtheinputstructuralfeaturesand predictthecompounds’biologicalproperties.ThefinaldevelopedQSARmodelcan beappliedtothelargechemicalcompoundlibrariestoscreenthecompoundsand predicttheirbiologicalproperties.Allthefeatureselectionprogramsutilizeone orotheralgorithms,namelystepwiseregression,simulatedannealing,geneticalgorithm,neuralnetworkpruning,etc.

1.4.5 StatisticalmethodsforgenerationofQSARmodels

Themachinelearning-basedQSARmodelingapproachhastwosubcategories.The firstoneincludesregression-basedmodeldevelopment,andthesecondoneprovides classificationtechniquesbasedonthepropertiesofthedata.Theregression-based statisticalmethodsimplementalgorithms,suchasmultivariatelinearregression (MLR),principalcomponentanalysis,partialleastsquare,etc.Atthesametime, classificationtechniquesincludelineardiscriminantanalysis, k-nearestneighboralgorithm,ANN,andclusteranalysisthatlinkqualitativeinformationtoarriveat property structurerelationshipsforbiologicalactivity.Eachalgorithmhasits uniquefunctionandscoringschemeforbuildingthepredictiveQSARmodel (Haoetal.,2010).ThegeneralworkflowandstatisticaldetailsofMLRareshown in Fig.1.2.

FIGURE1.2

Overallworkflowofthepredictivequantitativestructure activityrelationshipmodel development.

1.4.6 Multivariatelinearregressionanalysis

TheregressionanalysismoduleoftheMLRalgorithmestimatesthecorrelation betweenthebiologicalactivitiesofligands/compoundswiththeirmolecularchemicaldescriptors.Theessentialandfirststepincludesthefindingofdatapointsfrom descriptorsthatbestsuittheperformanceoftheQSARmodel.Next,aseriesofstepwisefiltersisapplied,whichreducesthedimensionalityofdescriptorstoarriveat minimumdescriptorsthatbestfitthemodel.Thiswillincreasethepredictivepower ofthealgorithmaswellasmakeitlesscomputationallyexhaustive.Cross-validation estimatesthepredictivepowerofthedevelopedmodel.Themathematicaldetailsof theprocedure,asalreadymentioned,aredescribedasfollows.Let X bethedata matrixofdescriptors(independentvariable),and Y bethedatavectorsofbiological activity(dependentvariable).Then,regressioncoefficient b canbecalculatedas:

¼ðX0 XÞ 1X0 Y

Thestatisticalparametertotalsumofsquaresisawayofrepresentingtheresult obtainedfromMLRanalysis.Anexamplesethereshowsallthemathematicalequations.Forexample,thedevelopmentofaQSARmodelforpredictingtheantiinflammatoryeffectsoftheCOX2compoundisdonewiththehelpoftheScigressExplore method.Thecorrelationbetweentheactualinhibitoryvalue(r 2 ¼ 0.857)andpredictedinhibitoryvalues(r 2CV ¼ 0.767)isgoodenough,provingthatthepredicted modelisofgoodquality.Thefeaturesusedindevelopingthepredictivemodelsare asexplainedinthefollowingequation:

Predictedantiinflammatoryactivitylog(LD50) ¼þ0.167357 Dipole vector (Debye) þ 0.00695659 Stericenergy(kcal/mol) 0.00249368 Heat offormation(kcal/mol) þ 0.852125 Sizeofsmallestring 1.1211 Group count(carboxyl) 1.24227

Here, r 2 definestheregressioncoefficient.ForbetterQSARmodeldevelopment, themeandifferencebetweenactualandpredictedvaluesshouldbeminimum.Ifthe valueof r 2 variesalot,thenthemodelisoverfitted.AbriefofthegeneralmethodologyusedinbuildingtheQSARmodelisillustratedin Fig.1.2.

TraditionalQSAR-basedmodelingonlypredictsthebiologicalnatureofthe compoundandiscapableofscreeningthenewmoleculebasedonthelearning. However,thisapproachhasseverallimitations;allthepredictedcompoundsdo notfitintothecriteriaoftheLipinskiruleoffiveandthusmayhavecytotoxicproperties,etc.ModernQSAR-basedstrategiesshouldemployvariousotherfiltration processessuchastheincorporationofempiricalrules,pharmacokineticandpharmatoxicologicalprofiles,andchemicalsimilaritycutoffcriteriatohandletheaforementionedissues(Cherkasovetal.,2014).Thisway,aligandwithpotentialdruggability andADMETpropertiescanbemadeinatime-efficientmanner.Severalsoftware toolslikeclick2drug,SWISS-ADME,andADMET-SARcansolvetheuser’s problemsinpredictingthedesiredADMETpropertiesofacompound.

1.5 Dockingmethods

Dockingisanessentialtoolindrugdiscoverythatpredictsreceptor ligandinteractionsbyestimatingitsbindingaffinity(Mengetal.,2012),duetoitslowcostand timesavingthatworkswellonapersonalcomputercomparedtoexperimental assays.Thesignificantchallengesindockingarearepresentationofreceptor,ligand, structuralwaters,side-chainprotonation,flexibility(fromside-chainrotationsto domainmovement),stereoisomerism,inputconformation,solvation,andentropy ofbinding(Torresetal.,2019).However,recentadvancesinthefieldofdrug designinghavebeenreportedaftertheadventofdockingandvirtualscreening (Lounnasetal.,2013).Receptor ligandcomplexstructuregenerationusing insilicodockingapproachesinvolvestwomaincomponents:posingandscoring. Dockingisachievedthroughligandorientationalandconformationalsamplingin thereceptor-activesite,whereinscoringpredictsthebestnativeposeamongthe rankligands(ChaputandMouawad,2017).Dockinginvolvesthestructureofligandsforposeidentificationandligandbindingtendencytopredictaffinity(Clark etal.,2016).Thisimpliesthatsearchmethodsofligandflexibilityarecategorized intosystematicstrategiesbasedonincrementalconstruction(Rareyetal.,1996), conformationalsearch,anddatabases(DOCKandFlexX).Thestochasticorrandom approachesusegenetic,MonteCarlo,andtabusearchalgorithmsimplementedin GOLD,AutoDock,andPRO_LEADS,respectively.Atthesametime,simulation methodsareassociatedwithmoleculardynamics(MD)simulationsandglobal energyminimization(DOCK)(Yurievetal.,2011).

Thereceptorisrepresentedasa3DstructureindockingobtainedfromNMR, X-raycrystallography,threading,homologymodeling,anddenovomethods.Nevertheless,ligandbindingisadynamiceventinsteadofastaticprocess,whereinboth ligandandproteinexhibitconformationalchanges.

Severaldockingsoftwareandvirtualscreeningtools(Table1.2)areavailableand widelyused.Nonetheless,onesuchsoftwarethatexplicitlyaddressesreceptorflexibilityisRosettaLigand,whichusesthestochasticMonteCarloapproach,whereina simulatedannealingprocedureoptimizesthebindingsiteside-chainrotamers(Davis etal.,2009).Anothersoftware,Autodock4,completelymodelstheflexibilityofthe selectedproteinportioninwhichselectedsidechainsoftheproteincanbeseparated andexplicitlytreatedduringsimulationsthatenablerotationthroughoutthe torsionaldegreeoffreedom(Biancoetal.,2016).Alternatively,theproteincanbe madeflexiblebytheInsightIIside-chainrotamerlibraries(Wangetal.,2005).Besides,theInducedFitDocking(IFD)workflowofSchrodingersoftwarerelieson rigiddockingusingtheGlidemodulecombinedwiththeminimizationofcomplexes andhomologymodeling.IFDhasbeenusedforkinases(Zhongetal.,2009),HIV-1 integrase(Barrecaetal.,2009),heatshockprotein90(Lauriaetal.,2009),and monoacylglycerollipase(Kingetal.,2009)studies.Furthermore,atomreceptor flexibilityintodockingwasintroducedusingMDsimulations,whichmeasuredits effectontheaccuracyofthistoolbycross-docking(Armenetal.,2009).The bestcomplexmodelsareobtainedbasedonflexiblesidechainsandmultipleflexible backbonesegments.

Incontrast,thebindingofdockedcomplexescontainingflexibleloopsand entirelyflexibletargetswasfoundlessaccuratebecauseofincreasednoisethat affectsitsscoringfunction.InternalCoordinateMechanics(ICM),a4D-docking protocol,wasreportedwherethefourthdimensionrepresentsreceptorconformation (AbagyanandTotrov,1994).ICMaccuracywasfoundtobeincreasedusingmultiplegridsthatdescribedmultiplereceptorconformationscomparedtosinglegrid methods.Agradient-basedoptimizationalgorithmwasimplementedinalocalminimizationtoolusedtocalculatetheorientationalgradientbyadjustingparameters withoutalteringmolecularorientation(Fuhrmannetal.,2009).Thedocking approachesarecomputationallycostlyforcreatingdockerligandlibraries,receptor ensembles,anddevelopingindividualligandsagainstlargerensembles(Huangand Zou,2006).Normalmodeanalysisusedtogeneratereceptorensemblesisoneofthe bestalternativestoMDsimulations(Moroyetal.,2015).Theelasticnetworkmodel (ENM)methodinduceslocalconformationalchangesinthesidechainsandprotein backbone,whichsignifiesitsimportancemoreefficientlythanMDsimulations.

Asmallchangeintheligandconformationcausessignificantvariationsinthe scoresofdockedposesandgeometries.Thissuggeststhatnomethodorligandgeometryproducesthemostprecisedockingpose(Mengetal.,2012).Ligandconformationaltreatmenthasbeenprecomputedthroughseveralavailablemethodslikethe generationofligandconformations(TrixXConformerGenerator)(Grieweletal., 2009),systematicsampling(MOLSDOCKandAutoDock4)(Vijietal.,2012), incrementalconstruction(DOCK6),geneticalgorithms(Jonesetal.,1997), Lamarckiangeneticalgorithm(FITTEDandAutoDock),andMonteCarlo(RosettaLigandandAutoDock-Vina).

1.5.1 Scoringfunctions

Dockingsoftwareandwebserversarevalidatedbyproducing“correct”binding modesbasedontheranking,whichidentifiesactiveandinactivecompoundsstillunderstudy.Thus,severalattemptshavebeenmadetoimprovescoringfunctionslike entropy(Lietal.,2010),desolvationeffects(Fongetal.,2009),andtargetspecificity.Mainly,fourtypesofscoringfunctionshavebeencategorizedandimplementedinforcefields:classical(D-Score,G-Score,GOLD,AutoDock,and DOCK)(Heveneretal.,2009);empirical(PLANTSCHEMPLP,PLANTSPLP) (Korbetal.,2009),RankScore2.0,3.0,and4.0(EnglebienneandMoitessier, 2009),Nscore(TarasovandTovbin,2009),LUDI,F-Score,ChemScore,and X-SCORE(Chengetal.,2009);knowledge(ITScore/SE)(HuangandZou,2010), PoseScore,DrugScore(Lietal.,2010),andMotifScorebased;andmachinelearning (RF-Score,NNScore)(DurrantandMcCammon,2010).

DockingcalculationsofentropiesareincludedwithintheMolecularMechanics/ Poisson-BoltzmannSurfaceArea(MM/PBSA),whereinitisamodifiedformof framework,andtheentropylossiscalculated.Thisiscorrespondinglyassessedafter ligand receptorbindingbasedonthelossofrotational,torsional,translational, vibrational,andfreeenergies.Themodificationincludesthefreeenergychange

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.