Chemical analysis and material characterization by spectrophotometry bhim prasad kafle - The ebook is

Page 1


https://ebookmass.com/product/chemical-analysis-andmaterial-characterization-by-spectrophotometry-bhim-prasadka%ef%ac%82e/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Liquid Biofuels:

Fundamentals, Characterization, and Applications 1st Edition

Krushna Prasad Shadangi

https://ebookmass.com/product/liquid-biofuels-fundamentalscharacterization-and-applications-1st-edition-krushna-prasad-shadangi/

ebookmass.com

Characterization and Analysis of Microplastics Teresa A.P. Rocha-Santos

https://ebookmass.com/product/characterization-and-analysis-ofmicroplastics-teresa-a-p-rocha-santos/

ebookmass.com

Green Approaches for Chemical Analysis Emanuela Gionfriddo

https://ebookmass.com/product/green-approaches-for-chemical-analysisemanuela-gionfriddo/

ebookmass.com

Cognitive

Behavioral Therapy: Theory into Practice (Ebook PDF)

https://ebookmass.com/product/cognitive-behavioral-therapy-theoryinto-practice-ebook-pdf/

ebookmass.com

The Art of the Storyboard John Hart

https://ebookmass.com/product/the-art-of-the-storyboard-john-hart/

ebookmass.com

Digital Supply Networks: Transform Your Supply Chain and Gain Competitive Advantage with Disruptive Technology and Reimagined Processes Amit Sinha

https://ebookmass.com/product/digital-supply-networks-transform-yoursupply-chain-and-gain-competitive-advantage-with-disruptivetechnology-and-reimagined-processes-amit-sinha/ ebookmass.com

Echocardiography Review Guide: Companion to the Textbook of Clinical Echocardiography 4th Edition Catherine M. Otto Md

https://ebookmass.com/product/echocardiography-review-guide-companionto-the-textbook-of-clinical-echocardiography-4th-edition-catherine-motto-md/

ebookmass.com

Comprehensive Dermatologic Drug Therapy 4th Edition Edition Stephen Wolverton

https://ebookmass.com/product/comprehensive-dermatologic-drugtherapy-4th-edition-edition-stephen-wolverton/

ebookmass.com

Handbook of Diagnostic Endocrinology 3rd Edition William E. Winter

https://ebookmass.com/product/handbook-of-diagnosticendocrinology-3rd-edition-william-e-winter/

ebookmass.com

Blake Wilder FBI 11-The House on the Hill Gray

https://ebookmass.com/product/blake-wilder-fbi-11-the-house-on-thehill-gray/

ebookmass.com

ChemicalAnalysisand MaterialCharacterization bySpectrophotometry

DepartmentofChemicalScience & Engineering, SchoolofEngineering, KathmanduUniversity, Dhulikhel,Kavre,Nepal

BhimPrasadKafle

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissions policiesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814866-2

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: KathrynEryilmaz

EditorialProjectManager: SaraPianavilla

ProductionProjectManager: KameshRamajogi

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Spectrophotometryandits applicationinchemicalanalysis 1

1.1Spectroscopyandapplications(overview)

Spectroscopyisabranchofscience(analyticalchemistry)whichdealswiththestudyoftheinteraction ofelectromagneticradiationwithmatter.Infact,traditionally,theinteractionsofanalytewerebetween matterandelectromagneticradiation,butnowspectroscopyhasbeenbroadenedtoincludeinteractions betweenmatterandotherformsofenergy.Suchexamplesincludebeamsofparticlessuchasionsand electrons.Thesekindsofanalyticalmethodsthatareconsideredtobeoneofthemostpowerfultools availableforthestudyofmaterials’fundamentalproperties(e.g.,atomicandmolecularstructure,optical properties)andalsousedinquantifyingthewiderangeofchemicalspeciesprevailinginagivensample. Inthismethod,ananalystcarriesoutmeasurementsoflight(orlight-inducedchargedparticles)thatis absorbed,emitted,reflectedorscatteredbyananalytechemicaloramaterial.Thenthesemeasureddata arecorrelatedtoidentifyandquantifythechemicalspeciespresentinthatanalyte.Ideally,aspectrometermakesmeasurementseitherbyscanningaspectrum(pointbypoint)orbysimultaneous monitoringseveralpositionsinaspectrum;thequantitythatismeasuredisafunctionofradiantpower. Specifically,overalltheotheranalyticalmethods,thespectroscopictechniquespossessthe followingadvantages:

1. Thesetechniquesarelesstimeconsumingandmuchmorerapid.

2. Theyrequireaverysmallamount(atmgand mglevels)ofthecompoundandeventhisamount canberecoveredattheendofevaluationinmanycases.

3. Thestructuralinformationreceivedfromthespectroscopicanalysisismuchmoreaccurateand reliable.

4. Theyaremuchmoreselectiveandsensitiveandareextremelyvaluableintheanalysisofhighly complexmixturesandinthedetectionofeventraceamountsofimpurities.

5. ControlledAnalysiscanbeperformedonacomputer,andtherefore,continuousoperationis possiblewhichisoftenrequiredinindustrialapplications.

Awidearrayofdifferentspectroscopictechniquescanbeappliedinvirtuallyeverydomainof scientificresearch-fromenvironmentalanalysis,biomedicalsciencesandmaterialsciencetospace explorationendeavors.Inotherwords,anyapplicationthatdealswithchemicalsubstancesormaterials canusethistechnique:Spectro-chemicalmethodshaveprovidedperhapsthemostwidelyusedtoolsfor theelucidationofmolecularstructureaswellasthequantitativeandqualitativedeterminationofboth inorganicandorganiccompounds.Forexample,inbiochemistry;itisusedtodetermineenzymecatalyzedreactions.Inclinicalapplications,itisusedtoexaminebloodortissuesforclinicaldiagnosis.

ChemicalAnalysisandMaterialCharacterizationbySpectrophotometry. https://doi.org/10.1016/B978-0-12-814866-2.00001-4 Copyright © 2020ElsevierInc.Allrightsreserved.

Achemistroutinelyemploysspectroscopictechniquesfordeterminationofmolecularstructure (e.g.,NMRSpectroscopy),molecularweight,molecularformulaanddecompositiontosimpler compoundsorconversionintoaderivative(MSSpectroscopy)andpresenceorabsenceofcertain functionalgroups(IRSpectroscopy).Also,therearetremendouseffortsinimproving(e.g., instruments’resolution,detectionlimits,etc)andexpandingthisbranchoftheanalyticalmethodfor quantitativeanalysisinvariousfieldssuchaschemistry,physics,biochemistry,materialandchemical engineering,clinicalapplicationsandindustrialapplications.

Thisbookaimstocoverchemicalanalysisandmaterialcharacterizationwiththistechnique,this chapteraimstobuildafoundationforthebookbyprovidingpropertiesofEMandtheprocesseswhich ariseafterinteractionwithmatter.

1.2Classificationofspectroscopictechniques

Methodsofspectroscopycanbeclassifiedaccordingtothetypeofanalytestheyarebeinganalyzedor typeoflightthattheyemploy.Forstance,onthebasisoftypeofanalyte(elementalormolecular),itis dividedintothefollowingtwoheads:

1. Atomicspectroscopy:Thiskindofspectroscopyisconcernedwiththeinteractionof electromagneticradiationwithatomswhicharecommonlyintheirlowestenergystate,calledthe groundstate.

2. Molecularspectroscopy:Thisspectroscopydealswiththeinteractionofelectromagnetic radiationwithmolecules.Theinteractionprocessresultsinatransitionbetweenrotationaland vibrationalenergylevelsinadditiontoelectronictransitions.Thespectraofmoleculesaremuch morecomplicatedthanthoseofatoms,asmoleculesundergorotationsandvibrationsbesides electronictransitions.Molecularspectroscopyisofgreatimportancenowadaysduetothefact thatthenumberofmoleculesisextremelylargeascomparedwithfreeatoms.

Alternatively,thespectroscopictechniquesarealsoclassifiedaccordingtothetypeofradiation theyemployandthewayinwhichthisradiationinteractswithmatter.Thesemethodsincludethose thatusefromradiowavetoGamma-raysandcausestochangefromnuclearspintochangeinnuclear configuration(see Table1.1).Onthisbasis,spectroscopicmethodsarelistedbelow.

(i) Gamma-rayemissionspectroscopy: UseslightovertheGamma-rayrange(0.005 1.4A ˚ )of electromagneticradiationspectrum

(ii) X-Rayabsorption/emission/fluorescence/diffractionspectroscopy: UseslightovertheXrayrange(0.1 100A ˚ )

(iii) Vacuumultravioletabsorptionspectroscopy: Useslightoverthevacuumultravioletrange of(10 180nm)

(iv) Ultraviolet visibleabsorption/emission/fluorescencespectroscopy:Useslightoverthe ultravioletrange(180 400nm)andvisiblerange(400 780nm).

(v) Infra-redabsorptionspectrophotometry: Useslightovertheinfraredrange(0.78 300 mm).

(vi) FT-IRspectroscopy: (0.78 300 mm)

(vii) Ramanscatteringspectroscopy: (0.78 300 mm)

(viii) Microwaveabsorptionspectroscopy: Useslightovertheinfraredrangeof(0.75 375mm)

(ix) Electronspinresonancespectroscopy: Usesthelightof(3cm)

(x) Nuclearmagneticresonancespectroscopy: Useslightovertheinfraredrange(0.6 10m)

Table1.1Regionsoftheelectromagneticspectrumandthemostimportantatomicormolecular transitionspertinenttothesuccessiveregions.

RegionLimits

Wavenumber limits(cm 1)

Frequencylimit (Hz)

Moleculartransitions (process)

1X-rays0.01 100A ˚ 1020 1016 KandLshellelectrons

2FarUV10 200nm1016 1015 Inner(middle)shell electrons

3NearUV200 400nm1015 -7.5 1014

Valenceelectrons

4Visible400 750nm25000 130007.5 1014 4.0 1014 Valenceelectrons

5NearIR0.75 2.25 mm13000 40004 1014 1.2 1014 Molecularvibrations

6MidIR2.5 50 mm4000 2001.2 1014 6.0 1012 Molecularvibrations

7FarIR50 1000 mm200 106.0 1012 -1011 Lowlyingvibrations andmolecularrotations

8Microwaves1 1100cm10 0.011011 108 Molecularrotations

9Radio waves 1 1000m108 105 Nuclearspin 1.3

Eachoftheseinstrumentsconsistsofatleastthreeessentialcomponents:(1)asourceofelectromagneticradiationintheproperenergyregion,(2)acellthatishighlytransparenttotheradiation andthatcanholdthesample,(3)Grating:Aholographicgratingthatdispersestheradiationallowinga verypreciseselectionofwavelengthsand(4)adetectorthatcanaccuratelymeasuretheintensityofthe radiationafterithaspassedthroughtheanalyteinasamplecell(Thebeamisfocusedonthecenterof thesamplecompartmenttoallowmaximumlightthroughputandreducenoise).

Thespectroscopictechniquesoftype(iv)and(v);Ultraviolet visibleabsorption/emission/fluorescencespectroscopyandInfra-redabsorptionspectrophotometryarealsonamed(sub-classified)as spectrophotometry.Aseachcompounduniquelyabsorbs,transmits,orreflectslightoveracertain rangeofwavelength,thespectrophotometricmethodismainlyusedtomeasurehowmuchachemical substanceabsorbs,transmitsoremitsradiationandtocorrelatetheabsorbedoremittedradiationwith thequantityofananalyteofinterest.Therefore,spectrophotometryisaspectro-analyticalmethodfor boththequalitativeandquantitativemeasurementofthetransmission(orabsorption),reflectionand emissionpropertiesofachemicalspecies(ormaterial)asafunctionofwavelength.

1.3Introductiontoelectromagneticradiation

1.3.1FundamentalpropertiesofEM

Electromagneticradiation(EM)iscomposedofastreamofmass-lessparticles(calledphotons)each travelinginawave-likepatternatthespeedoflight.EachphotonofEMpossessesacertainamountof energy.Thetypeofradiationisdefinedbytheamountofenergyfoundinthephotonsandexhibits propertiesofboththeparticleandwave,knownasthewave-particleduality,andcompriseselectric andmagneticfields.EMspectrumcomprisesradiation,rangingfromradiowavestogamma-rays(see Fig.1.1):Radiowaveshavephotonswithlowenergies,microwavephotonshavealittlemoreenergy thanradiowaves,infraredphotonshavestillmore,thenvisible,ultraviolet,X-rays,and,themost energeticofall,gamma-rays.Thewavelengthrangeofeachkindofradiationandtheprocesstheycan initiateafterinteractionwithmaterialisgivenin Table1.1.

FIG.1.1

Electromagneticradiationsofdifferentwavelengths(uppersection)andtheeffectsafterinteractionofa photonofcertainenergywithamolecule(bottomsection).Forexample,whenphotonsof g-raysinteractwith anatomormolecule,theycanexciteK-shellelectrons.

Inthewavemodel,electromagneticradiationischaracterizedbyitsfrequency, v,wavelength, l, andvelocity, c.Thesethreevaluesarerelatedbytherelationship

(1.1)

Thevalueof c isconstantinagivenmedium(e.g.,c ¼ 2.999 108 ms 1 invacuum),whilethe frequencyandwavelengthoflightareinverselyproportionaltooneanother.TheSIunitsforwavelengthandfrequencyarethemeter(m)andthehertz(Hz),respectively.Traditionally,spectroscopists alsodefineelectromagneticradiationbytheunitwavenumbersas:

where l denotesthewavelengthincentimeters.

Theenergyofaphoton(quantumofelectromagneticradiation)dependssolelyonitsfrequency(or wavelength)andisdefinedas

where h isPlanck’sconstant(h ¼ 6.639 10 34 J).Notethatenergyisdirectlyproportionalto frequencyandwavenumber,andinverselyproportionaltowavelength.

Example1.1 Calculatethefrequencyofradiationwhosewavelengthis600nm.Expressthiswavelength inwavenumber.

Solution:Wavelength(

Exercise1.2. Calculatethewavenumberoftheradiationifthefrequencyis2.06 1014 Hz.(Given: c ¼ 3 1010 cmpersec.)

1.3.2Light-matterinteraction

Whathappenswhenlightmeetsmatter?Whenlightmeetsmatter,thereisalwaysaninteraction:For example,lightisrefractedwhenitenterstheglass,reflectedoffthesurfaceofwaterorice,partially absorbedandpartiallyreflectedbyagreenleaf,andgeneratesphoto-currentbyexcitingthesemiconductorofasolarcell.Thedetailsdependonthestructureofthematterandonthewavelengthofthe light.Additionalphenomenaarerefraction,diffractionandfluorescence.Inthefollowingconsecutive chapters,wewilldiscussindetailsomeoftheseprocessesandtheirmanifestations.Forexample,the fluorescencespectroscopymakesuseoflightthatisreleasedbymatter(analyte),withadetector examininghowthisradiationisreleasedbychemicalsintheanalytesample.

1.3.2.1Absorptionoflight

Asmentionedabove,awayinwhichmattercaninteractwithlightisthroughabsorption.Absorptionisthe processinwhichenergytransferfromaphotonofEMradiationtotheanalyte’satomsormoleculestakes place.Thegeneralprocesseswhichoccurduringlightabsorptionandemissionareshownin(Fig.1.2). Chemicalspeciesthatisatlowenergystatemovetoahigherenergystatebyabsorptionoflight.

Thegeneralprocessofabsorptioncanbeunderstoodasfollows.Atomsandmoleculescontain electrons.Itisoftenusefultothinkoftheseelectronsasbeingattachedtotheatomsbysprings.The electronsandtheirattachedspringshaveatendencytovibrateatspecificfrequencies.Similartoatuning

FIG.1.2

Pictorialdemonstrationoffundamentalconceptsrelatedtoabsorptionandemissionoflight. 1.3 Introductiontoelectromagneticradiation

forkorevenamusicalinstrument,theelectronsofatomshaveanaturalfrequencyatwhichtheytendto vibrate.Whenalightwavewiththatsamenaturalfrequencyimpingesuponanatom,thentheelectrons ofthatatomwillbesetintovibrationalmotion.Ifalightwaveofagivenfrequencystrikesamaterial withelectronshavingthesamevibrationalfrequencies,thenthoseelectronswillabsorbtheenergyofthe lightwaveandtransformitintovibrationalmotion.Duringitsvibration,theelectronsinteractwith neighboringatomsinsuchamannerastoconvertitsvibrationalenergyintothermalenergy.Subsequently,thelightwavewiththatgivenfrequencyisabsorbedbytheobject,neveragaintobereleasedin theformoflight.Sotheselectiveabsorptionoflightbyaparticularmaterialoccursbecausetheselected frequencyofthelightwavematchesthefrequencyatwhichelectronsintheatomsofthatmaterial vibrate.Sincedifferentatomsandmoleculeshavedifferentnaturalfrequenciesofvibration,theywill selectivelyabsorbdifferentfrequenciesofvisiblelight.Thisstatementisillustratedwiththehelpofthe absorptionspectrumofhydrogengas.Asshownin Fig.1.3,whenexposedtoaphotonofelectromagneticradiation,hydrogenatomabsorbsitandisinwhatiscalledan“excited”state.Asthisisnotthe naturalstateofanatomormolecule,theelectronwilleventuallydropbackdowntothelowerenergy (groundstate).However,theatomhastoloseenergytodothis,andsoitreleasesaphotonofthesame energyastheoneisabsorbed.Thisprocessiscalledemissionbecauseaphotonofradiationisemittedby theexcitedatoms,moleculesorsolidsagainataveryspecificwavelength.

Foratomsexcitedbyahigh-temperatureenergysourcethislightemissioniscommonlycalled atomic or opticalemission andforatomsexcitedwithlightitiscalled atomicfluorescence (see fluorescencespectroscopy).Formolecules,itiscalled fluorescence ifthetransitionisbetweenstatesof

Absorptionandemissionspectraofneongas.Also,foraparticularanalyte,theemissionintensityofan emittingsubstanceislinearlyproportionaltoanalyteconcentrationatlowconcentrations.Atomicemission andmolecularfluorescencearethereforeusefulforquantifyingemittingspecies.

FIG.1.3

thesamespinand phosphorescence ifthetransitionoccursbetweenstatesofadifferentspin(seeinthe chapter9fordetails).

Wehavebeendiscussingonespecifictransitionor“energyjump”inoneatom,butofcourse,inany physicalsystem,therearemanyatoms.Inahydrogengas,forexample,alloftheseparateatomscould beabsorbingandemittingphotonscorrespondingtothewholegroupof“allowed”transitionsbetween thevariousenergylevels,eachofwhichwouldabsorb(oremit)atthespecificwavelengthscorrespondingtotheenergydifferencebetweentheenergylevels.Thispatternofabsorptions(oremissions) isuniquetohydrogen(see Fig.1.3):Nootherelementcanhavethesamepatternandcausesa recognizablepatternofabsorption(oremission) lines inaspectrum.

Extendingthisabit,itshouldbecomeclearthatsinceeverychemicalelementhasitsownunique setofallowedenergylevels,eachelementalsohasitsowndistinctivepatternofspectralabsorption (andemission)lines!(Seediagrambelow(See Fig.1.3)forhydrogen).Itisthisspectral“fingerprint” thatastronomersusetoidentifythepresenceofthevariouschemicalelementsinastronomicalobjects. Spectrallinesarewhatallowus,froma“spectrum,”toderivesomuchinformationabouttheobject beingobserved!

Exercise:1.3 (a) IntheabsorptionspectrumofKMnO4 (shownin Fig.1.4),whatwavelengthoflight ismoststronglyabsorbedbyKMnO4?Whatwavelengthsarethemosteasily transmitted?Whichwavelengthswouldyouselectifyouwishedtouselight absorptiontomeasuretheKMnO4?Whattypeoflightatthiswavelength(UV, visibleorIR)?

2. Theinteractionsoflightwithchlorophyllareusedinremotesensingtoexamine theplantandalgaecontentofthelandandsea.

(a) Intheabsorptionspectrumforchlorophyll,whatwavelengthoflightismoststronglyabsorbed bychlorophyll a and b?Whatwavelengthsarethemosteasilytransmitted?

(b) Whichwavelengthswouldyouselectifyouwishedtouselightabsorptiontomeasurethe chlorophyll?

FIG.1.4 TheabsorptionspectrumforKMnO4.

FIG.1.5

Absorbanceasafunctionofradiationwavelengthforchlorophyll‘a’andchlorophyll‘b’.

Solution:

Thestrongestabsorptionoflightforchlorophyll‘a’occursatabout450nmand660nm.The strongestabsorptionoflightforchlorophyll‘b’takesplaceatroughly460nmand635nm.Wavelengthsbetween500and600nmhavethegreatestdegreeoftransmittancebybothchlorophylls‘a’and ‘b’.Smalldifferencesinthesewavelengthrangesarepresentforthesetwotypesofchlorophyll becauseoftheirdifferentchemicalstructures,whichcreateslightdifferencesintheirenergylevelsand inthetypesoflighttheycanabsorb.

(a) Themeasurementofchlorophyll a and b wouldbebestperformedbyusingthewavelengthsat whichthesepigmentshavetheirstrongestabsorptionoflight435nmor660nmforchlorophyll a,and460nmor635nmforchlorophyll b,whichrepresentvisiblelight.

Ifyoulookcloselyatthespectraofchlorophyll a and b (Fig.1.5),wewillnoticethatitisthelight thatisnotabsorbedbychlorophyll a and b between500and600nmthatgivesthesepigmentsand leavestheirgreenandyellowcolor:thecoloroftheabsorbingspeciesisdeterminedbytheremaining typesoflightthataretransmitted(orreflected)bytheobject.Forinstance,thepassageofwhitelight throughabluesolutionofcoppersulfateindicatesthatbluelightisbeingtransmittedwhilethe complementary(orangeinthiscase)isabsorbed.

1.3.2.2Transmissionandreflection(visiblelight)

Transmission: Asaresultoftheabsorption,theintensityofthislight,afterpassingthroughthesample willbelowerthanitsoriginalvalueattheenergythatwasabsorbedbythesample.Theremaininglight thatleavesthroughthesampleissaidtohaveundergonetransmission.Inotherwords,thetransmission isdefinedasthepassageofradiationthroughmatterwithnochangeinenergytakingplace.The amountoflightthatistransmittedbyasampleplustheamountoflightthatisreflected(orscattered)

andabsorbedbythesamplewillbeequaltothetotalamountoflightthatisoriginallyenteredthe sample.Aplotoftheintensityofthelightthatistransmittedbyasampleatvariouswavelengths, frequencies,orenergiesiscalledatransmittancespectrum.

Themechanismfortransmissionoftheincidentlighttotheothersideofatransparentmaterialis understoodasfollows:Transmission(orreflection)oflightwavesoccursbecausethefrequenciesof thelightwavesdonotmatchthenaturalfrequenciesofvibrationoftheobjects.Whenlightwavesof thesefrequenciesstrikeanobject,theelectronsintheatomsoftheobjectbeginvibrating.Butinstead ofvibratinginresonanceatlargeamplitude,theelectronsvibrateforbriefperiodsoftimewithsmall amplitudeofvibration;thentheenergyisreemittedasalightwave.Iftheobjectistransparent,thenthe vibrationsoftheelectronsarepassedontoneighboringatomsthroughthebulkofthematerialand reemittedontheoppositesideoftheobject.Suchfrequenciesoflightwavesaresaidtobe transmitted (thisprocesswillbediscussedintheconsecutivechapterindetail).Purewaterisaclassicexampleof analmostcompletelytransparentmediumforvisiblelight.Aneyeexhibitsseveralportionsoftissue thataremoreorlesstransparent,suchasthecornea,crystallinelens,aqueoushumor,andthevitreous body,aswellastheinnerlayersoftheretina.Amediumisalwaystransparentonlytoacertainrather thanthewholepartoftheelectromagneticspectrum.Forexample,waterisopaquetoradiationinthe infraredrange,whilethecorneablocksradiationintheultravioletrange.

Reflection: Reflection ofelectromagneticradiationisthechangeindirectionofawavefrontatan interfacebetweentwodifferentmediasothatthewavefrontreturnsintothemediumfromwhichit originated(see Fig.1.6).Inparticular,whenthewavesofradiationencounterasurfaceorother boundarybetweentworegionsthathavedifferentrefractiveindicesandbouncestheradiationwaves backtothemediuminwhichitwasoriginallytraveling.Alternatively,itcanbedefinedasfollows.If theobjectisopaque,lightwaveofunmatchedfrequencieswiththenaturalfrequenciesofanelectron, thenthevibrationsoftheelectronsarenotpassedfromatomtoatomthroughthebulkofthematerial. Rathertheelectronsofatomsonthematerial’ssurfacevibrateforshortperiodsoftimeandthenreemit theenergyasareflectedlightwave.Suchfrequenciesoflightaresaidtobe reflected.Common examplesincludethereflectionoflightbyamirror.

Whenlightisreflected,itscharacteristicsandpropertiesmaynotbethesame.Howlightisaffected bymatterdependsonthestrengthofthefieldofthelight,itswavelength,andthematteritself.In addition,externalinfluencesonthematter,suchastemperature,pressure,andotherexternalfields (electrical,magnetic)influencetheinteractionoflightwithmatter.

FIG.1.6

Schematicdiagramforreflectionfromasmoothmirrorsurface(left)andirregularsurface(right). 1.3

Similartoabsorbedoremittedlightreflectedlightfromasamplegivesinformationaboutitandhas beenusedinsometypesofspectroscopyinwhichreflectedlightfromananalyteisdetectedbythe instrument’sdetectorandanalyzed.Agoodexampleinmaterialscienceisanevaluationofoptical propertiessuchasrefractiveindices,absorptioncoefficientandthicknessofthepartiallytransparent thinfilmofmaterials(e.g.,metalsandsemiconductingmaterial)byanalyzingthereflectedlightfrom thesurfaceofsuchmaterials.Dependingonthenatureofthesurfaceoftheanalyte,thereareseveral typesofreflections.

SpecularReflection: Iftheboundarybetweenthetworegionsthatcausesthereflectionisaflat plane(smoothsurface),thereflectedlightwillbeinwell-definedmannerandwillretainitsoriginal imagesuchtypeofreflectioniscalled Specularreflectionorregularreflection (See Fig.1.6).The fractionofthelightthatisreflecteddependsontheangleofincidence,theratiooftherefractiveindices ofthetwomedia,aswellasfromthestateofpolarizationoftheincidentlight,butitdoesnotdepend onthecolorinmostsituations.

Anexampleofsuchaprocessisreflectionbyplane,whichmirrorssmoothsurfaceofwater:In specularreflection,amirrorsurfacereflectsabeamoflightsothattheangleofreflectionisequaltothe angleofincidence(e.g.,theangleoftheincominglightisthesameastheangleoftheoutgoing/reflectedlight).Thediagramshowshowtheincoming(incident)lightisreflectedoffthemirroratthe sameangletotheperpendicularline(whichingeometryiscalledthe‘normal’).Foraperpendicular incidencefromairtoglass(orforaperpendicularexitoutofglassintoair),approximately4%ofthe lightisreflected.Forthetransitionfromairtowater,thisisapproximately2%.

Asshownin Fig.1.6 (left),inaperfectreflection,allthelightwillbereflectedfromthemirror surface.Inreal-life,non-perfectsituations,thebasematerialofthemirrorandthesurfaceofthemirror may:

n Absorblight:thelightisabsorbed(theenergyofthelightistakenupbythematerial).

n Imperfectlyreflectlight:Thesurfaceisanimperfectmirrorandsomeofthelightisscattered.

Diffusereflection: Roughsurfaces,suchasapieceofpaper,reflectlightbackinalldirections. Thisalsooccurswhensunlightstrikesthewallofahouseorthegreenleafofaplant.Thankstothe diffusecharacterofthereflection,weseetheilluminatedobjectfromeveryangle.Diffusereflection occurswhenanincidentrayoflightstrikesasurfaceandthelightisscattered.Asshownin Fig.1.6 (right),inperfectoridealdiffusereflection,allthelightwillbeperfectlydistributedinahemisphereof evenilluminationaroundthepointthelightstrikesthediffusionsurface.Thediagramshowstheway lightisscatteredbyadiffusionsurface.Althoughthediagramisonlytwodimensionallightscatter formsahemispherearoundalightstrike-point.

Thisgeneralpicturewillnowbemademoreprecise.Themostobviousisthephenomenonofthe colorofthereflectingsurface.Thewallofahouse,beingilluminatedbythesun,appearswhitewhen itspaintreflectsallwavelengthsoftheincidentlightcompletely.Theyellowcolorofasunflowerarises throughtheabsorptionofblue:together,theremaininggreenandredproducetheperceptionofyellow. Ifasurfacepartiallyabsorbsallthespectralportionsofthelightuniformly(50%ofit,forexample),it appearstobegray,thatis,withoutanycolor.

AsindicatedintheIst paragraphofthissection,thedegreetowhichlightwillbereflectedata boundarywilldependontherelativedifferenceintherefractiveindicesforthetwosidesofthe boundary.Thelargerthisdifference,thegreaterthefractionofthelightthatwillbereflected.Thisidea

isillustratedby Eq.(1.4) (theFresnelequation),whichgivesthefractionoflightthatwillbereflected asitinterstheboundaryatarightangle.

Thesymbol P0 inthis Eq.(1.4) representstheincidentradiantpower(original)ofthelight(inthe unitsofWatts),whichisdefinedastheenergyinabeamoflightthatstrikesagivenareaperunittime, Pr denotestheradiantpowerofthereflectedlightwheretheratio Pr P0 givesthefractionoftheoriginal lightversusthereflectedlight.Forboundariesthathaveonlyasmalldifferenceinrefractiveindexes, suchasbetweenthevacuuminspaceandair,thefractionofreflectedlightwillbesmallandmostof thelightwillpassthroughtheboundaryandintothenewmedium.Ifalargedifferenceinrefractive indexispresent,asoccursbetweenairandthesilver-coatedsurfaceofamirror,alargefractionoflight willbereflected.Anexampleofacompletelywhitesurfaceisprovidedbysnow.Itswhitecolorhasa simpleexplanation:thetinyicecrystalsreflectthelightwithoutanyabsorption.

Exercise1.4. SomesensorsontheTerraSatellitemakeuseofreflectionpatternstomapthesurfaceof theEarth.

(a) Ifabeamoflightpassesthroughtheair(n ¼ 1.0003)andstrikesthesmoothsurfaceofthewater (n ¼ 1.333)atarightangle,whatfractionofthislightwillbereflectedbythewaterbackintothe air?

(b) Ifthisbeamoflightstrikesthewateratanangleof65.0,whatwillbetheangleofreflection?

Solution:

(a) n1

ðor2 03%reflectionÞ

(b) Ifthelightisundergoingperfectregularreflection,itwillbereflectedatanangleof65.0onthe othersideofthenormalfromtheincominglight.Ifthesurfaceofthewaterisroughanddiffuse reflectanceinsteadoccurs,thelightwillbereflectedatmanydifferentangles.

1.3.2.3Refractionoflight

Whenabeamoflightmeetsasmoothinterfacebetweentwotransparentmediathathavedifferent refractiveindices,bothreflectionandrefractionoccur(Fig.1.7).Therefractionoflightisthebasisfor theopticalimagingthroughthecrystallinelens,eyeglasses,andopticalinstruments(e.g.,magnifying glasses,microscopes,andrefractivetelescopes).

Theincidentrayoflightontoasurface,refractedandreflectedrays,andthesurfacenormalall lieinthesameplane(Fig.1.7).Theamountoflightrefracteddependsontheratiooftherefractive indicesofthetwomedia.Therelationshipbetweenthetwoangles a and b isspecifiedbythelawof refraction:

FIG.1.7

Refractionattheinterfaceoftwomedia.Theprimaryrayispartiallyreflectedandpartiallyrefracted. a and b aretheanglesofincidenceandrefractionwithrespecttothesurfacenormal,respectively.

Keepinginmindthatlightisscatteredwhenitencountersanobstacle,theexistenceoftransparent mediasuchasglass,water,corneas,crystallinelenses,andairseemsquitemiraculous.Insidethese media,interactionsbetweenthelightandthematerialsstilloccur,butitonlyleadstothelight’s travelingmoreslowlythanitwouldinavacuum(Refractionisaconsequenceofthedifferingspeedsof lightintwomedia).Tounderstandthis,wefirstnotethatthefrequencyofthelightvibrationsremains thesameinbothmedia.Therefore,insidethemediumwiththeslowerlightspeed,thewavelengthis smallersincethelightmovesonewavelengthfurtherduringoneperiod.Thisslowingdownis quantifiedastherefractiveindex n:thevelocityoflightinthemediumamountsto c/n,where c isthe velocityoflightinvacuum(c » 300,000km/s).Forexample,inwater,lighttravelswithavelocityof c isabout 225,000km/s(n ¼ 1.33).

1.3.2.4Dispersionoflight

Therefractiveindexofatransparentmediumisslightlydependentonthewavelengthandincreases withshorterwavelengths.Thisgivesrisetodispersionduringrefraction,i.e.,toabreakingupofwhite lightintovariouscolors,aswemainlyknowfromprismsorcrystals.Thecolorsoftherainbowarealso basedonthedispersioninwaterdroplets.Newtonwasinterestedinthechromaticaberrationofthe humaneye.Itsfocalplaneforbluelightliesapproximately1mminfrontofthatforaredlight.Itis amazingthatweperceivethechromaticerrorofoureyesonlyunderrareconditions,eventhoughthe differencebetweentherefractivepowerforredandbluelightamountstoca.1.5D.

1.3.2.5Lightscatteringinmedia

Thetermscatteringreferstothechangeintravelofoneparticle(suchasphoton)duetoitscollision withanotherparticle(e.g.,anatomormolecule).Onecommontypeofscatteringis‘Rayleigh scattering’.Themechanismforscatteringisunderstoodas:Anisolatedatomscatterslightbecausethe electricfieldoftheincidentlightwaveforcestheelectronsintheatomtooscillatebackandforthabout theirequilibriumposition.Bythelawsofelectromagnetism,whenachargechangesitsvelocity,it

emitsradiation.Lightisemitteduniformlyinalldirectionsintheplaneperpendiculartooscillationbut decreasesinamplitudeastheviewingangleshiftsawayfromthatplane.

Anoutersurfacedoesnotalwaysscatterbackallthelightthatpenetratesit.Instead,thescattering canalsotakeplacedeeperinsidetheinteriorofthemedium.Amongnumerousexamples,theblueof theskyisthemostwellknown:theairmoleculesscattersunlightandmainlytheshorterwavelengths. Withoutthescattering,theskywouldappearblacktooureyesandlightwouldcomeintooureyes whenlookingdirectlyatthesun(Theblueportionofthesunlightisapproximatelysixtimesmore stronglyscatteredthantheredportion).Aglassofbeerabsorbslightofshortwavelengthsandscatters lightwithlongerwavelengthsinalldirections.Thescatteringoflightbyparticlesdependsonthe particlesize.Thescatteringduetoparticlesthatareconsiderablysmallerthanthelightwavelengthis knownasRayleighscattering.Rayleighscatteringoccursinalldirections.Thebest-knownexampleis thescatteringofsunlightbythemoleculesoftheatmosphere.

Forlargerparticles,e.g.,fromatmosphericpollution,withdiametersontheorderoflightwavelengthsorlarger,thescatteringtakesplacemainlyintheforwarddirection,anditislesscolordependent(calledMiescattering).ThescatteredlightlosesthebluedominanceoftheRayleigh scatteringandbecomesincreasinglywhiterwiththeincreasingdiameterofthescatteringparticles.A nicemanifestationoftheforwarddirectionofthescatteringofsunlightonatmosphericparticlesisthe whitishappearanceoftheskynearthesun:Thescatteringduetowaterdropletsandatmospheric pollutants(aerosols,saltappearanceofheavyclouds)derivesfromthefactthatthelightcomingfrom aboveismainlyscatteredandreflectedbackupward,whileonlyasmallpartpassesthrough.

1.3.2.6Diffractionoflight

Diffractionistheslightbendingoflightasitpassesaroundtheedgeofanobject.Theamountofbending dependsontherelativesizeofthewavelengthoflighttothesizeoftheopening.Iftheopeningismuch largerthanthelight’swavelength,thebendingwillbealmostunnoticeable.However,ifthetwoare closerinsizeorequal,theamountofbendingisconsiderable,andeasilyseenwiththenakedeye.

Intheatmosphere,asshownin Fig.1.8 diffractedlightisactuallybentaroundatmospheric particles:mostcommonly,theatmosphericparticlesaretinywaterdropletsfoundinclouds.Diffracted lightcanproducefringesoflight,darkorcoloredbands.Anopticaleffectthatresultsfromthe diffractionoflightisthesilverliningsometimesfoundaroundtheedgesofcloudsorcoronas surroundingthesunormoon.Theillustrationin Fig.1.8 showshowlight(fromeitherthesunorthe moon)isbentaroundsmalldropletsinthecloud.

FIG.1.8

Exampleofdiffractionoflightbyatmosphericparticles.

Allformsofwaves,includinglightwaves,arediffractedwhentheyencounteranedgeorpass throughanarrowopening likewaterwaveswhenpassingthroughtheentrancetotheharbor. Adiffractionimagecanalsobeunderstoodasaneffectofinterferenceamongtheentityofthewaves thatextendfromallthepointsoftheopening.Strictlyspeaking,diffractionislesstheconsequenceof certaininteractionsbetweenlightandmatterandmoretheexpressionofaninnerpropertyoflight:its wavenature.Thisconceptalsoappliestolightwaves.Whensunlightencountersaclouddroplet,light wavesarealteredandinteractwithoneanother.Ifthereisconstructiveinterference,(thecrestsoftwo lightwavescombining),thelightwillappearbrighter.Ifthereisdestructiveinterference,(thetrough ofonelightwavemeetingthecrestofanother),thelightwilleitherappeardarkerordisappearentirely.

Acuriousphenomenonofdiffractionwastheobjectofcontroversywhenthewavetheoryoflight wasbeingestablished.In1818,Poissonpointedoutthat,asaconsequenceofthewavetheory,abright spotmustappearinthecenterofasphere’sshadowbecausethewavesoriginatingfromalltheedges wouldarrivethereinphase,irrespectiveofthepositionofthescreen.Tohim,thisseemedsoabsurd thathebelievedhehadthereforedisprovedthewavetheory.However,ashorttimeafterward,the “Poisson’sspot”wasactuallyobservedandbecameoneofthepillarssupportingthewavetheoryof light.Diffractionalsohasaninfluenceonimageformationintheeye.

DiffractionofX-RaysbyaCrystal: Itispossibletopredicttheanglesatwhichconstructive interferencewillbeobservedforX-Raydiffractionbytheatomsinacrystal.Thiscanbeachievedby usingtheBraggequation,

(Note: Eq.(1.6) canalsobewrittenasnl ¼ 2d(nhkl)sin(q),whereh,k,andlarelattice parameters).

Where l isthewavelengthofthe X-rayspassedthroughthecrystal, d istheinterplanardistance(or latticespacing)betweenatomsinthecrystal,and n istheorderofdiffractionfortheobserved constructiveinterferenceband(e.g., n ¼ 1 forfirst-orderinterference).Theterm q representsthe specificangleatwhichthe X-Rayswillstrikethecrystalsurfaceandproduce,ontheothersideofthe normalandatthesameangle,adiffractionbandforthegivenorderofconstructiveinterference.

Exercise1.5 If X-Rayswithawavelengthof0.711A ˚ arediffractedbyacrystalofsodiumchloride (d ¼ 2.82A ˚ ),atwhatanglewillfirst-orderconstructiveinterferencebeobservedforthiscrystal?

Solution:

Rearranging Eq.(1.5), andsubstitutingthegivenvaluesof n,d, and l,wecanfindtheterm q.

ðqÞ¼

ðqÞ¼ 0 1260r ¼ 7 24o

Thesametypeofcalculationpredictsthatadditionalbandsofconstructiveinterferenceswillbe seenatanglesof14.6o (n ¼ 2),(n ¼ 3),andsoonforhigherordersofinterference.

1.3.2.7Emission(fluorescence/phosphorescence)

Fluorescentmaterialsareutilized,forexample,inlaundrydetergents.Thevisualeffectproducedfrom fluorescentmaterialoftenoriginatesfromblueorUVlight,whichilluminatesamaterialand,inturn, excitestheemissionofyellowororangelighttowhichoureyesareespeciallysensitive.The

FIG.1.9

Fluorescein.Left:transitionscheme.Middle:absorptionspectrum(a)andemission(e)spectrum.An absorptionmaximumat485nm,emissionmaximumat514nm.Right:formulaoffluorescein. 1.4 Questions

conversionalwayshappenstowardthelongerwavelengthand,thus,inthedirectionofdecreasing photonenergybecausesomeenergyisconvertedintomolecularvibrations(heat).Thisbehavior (absorptionofshort-wavelight,emissionoflonger-wavelight)istermedfluorescence(Fig.1.9).The namestemsfromthemineralfluorite.Thisphenomenoncanoccurinorganicmaterialsandalsoin minerals.Ifweirradiatemineralswithultravioletlight,wecanascertainthatindividualmineral samplesshinemoreorlessbrightlyinvariouscolors.Fluorescentmaterialsoftenproducelightweakly.

Theamountoflightthatisemittedbyasamplewillbedirectlyrelatedtotheconcentrationofthe atomsormoleculesinthesamplethatarecreatingthisemission.Wecanrepresentthisrelationship throughthefollowingequation,

where PE representstheradiantpoweroftheemittedlight, C istheconcentrationofspeciesemitting thislight,and k istheproportionalityconstant. Eq.(1.7) canbeusedtoestimatetheconcentrationof theatomsormoleculesthatareinexcitedstates,afterinteractionwithradiationorotherexcitation sources(e.g.,thermal).Detailsofmethodsforsuchanalysiswillbediscussedinchapter9.

1.4Questions

1.4.1Subjectiveproblems

1. Describethreewaysthatlightcaninteractwithmatter.

2. Transmittedlightmayberefractedorscattered.Whendoeseachprocessoccur?

3. Whydoesmatterincreaseintemperaturewhenitabsorbslight?

4. Compareandcontrasttransparent,translucent,andopaquematter.

5. Whatwavelengthsoflighthavethemostintenseemissionwhengivenoffbythesun?Which wavelengthsoflightaretakenupby(orabsorbed)tothegreatestextentbyearth’satmosphere?

1.4.2Numericalproblems

1. Calculatethewavenumberofradiationwhosewavelengthis4000nm. Ans : w ¼ 2500 cm 1

2. Calculatethewavenumberofthelinesoffrequency4 1014

Ans : w ¼ 1:33 104 cm 1

3. Radiationwithawavelengthof700nmisvisibleredlight

(a) Calculatethewavelengthin A ˚

(b) Whatisthewavenumberandfrequencyofthisradiation?

4.

(a) Whatistheenergyofaphotonthathasawavelengthof500nm,ifn ¼ 1.00?

(b) Whatistheenergycontainedinonemoleofphotonswiththiswavelength?

5. Oneapplicationofemissioninremotesensingisinthedetectionofforestfires.Oneofthekinds ofsatelliteLandsathasasensorthatdetectsactivefiresbyexaminingtheiremissioninthe wavelengthregionof1.55 mm 1.75 mm.

(a) Whattypeoflight(visible,ultraviolet,etc)isit?

(b) Whataretheenergiesofsinglephotonsoflightatthesewavelengths?

[Hint:IRregion.Ans:(b)energiesofsinglephotons ¼ 1.2 10 19J]

Furtherreading

[1]D.A.Skoog,F.J.Holler,S.R.Crouch,InstrumentalAnalysis,CengageLearningIndiaPvt.Ltd.,NewDelhi, 2012,p.158.

[2]Guideforuseoftermsinreportingdata:spectroscopynomenclature,Anal.Chem.62(1990)91 92.

[3] https://www.nist.gov/programs-projects/spectrophotometry,visitedon:7/23/2017.

[4]M.G.Gore,SpectrophotometryandSpectrofluorimetry:APracticalApproach,OxfordUniversityPress,2000.

[5]G.S.Jeffery,J.Basset,J.Mendham,R.C.Denney,Vogel’sTextbookofQuantitativeChemicalAnalysis,fifth ed.,1991.

[6]B.K.Sharma,InstrumentalMethodsofChemicalAnalysis,Krishna’sEducationPublishers,2012.

[7]Ref.FortheAbsorptionSpectrumofHydrogenSpectrum(OrSimpleAbsorptionandEmission).

[8]Ref.FortheAbsorptionSpectrumofKMnO4

[9]J.Inczedy,T.Lengyel,A.M.Ure,CompendiumofAnalyticalNomenclature,thirded.,BlackwellScience, Malden,MA,1997,p.433.FromHage’sBook.

[10]D.S.Hage,J.D.Carr(Eds.),AnalyticalChemistryandQuantitativeAnalysis,International,PearsonEducation,Inc.,NewJersey,USA,2011.

[11] http://blair.pha.jhu.edu/spectroscopy/basics.html,Visited:07/14/2017.

[12]A.T.Young,Rayleighscattering,Appl.Opt.20(1981)522 535.

Theoryandinstrumentationof absorptionspectroscopy:UV VIS spectrophotometryand

colorimetry

2.1Absorption(UVeVIS)spectrophotometricmeasurements:general concept

Traditionally,thelightfrom185nmto760nmisgenerallycalledultraviolet visible(UV VIS) region.However,withtheadvancementoftechnology,themodernspectrophotometerscomewiththe extendedwavelengthrangefrom185nm 2100nm.Inordertoknowwhatwavelengthoflightis absorbedbyananalytecontainedinagivensample,wemustknow(ordetermine)theUV VIS absorptionspectrumofthestandardsampleofwhichwewishtostudy.

Asmentionedinthepreviouschapter,mostofteninspectrophotometricmethods,theelectromagneticradiationthatisprovidedbytheinstrumentisabsorbedbytheanalyte,andtheamountof absorption(ortransmittance)ismeasured.Theradiationpower(i.e.,theenergy,intheformofelectromagneticradiation,transferredacrossaunitareaperunittime)oftheincidentradiationdecreasesas itpassesthroughthesample.Theamountofdecreaseinradiationpowerisproportionaltotheanalyte concentration.Inotherwords,essentially,theamountofabsorbedradiationincreaseswiththe concentrationoftheanalyteandwiththedistancethroughtheanalytethattheradiationmusttravel (thecellpathlength).

Applicationinquantitativeanalysis: Asradiationisabsorbedinthesample,thepowerofthe radiativebeamarrivingatthephotondetectordecreases.Bymeasuringthedecreasedpowerthrougha fixed-path-lengthcellcontainingthesample,itispossibletodeterminetheconcentrationofthe sample.Becausedifferentsubstancesabsorbatdifferentwavelengths,theinstrumentsmustbecapable ofcontrollingthewavelengthoftheincidentelectromagneticradiation.Inmostinstruments,thisis accomplishedwithamonochromator.Inotherinstruments,itisdonebyuseofradiativefiltersorby useofsourcesthatemitradiationwithinanarrowwavelengthband.

Applicationinqualitativeanalysis: Also,becausethewavelengthatwhichsubstancesabsorb radiationdependsontheirchemicalcomposition,spectrophotometrycanalsobeusedforqualitative analysis.Theanalyteisplacedinthecell,andthewavelengthoftheincidentradiationisscanned throughoutaspectralregionwhilethetransmission(orabsorption)ismeasured.Theresultingplotof transmittedradiationorabsorbanceasanoinstructionfunctionofwavelengthorenergyoftheincident radiationiscalledtransmittanceorabsorptionspectrum.Thewavelength(s)atwhichpeak(s) (maximumabsorbance)areobservedareusedtoidentifycomponentsoftheanalyte.

FIG.2.1

UV VISSpectrophotometerwithadoublebeaminspace(Shimadzu:UV-1800).

Withinrangesoflight,calibrationsareneededonthemachineusingstandardsamples(samplesof analytewithknownconcentration).

Asanexample, Fig.2.1 showsaUV/Visiblespectrophotometer(productofShimadzucompany, Japan)whichiswidelyusedinacademia,researchandindustrialqualityassurance.Inparticular,itcan measureopticalabsorbance,transmittanceorextinctioncoefficientfromultraviolettonearIRregion (190 1100nm)ofelectromagneticradiationwitharesolutionof1nmwithuseruser-friendly features.

TheUV VISSpectrophotometersavailableinthemarketcanbeusedeitherasastand-alone instrumentorasaPC-controlledinstrument,comprisingofthefollowingknobstoeasethe measurementprocess.

1. On/Offswitch

2. Wavelengthselector/Readout

3. Samplechamber

4. Zerotransmissionadjustment/blankadjustment(orautoZero)knob

5. Measurementmode:Absorbance,Transmittance,Extinctioncoefficient

6. Measurementtype:(i)atabroadwavelengthrange(Spectrum),(ii)atasinglewavelength

7. Absorbance/Transmittance/Extinctioncoefficientscale

2.2Principleofabsorptionspectroscopicmeasurements

2.2.1Absorptionandemissionprocesses(conceptfromquantumphysics)

Inatomicormolecularabsorptionspectroscopy,followingtermsandmathematicalrelationsareused toquantifytheanalyteconcentration,tostudyaboutthestructuralfeatures,opticalproperties,andthe functionalgroupspresentinamoleculeofinterest,andsoon.

Anyatomicormolecularsystempossessesenergyonlyincertainspecificamountsorquanta. Thesearereferredtoasenergylevelsofsystem.Asetofquantizedenergylevelsisshownin Fig.2.2A.

From Fig.2.2,itcanbenoticedthatinorderthatsystemmaygofromenergylevel E1 to E2,itwill requiretheabsorptionofanamountofenergyequalto

Thisenergycanbeprovidedbyelectromagneticradiationoftheproperfrequencyiftheradiation caninteractwiththesystem.Thustheenergyoftheradiationabsorbedbythesystemisrelatedtothe energydifferencebetweenquantizedenergylevelsor,

DE ¼ hw; Bohrcondition

However,ifthesystemweretoundergoachangefromstate E4 toE3 thentherewouldbean emissionofenergyequalto

Andthefrequencyoftheradiationemittedwouldbegivenby

Theemissionofradiationoccurswhenamoleculeoranatominhigherenergystate(calledexcited state)returnstoalowerenergystate(orgroundstate).

However,inordertoobserveandinterpretaspectrumwemustkeepthreefundamentalconditions inmind:

1. TheBohrQuantumCondition: Whenasystemmakesatransitionbetweenquantizedenergy levels,thefrequencyoftheradiationabsorbedoremittedisgivenbytheconditions(see Eqs.2.1 and2.4).

2. Electricdipolarinteraction: Inanatomormolecule,ifabsorptionoremissionofonephotonof radiation,thedipolemomentiseithercreatedordestroyedduetoelectronchargeredistribution. Insuchasituation,theelectronictransitionstakeplace.Ontheotherhand,ifthereisnonet changeinthedipolemomentonredistributionofelectroniccharge(i.e.,chargedistribution remainssymmetric),thetransitiondoesnottakeplaceanditissaidtobeforbiddentransition. Thus,ontheabsorptionoflight,adipoleiseithercreatedordestroyedinitsexcitedstate.Incase ofmoleculesag-state(g:gerade)changestou-state(u:ungerade)orviceversa.Thismeans,in thecaseofamolecule,transitionfromthegroundstatetoanexcitedstateisallowedonlywhen thetransitionisfrombondingmolecularorbitaltoantibondingmolecularorbitalandviceversa. Thatis, u 4 g; bondingMO 4 antibondingMO

3. Selectionrules: Thecreationordestructionofdipolesrestrictthetransitionsthatoccurbetween energylevels.Theseselectionrulesareaconsequenceofthesymmetricpropertiesofthewave functionintwoenergystates.Forexample,theatomicwavefunctionsororbitals s,p,d,f are alternativelysymmetricanti-symmetricwithrespecttotheinversionabouttheoriginofthe system.Theselectionrulesforallowedelectronictransitionsforlightdiatomicmolecules:

^¼ 0; 1; D X ¼ 0:

[Note: DS ¼ 0meanspinstate.Alltransitionsaresinglet,doubletsandsoon.Intercombination singlet-Tripletandsimilartransitionsareforbidden]. 2.2

Absorption Emission

FIG.2.2

(A):Quantizedenergylevels.(B):Thedistortionofchargecloudduetoradiation.

2.2 Principleofabsorptionspectroscopicmeasurements 21

2.2.2Molecularorbitalpictureofexcitationduetoabsorptionoflight

Afterabsorptionorlightbyanatomormolecule,theelectronchargecloudaroundanatomor moleculeisdisturbed.Thedistortionofchargecloudproducesadipoleinthedirectionoftheincident radiation.Thisphenomenaispictoriallydemonstratedin Fig.2.2B

2.2.3Termsemployedinabsorptionspectroscopy

Inabsorptionspectroscopy,amongtheprocessesafterimpinginglightonanobject,thefollowingare measured:Transmission,absorption,reflection,scattering,andrefraction.Belowwediscussterms associatedwithabsorptionspectroscopy.

Transmittance: Transmittance, T,isthefractionofincidentlight(electromagneticradiation)ata specifiedwavelengththatpassesthroughasample.Thetransmittanceofabeamoflightasitpasses throughacuvettefilledwithanalytesolutionwithconcentration c isshownin Fig.2.3.

Thetransmittanceofasampleissometimesgivenasapercentage,asgivenin Eq.(2.5).Inthis equation,scatteringandreflectionareconsideredtobeclosetozeroorotherwiseaccountedfor.

where Po isthepoweroftheincidentradiationand P isthepoweroftheradiationcomingoutofthe sample.

Absorbance: Absorbance,orabsorptionfactor,isthefractionofradiationabsorbedbyasampleat aspecifiedwavelength.Forliquids,thetransmittanceisrelatedtoabsorbance (A) as

Inthecaseofgases,itiscustomarytousenaturallogarithmsinstead.

Intensity of incident light I0

Intensity of transmitted light I Sample cuvette with c moles/L of absorbing species

FIG.2.3

Schemeforabsorptionmeasurementofagivensample(DiagramofBeer-LambertLaw).Lightsources provideradiationwithvariouswavelengths.Monochromatorfiltersawavelengthoftheinterest,withintensity P0.AfterpassingthroughthesamplecelltheradiationintensitydecreasestoP.

Thetransmittanceisdirectlyproportionaltotheconcentration (C) oftheanalyteandwidth l ofthe sample(whichisdeterminedbythewidthofthecuvette)(Notes:detailsofderivationisgiveninthe consecutivesection).Thatis, A isdirectlyproportionaltoconcentrationandpathlength:

where a istheproportionalityconstant.Whenconcentrationisexpressedinanumberofmolesper centimetreand l isexpressedincentimeters,theaboveequationbecomes

where ε isthemolarabsorptioncoefficient.Aboveequationisknownas Beer’sLaw (detailedderivationfor Eq.2.8 isdiscussedintheconsecutivesection).Beer’sLawstatesthatmolarabsorptivityis constantandtheabsorbanceisproportionaltoconcentrationforagivensubstancedissolvedinagiven soluteandmeasuredatagivenwavelength.Accordingly,molarabsorptivitiesarecommonlycalled molarextinctioncoefficients.Sincetransmittanceandabsorbanceareunitless,theunitsformolar absorptivitymustcancelwithunitsofmeasureinconcentrationandlightpath.Accordingly,molar absorptivitieshaveunitsofM 1 cm 1.Standardlaboratoryspectrophotometersarefittedforusewith 1cmwidthsamplecuvette;hence,thepathlengthisgenerallyassumedtobeequaltooneandtheterm (in Eq.2.7)isdroppedaltogetherinmostcalculationsA ¼ ε C.

MolarExtinctionCoefficients: Inchemistry,biochemistry,molecularbiology,ormicrobiology, themassextinctioncoefficientandthemolarextinctioncoefficient(alsocalledmolarabsorptivity)are parametersdefininghowstronglyasubstanceabsorbslightatagivenwavelength,permassdensityor permolarconcentration,respectively.TheSIunitofmolarattenuationcoefficientisthesquaremeter permole(m2/mol),butinpractice,itisusuallytakenastheM 1 ,cm 1 ortheL,mol 1 ,cm 1.The molarattenuationcoefficientisalsoknownasthemolarextinctioncoefficientandmolarabsorptivity, buttheuseofthesealternativetermshasbeendiscouragedbytheIUPAC.

Molarabsorptivities(¼ molarextinctioncoefficients)formanyproteinsareprovidedinthe PracticalHandbookofBiochemistryandMolecularBiology(GeraldD.Fasman,1992).Expressedin thisform,theextinctioncoefficientallowsforestimationofthemolarconcentration(c ¼ A/ε) ofa solutionfromitsmeasuredabsorbance.

Extinctioncoefficientsforproteinsaregenerallyreportedwithrespecttoanabsorbancemeasured atornearawavelengthof280nm.Althoughtheabsorptionmaximaforcertainproteinsmaybeat otherwavelengths,280nmisfavoredbecauseproteinsabsorbstronglytherewhileothersubstances commonlyinproteinsolutionsdonot.

Example2.1. Theabsorbanceof5.4 10 4 MsolutionofFe3þ at530nmwas0.54whenmeasuredina cellwitha1cmpathlength.Calculatethemolarabsorptioncoefficient.

Solution:

2.2.4Beer-Lambert’slaw:quantitativeaspectsofabsorptionmeasurements

Creditforinvestigatingthechangeofabsorptionoflightwiththethicknessofthemediumisfrequently giventoGermanphysicistJohanLambert,althoughhereallyextendedconceptsoriginallydeveloped

byFrenchscientistPierreBouguer.GermanscientistAugustBeerlaterappliedsimilarexperimentsto solutionsofdifferentconcentrationsandpublishedhisresultsjustbeforethoseofFrenchscientistF. Bernard.ThetwoseparatelawsgoverningabsorptionareusuallyknownasLambert'slandandBeer’s Law.InthecombinedformtheyareknownastheBeer-Lambertlaw.

Lambert'sLaw: Considerabeamofmonochromaticlightpassingthroughasamplethatabsorbs someofthelight.If P istheradiationpoweroflightincidentuponathinlayerofasampleofthickness dl thefractionalchangeinintensity(dP/P)aslightpassesthroughthesampleisproportionaltoits thickness,

where a istheproportionalityconstantandiscalledtheabsorptioncoefficient.ThisiscalledLambert's Law.Lambert'slawstatesthatwhenmonochromaticlightpassesthroughatransparentmedium,the rateofdecreaseinintensitywiththethicknessofthemediumisproportionaltotheintensityofthe light.Thisisequivalenttostatingthatthefractionoftheincidentradiationabsorbedbyatransparent mediumisindependentoftheintensityofincidentradiationandthateachsuccessivelayerofthe mediumabsorbsanequalfractionofincidentradiation.Theintensityoftheemittedlightdecreases exponentiallyasthethicknessoftheabsorbingmediumincreasesarithmetically,thatanylayerofa giventhicknessofthemediumabsorbsthesamefractionofthelightincidentuponit.Thelight intensitytransmittedthroughasampleoffinitethickness l willbeobtainedbyintegrating Eq.(2.9) as

Integratingaboveequation,forradiationpower P 0 to P andpathlength0 1cm,yields:

Asstatedin Eq.(2.6),theterm‘ log

¼ A

istheabsorbance(formerlycalledopticaldensity, O.D.).

Thusamediumwithabsorbance1foragivenwavelengthtransmits10%oftheincidentlightatthat wavelength.

Beer’sLaw: Lambert’slawconsidersthelightabsorptionandlighttransmissionformonochromaticlightasafunctionofthethicknessoftheabsorbinglayeronly.Forquantitativechemical analysis,however,largelysolutionsareused.Beerstudiedtheeffectofconcentrationofthecolored constituentinsolutionuponthelighttransmissionorabsorption.Hefoundthesamerelation(Eq.2.10) betweentransmissionandconcentrationasLamberthaddiscoveredbetweentransmissionand thicknessofthelayer.Thatis,Beernoticedthatwhenlightpassesthroughthesolution,thefractional changeinlightintensityofabeamofmonochromaticlightisproportionaltotheconcentrationofthe absorbingspecies,c,inadditiontothethicknessoftheopticalpath(samplecontainerwidththrough whichlightpasses).Thatis

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.