Cellulases in the biofuel industry pratima bajpai - Read the ebook now with the complete version and

Page 1


https://ebookmass.com/product/cellulases-in-the-biofuel-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Pulp and Paper Industry. Nanotechnology in Forest Industry 1st Edition Pratima Bajpai

https://ebookmass.com/product/pulp-and-paper-industry-nanotechnologyin-forest-industry-1st-edition-pratima-bajpai/ ebookmass.com

Biotechnology in the Chemical Industry: Towards a Green and Sustainable Future Dr. Pratima Bajpai

https://ebookmass.com/product/biotechnology-in-the-chemical-industrytowards-a-green-and-sustainable-future-dr-pratima-bajpai/

ebookmass.com

Biobased Polymers: Properties and Applications in Packaging Pratima Bajpai

https://ebookmass.com/product/biobased-polymers-properties-andapplications-in-packaging-pratima-bajpai/ ebookmass.com

Midnight Vow: A Paranormal Wolf Shifter Romance (Wolves of Midnight Book 1) Becky Moynihan

https://ebookmass.com/product/midnight-vow-a-paranormal-wolf-shifterromance-wolves-of-midnight-book-1-becky-moynihan/

ebookmass.com

The Quest for Human Nature: What Philosophy and Science Have Learned Nathan

https://ebookmass.com/product/the-quest-for-human-nature-whatphilosophy-and-science-have-learned-nathan/

ebookmass.com

The Queer Outside in Law: Recognising LGBTIQ People in the United Kingdom Senthorun Raj

https://ebookmass.com/product/the-queer-outside-in-law-recognisinglgbtiq-people-in-the-united-kingdom-senthorun-raj/

ebookmass.com

On Digital Architecture in Ten Books. Volume 2 On Digital Architecture in Ten Books: Vol. 2: Books IV–VI. Ludger Hovestadt (Editor)

https://ebookmass.com/product/on-digital-architecture-in-ten-booksvolume-2-on-digital-architecture-in-ten-books-vol-2-books-iv-viludger-hovestadt-editor/ ebookmass.com

Quantum Bullsh*t Chris Ferrie

https://ebookmass.com/product/quantum-bullsht-chris-ferrie/

ebookmass.com

Complexity Economics and Sustainable Development: A Computational Framework for Policy Priority Inference Omar

A. Guerrero

https://ebookmass.com/product/complexity-economics-and-sustainabledevelopment-a-computational-framework-for-policy-priority-inferenceomar-a-guerrero/

ebookmass.com

https://ebookmass.com/product/april-lady-georgette-heyer/

ebookmass.com

CellulasesintheBiofuelIndustry

Cellulasesinthe BiofuelIndustry

PratimaBajpai

Consultant-PulpandPaper,Kanpur,UttarPradesh,India

Preface

Thereisamajorinternationalefforttodeveloprenewablealternativestofossilfuels.Oneapproachistoproducealiquidfuelbyenzymaticallyhydrolyzingcarbohydratepolymersinbiomasstosugarsandfermentingthemto ethanol.Celluloseisthemainpolymerinbiomassandcellulasescanhydrolyzeittocellobiose,whichcanbeconvertedtoglucoseby β-glucosidases. Extensiveresearchisbeingcarriedouttoobtaincellulaseswithhigher activityonpretreatedbiomasssubstratesbyscreeningandsequencingnew organisms,engineeringcellulaseswithimprovedproperties,andidentifying proteinsthatcanstimulatecellulases.Despiteextensiveresearchoncellulases,therearemajorgapsinourunderstandingofhowtheyhydrolyze crystallinecellulose,actsynergistically,andforwhichroletheyactincarbohydratebindingmodules.

Thisbookpresentscost-effectiveandcurrentscenariosforcellulaseproductioninthebiofuelindustry,includingthemostrecentadvancementsfor obtainingcellulaseswithhigheractivityonpretreatedbiomasssubstrates byscreeningandsequencingneworganisms,engineeringcellulaseswith improvedproperties,andidentifyingproteinsthatcanstimulatecellulases. Themechanismandefficiencyofthecellulaseenzymesystemoncellulose arediscussedwiththespecificclassificationofeachcellulaseenzyme,as wellasexplanationsofthelimitationsofcellulasesintermsoftheirproductionprocesses,efficiency,andpracticalapplicationstobiofuels.Various approachestoimprovetheproductionandefficiencyofthecellulaseenzyme systemhavebeenevaluatedalongwiththecurrentlimitationsthatare hamperingcost-effectiveproductionofcellulaseandguidanceonhowthese limitationsmightberesolved.

Listoftables

Table1.1Mostcommonbiomassfeedstocks.3

Table1.2Benefitsofbiofuels.4

Table1.3Greenhousegasemissionsfromvariousbiofuelscomparedto gasoline. 5

Table1.4Classificationofcellulaseenzymes.12

Table1.5Fungihavingcellulolyticabilities.16

Table1.6Bacteriahavingcellulolyticabilities.17

Table1.7Actinomyceteshavingcellulolyticabilities.18

Table2.1Biofuelyieldsbyfeedstock.26

Table2.2Annualworldfuelethanolproduction(Mil.Gal.).27

Table2.3Historicalbiorefinerycountandproductioncapacity.28

Table2.4AnnualUSfuelethanolproduction.29

Table2.5USfuelethanolplantproductioncapacityasofJanuary1,2021.29

Table2.6USbiodieselplantproductioncapacityasofJanuary1,2021.30

Table2.7Globalcommercialscalecellulosicethanolplants.31

Table2.8ThestatusoftheUScommerciallignocellulosicethanolfacilities.33

Table2.9OperatingcellulosicethanolplantsintheUS.34

Table2.10Commercial-scalebioethanolplantsinAustralia.43

Table2.11Biofuelkeyfigures.49

Table3.1Yieldofbiofuelsfromdifferentfeedstocksofsecond-generation biofuels. 60

Table4.1Processesforthepretreatmentoflignocellulosic biomass.72

Table4.2Costareadistributionofagenerallignocellulosicgreenfieldfacility.75

Table5.1Advantagesanddisadvantagesofsolid-stateandsubmerged fermentation. 99

Table5.2Cellulaseproductionundersubmergedandsolid-statefermentation.100

Table6.1Commercialcellulases,theirsourcesandsuppliers.113

Table7.1Modulararchitecturesofcellulasesfromdifferentbacteria.122

Table8.1Advantagesanddrawbacksofpotentialorganismsinlignocellulosicbasedbioethanolfermentation. 151

Table8.2ComparisonbetweenSimultaneoussaccharificationandfermentation andSeparatehydrolysisandfermentation. 154

Table9.1Benefitsofthermostablecellulases.181

Table10.1Cellulaseorcellulaseencodinggenespresentinmicroorganisms.206

Table11.1Thermostablecellulasesfromvariousthermophilicmicroorganisms andtheircharacteristics.

Table11.2Cellulasesfromvarioussourcesimmobilizedondifferent nanosupportsandtheirimprovedproperties/applications.

217

223

Listoffigures

Figure1.1Structureoflignocellulosicbiomassanditsbiopolymers;cellulose, hemicellulose,andlignin.

Figure1.2Lignocellulosicbiomassalongwiththeirproducts.7

Figure1.3Thecellulosepolymerchainstructure.9

Figure1.4Schematicrepresentationforthemacromolecularstructureoflignin (Majormonolignolunitsarecoloredassinapylalcohol-red,guaiacyl alcohol-blue, p-coumarylalcohol-green).

Figure1.5Structureofhemicellulose.10

Figure1.6Schematicrepresentationofthesynergisticactionof cellobiohydrolases(CBHI,CBHII),endoglucanases(EG),and β-glucosidases(βG).

Figure1.7Overviewofthetwostrategies(freeorcell-boundcellulasesystems) fordegradingcellulose.Infreeextracellularsystems,endoglucanases andexoglucanasesactsynergistically,withtheendoglucanase cuttingamorphouscelluloseprovidingchainendsforexoglucanases toreleasecellobiose.Then, β-glucosidaescompletetheprocessof cellulosehydrolysisbyreleasingglucose.Also,cellodextrinsreleased byendoglucanasescanbefurtherhydrolyzedbycellodextrinases. Thecarbohydratebindingdomaindirectstheenzymestotheir specificsubstrates.Inthecellulosomesystem,allcellulasesare anchoredtoacommonscaffoldbutaregenerallythoughttofollow thesamesynergicmodeofaction.Thescaffoldingisboundtothe cellmembranethroughthesurfacelayerhomologydomain,whilea networkofdockerinandcohesindomainsamplifiesthenumberof cellulasesboundtothesamescaffoldingunit.Lastly,acarbohydrate bindingdomainisresponsibleforthetargetingofthewholecomplex tothesubstrate.

15

Figure1.8Variousstrategiesadoptedforimprovingbioprocessofcellulase production. 18

Figure2.1Renewableethanolproductionbyenduse(https://www.clariant. com). 27

Figure3.1Biofuelsgenerations.54

Figure3.2Differentgenerationsofbiofuelswiththeircharacteristics.55

Figure3.3Differentfeedstocksusedinthefirstandsecondgenerationbiorefinery forproducingbiofuels,biochemicals,food,andfeed. 55

Figure3.4Firstgenerationbiofuels.56

Figure3.5Typesofrawfeedstockforsecond-generationbiofuel.57

Figure3.6Biochemicalconversionsofsecond-generationfeedstockstobiofuels.59 Figure3.7Biofuelgenerationfrommicroalgae.62

Figure3.8Fourthgenerationbiofuelproduction.63

Figure3.9Aschematicdiagramofbioethanolproductionbasedondifferent generations. 64

Figure4.1Chartofvariousstepsinvolvedinabiomasssupplychain.70

Figure4.2Schematicrepresentationofbiologicalconversionoflignocellulosic componentsintovariouschemicalsandbiofuels. 79

Figure5.1DiagramofdifferentschemesforsequentialSSFandSmF.Thecolor ofthearrowsindicatesthesystemtowhichtheybelong(greenforA, redforB,andblueforC).

Figure5.2Differentproductionstrategiesforcommercialproductionof cellulases(A,Off-site;B,On-site;C,Integrated;D,Consolidated). 102

Figure7.1Enzymesinvolvedincellulosedegradation.120

Figure7.2Schematicrepresentationofthehydrolysisofcelluloseby noncomplexed(A)andcomplexed(B)cellulasesystems.a,cellulose; b,glucose;c,cellobiose;d,oligosaccharides;e,endoglucanasewith carbohydrate-bindingmodule(CBM);f,exoglucanase(actingon reducingends)withCBM;g,exoglucanase(actingonnonreducing ends)withCBM;h, β-glucosidase;i,cellobiose/cellodextrin phosphorylase;j,S-layerhomologymodule;k,CBM;l,type-I dockerin cohesionpair;m,type-IIdockerin cohesinpair.The figureisnotdrawntoscale.

Figure7.3Crystalstructuresoffamily6endoglucanaseandexoglucanase.(A) ThestructureofendoglucanaseCel6Aof Thermobifidafusca (PDB code: 1TML),whichexhibitsadeepcleftattheactivesite.(B)The structureofexoglucanaseCel6AofHumicolainsolens(PDBcode: 1BVW),inwhichtheactivesiteofitbearsanextendedloopthat formsatunnel.

Figure7.4Thesimulationofthesynergybetweenendoglucanaseand exoglucanasesintermsofsubstratecharacteristics(degreeof polymerization,A;andaccessibility,B)andexperimentalconditions (enzymeloading,C;andreactiontime,D).

Figure8.1Schematicdiagramofthesynergicactionofcellulasesoncellulosic biomasshydrolysis.

131

140

Figure8.2Roleofcellulasesduringthecompletebiofuelproductionprocess.141

Figure8.3Schematicdiagramforconversionoflignocellulosicbiomassinto ethanol.

141

Figure8.4Processingrouteforbioethanolproduction.145

Figure8.5Schematicofpretreatmenteffectonlignocellulosicbiomass.146

Figure8.6Separationprocessofbioethanolbyextractivedistillation.157

Figure8.7ClariantcompletesconstructionoffirstcommercialSunliquid cellulosicethanolplantinPodari,Romania(https://www.clariant. com).

Figure8.8Clariant’sflagshipcommercialSunliquidcellulosicethanolplantin Romania.(https://www.clariant.com).

161

161

Figure8.9SunliquidplantPodari(https://www.clariant.com).162

Figure8.10TheSunliquidprocessfortheproductionofcellulosicethanolfrom agriculturalresidues(https://www.clariant.com).

Figure8.11Sunliquid—afullyintegratedprocessdesign(https://www.clariant. com).Reproducedwithpermission.

Figure8.12Sunliquidtechnologyplatformfortheproductionofsustainable biobasedproducts.

Figure8.13Sunliquidtechnology:fivelicensessoldglobally(https://www. clariant.com).Reproducedwithpermission.

163

163

165

165

Figure8.14ReductionofCarbondioxideemissions(https://www.clariant.com).166

Figure8.15Sunliquid:fullyintegratedprocesssaves~95%GHGemissions (https://www.clariant.com).

Figure8.16ClariantBioethanolPilotPlant,Straubing,Germany(https://www. clariant.com).

166

167

Figure9.1Cellulosomestructureandassembly.188

Figure10.1Schematicdiagramoftheactionsofcellulasesandsynergistic proteinsinhydrolysisofcellulose.TheC1-Cxlignocellulose degradationmodelforcellulosedegradation.First,C1factors,such asexpansin,andlyticpolysaccharidemonooxygenases,which efficientlycatalyzeoxidativecleavageofglycosidicbondsinthe recalcitrantpolysaccharidesofcrystallinecelluloseusingmolecular oxygenandtheexternalelectrondonor,suchascellobiose dehydrogenase,ascorbicacidorgallicacid,creatingnicking, swollenanddisintegratedcellulosicstructure,formingnewinitiation sitesforconventionalcellulases,namely,Cxfactors.Second,the amorphouscellulosewashydrolyzedintomonosaccharideby cellulasesystem.Theendoglucanaseactsontheamorphous (internal)regionofthefibrilsbycleavageofthe β-glucosidiclinkage, thenthecellobiohydrolasereleasescellobiosefromtheendofthe polysaccharidechain,finally, β-glucosidasecompletesthe degradationprocessbyhydrolyzingcellobioseandother cellodextrinstoglucoseunits. BGL, β-glucosidase; CBHI, cellobiohydrolase1; CBHII,cellobiohydrolase2; CDH,cellobiose dehydrogenase;C1factor,cellulosehingdomains(CBMs),plant expansins,bacterialexpansins,andlyticpolysaccharide monoxygenases;Cxfactor,endoglucanase,cellobiohydrolase,and β-glucosidase; EG,endoglucanase; LPMO,lyticpolysaccharide monooxygenase.

Figure11.1Advantagesofenzymatichydrolysiscarriedoutatelevated temperature.

207

215

Figure11.2Strategiestoincreasecellulaseefficiencyandcharacteristics.226

Figure11.3Geneticmanipulationstrategiesinfungiforimprovedcellulase production.

227

Figure12.1Biomass-to-biofuelssupplychain.244

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-99496-5

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: MariaElaineDesamero

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

4.Challengestobiofuelproduction

biofuels/biochemicals

4.2.1Feedstockproductionandlogistics68

4.2.2Lignocellulosicbiomasspretreatment71

4.2.3Enzymatichydrolysis74

4.2.4Microbialfermentationandbiomass77

4.2.5Biofuelcost78

4.2.6Waterrecycling79

4.2.7Generationofcoproducts80

5.2.1Submergedfermentations93

5.2.2Solid-statefermentation96

5.2.3Sequentialsolid-statefermentationandsubmerged fermentation99

5.2.4Useofmixedcultures102

7.2.3 β-Glucosidase126

7.2.4Othercellulasesandaccessoryproteins127

7.3Synergyamongcellulosedegradingsystem

8.Cellulasesforbiofuelsproduction

8.3Factorsaffectingbioethanolproduction

9.Advanceddevelopmentsinproductionprocessesof

10.Cellulasesandauxiliaryenzymes

11.Approachestoenhancecellulaseproductionto

cellulaseproducingfungi

11.4EnhancementofthermalandpHstabilityofcellulasesin thepresenceofnanomaterials

11.5RecombinantDNAtechnologyforincreasingcellulase activityandefficacy

11.6Useofsuitablecarbonsourceandnecessityof pretreatmentoflignocellulosicbiomass

11.7Optimizationofmediumandprocessparametersusing statisticalmethodsforimprovedproductionofcellulases

11.8Improvementsinproductionofcellulasesviamicrobial fermentationprocesses

11.9Microbialco-productionofotherimportantenzymesfor theoveralleconomyoftheprocess

Acknowledgments

Iamgratefulforthehelpreceivedfrommanypeopleandcompanies/ organizationsforprovidinginformation.Iamalsothankfultovariouspublishersforallowingmetousetheirmaterial.Mydeepestappreciationis extendedtoElsevier,Springer,RSC,ASMPublications,JohnWiley&Sons, Hindawi,MDPI,IntechOpen,Enerdata,SpringerOpen,andotheropen-access journalsandpublications.MyspecialthankstotheUSEnergyInformation Administration(EIA),Enerdata,andGeoffCooper,President&CEO, RenewableFuelsAssociationforgrantingpermissiontousetheirmaterial. IwouldalsoliketooffermysincerethankstoCarolineSchmid,Global MarketingManager,ClariantProdukte(Deutschland)GmbHforproviding informationontheSunliquidprocess.

Chapter1 Background

1.1Introduction

Thelimitednatureandspeedyexhaustionoffossilfuelsbecauseofincreasingglobalenergyrequirementsisharmfullyimpactingtheenvironment (Olguin-Macieletal.,2020;Alietal.,2019;Taghizadeh-Alisaraeietal., 2019;Nargotraetal.,2019;Pateletal.,2019;Poppetal.,2014).Replacing fossilfuelswithbiofuelshasthepotentialtoreducesomeunwantedaspects offossilfuelproductionanduse,includingconventionalandgreenhousegas (GHG)pollutantemissions,exhaustiblereductionofresources,anddependencyuponunstableforeignsuppliers.Thereforeintheory,theproduction anduseofbiofuelscouldbesustainedforanindefiniteperiod(http://www. epa.gov).Biofuelproductionhassubstantiallyincreasedinthelasttwenty yearswiththeaimofenvironmentalprotectionandensuringenergyindependence.Duetotheincreasingpricesoffossilfuels,theproductionofbiofuels hasreachedremarkablevolumesoverthelasttwodecades.Worldwidebiofuelproductionhasincreasedninefoldbetween2000and2020,in-spiteof rigorousreductionin2020,andshouldbouncebackby13%in2021overan expectedrecoveryinoildemandandstrengthenedormaintainedbiofuelsupportpolicies.Bioethanolaccountsfortwothirdoftheworldwidebiofuelproductionandbiodieselfor32%.First-generationbiofuelsfromsugarcaneand cornbasedbioethanolandvegetableoilbasedbiodieselcovermostofthe worldwideproduction.Bioethanolproductionandconsumptionisdominated byNorthAmerica—particularlytheUnitedStates—andLatinAmerica— particularlyBrazilwhereasbiodieselproductionandconsumptionisdominatedbyAsiaandEurope.Worldwidebiofuelconsumptionisexpectedto declinesubstantiallyby2029,becauseofthelikelyreductioninfueldemand, biggercompetitionbetweentransporttechnologiesandthedecarbonization developmentofpublicpolicies.First-generationbiofuelswillcontinueto takeoverglobalproductionby2030,withadvancedbiofuelslimitedto10% (expectedshareof31%intheEuropeanUnionthankstotheRenewable EnergyDirectiveIIdirective)(https://www.enerdata.net/publications/executive-briefing/biofuels-market-dynamics.html).

First-generationbiofuelsobtainedfromfoodrawmaterialssuchassugarcane,cerealgrains,rootcrops,andvegetableoilsarebecomingmoreand morecompetitivewithfoodproduction.Overthelastfewyears,therehas

beenaperiodoftheactivegrowthintheproductionofliquidbiofuels.In 2018,theworldwideproductionofbioethanolandbiodieseltogetherreached 167.9billionliters.About16.1%ofmaizegrain,1.7%ofwheatgrain,3.3% ofgrainofotherfeedgrainsand13.5%ofvegetableoilwereconsumed (Kurowskaetal.,2020).

Biomassisaversatilerenewableenergysource.Itcanbedirectlyconvertedintobiofuels.Biomassoffersseveralmanybenefitsoverfossilfuels. Biomassiscarbonneutralandisalwaysandextensivelyavailableasa renewablesourceofenergy.Itreducestheoverdependenceonfossilfuels andislesscostlythanfossilfuels.Biomassproductiongeneratesincomefor themanufacturers,alsogenerateslessergarbageinlandfillsandincreases energyindependence(Alietal.,2019;Taghizadeh-Alisaraeietal.,2019; Brinkmanetal.,2019;Muthuveluetal.,2019).

“Biomassisparticularlyimportantinprovidingrawmaterialsforthe productionofrenewableenergysources.Thetermbiomassreferstoall organicmatterinthebiosphere,ofbothplantandanimalorigin,andto materialsobtainedbyitsnatu ralorartificialconversion(Muresanand Attia,2017;Mehedintuetal.,2018;Contescuetal.,2018 ).Bysubmitting biomasstobiochemical,thermochemicalandbiologicalconversionprocesses,liquidandgasfuelsareobtained(bioethanol,biodiesel,biogas).Up tonow,biofuelshavebeenproducedmainlythroughalcoholfermentation ofstarchproducts(ethanol),munici palwaste,sewagesludgeandothers (biogas),drydistillationofwood(methanol)andtransesterificationofhigherfattyacids(biodiesel).Suchfuelsarecountedasthefirst-generation onesanditispredictedthattheywilldominateformanyyearstocome becausetheycanbeburntinexistingunmodifiedenginesandtheirproductioniseasyandeconomicallyviable.Currently,thereareattemptsto implementotherrenewablerawproductsinbiofuelproduction,likecellulose,whicharemuchmoredifficult toprocess,andtodesignmorecomplexbiotechnologicalmethods”(Kurowskaetal.,2020;NigamandSingh, 2011;Hilletal.,2006).

Someofthemostcommon(and/ormostpromising)biomassfeedstocks arelistedin Table1.1.

1.2Bioenergyandbiofuels

Bioenergyisenergyobtainedfrombiofuels.Biofuelsareproduceddirectly orindirectlyfromorganicmaterial—biomass—includingplantmaterialsand animalwaste.Thetermbiofuelreferstoanyliquid,gas,orsolidfuelmostly producedfromarenewablebiomassresources.

TheFoodandAgricultureOrganization(FAO)reportsthatbioenergy coversabout10%oftotalworldenergysupply.

Traditionalunprocessedbiomasssuchasfuelwood,charcoalandanimal dungaccountsformostofthisandrepresentsthemajorenergysourcefor

TABLE1.1 Mostcommonbiomassfeedstocks.

Grainsandstarchcrops

Sugarcane,corn,wheat,sugarbeets,industrialsweetpotatoes,etc.

Agriculturalresidues

Cornstover,wheatstraw,ricestraw,orchardprunings,etc.

Forestrymaterials

Loggingresidues,forestthinnings,etc.

Energycrops

Switchgrass,miscanthus,hybridpoplar,willow,algae,etc.

Foodwaste

Wasteproduce,foodprocessingwaste,etc.

Urbanandsuburbanwastes

Municipalsolidwastes(MSW),lawnwastes,wastewatertreatmentsludge,urban woodwastes,disasterdebris,trapgrease,yellowgrease,wastecookingoil,etc.

Animalbyproducts

Tallow,fishoil,manure,etc.

Source:Basedon https://www.eesi.org/topics/bioenergy-biofuels-biomass/description

mostofthepeopleindevelopingcountrieswhoareusingitmostlyforheatingandcooking.

Highlydevelopedandefficientconversiontechnologiesareallowingthe extractionofbiofuelsfromwood,cropsandwastematerial.Biofuelscanbe liquid,gaseousorsolid,althoughthetermismostlyusedinastrictsenseto referonlytoliquidbiofuelsfortransport.

Biofuelsmaybeobtainedfromagriculturalandforestryresidue,fast growingtreeplantationsandannualcrops,fisheryproductsormunicipal wastes,andalsofromfoodindustryandfoodserviceby-productsandwastes (http://www.greenfacts.org).

Adifferentiationismadebetweenprimaryandsecondarybiofuels. Primarybiofuelsareutilizedinanunprocessedform,mainlyforcooking, heatingorelectricityproduction.Theseincludefuelwood,woodchipsand pelletsandorganicmaterials.Secondarybiofuelsresultfromprocessingof biomass.Theseincludeliquidbiofuelssuchasbiodieselandethanolandcan beusedinvehiclesandindustrialprocesses.

Bioenergyismostlyusedinhomes(80%).Inindustry,itisusedtoa lesserextent(18%),whereasliquidbiofuelsusedfortransportarestillplayingalimitedrole(2%).

Althoughtheproductionofliquidbiofuelsfortransporthasgrown quicklyoverthelastfewyearsglobally,itpresentlyrepresentsonly1%of totaltransportfuelconsumptionandonly0.2% 0.3%oftotalenergyconsumption.Examplesofbiofuelarebioethanol,biomethanol,biosynthetic gas(biosyngas),biodiesel,biogas,biochar,bio-oil,biohydrogen,and FischerTropschproducedliquids(Alietal.,2019;Carrillo-Nievesetal., 2019).Biofuelsserveasabridgebetweentheagriculturalandenergymarketsasagriculturalcommoditiesaretheimportantrawmaterialsinbiofuel production(DebnathandGiner,2019).Mainadvantagesandpaybacks obtainablefromtheuseofbiofuelsasaformofrenewablefuelarepresented in Table1.2.

Liquidbiofuelsareofespecialinterestbecauseofthehugeinfrastructure alreadyinplacetousethem,particularlyfortransportation.Theliquidbiofuel—ethanolisingreatestproduction.Itisproducedbyfermentationof starchorsugar.UnitedStatesandBrazilareamongtheleadingproducersof ethanol.IntheUnitedStates,bioethanolismostlyproducedfromcornandit isnormallyblendedwithgasolineforproducing“gasohol.”Thiscontains 10%ethanol.InBrazil,ethanolisproducedmostlyfromsugarcane.Itisusuallyusedasa100%ethanolfueloringasolineblendscontaining85%

TABLE1.2 Benefitsofbiofuels.

Biofuelsarerenewableandarecarbon-andCO2/GHG-neutralduringtheprogression ofthelifecycle

LessGHGemissionsaregeneratedfromtheutilizationofbiofuelscomparedtoFB fuels

Biofuelsarebiodegradable,sustainable,andenvironmentallybenign

Biofuelsarelargelyproducedfromlocallyavailableandaccessibleresources,applying safeproductionmethods

Productionandutilizationofbiofuelsenhancehome-grownagriculturaldevelopment andinvestment

Biofuelsprovideimprovementsinthehealthandlivingconditionsofpeople

Biofuelscreatejobsandimprovementsinlocallivelihoodsandreduceenergy importation

Economically,biofuelhelpstostabilizeenergyprices,conserveforeignexchange,and generateemploymentatthemacroeconomiclevel

Householdusageofbiofueldoesnottriggerlife-threateninghealthconditions,as opposedtoFBfuels

Source:Basedon Awogbemietal.(2021); JanampelliandDarbha(2019); Wuetal.(2020); Appavuetal.(2021); Navasetal.(2020); DarbyandCallahan(2020); Smith(2019); Yaghoubi etal.(2019); Szabo (2019); Chintala(2019); Oyewoleetal.(2019); TopcuandTugcu(2020); SchuenemannandKerr(2019); Mattiodaetal.(2020); Siddiquietal.(2019)

TABLE1.3 Greenhousegasemissionsfromvariousbiofuelscomparedto gasoline.

FuelGasolineBioethanol1GBioethanol1GBioethanol2G FeedstockOilCrop/CornCaneAgricultural residues

Emissions100%48%22%14

Source:Basedon https://sunliquid-project-fp7.eu/wp-content/uploads/2014/09/ factsheet_sunliquid_en.pdf

ethanol.Unlikethe“first-generation”ethanolbiofuelproducedfromfood crops,“second-generation”cellulosicethanolisobtainedfromlow-valuebiomasswhichincludeswoodchips,cropresidues,andmunicipalwaste (Hassanetal.,2018).Ithasahighercellulosecontent.Cellulosicethanolis mostlyproducedfromsugarcanebagasse,orfromavarietyofgrassesthat canbegrownonlow-qualityland.Bagasseisawasteproductfromsugar processing.Cellulosicethanolismainlyusedasagasolineadditive;theconversionrateislowerascomparedtofirst-generationbiofuels.Cellulosicethanolfromagriculturalfeedstocksandenergycropsisusuallyconsideredto beenvironmentallysustainablebecauseitprovideshigherreductionofGHG emissionsandzeroorlowindirectemissionsfromlandusechangeincomparisontotraditionalethanolproductionfromfoodandfeedcrops. Table1.3 presentsGHGemissionsfromvariousbiofuelscomparedwithgasoline.

1.3Biomass

Biomassgenerallyincludes:plant-basedwoodybiomasswhicharemostly lignocelluloses,plant-basednon-woodybiomassmostlystarch,sugarand oilsandanimal/humanbasedbiomasswhichincludesanimalfatsandproteins,slurry/slaughterwastes,householdwastes,etc.Amongsttheplantbasedwoodybiomass,lignocellulosicbiomassisconsideredasapotential resourceforrenewableenergy.Itismostlyusedforlandfillingorsimply burnedoff.Lignocellulosicbiomassconstitutes60%oftheplantcellwall. About100billiontonsofplantdrymaterialisproducedintheworldbyphotosyntheticactivityyearly.Theleftoveroflignocellulosicbiomassismainly treatedaswastetherefore,extensiveresearchhasbeenconductedfortheefficientexploitationofthelignocellulosicbiomassforproducingenzymes,biofuels,feeds,antioxidantsetc.

Themajorcomponentsofthelignocellulosicmaterialsarecellulose, hemicellulose,andlignin. Fig.1.1 showsthestructureoflignocellulosicbiomass. Fig.1.2 showstheproductsobtainedfromlignocellulosicbiomass.

FIGURE1.1 Structureoflignocellulosicbiomassanditsbiopolymers;cellulose,hemicellulose, andlignin(Hern ´ andez-Beltr ´ anetal.,2019). Hern ´ andez-Beltr ´ an,J.U.,Hern ´ andez-DeLira,I.O, Cruz-Santos,M.M,Saucedo-Luevanos,A,Hern ´ andez-Ter ´ an,F,Balagurusamy,N.,2019.Insightinto pretreatmentmethodsoflignocellulosicbiomasstoincreasebiogasyield:currentstate,challenges, andopportunities.Appl.Sci.Basel9(18),3721. https://doi.org/10.3390/app9183721.ThisFigureis distributedunderthetermsoftheCreativeCommonsAttribution4.0InternationalLicense.

Thecompositionofcellulose,hemicellulose,andligninisfoundtovary fromoneplantspeciestoanother(YusufandInambao,2019;Bajpai,2016, 2021;Shahzadietal.,2014;Walker,2010;Sheretal.,2021;Pottersetal., 2010).Forinstance,hardwoodspossesslargeramountsofcellulose,whilein thewheatstrawandleaves,thehigheramountofhemicellulosesarepresent. Theratiosbetweendifferentconstituentswithinasingleplantvarywiththe stageofgrowth,age,andotherconditions.Lignocellulosicrawmaterials needdestructivepretreatmenttoyieldasubstratewhichisreadilyhydrolyzed bycommercialcellulolyticenzymes,orbymicroorganismsproducing enzyme,forreleasingsugarsforfermentation.

Inlignocelluloses,cellulosefiberstrandsareformedbycelluloselinking toeachotherthroughhydrogenbonds.Thecellulosestructureinsidethe polymerisnothomogenous.Crystallineregionsarewherecellulose

FIGURE1.2 Lignocellulosicbiomassalongwiththeirproducts(Haqetal.,2021). Haq,I.U., Qaisar,K.,Nawaz,A.,Akram,F.,Mukhtar,H.,Zohu,X.,etal.,2021.Advancesinvalorization oflignocellulosicbiomasstowardsenergygeneration.Catalysts,11,309. https://doi.org/ 10.3390/catal11030309.ThisFigureisdistributedunderthetermsoftheCreativeCommons Attribution4.0InternationalLicense.

nanofibrilsareorganizedinorderandcompact,whereasamorphousregions aredisorderedandareeasilyhydrolyzed(Tranetal.,2019;Perezetal., 2002).Cellulosefibersaresurroundedbyhemicelluloseandlignin.This structurenaturallyprotectsthepolysaccharidesfromhydrolysisbyenzymes andchemicals,thusraisingadifficultyinbothchemicalandbioconversion oflignocellulosetootherproducts,thatis“ethanol”(Bajpai,2021;Tran etal.,2019).

Cellulose,hemicellulose,andligninaretightlypackedwitheachother, protectingthemagainstattackofmicroorganismsandthereforemaketheir degradationnoteasy.Celluloseandhemicellulosescanbeconvertedinto fermentablesugarswhichcanbefurtherconvertedintobioethanolandother value-addedproducts(Singhetal.,2017).Therearenumerouswaysfor deconstructionofbiomasssuchasthermochemical,chemical,orbiological butthebiologicalroutebyusingenzymeisthemostwell-liked,asitis environment-friendlyandsustainable.

“Celluloseisconsideredthemostcopiousandbountifulrenewable sourcesforproducingvaluableproductsforenergysources,thispropertyof cellulosemakesitmoreimportanttouseitfortheproductionofvalue-added fuelsbythermochemicalorbiochemicalprocesses.Thishasbeenusedfor theproductionofbiofuelespeciallyformethaneandbioethanol.Besidethis, thecellulosehasalsowiderangeofapplicationanduseindifferent

industriessuchasfoodandbeverage,animalfeeds,detergent,agriculture, textile,pulpandpaperindustry.Ithasattractedtheinterestofindustrialscientists, sothesecanbeutilizedfortheproductionofseveralenzymesatbothlaband industrialscale.Ithasalsoattractedthe interestofscientistsastheyaretaking advantageofusingthislowcostenergysource(cellulose)fortheproductionof biologicalproducts,thatwouldaddintotheeconomyandenergysecurityofthe country.Celluloseusuallyoccursasfibers,denselypackedwithhydrogenbond andinsolubleinwatersoitisveryresistanttohydrolysiswithoutthechemicals andmechanicaldegradation.Hencecelluloseorotherpolysaccharidecompounds canbeconvertedintosimplesugarorglucoseunitsbytheactivityofcellulase enzymes.Itisalsoaverystablepartofplantcellwallmatrixandbiomass,that’s whyplantstakegreatbenefitofitasitplaysanimportantroletomaintainthe cellwallstabilityandintegrity.Thestructureofcellulosedeterminesthehydrolysispathwayandcompactnessincellulosic structuremakesitpronetothedegradation.Thiscompactandcrystallinestructureofcelluloseisduetointerand intramolecularhydrogenbonding.Thissupercrystallinestructureofcellulose makesitresistanttohydrolysisevenatveryextremereactionconditions,therefore,itmustbepre-treatedtoconvertthecellulosicbiomassorplantcellulosic partsintosimplesugars”(Sheretal.,2021).“Celluloseisalinearpolysaccharide. Inthispolymer,D-glucosesubunitsare attachedtogetherbyformationof β-1,4glycosidiclinkagesbetweenindividualglucosemolecules.Themolecularformula ofcelluloseis(C6H12O6)n.Thenindicatesthedegreeofpolymerization(DP).It symbolizesthenumberofglucosesubunitsconnectedwitheachother.Thisnumberisvaryingfromhundredstothousands.Twoglucoserepeatingunitstogether arecalledcellobiose.Inotherwords,thispolymerismadeby β-(1 - 4)-D-glucopyranoseunitsin4C1conformation.It consistsoflongchainsofanhydro-Dglucopyranoseunits(AGU)witheachcellulosemoleculehavingthreehydroxyl groupsperAGUwiththeexceptionoftheterminalends.Cellulosehasbothcrystallineandamorphousregionsinitsstructureinvariousproportions.Those regionsareintertwinedtoformthestructureofcellulose.Therearefourmajor crystallineforms,forinstance,Iα,Iβ,II,andIII.Thiscrystallinestructureisa resultofintramolecularandintermolecularhydrogenbondingbetweenglucose monomersincellulose.Thesehydrogenbondsconstructahugenetworkthat directlycontributestothecompactcrystalstructureofcellulosepolymer.Onthe otherhand,thisstrongintramolecularandintermolecularhydrogenbondformationleadstopoorsolubilityofcellulose”(Tranetal.,2019;Ciolacuetal.,2011).

Fig.1.3 Showsthecellulosepolymerchainstructure.

Ligninisthemajorstructuralcomponentoflignocelluloses.Itcontains threedifferenttypesofphenolicmonomers:p-coumarylalcohol,coniferyl alcohol,andsinapylalcohol(Fig.1.4).Itprovidesstrengthtothelignocellulosicbiomassandhamperstheactionofhydrolyticenzymesbyactingasa barricade.Itisoneofthemostrecalcitrantconstituentofthelignocellulosic biomassbecauseofitsstructuralcomplexity(Arevalo-Gallegosetal.,2017; GuptaandVerma,2015;Yaoetal.,2015).

FIGURE1.3 Thecellulosepolymerchainstructure(Suttieetal.,2017). ReproducedwithpermissionfromSuttie,E.,Hill,C.,Sandin,G.,Kutnar,A.,Ganne-Che´deville,C.,Lowres,F.,etal., 2017.Woodasbio-basedbuildingmaterial.PerformanceofBio-basedBuildingMaterials. WoodheadPublishing,pp.21-96,ElsevierandVasi ´ c,K.,Knez, ˇ Z.,&Leitgeb,M.(2021). Bioethanolproductionbyenzymatichydrolysisfromdifferentlignocellulosicsources.Molecules, 26(3),753.DistributedunderthetermsoftheCreativeCommonsAttribution4.0International License.

Hemicelluloseisthesignificantcomponentofplantcellwall.Itisthesecondmostabundantpolymer.Itcomprisesofshortlinearandbranchedpolymers(Fig.1.5).Hemicellulosehasanamorphousstructurecontraryto cellulose.Itconsistsofseveralheteropolymerssuchasxylan,galactomannan,

FIGURE1.4 Schematicrepresentationforthemacromolecularstructureoflignin(Major monolignolunitsarecoloredassinapylalcohol-red,guaiacylalcohol-blue, p-coumarylalcoholgreen)(KarunarathnaandSmith,2020). Karunarathna,M.H.,Smith,R.C.,2020.Valorizationof ligninasasustainablecomponentofstructuralmaterialsandcomposites:advancesfrom2011 to2019.Sustainability,12,734.MDPI. https://DOI:10.3390/su12020734.ThisFigureisdistributedunderthetermsoftheCreativeCommonsAttribution4.0InternationalLicense.

FIGURE1.5 Structureofhemicellulose(Machmudahetal.,2017). ReproducedwithpermissionfromMachmudah,S.,Wahyudiono,Kanda,H.,Goto,M.,2017.Hydrolysisofbiopolymers innear-criticalandsubcriticalwater.In:Herminia,D.,MariaJesus,G.M.(Eds.),Water ExtractionofBioactiveCompounds.Elsevier,Amsterdem,Netherlands,pp.69 107.

Background Chapter|1 11

glucuronoxylan,arabinoxylan,glucomannan,andxyloglucan.Hardwood (e.g.,dicotangiosperms)hemicellulosesmainlycontainxylans,whileglucomannansaremainconstituentsinsoftwood(e.g.,gymnosperms).Ascomparedtocellulose,hemicellulosegetsrapidlyhydrolyzedbecauseofits amorphousandbranchednature.

Theproductionofbioenergyandbio-basedmaterialsfromlessexpensive renewablelignocellulosicmaterialswouldbringadvantagestothelocal economy,environment,andnationalenergysecurity(Zhang,2008).

1.4Cellulaseenzyme

Cellulaseenzymeshavebeencommerciallyavailableformorethan40 yearsandbothbasicandappliedstudiesoncellulolyticenzymeshave showntheirbiotechnologicalpotentialinseveralindustries( Singh,1999; Singhetal.,2007 ).

Cellulaseenzymesplayanimportantroleintheenzymatichydrolysisof cellulosicpolymers.Cellulaseenzym esbreakdownthecelluloseofplant cellwallsintosimplesugarswhichcan befermentedbymicroorganismsto fuels,mainlyethanol,andalsochemicals,plastics,fibers,detergents,pharmaceuticals,andmanyotherproducts.Ligninisamainobstructiononthe wayofefficienthydrolysisofbiomass( Sainietal.,2016 ).Itcanbe removedtosomeextentbyalkalinepre treatmentofbiomassmakingcelluloseandhemicelluloseaccessibletoenzymes.Cellulosewhichconstitutea mainportionofthebiomass,c ontainsglucoselinkedwith β,1 4linkage. Cellulaseenzymesareabletohydroly zecelluloseintoglucose,buthardly evercelluloseispresentinpureforminnature,andisgenerallyassociated withhemicellulosesandlignin.Evenhe micellulosespresentaphysicalbarrierforcellulasestoaccesscellulosealongwithlignin( Volynetsand Dahman,2011).Therefore,cellulasesalongwithxylanasesarefoundtobe moreefficientfordegradationofbiomass.Inactualfact,xylanaseshydrolyzethehemicellulosicportionwhic hmakesthecellulosemoreaccessible tocellulase.Therefore,xylanaseswhencombinedwithcellulasesshow synergisticeffectandreleasemorefermentablesugarsfromthebiomass ( Huetal.,2011 ).

Table1.4 showsclassificationofcellulaseenzymes.

“Intheproductionofbiofuels,cellulasesarefundamentalenzymes responsibleforhydrolyzingcellulosicbiomassintofermentablesugars.As celluloseisacrystallineunbranchedpolymer,severalcellulasesareneeded todegradeitefficiently.Cellulaseshydrolyzethe β-1,4-D-glucanbonds, releasingcello-oligosaccharides,cellobiose,orglucose.Thecompletedegradationofcelluloseiscarriedoutbyanenzymaticcomplex,whichincludes endo-β-1,4-glucanases(EGEC3.2.1.4),cellobiohydrolases(CBHEC

TABLE1.4 Classificationofcellulaseenzymes(Roohietal.,2019).

NameofenzymeEC

Endo-1,4-β-d-glucanglucanohydrolaseEC 3.2.1.4

Exoglucanaseor1,4-β-d-glucan cellobiohydrolases(cellobiohydrolases)

Exoglucanasesor1,4β-d-oligoglucancellobiohydrolases

β-Glucosidasesor β-d-glucoside glucohydrolases

Cellobiose:orthophosphate α-d-glucosyl transferase

Cellobiose2-epimeraseEC 5.1.3.11

Cutatrandomatinternalamorphoussitesof cellulose,lichenin,andcereal β-d-glucans

Endo-1,4-β-dglucosidiclinkages

Nonreducingendsofcelluloseandcellotetraose Exo-1,4-β-dglucosidiclinkages

Cellooligosaccharide, p-nitrophenyl-β-dcellobioside Exo-1,4-β-dglucosidiclinkages

Terminalnonreducingendsofcellulose Exo-1,4-β-dglucosidiclinkages

Oligosaccharidesof variouslengths

Cellobiose

-d-Glucose

Cellodextrinsrangingfromcellotrioseto cellohexoses

Cellobiose

Phosphorolytic cleavage β-d-Glucose

Exo-1,4-β-dglucosidiclinkages 4-O-β-dGlucosylmannose

4-O-β-dGlucosylmannose

Source:ReproducedwithpermissionfromRoohi,B.R.K,Parveen,S.,Khan,F.,Zaheer,M.R.,Kuddus,M.,2019.Chapter8Advancementsinbioprocesstechnologyforcellulase production.In:Srivastava,N.,Srivastava,N.,Mishra,P.K.,Ramteke,P.W.,Singh,R.L.(Eds.),NewandFutureDevelopmentsinMicrobialBiotechnologyandBioengineering:From CellulosetoCellulase:StrategiestoImproveBiofuelProduction.Elsevier.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.