Neuralnetworkpotentials
JinzheZenga,b,LiqunCaoa,b,andTongZhua,b,
aShanghaiEngineeringResearchCenterofMolecularTherapeutics&NewDrugDevelopment, SchoolofChemistryandMolecularEngineering,EastChinaNormalUniversity,Shanghai,China bNYU-ECNUCenterforComputationalChemistryatNYUShanghai,Shanghai,China
∗Correspondingauthor:E-mailaddress:tzhu@lps.ecnu.edu.cn
Abstract
Recently,artificialneuralnetwork-basedmethodsfortheconstructionofpotentialenergysurfacesandmoleculardynamics(MD)simulationsbasedonthemhavebeenincreasinglyusedinthefieldoftheoreticalchemistry.Theneuralnetworkpotentials(NNP)strikeagoodbalancebetweenaccuracyandcomputational efficiencyrelativetoquantumchemicalcalculationsandMDsimulationsbasedonclassicalforcefields.Thus, NNPisbecomingapowerfultoolforstudyingthestructureandfunctionofmolecules.Inthischapter,we introducethebasictheoryofNNP.TheconstructionstepsandtheusageofNNParealsointroducedindetail withtheMDsimulationofmethanecombustionasanexample.Wehopethatthischaptercanhelpthose readerswhoarenewbutinterestedinenteringthisfield.
Keywords: Neuralnetwork,Potentialenergysurface,Moleculardynamicsimulation,Chemicalreaction
Introduction
Moleculardynamics(MD)simulationhasbeenakeytheoreticaltoolforstudyingthestructuralanddynamicalpropertiesofawiderangeofchemicalsystems.OneoftheessentialelementsdeterminingthereliabilityofMDsimulationsistheunderlyingpotentialenergy surface(PES),whichdescribestheintra-andintermolecularinteractions.Therearetwomain waystoconstructthePESforMD.Thefirstoneistoperformquantummechanical(QM)calculationon-the-fly,whichisalsoknownasabinitioMDsimulation(AIMD) [1].Theotherone istheempiricalinteratomicpotentials(forcefields)whicharebasedonclassicalmolecular mechanics(MM) [2,3].Theforcefieldsundoubtedlyhavetheadvantageintermsofcomputationalefficiency.However,thesefunctionalformsofforcefieldscanonlyaccuratelydescribeclassicalphysicalinteractionsandusuallydonothaveagoodaccuracywhentaking
intoaccountthemotionofelectrons.Thus,theiraccuracyisoftenquestionedastheylackimportantquantumeffectssuchaspolarizationandchargetransfer.Thisisalsothereasonthat onlyafewforcefieldscandescribechemicalreactions.TheAIMDismoreaccurateinprinciple.However,itsapplicationsaresignificantlylimitedbyitscomputationalcost.Itseemsto bedifficulttoensurebothefficiencyandaccuracyofPESsatthesametime.
Inthepasttwodecades,thedevelopmentofmachinelearningpotentials(MLP)provides thepossibilitytosolvethiscontradiction.MLPemploysmachinelearningmodelsratherthan empiricalformulasorSchr € odingerequationtoestablishtherelationshipbetweenthepotentialenergyofthesystemandthestructureaswellasthechemicalinformation.Compared withempiricalformulas,MLmodelshaveabetterfitpowerandarethereforemoreaccurate. Theyhavebeenusedsincethe1990s [4–9].FollowingtheworkofBehlerandParrinello [10],a seriesofMLPconstructionapproacheshavebeenproposedforawidevarietyofchemical systems.Forexample,Csa ´ nyiandco-workers [11] proposedtheGaussianApproximationPotentials,Mulleretal.proposedtheGDML,DTNNandtheSchNetmethods [12–14],Hammer etal.proposedthekCONmodel [15],Eandco-workersdevelopedtheDeepPotential (DeePMD)model [16,17],Jiangetal.developedtheEANNmodel [18],andDralandcoworkersproposedtheKREGmethod [19,20].Thereareseveralmachinelearningmethods thatcanbeusedtobuildthePES.Amongthem,theartificialNNiswidelyusedduetoits bettercomputationalscalingforperformanceandmemoryrequirements [21,22].Recently, universalNNPshavebeenproposedformanyelements [23,24]
ComparedwithAIMD,theefficiencyoftheM LPissubstantiallyimproved(typicallyby morethan3ordersofmagnitude).Withcodeoptimizationorondedicatedhardware,MD simulationwithMLPhasbeenabletosimulatesystemscontaining100millionatoms [17]. However,thereisstillanorderofmagnitude differenceintheefficiencyofMLPcompared toclassicalforcefields.Therefore,itwasma inlyusedtostudyscientificproblemsthat traditionalforcefieldsarenotcapableoforrequirehighaccuracy.Forexample,thedesign/discoveryofnewmaterials,homogeneouscatalysis,etc [25– 39].Thelatestdevelopmentsandapplicationsinthisfieldcanbefoundinseveralrecentcomprehensivereviews [40– 51].
Recently,wehaveusedtheneuralnetwork-basedpotentials(NNP)tosimulateanumber oftypicalchemicalsystems,suchasthehydrationofzincions [52],metalloproteins [53],and combustionreactions [54,55] (Fig.1).Metals,especiallysometransitionmetals,areimportant cofactorsintheregulationofproteinstructureandfunction.However,importantquantum effectsassociatedwithmetalcoordinationareoftennotaccuratelydescribedbyclassicalforce fields.Wefoundthatbenefittingfromitspowerfulfittingability,theNNPcaneasilyachieve higheraccuracythanclassicalforcefieldsinthesesystems.Combustionisanevenmorecomplexchemicalsystemthatinvolvesthousandsofchemicalreactionsandgenerateshundreds ofmolecularspeciesduringtheprocess.Traditionally,MDsimulationsbasedonreactive forcefieldssuchasReaxFF [56] wereusedtoinvestigatethecombustionreactionprocesses. However,theaccuracyoftheReaxFFhasoftenbeencriticized [57,58].Wehavedeveloped NNPsasaccurateasDFTmethodtoachieveefficientsimulationsofmethanecombustion andlong-chainalkanepyrolysis.FromtheMDtrajectories,onecannotonlyobtaindetailed reactionnetworksbutalsodiscovernewreactions.Withthischapter,wehopetopassonour experiencetohelpmorebeginnersbetterunderstandanduseNNPandtheMDsimulations basedonit.

FIG.1 (A)RadialdistributionfunctionofZn Odistance(solidlines)andcorrespondingintegrationofradialdistributionfunction(RDF, dashedlines)calculatedfromthetrajectorysimulatedbyNNP.The gray areaistheexperimentalmeasurementofRDF [52].TheP1 andP2 denote,respectively,thepeakexperimentalradialdistributionof thefirstandsecondsolvationshells,whileN1 andN2 denote,respectively,theexperimentalcoordinationnumber ofthefirstandsecondsolvationshells.(B)TheworkflowtoconstructNNPESforzincproteins [53]. (C)SnapshotsofthepartialcombustionsystemextractedfromthereactiveMDsimulationofmethanecombustion [54] Panel(A)ThisfigureisreprintedwithpermissionfromM.Xu,T.Zhu,J.Z.H.Zhang,Moleculardynamicssimulationof zincioninwaterwithanabinitiobasedneuralnetworkpotential,J.Phys.Chem.A123(2019)6587–6595.Copyright2019 AmericanChemicalSociety.Panel(B)ThisfigureistakenfromM.Xu,T.Zhu,J.Z.H.Zhang,Automaticallyconstructedneural networkpotentialsformoleculardynamicssimulationofzincproteins,Ftont.Chem.9(2021)692200.Panel(C)Thisfigureis takenfromJ.Zeng,L.Cao,M.Xu,T.Zhu,J.Z.H.Zhang,Complexreactionprocessesincombustionunraveledbyneural network-basedmoleculardynamicssimulation,Nat.Commun.11(2020)5713.
Methods
AgoodNNPmodelshouldmeetthefollowingrequirements:(1)Itsaccuracymustbevery closetothequantumchemistrymethodthatusedtolabelthedata.(2)Theonlyinputneeded bythemodelshouldbetheelementinformation,atomiccoordinate,chargesandspinstate. (3)IfusedforMDsimulation,themodelshouldbesmoothanddifferentiable.(4)Inmost cases,thePESmodelshouldpreservethetranslational,rotational,andpermutationalsymmetriesofthesystem,whichisessentialtoguaranteethetransferabilityofthemodel.
Inmost,butnotall,NNPmodels,thepotentialenergyofthesystemisexpressedasthesum ofatomiccontributionstotheenergy(Fig.2)
FIG.2 TheneuralnetworkmodelthatgeneratesthepotentialenergysurfaceforMDsimulation. Thisfigureistaken fromJ.Zeng,L.Cao,M.Xu,T.Zhu,J.Z.H.Zhang,Complexreactionprocessesincombustionunraveledbyneuralnetworkbasedmoleculardynamicssimulation,Nat.Commun.11(2020)5713.
Whiletheenergyofatom i isdeterminedbyitschemicalenvironment.Therelationship betweenthemisdescribedbyaneuralnetwork N :
Thechemicalenvironmentreferstotheelementinformationandrelativepositions e Ri ofthe atom i andallatomswithinapre-defineddistance/angularcut-offwhichcenteredatatom i. Tosatisfytherequirement4mentionedabove,weusemathematicsormachinelearning methodstotransformtheCartesiancoordinatesofatomsinthechemicalenvironment. Themathematicalrepresentationafterthetransformationiscalledamoleculardescriptor D. Adeepneuralnetworkfunction N isthecompositionofmultiplelayers Li :
Alayer L isusuallycomposedby y ¼L x; w, b ðÞ¼ ϕ xT w + b ,(4) where x istheinputvectorand y istheoutputvector. w and b areweightsandbiases,respectively,bothofwhicharetrainable. ϕ istheactivationfunction,suchasReLU,softplus,sigmoid,tanh,GeLU,andetc.
OneofthesimplestdescriptorsistheCoulombmatrix [59]:
where Z isthenuclearcharge.Sinceallelementsinthematrixaredeterminedonlybythe relativepositionsofatoms,thetranslationalandrotationalsymmetriescanbewellpreserved, whilethepermutationinvariancecanbeachievedbysortingtherowsandcolumnsbytheir respectivenorm.However,thesortedCoulombmatrixcannotensurethesmoothnessand differentiabilityofthePESmodel,anditcanbeonlyusedwhenthetotalenergyislearned directly,nodecompositionintoatomiccontributions.
Currently,therearealotofmoleculardescriptorsusedintheconstructionofNNP.Some ofthem [18] arementionedorintroducedinotherchaptersofthisbook(suchas Chapters11, 12,and 19).Herewewillintroducethreeofthem,theatom-centeredsymmetryfunctions (ACSFs) [60],theSchNetmodel [14],andtheDeepPotential-smoothedition(DeepPot-SE) [61] method.
Atomic-centeredsymmetryfunctions
Theatomic-centeredsymmetryfunctions(ACSFs)wereproposedbyBehlerandParrinllo in2007 [10],whichcontainsaseriesofGaussian-typefunctions:
1 and G2 areradicalandangularterm,respectively.
where Rs, λ, η,and ζ arehyperparameters,
,andthecut-offfunction fc isdefinedby
RC istheuser-definedcut-off.Thecut-offfunctionmakesatomsoutofthecut-offradius havenocontributiontoeither G1 or G2 . Onthisbasis,Gasteggeretal.proposedtheweightedatomic-centeredsymmetryfunctions (wACSFs)descriptor [62],whichintroducedweightingfunctionsofthechemicalelementsto symmetryfunctions(Eqs. 7–8):
where g(Zj) ¼ Zj and h(Zj, Zk) ¼ ZjZk.
wACSFsovercometheundesirablescalingofACSFswithanincreasingnumberofdifferentelements.Meanwhile,toobtainacomparablespatialresolutionofthemolecularstructures,asubstantiallysmallernumberofwACSFsthanACSFsisneeded.
Intheirpreviouswork [63],Smithetal.alsooptimizedtheangulartermofACSFsandproposedtheANAKIN-ME(ANI)model.TheyaddtwonewhyperparameterstoEq.(8):
whichgivesthedescriptoranobviouslymoreexpressivepower.
SchNet
ItisworthtomentionthattheACSFs(anditsvariants)arefixedbeforetraininganNNP.In fact,thereareothermoleculardescriptorssuchasSchNet [14] andDeepPot-SE [61] whichcan belearnedinthetrainingprocess.SchNetcontainsatrainableconvolutionalNN.Itsdescriptor D isaNNfunction N ofthecoordinates Rij andatomictype α ofthegivenchemical system.
TheNNfunctioncontainsboththedenselayers Ld andtheconvolutionallayers Lc :
where x istheinputtensorsthatcouldbeeither α ortheoutputfromthelastlayer, n isa hyperparametertodecidehowmanytimes I isappliedto x, ϕ isthesoftplus,andthe convolutionallayers Lc aregivenby
where W istrainable. Ld canbefoundinEq. 4.DetailsofthismodelcanbefoundinRef. [14]
DeepPot-SE
InDeepPot-SE,theexpressionfortheatomiccontribution Ei isaneuralnetworkconsisting ofthreehiddenlayers.TheinputlayeristhemoleculardescriptorD Ri ,whichdetermined bythe“environmentmatrix” e Ri ,the“embedding”matrix Gi ,andareduceddimensionembeddingmatrix G< i [64].
s(Rij)isaswitchedreciprocaldistancefunctionthatcontrolstherangeofthechemicalenvironmenttobeconsidered.Ifanatomisseparatedfromatom i byadistancegreaterthan Roff, thentheatomisnotincludedinthechemicalenvironmentofatom i.Ifaneighboringatomis withinadistanceof Ron,thenitisgivenfullweightinthedescriptor.Theweightcansmoothly changefrom Ron to Roff.Theenvironmentmatrixisa Nneigh 4array,where Nneigh isthenumberofatomswithin Roff
The“embedding”matrix Gi isactuallyanotherneuralnetwork N whichiscalled “embeddingnetwork”: Gi ¼N sRij (20)
Theequationoftheneuralnetwork N isgiveninEq. 3.Usually,weput3hiddenlayersin theembeddingnetwork.Eachrowoftheembeddingmatrixcorrespondstoaneighbor.If thereare M3 nodesinthethirdlayerof Gi ,thesizeoftheembeddingmatrixis Nneigh M3. Thereduceddimensionalembeddingmatrixhasthesamevaluesas Gi ,butonlythefirst M0 columnsarestored,where M0 issmallerthan M3.Themainpurposeoftheusageof G< i istoreducethecomputationalcost.
Intheirrecentwork [22],PinheiroJr.etal.systematicallybenchmarkedaseriesofmoleculardescriptorsindifferentapplicationcontextsandgiveselectionrecommendationsbased onthetargetandthesizeofthetrainingset.Westronglyrecommendthatreadersofthisbook readthisworkbeforeconstructtheirownNNPs.
Exampleofsimulationwithneuralnetworkpotentials
Afterselectingthemoleculardescriptor,oneonlyneedtofocusontwoissues,thepreparationofthereferencedataset(includingthetrainingandtestset)andthetrainingoftheneuralnetwork.Amongthem,thetrainingofneuralnetworksisrelativelystraightforward, currentlymainlybasedonopen-sourceframeworkssuchasTensorFloworPyTorch.On thecontrary,theconstructionofareferencedatasetthatcoversthetargetchemicalspace
FIG.3 Theworkflowofreferencedatasetconstruction. ThisfigureistakenfromJ.Zeng,L.Cao,M.Xu,T.Zhu,J.Z.H. Zhang,Complexreactionprocessesincombustionunraveledbyneuralnetwork-basedmoleculardynamicssimulation,Nat. Commun.11(2020)5713.
whilebeingassmallaspossibleisthemostcriticalanddifficult.Whenonecannotpredictthe chemicalspacethatMDwillexplore,suchassimulatingcombustionreactions,theconstructionofreferencedatasetsbecomesevenmoredifficult.AfeasibleapproachistorunMDsimulationwhilesampling.PreviousstudiessuggestedusingmultipleNNPmodelstoidentify poorlysampledregionsoftheconfigurationspace [65,66].Inthismethod,severalNNP modelswillbetrainedbasedonthesamereferencedataset.DuringtheMDsimulation,a largenumberoftrialconfigurationsareevaluatedbyallofthesemodels.Ifagivenstructure differsobviouslyfromalltraineddata,thepredictionsofthesemodelsshouldbesignificantly different.Thenoneneedtoaddthisstructureintothedataset.Conversely,ifthetraining setalreadycontainssimilarstructuresofthegivenone,thepredictedresultsofthesemodels shouldbeconsistent.Thisalgorithmwascalled“activelearning”or“learningon-the-fly”and hasbeenusedbymanyworks [66–76],see Chapter14 Fig.3 showsan“activelearning” workflowweusedinthesimulationofmethanecombustion.
Firstly,weneedtoprepareaninitialdatasetbyusingashortMDsimulationwiththe ReaxFFforcefield.Foreachatomineachsnapshotofthetrajectory,webuiltamolecularclusterwhichcontainsthisatomandspeciesthatwithinaspecifiedcut-offcenteredonit.Thenthe MiniBatchKMeans [77] isusedtoremovetheredundancy.Startingfromtheinitialdataset, fourdifferentNNPmodelsweretrainedbasedonthedatasetfromthelaststep.Thenseveral shortMDsimulationswereperformedbasedononeoftheseNNPmodels.Duringthesimulation,theatomicforcesofthecentralatominthemolecularclusterareevaluatedbyallfour NNPmodelssimultaneously.Foraspecificatom,ifthepredictedforcesbythesefourmodels
areconsistentwitheachother,thensimilarmolecularclustersshouldalreadybeincludedin thedataset.Onthecontrary,iftheresultsofthesefourmodelsareinconsistentwitheachother andtheerrorbetweenthemisinaspecificrange,thecorrespondingmolecularclusterwillbe addedintothedataset.Theupdateofthedatasetwillbecontinueduntilthepredictionsofthe fourmodelsarealwaysconsistentorthetargetlengthoftheMDsimulationisreached.More techniquedetailscanbefoundinourpreviousstudy [54].
Casestudies
Simulationoftheoxidationofmethane
Inthissection,wewilltakethesimulationofmethanecombustionasanexampleandintroducetheprocedureofNNP-basedMDsimulation.Allfilesneededinthissectioncanbe downloadedfromthefollowinglink:https://github.com/tongzhugroup/Chapter13tutorial.
Attheverybeginning,oneneedstoconsiderwhichsoftwaretouse.Thereareseveral open-sourceandwidelyusedNNPbuildingsoftware,suchasTensorMol [38],MLatom [19,20],EANN [18],andDeePMD-kit [78].Forbeginners,thereislittledifferencebetween thesesoftwarepackages.TheMLatomandEANNmethodareintroducedinotherchapters ofthisbooksuchas Chapters13 and 19,respectively.HereweemploytheDeePMD-kit.The followingstepsareusedtotraintheNNPandperformMDsimulation.
Step1:Preparingthereferencedataset
Inthereferencedatasetpreparationprocess,onealsohastoconsidertheexpectaccuracyof thefinalmodel,oratwhatQMleveloneshouldlabelthedata.InRef.54,theGaussian16 [79] softwarewasusedtocalculatethepotentialenergyandatomicforcesofthereferencedataat theMN15/6-31G** level.TheMN15functionalwasemployedbecauseithasgoodaccuracy forbothmulti-referenceandsingle-referencesystems [80],whichisessentialforoursystemas wehavetodealwithalotofradicalsandtheirreactions.Here,weassumethatthedatasetis preparedinadvance,whichcanbedownloadedfromtheabovelink.
Step2.TrainingtheNNPES
Beforethetrainingprocess,weneedtoprepareaninputfilecalled methane_param.json whichcontainsthecontrolparameters.Thetrainingcanbedonebythefollowingcommand: $$deepmd_root/bin/dptrainmethane_param.json
Thereareseveralparametersweneedtodefineinthe methane_param.json file.The type_map referstothetypeofelementsincludedinthetraining,andtheoptionof rcut isthecut-offradiuswhichcontrolsthedescriptionoftheenvironmentaroundthecenteratom.Thetypeof descriptoris“se_a”inthisexample,whichrepresentstheDeepPot-SEmodel.Thedescriptor willdecaysmoothlyfrom rcut_smth (Ron)tothecut-offradius rcut (Roff).Here rcut_smth and rcut aresetto1.0A ˚ and6.0A ˚ ,respectively.The sel definesthemaximumpossiblenumberof neighborsforthecorrespondingelementwithinthecut-offradius.Theoptions neuron in descriptor and fitting_net isusedtodeterminetheshapeoftheembeddingneuralnetworkand thefittingnetwork,whicharesetto(25,50,100)and(240,240,240)respectively.Thevalueof
axis_neuron representsthesizeoftheembeddingmatrix,whichwassetto12.Andtheoptions start_lr, decay_rate,and decay_steps inthe learning_rate modulecontrolsthelearningratefor n th batchaccordingtothefollowingformula:
Theinitiallearningratewassetto0.001anditwilldecayevery400steps.Thelossfunction isdefinedas:
The Δε and Δ Fi inthelossfunctionrepresentthedifferencebetweenthepredictionofNNP inthelabeledenergyandforce,respectively. pε and pf areprefactorsthatdecaysexponentially duringtraining.Byassigningdifferentrandomseedsintheneuralnetworkinitializationprocess,onecantrainmultiplemodelsatthesametime.
Afterthetrainingiscompleted,thepredictivepowerofthemodelmustbecheckedfirst.As showninthe Fig.4,themeanabsoluteerrors(MAE)ofpotentialenergyareonly0.04eV/atom
Training Set / Test Set
FIG.4 (A)Energypredictionerrorsforthereferenceset.Themeanabsoluteerrors(MAEs)androotmeansquared errors(RMSEs)areineV/atom.(B).ThecorrelationofatomicforcesbetweenNNpredictionsandDFTcalculations. ThisfigureistakenfromJ.Zeng,L.Cao,M.Xu,T.Zhu,J.Z.H.Zhang,Complexreactionprocessesincombustionunraveledby neuralnetwork-basedmoleculardynamicssimulation,Nat.Commun.11(2020)5713.
and0.14eV/atominthetrainingsetandthetestset,respectively.Asfortheatomicforces,the correlationcoefficientbetweenthepredictedandlabeledvaluesis0.999andtheMAEis 0.12eV/A ˚ .
Step3:Freezethemodel
Thisstepistoextractthetrainedneuralnetworkmodel.Tofreezethemodel,thefollowing commandwillbeexecuted:
$$deepmd_root/bin/dpfreeze-ograph.pb
Afilecalledgraph.pbcanbefoundinthetrainingfolder.Thenthefrozenmodelcanbe compressed [81]:
$$deepmd_root/bin/dpcompress-igraph.pb-ograph_compressed.pb-tmethane_param.json
Step4:RunningMDsimulationbasedontheNNP
ThefrozenmodelcanbeusedtorunreactiveMDsimulationstoexplorethedetailedreactionmechanismofmethanecombustion.TheMDengineisprovidedbytheLAMMPSsoftware [82].Hereweusethesamesystemfromourpreviouswork [54],whichcontains100 methaneand200oxygenmolecules.TheMDwillbeperformedundertheNVTensemble at3000Kfor1ns.TheLAMMPSprogramcanbeinvokedbythefollowingcommand:
$$deepmd_root/bin/lmp-iinput.lammps
The input.lammps istheinputfilethatcontrolstheMDsimulationindetail,techniquedetailscanbefoundinthemanualofLAMMPS(https://docs.lammps.org/).TousetheNNP, the pair_style optioninthisinputshouldbespecifiedasfollows: pair_styledeepmdgraph_compressed.pb pair_coeff **
Step5:Analysisofthetrajectory
Afterthesimulationisdone,wecanusetheReacNetGenerator [83] softwarewhichwas developedinourpreviousstudytoextractthereactionnetworkfromthetrajectory.Allspeciesandreactionsinthetrajectorywillbeputonaninteractivewebpagewherewecananalyzethembymouseclicks.Eventuallyweshouldbeabletoobtainreactionnetworksthat consistentwith Figs.2–4 inRef.[54].
$ reacnetgenerator-imethane.lammpstrj-aCHO–dump
Themostexpensivestepsarestep2(trainingtheNNP)andstep4(RunningMDsimulation basedontheNNP).Performanceofthesetwostepsisbenchmarkedusingdifferenthardware asshownin Table1.
TABLE1 PerformanceoftrainingandMDsimulationsusingdifferenthardware(unit:ms/step)a
NVIDIAGeForceRTX3080Ti16.3910.773.1643.325
NVIDIAGeForceRTX309024.2626.786.7386.965
NVIDIATeslaV10027.0719.175.8635.558
a TrainingisconductedwiththemethanecombustiontrainingsetgivenintheGitHubrepository,usingtheDeePMD-kitsoftware.MD simulationsareconductedwithamethanecombustionsystemof900atoms,usingLAMMPSinterfacetotheDeePMD-kit.
Conclusionsandoutlook
Inthischapter,weintroducethebasicconceptsandideasthatabouttheconstructionand usageofNNPfromabeginner’sperspective.Inthepastyears,machinelearning-basedmoleculardynamicssimulationshavegainedsignificantdevelopmentsandadvancesthathave changedtheresearchparadigmthroughoutthetheoreticalchemistrycommunity.Intheprocessofgrowingfrombeginnertoexpert,webelievethatthefollowingissuesareneededtobe considered [84,85].(1)Dataisattheheartofallmachinelearningmethods.Therefore,the questforbettermethodstobuildreferencedatasetswillneverstop.Somerecentusefuldiscussionscanbefoundintheliterature [86,87].(2)Theselectionofpropermoleculardescriptorswhichcanrepresentthechemicalenvironmentwell,whilewithminimalcomplexity. Althoughwell-establishedmoleculardescriptorssuchasACSFs,EANNandDeepPot-SE arealreadyavailable,onemaystillwanttodesignnewdescriptorsforspecificsystemsofinteresttofurtherenhancethetransferabilityoftheNNPmodelandimprovetheaccuracyand efficiencyofthetrainingprocessandMDsimulation.(3)Theselectionofhyper-parameters forNN.Therearemanyhyper-parameterssuchaslearningrateandnetworkstructureparameterswhichhavehugeimpactontheaccuracyandefficiencyofNNPs.Althoughsome automatedmethodshavebeenproposed [60,87,88],thechoiceoftheseparametersisstill largelyempiricallydominated.Whencomputationalresourcesarelimited,oneneedstocarefullycompareandselecttheappropriatesetofparameters.(4).Thetreatmentoflong-range interactions.Asmentionedabove,distancecut-offs(usuallyaround5A ˚ )areusedindefining thechemicalenvironment.Thepurposeofthisistoavoidhavingtoomanydegreesoffreedominthechemicalenvironment,whichwouldgreatlyincreasethedifficultyofthetraining processaswellasthesizeofthereferencedataset.Forsmallsystemswiththeperiodicboundary,thelong-rangeinteractionscanbeeffectivelyincludedintheshort-rangeinteractions. However,forlargeand/ornon-periodicsystemsincondensedphases,suchasbiomolecules likeproteins,long-rangeinteractionsmustbeexplicitlyconsidered.Onlyveryrecentlysome encouragingprogresshasbeenmade [89,90]
Acknowledgment
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(GrantsNo.22173032,21933010).J.Z. wassupportedinpartbytheNationalInstitutesofHealth(GM107485)underthedirectionofDarrinM.York.Wealso thanktheECNUMultifunctionalPlatformforInnovation(No.001)andtheExtremeScienceandEngineeringDiscoveryEnvironment(XSEDE),whichissupportedbyNationalScienceFoundationGrantACI-1548562.56(specifically,theresourcesEXPANSEatSDSCthroughallocationTG-CHE190067),forprovidingsupercomputertime.
References
[1] R.Iftimie,P.Minary,M.E.Tuckerman, Abinitio moleculardynamics:concepts,recentdevelopments,andfuture trends,Proc.Natl.Acad.Sci.U.S.A.102(2005)6654–6659.
[2] J.A.Harrison,J.D.Schall,S.Maskey,P.T.Mikulski,M.T.Knippenberg,B.H.Morrow,Reviewofforcefieldsand intermolecularpotentialsusedinatomisticcomputationalmaterialsresearch,Appl.Phys.Rev.5(2018),031104.
[3] P.E.Lopes,O.Guvench,A.D.MacKerellJr.,Currentstatusofproteinforcefieldsformoleculardynamicssimulations,MethodsMol.Biol.1215(2015)47–71.
[4] T.B.Blank,S.D.Brown,A.W.Calhoun,D.J.Doren,Neuralnetworkmodelsofpotentialenergysurfaces,J.Chem. Phys.103(1995)4129–4137.
[5] G.E.Moyano,M.A.Collins,Molecularpotentialenergysurfacesbyinterpolation:strategiesforfaster convergence,J.Chem.Phys.121(2004)9769–9775.
[6] M.J.T.Jordan,K.C.Thompson,M.A.Collins,Convergenceofmolecularpotentialenergysurfacesbyinterpolation:applicationtotheOH+H2 ! H2O+Hreaction,J.Chem.Phys.102(1995)5647–5657.
[7] K.C.Thompson,M.J.T.Jordan,M.A.Collins,Polyatomicmolecularpotentialenergysurfacesbyinterpolationin localinternalcoordinates,J.Chem.Phys.108(1998)8302–8316.
[8] G.G.Maisuradze,D.L.Thompson,Interpolatingmovingleast-squaresmethodsforfittingpotentialenergysurfaces:illustrativeapproachesandapplications,J.Phys.Chem.A107(2003)7118–7124.
[9] C.Qu,Q.Yu,J.M.Bowman,Permutationallyinvariantpotentialenergysurfaces,Annu.Rev.Phys.Chem. 69(2018)151–175.
[10] J.Behler,M.Parrinello,Generalizedneural-networkrepresentationofhigh-dimensionalpotential-energysurfaces,Phys.Rev.Lett.98(2007),146401.
[11] A.P.Bartok,M.C.Payne,R.Kondor,G.Csanyi,Gaussianapproximationpotentials:theaccuracyofquantum mechanics,withouttheelectrons,Phys.Rev.Lett.104(2010),136403.
[12] S.Chmiela,A.Tkatchenko,H.E.Sauceda,I.Poltavsky,K.T.Schutt,K.R.Muller,Machinelearningofaccurate energy-conservingmolecularforcefields,Sci.Adv.3(2017),1603015.
[13] K.T.Schutt,F.Arbabzadah,S.Chmiela,K.R.Muller,A.Tkatchenko,Quantum-chemicalinsightsfromdeeptensorneuralnetworks,Nat.Commun.8(2017),13890.
[14] K.T.Schutt,H.E.Sauceda,P.J.Kindermans,A.Tkatchenko,K.R.Muller,SchNet-adeeplearningarchitecturefor moleculesandmaterials,J.Chem.Phys.148(2018),241722.
[15] X.Chen,M.S.Jorgensen,J.Li,B.Hammer,Atomicenergiesfromaconvolutionalneuralnetwork,J.Chem.TheoryComput.14(2018)3933–3942.
[16] L.F.Zhang,J.Q.Han,H.Wang,R.Car,E.Weinan,Deeppotentialmoleculardynamics:ascalablemodelwiththe accuracyofquantummechanics,Phys.Rev.Lett.120(2018),143001.
[17] D.Lu,H.Wang,M.Chen,L.Lin,R.Car,E.Weinan,W.Jia,L.Zhang,86PFLOPSdeeppotentialmoleculardynamicssimulationof100millionatomswithabinitioaccuracy,Comput.Phys.Commun.259(2021),107624.
[18] Y.Zhang,C.Hu,B.Jiang,Embeddedatomneuralnetworkpotentials:efficientandaccuratemachinelearning withaphysicallyinspiredrepresentation,J.Phys.Chem.Lett.10(2019)4962–4967.
[19] P.O.Dral,F.Ge,B.X.Xue,Y.F.Hou,M.PinheiroJr.,J.Huang,M.Barbatti,MLatom2:anintegrativeplatformfor atomisticmachinelearning,Top.Curr.Chem.379(2021)27.
[20] P.O.Dral,MLatom:aprogrampackageforquantumchemicalresearchassistedbymachinelearning,J.Comput. Chem.40(2019)2339–2347.
[21] J.Behler,Perspective:machinelearningpotentialsforatomisticsimulations,J.Chem.Phys.145(2016),170901.
[22] M.Pinheiro,F.Ge,N.Ferre,P.O.Dral,M.Barbatti,Choosingtherightmolecularmachinelearningpotential, Chem.Sci.12(2021)14396–14413.
[23] J.S.Smith,B.T.Nebgen,R.Zubatyuk,N.Lubbers,C.Devereux,K.Barros,S.Tretiak,O.Isayev,A.E.Roitberg, Approachingcoupledclusteraccuracywithageneral-purposeneuralnetworkpotentialthroughtransferlearning,Nat.Commun.10(2019)2903.
[24] C.Devereux,J.S.Smith,K.K.Davis,K.Barros,R.Zubatyuk,O.Isayev,A.E.Roitberg,Extendingtheapplicability oftheANIdeeplearningmolecularpotentialtosulfurandhalogens,J.Chem.TheoryComput.16(2020) 4192–4202.
[25] J.Behler,Firstprinciplesneuralnetworkpotentialsforreactivesimulationsoflargemolecularandcondensed systems,Angew.Chem.Int.Edit.56(2017)12828–12840.
[26] T.Morawietz,J.Behler,Afull-dimensionalneuralnetworkpotential-energysurfaceforwaterclustersuptothe hexamer,Z.Phys.Chem.227(2013)1559–1581.
[27] T.Morawietz,J.Behler,Adensity-functionaltheory-basedneuralnetworkpotentialforwaterclustersincluding vanderWaalscorrections,J.Phys.Chem.A117(2013)7356–7366.
[28] M.delCueto,X.Zhou,L.Zhou,Y.Zhang,B.Jiang,H.Guo,NewperspectivesonCO2–Pt(111)interactionwitha high-dimensionalneuralnetworkpotentialenergysurface,J.Phys.Chem.C124(2020)5174–5181.
[29] C.Hu,Y.Zhang,B.Jiang,DynamicsofH2OadsorptiononPt(110)-(1 2)basedonaneuralnetworkpotential energysurface,J.Phys.Chem.C124(2020)23190–23199.
[30] X.Lu,X.Wang,B.Fu,D.Zhang,TheoreticalinvestigationsofratecoefficientsofH+H2O2 ! OH+H2Oona full-dimensionalpotentialenergysurface,J.Phys.Chem.A123(2019)3969–3976.
[31] H.Wang,W.Yang,Towardbuildingproteinforcefieldsbyresidue-basedsystematicmolecularfragmentation andneuralnetwork,J.Chem.TheoryComput.15(2019)1409–1417.
[32] H.Wang,W.T.Yang,Forcefieldforwaterbasedonneuralnetwork,J.Phys.Chem.Lett.9(2018)3232–3240.
[33] O.T.Unke,D.Koner,S.Patra,S.K€ aser,M.Meuwly,High-dimensionalpotentialenergysurfacesformolecular simulations:fromempiricismtomachinelearning,Mach.Learn.:Sci.Technol.1(2020),013001.
[34] A.Jonayat,A.C.VanDuin,M.J.Janik,Discoveryofdescriptorsforstablemonolayeroxidecoatingsthroughmachinelearning,ACSAppl.EnergyMater.1(2018)6217–6226.
[35] A.C.Rajan,A.Mishra,S.Satsangi,R.Vaish,H.Mizuseki,K.-R.Lee,A.K.Singh,Machine-learning-assistedaccuratebandgappredictionsoffunctionalizedMXene,Chem.Mater.30(2018)4031–4038.
[36] G.Pilania,J.E.Gubernatis,T.Lookman,Multi-fidelitymachinelearningmodelsforaccuratebandgappredictionsofsolids,Comput.Mater.Sci.129(2017)156–163.
[37] R.Jinnouchi,F.Karsai,G.Kresse,On-the-flymachinelearningforcefieldgeneration:applicationtomelting points,Phys.Rev.B100(2019),014105.
[38] K.Yao,J.E.Herr,D.W.Toth,R.McKintyre,J.Parkhill,TheTensorMol-0.1modelchemistry:aneuralnetwork augmentedwithlong-rangephysics,Chem.Sci.9(2018)2261–2269.
[39] S.KondatiNatarajan,T.Morawietz,J.Behler,Representingthepotential-energysurfaceofprotonatedwater clustersbyhigh-dimensionalneuralnetworkpotentials,Phys.Chem.Chem.Phys.17(2015)8356–8371.
[40] B.Jiang,J.Li,H.Guo,High-fidelitypotentialenergysurfacesforgas-phaseandgas–surfacescatteringprocesses frommachinelearning,J.Phys.Chem.Lett.11(2020)5120–5131.
[41] S.Manzhos,T.Carrington,Neuralnetworkpotentialenergysurfacesforsmallmoleculesandreactions,Chem. Rev.121(2021)10187–10217.
[42] M.Meuwly,Machinelearningforchemicalreactions,Chem.Rev.121(2021)10218–10239.
[43] J.Behler,Fourgenerationsofhigh-dimensionalneuralnetworkpotentials,Chem.Rev.121(2021)10037–10072.
[44] M.Ceriotti,C.Clementi,O.AnatolevonLilienfeld,Introduction:machinelearningattheatomicscale,Chem. Rev.121(2021)9719–9721.
[45] V.L.Deringer,A.P.Barto ´ k,N.Bernstein,D.M.Wilkins,M.Ceriotti,G.Csa ´ nyi,Gaussianprocessregressionfor materialsandmolecules,Chem.Rev.121(2021)10073–10141.
[46] A.Glielmo,B.E.Husic,A.Rodriguez,C.Clementi,F.Noe,A.Laio,Unsupervisedlearningmethodsformolecularsimulationdata,Chem.Rev.121(2021)9722–9758.
[47] B.Huang,O.A.vonLilienfeld,Abinitiomachinelearninginchemicalcompoundspace,Chem.Rev.121(2021) 10001–10036.
[48] F.Musil,A.Grisafi,A.P.Barto ´ k,C.Ortner,G.Csa ´ nyi,M.Ceriotti,Physics-inspiredstructuralrepresentationsfor moleculesandmaterials,Chem.Rev.121(2021)9759–9815.
[49] A.Nandy,C.Duan,M.G.Taylor,F.Liu,A.H.Steeves,H.J.Kulik,Computationaldiscoveryoftransition-metal complexes:fromhigh-throughputscreeningtomachinelearning,Chem.Rev.121(2021)9927–10000.
[50] O.T.Unke,S.Chmiela,H.E.Sauceda,M.Gastegger,I.Poltavsky,K.T.Schutt,A.Tkatchenko,K.-R.Muller,Machinelearningforcefields,Chem.Rev.121(2021)10142–10186.
[51] J.Westermayr,P.Marquetand,Machinelearningforelectronicallyexcitedstatesofmolecules,Chem.Rev.121 (2021)9873–9926.
[52] M.Xu,T.Zhu,J.Z.H.Zhang,Moleculardynamicssimulationofzincioninwaterwithanabinitiobasedneural networkpotential,J.Phys.Chem.A123(2019)6587–6595.
[53] M.Xu,T.Zhu,J.Z.H.Zhang,Automaticallyconstructedneuralnetworkpotentialsformoleculardynamicssimulationofzincproteins,Front.Chem.9(2021),692200.
[54] J.Zeng,L.Cao,M.Xu,T.Zhu,J.Z.H.Zhang,Complexreactionprocessesincombustionunraveledbyneural network-basedmoleculardynamicssimulation,Nat.Commun.11(2020)5713.
[55] J.Zeng,L.Zhang,H.Wang,T.Zhu,Exploringthechemicalspaceoflinearalkanepyrolysisviadeeppotential GENerator,EnergyFuel35(2021)762–769.
[56] A.C.VanDuin,S.Dasgupta,F.Lorant,W.A.Goddard,ReaxFF:areactiveforcefieldforhydrocarbons,J.Phys. Chem.A105(2001)9396–9409.
[57] E.Wang,J.Ding,Z.Qu,K.Han,Developmentofareactiveforcefieldforhydrocarbonsandapplicationtoisooctanethermaldecomposition,EnergyFuel32(2017)901–907.
[58] T.Cheng,A.Jaramillo-Botero,W.A.Goddard,H.Sun,AdaptiveacceleratedReaxFFreactivedynamicswithvalidationfromsimulatinghydrogencombustion,J.Am.Chem.Soc.136(2014)9434–9442.
[59] M.Rupp,A.Tkatchenko,K.R.Muller,O.A.vonLilienfeld,Fastandaccuratemodelingofmolecularatomization energieswithmachinelearning,Phys.Rev.Lett.108(2012),058301.
[60] J.Behler,Atom-centeredsymmetryfunctionsforconstructinghigh-dimensionalneuralnetworkpotentials,J. Chem.Phys.134(2011),074106.
[61] L.Zhang,J.Han,H.Wang,W.A.Saidi,R.Car,E.Weinan,End-to-endsymmetrypreservinginter-atomicpotentialenergymodelforfiniteandextendedsystems,NIPS’18:Proceedingsofthe32ndInternationalConferenceon NeuralInformationProcessingSystems,CurranAssociatesInc.,RedHook,NY,USA,2018,pp.4441–4451.
[62] M.Gastegger,L.Schwiedrzik,M.Bittermann,F.Berzsenyi,P.Marquetand,wACSF-weightedatom-centered symmetryfunctionsasdescriptorsinmachinelearningpotentials,J.Chem.Phys.148(2018),241709.
[63] J.S.Smith,O.Isayev,A.E.Roitberg,ANI-1:anextensibleneuralnetworkpotentialwithDFTaccuracyatforce fieldcomputationalcost,Chem.Sci.8(2017)3192–3203.
[64] J.Zeng,T.J.Giese,S.Ekesan,D.M.York,Developmentofrange-correcteddeeplearningpotentialsforfast,accuratequantummechanical/molecularmechanicalsimulationsofchemicalreactionsinsolution,J.Chem.TheoryComput.17(2021)6993–7009.
[65] J.Behler,Neuralnetworkpotential-energysurfacesinchemistry:atoolforlarge-scalesimulations,Phys.Chem. Chem.Phys.13(2011)17930–17955.
[66] J.S.Smith,B.Nebgen,N.Lubbers,O.Isayev,A.E.Roitberg,Lessismore:samplingchemicalspacewithactive learning,J.Chem.Phys.148(2018),241733.
[67] L.F.Zhang,D.Y.Lin,H.Wang,R.Car,E.Weinan,Activelearningofuniformlyaccurateinteratomicpotentials formaterialssimulation,Phys.Rev.Mater.3(2019),023804.
[68] W.Wang,T.Yang,W.H.Harris,R.Gomez-Bombarelli,Activelearningandneuralnetworkpotentialsaccelerate molecularscreeningofether-basedsolvateionicliquids,Chem.Commun.(Camb.)56(2020)8920–8923.
[69] Q.Lin,Y.Zhang,B.Zhao,B.Jiang,Automaticallygrowingglobalreactiveneuralnetworkpotentialenergysurfaces:atrajectory-freeactivelearningstrategy,J.Chem.Phys.152(2020),154104.
[70] S.J.Ang,W.Wang,D.Schwalbe-Koda,S.Axelrod,R.Go ´ mez-Bombarelli,Activelearningacceleratesabinitio moleculardynamicsonreactiveenergysurfaces,Chem(2021)738–751.
[71] Z.Li,J.R.Kermode,A.DeVita,Moleculardynamicswithon-the-flymachinelearningofquantum-mechanical forces,Phys.Rev.Lett.114(2015),096405.
[72] B.Huang,O.A.vonLilienfeld,Quantummachinelearningusingatom-in-molecule-basedfragmentsselectedon thefly,Nat.Chem.12(2020)945–951.
[73] E.V.Podryabinkin,A.V.Shapeev,Activelearningoflinearlyparametrizedinteratomicpotentials,Comput.Mater.Sci.140(2017)171–180.
[74] N.J.Browning,R.Ramakrishnan,O.A.vonLilienfeld,U.Roethlisberger,Geneticoptimizationoftrainingsetsfor improvedmachinelearningmodelsofmolecularproperties,J.Phys.Chem.Lett.8(2017)1351–1359.
[75] Y.Zhang,H.Wang,W.Chen,J.Zeng,L.Zhang,H.Wang,E.Weinan,DP-GEN:aconcurrentlearningplatform forthegenerationofreliabledeeplearningbasedpotentialenergymodels,Comput.Phys.Commun.253(2020), 107206.
[76] Q.Lin,L.Zhang,Y.Zhang,B.Jiang,Searchingconfigurationsinuncertaintyspace:activelearningofhighdimensionalneuralnetworkreactivepotentials,J.Chem.TheoryComput.17(2021)2691–2701.
[77] D.Sculley,Web-scalek-meansclustering,in:Proceedingsofthe19thinternationalconferenceonWorldWide Web,2010,ACM,2010,pp.1177–1178.
[78] H.Wang,L.Zhang,J.Han,E.Weinan,DeePMD-kit:adeeplearningpackageformany-bodypotentialenergy representationandmoleculardynamics,Comput.Phys.Commun.228(2018)178–184.
[79] M.Frisch,G.Trucks,H.Schlegel,G.Scuseria,M.Robb,J.Cheeseman,G.Scalmani,V.Barone,G.Petersson,H. Nakatsuji,Gaussian16,RevisionA.03,GaussianInc.,WallingfordCT,2016.
[80] S.Y.Haoyu,X.He,S.L.Li,D.G.Truhlar,MN15:aKohn–Shamglobal-hybridexchange–correlationdensityfunctionalwithbroadaccuracyformulti-referenceandsingle-referencesystemsandnoncovalentinteractions, Chem.Sci.7(2016)5032–5051.
[81] D.Lu,W.Jiang,Y.Chen,L.Zhang,W.Jia,H.Wang,M.Chen,DPTrain,thenDPCompress:ModelCompression inDeepPotentialMolecularDynamics,arXivpreprint,2021.arXiv:2107.02103.
[82] H.M.Aktulga,J.C.Fogarty,S.A.Pandit,A.Y.Grama,Parallelreactivemoleculardynamics:numericalmethods andalgorithmictechniques,ParallelComput.38(2012)245–259.
[83] J.Zeng,L.Cao,C.H.Chin,H.Ren,J.Z.H.Zhang,T.Zhu,ReacNetGenerator:anautomaticreactionnetworkgeneratorforreactivemoleculardynamicssimulations,Phys.Chem.Chem.Phys.22(2020)683–691.
[84] V.Botu,R.Batra,J.Chapman,R.Ramprasad,Machinelearningforcefields:construction,validation,and outlook,J.Phys.Chem.C121(2017)511–522.
[85] J.Behler,Constructinghigh-dimensionalneuralnetworkpotentials:atutorialreview,Int.J.QuantumChem.115 (2015)1032–1050.
[86] J.F.Xia,Y.L.Zhang,B.Jiang,Efficientselectionoflinearlyindependentatomicfeaturesforaccuratemachine learningpotentials,Chin.J.Chem.Phys.34(2021)695–703.
[87] M.Xu,T.Zhu,J.Z.H.Zhang,Automatedconstructionofneuralnetworkpotentialenergysurface:theenhanced self-organizingincrementalneuralnetworkdeeppotentialmethod,J.Chem.Inf.Model.61(2021)5428–5437.
[88] G.Imbalzano,A.Anelli,D.Giofre,S.Klees,J.Behler,M.Ceriotti,Automaticselectionofatomicfingerprintsand referenceconfigurationsformachine-learningpotentials,J.Chem.Phys.148(2018),241730.
[89] T.W.Ko,J.A.Finkler,S.Goedecker,J.Behler,Afourth-generationhigh-dimensionalneuralnetworkpotential withaccurateelectrostaticsincludingnon-localchargetransfer,Nat.Commun.12(2021)398.
[90] A.Grisafi,M.Ceriotti,Incorporatinglong-rangephysicsinatomic-scalemachinelearning,J.Chem.Phys.151 (2019),204105.
Other documents randomly have different content
From Plato’s thoughts their Attic dress, To charm an era rude, He tore away, and in its stead A meaner garb indued.
But unto eyes, o’er which no film By ignorance is thrown, His dreams those garments only grace In which at birth they shone.
Of bright Cadmean rune he wove A rich asbestic web; Sometimes its woof like sunset glows, Of gold and purple thread;
Sometimes with rosy spring it vies— Then flowers inwoven shine; Sometimes diaphonous as oil; Than Coan gauze more fine.
And thus each imaged thought, that sprung From his sciential brain, A fluent drapery received, To make its beauty plain.
Here pilgrims dwell, strange sights that saw On many a foreign strand— He born beneath the Doge’s rule, Beloved of Kubla Khan,
And Mandeville, who journeyed far Against the Eastern wind, The sacred Capital to see, And miracles of Ind.
None ever wore the sandal shoon More marvellous than he; For then the world had far away
Its realms of mystery
The giant Roc then winnowed swift The morning-cradled breeze, And happy islands glittered o’er
The Occidental seas.
Upon Saint Michael’s happy morn How throbbed his glowing brow, When towards the ancient Orient His galley turned her prow!
Already in the wind he smells
Hyblæan odors blown From isles invisible, afar Amid the Indian foam.
The turbaned millions, dusky, wild, Already meet his eyes— The domes of Islam crescent-crowned In long perspective rise,
Mid waving palms, o’er level sands, With skyey verges low, Where from his eastern tent, the Sun Spreads wide a saffron glow.
The golden thrones of Asian kings, Their empery supreme, Their capitals Titanic, laved By many a famous stream;
The cities, desolate and lone, Where desert monsters prowl, Where spiders film the royal throne, And shrieks the nightly owl;
Enormous Caf, the mountain wall
Of ancient Colchian land—
Where dragon-drawn Medea gave The Argonaut her hand;
Nysæan Meros, mid whose rifts
The viny God was born,—
The empyreal sky its summit cleaves, In shape a golden horn;
And o’er its top reclining swim
In zones of windless air
The slumbrous deities of Ind, Removed from earthly care;
The Ammonian phalanx round its base
In festal garments ranged, Their brows with ivied chaplets bound, Their swords to thyrsi changed;
The ravenous gryphons, brooding o’er
The desert’s gleaming gold,
The auroral Chersonese, that shines With treasures manifold;
The groves of odorous scent, that line
The green Sabæan shore, Whence wrapped in cerements dipt in balm, His sire the Phœnix bore;
The Persian valley famed in song, Where gentle Hafiz strayed;
The Indian Hollow far beyond, By mountains tall embayed;
Whose virgins boast a richer bloom
Than peaches of Cabool, And nymph-like fall their marble urns With fountain-waters cool;
Whose looms produce a gorgeous web, That with the rainbow vies, So delicate its downy woof, So deep its royal dyes.
The motionless Yogee, who stands In wildernesses lone, His sleepless eye forever fixed On Brahma’s airy throne, In blue infinity to melt His troubled soul away, And of the sunny Monad form A portion and a ray.
The tales, Milesian-like, that charm The vacant ear at eve, Wherein the Orient fabulists Their marvels interweave;
Of wondrous realms beyond the reach Of mortal footstep far, Whose maidens, winged with pinions light, Outstrip the falling star;
Whose forests bear a vocal fruit, With human tongues endowed, That mid the autumn-laden boughs Are querulous and loud;
Of sparry caves in musky hills, Which sevenfold seas surround, Where ancient kings enchanted lie, In dreamless slumber bound;
Of potent gems, whose hidden might Can thwart malignant star; Of Eblis’ pavement saffron-strewn
’Neath fallen Istakhar;
All these in long succession rose, Illumed by fancy’s ray, As swiftly towards the Morning lands His galley ploughed her way.