Case studies in geospatial applications to groundwater resources pravat kumar shit - The latest eboo

Page 1


StudiesinGeospatialApplicationsto GroundwaterResourcesPravatKumarShit

https://ebookmass.com/product/case-studies-in-geospatialapplications-to-groundwater-resources-pravat-kumar-shit/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advances in Remediation Techniques for Polluted Soils and Groundwater Pankaj Kumar Gupta

https://ebookmass.com/product/advances-in-remediation-techniques-forpolluted-soils-and-groundwater-pankaj-kumar-gupta/

ebookmass.com

Business Research: An Illustrative Guide to Practical Methodological Applications in Selected Case Studies

W. Buys

https://ebookmass.com/product/business-research-an-illustrative-guideto-practical-methodological-applications-in-selected-case-studiespieter-w-buys/

ebookmass.com

C How to Program: With Case Studies in Applications and Systems Programming, Global Edition Paul Deitel

https://ebookmass.com/product/c-how-to-program-with-case-studies-inapplications-and-systems-programming-global-edition-paul-deitel/

ebookmass.com

Four Internets: Data, Geopolitics, and the Governance of Cyberspace Kieron O'Hara

https://ebookmass.com/product/four-internets-data-geopolitics-and-thegovernance-of-cyberspace-kieron-ohara/

ebookmass.com

Oxford textbook of neuroscience and anaesthesiology First Edition. Edition Engelhard

https://ebookmass.com/product/oxford-textbook-of-neuroscience-andanaesthesiology-first-edition-edition-engelhard/

ebookmass.com

Beautifully Haunted: m/m Halloween romance (The Wildcat Books Book 2) Scarlet Blackwell

https://ebookmass.com/product/beautifully-haunted-m-m-halloweenromance-the-wildcat-books-book-2-scarlet-blackwell/

ebookmass.com

Where Should We Camp Next?: A 50-State Guide to Amazing Campgrounds and Other Unique Outdoor Accommodations

Stephanie Puglisi

https://ebookmass.com/product/where-should-we-camp-next-a-50-stateguide-to-amazing-campgrounds-and-other-unique-outdoor-accommodationsstephanie-puglisi/ ebookmass.com

Africa and the Diaspora: Intersectionality and Interconnections Jamaine M. Abidogun (Editor)

https://ebookmass.com/product/africa-and-the-diasporaintersectionality-and-interconnections-jamaine-m-abidogun-editor/

ebookmass.com

Digital Signal Processing 4th Edition John G. Proakis

https://ebookmass.com/product/digital-signal-processing-4th-editionjohn-g-proakis/

ebookmass.com

https://ebookmass.com/product/ageing-in-irish-writing-1st-ed-editionheather-ingman/

ebookmass.com

CaseStudiesinGeospatial Applicationsto GroundwaterResources

CaseStudiesinGeospatial Applicationsto GroundwaterResources

DepartmentofGeography,RajaN.L.KhanWomen’sCollege(Autonomous), Midnapore,WestBengal,India

GouriSankarBhunia

DepartmentofGeography,NaliniPrabhaDevRoyCollege, Bilaspur,Chhattisgarh,India

ParthaPratimAdhikary

ICAR-IndianInstituteofWaterManagement,Bhubaneswar, Odisha,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-99963-2

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceGJanco

AcquisitionsEditor: PeterLlewellyn

EditorialProjectManager: MariaElaineDDesamero

ProductionProjectManager: R.VijayBharath

CoverDesigner: VickyPearsonEsser

TypesetbyAptara,NewDelhi,India

Contributorsxv

1.PrincipleofGIScienceandgeostatisticsingroundwater modeling1

GouriSankarBhuniaandPravatKumarShit

1.1Introduction1

1.2GISandgroundwater2

1.3Remotesensingandgroundwater3

1.4Geostatisticsandgroundwater4

1.5Geocomputationalmodelingandgroundwater5

1.6Geospatialintelligenceandgroundwatermodeling6

1.7WebGISandgroundwaterresource7

1.8Conclusionandfuturedirection8 References8

2.Indicatorkriginganditsusefulnessinassessingspatial suitabilityofgroundwaterfordrinking11

ParthaPratimAdhikary,Ch.JyotipravaDash,BiswaranjanBehera, S.MohantyandPravatKumarShit

2.1Introduction11

2.2Basictheoryofindicatorkriging12

2.3Criticismsofindicatorkriging13

2.4Meritsofindicatorkriging14

2.5Practicalcorrectionstouseindicatorkriging15

2.6Applicationsinwaterscience16

2.7Conclusions23 References24 v

3.GIScienceapplicationforgroundwaterresources managementanddecisionsupport27

GouriSankarBhunia,PravatKumarShitandSoumenBrahma

3.1Introduction27

3.2Hydrosphere–geosphere–anthroposphereinterlinked dynamics29

3.3Spatialandmachinelearningmodelforgroundwater mapping29

3.4Bigdataanalyticsandgroundwatermapping30

3.5Geospatialintelligenceandinformationcommunication technology32

3.6ExpertknowledgeandGIScience33

3.7Dataimbalancesandnewprofessionalism34

3.8Conclusion34

References35

4.Roleofgroundwaterpotentialityandsoilnutrient statusonagriculturalproductivity:Acasestudyin PaschimMedinipurDistrict,WestBengal39 SwatilekhaParihari,NilanjanaDasChatterjee,KousikDas andRajKumarBhattacharya

4.1Introduction39

4.2Studyarea40

4.3Datasourceandmethodology42

4.4Resultanddiscussions49

4.5Conclusion62 Conflictofinterest63 References63

5.Groundwaterpotentialzonesidentificationusing integratedremotesensingandGIS-AHPapproachin semiaridregionofMaharashtra,India67 SumedhR.Warghat,SatishS.KulkarniandSandipanDas

5.1Introduction67

5.2Studyarea68

5.3Methodology69

5.4Results&discussion72

5.5Conclusion86 References87

6.GIS-basedgroundwaterrechargepotentialityanalysis usingfrequencyratioandweightsofevidencemodels91 SurajkumarMallick,BiswajitMaity,PritiranjanDasandSomnathRudra

6.1Introduction91

6.2Studyarea92

6.3Databaseandmethodology93

6.4Resultsanddiscussion99

6.5Conclusion104 Conflictofinterest105 References105

7.Delineationofgroundwaterpotentialzonesinthe hardrockterrainofanextendedpartofChhotanagpur plateauapplyingfrequencyratio(FR)model109 ArijitGhoshandBiswajitBera

7.1Introduction109

7.2Methodsandmaterials110

7.3Frequencyratiomodel115

7.4Resultanddiscussion116

7.5Groundwaterpotentialzone123

7.6ValidationofFRmodel123

7.7Conclusion127 References127

8.Assessmentofgroundwatersalinityriskincoastalbelt ofOdishausingordinarykriginganditsmanagement133 Ch.JyotipravaDash,ParthaPratimAdhikaryandJotirmayeeLenka

8.1Introduction133

8.2Materialandmethod135

8.3Resultsanddiscussion140

8.4Conclusion146 References148

9.IntegratedGIS-basedMCDAapproachforsuitability zoningofirrigationwaterqualityinsemiarid Kansairiverbasin,Puruliadistrict,WestBengal151 AmitBera,PujaChowdhuryandAnanyaChakraborty

9.1Introduction151

9.2Studyarea153

9.3Methodology154

9.4AHPtechnique154

9.5Resultsanddiscussion157

9.6Studyofmajorcationsandanionsinthearea158

9.7Groundwaterqualityforirrigationbasedonthe physicochemicalparameters159

9.8pH160

9.9Totaldissolvedsolids(TDS)160

9.10Totalhardness(TH)160

9.11Salinityhazard160

9.12Sodiumabsorptionratio(SAR)161

9.13Sodiumpercentage(Na%)161

9.14Magnesiumadsorptionratio(MAR)163

9.15Residualsodiumcarbonate(RSC)164

9.16Kelly’sratio(KR)164

9.17Permeabilityindex(PI)164

9.18Groundwaterirrigationsuitabilityzone166 9.19Conclusion167 Acknowledgment167 Competinginterests167 References167

10.Field-basedspatio-temporalmonitoringofhydrograph networkstationstopredictthelong-termbehavioral patternofgroundwaterregimeanditsimplications inIndia:Areview171 AnadiGayen 10.1Introduction171 10.2Methodology174 10.3Discussion180 10.4Conclusions181 Acknowledgments181 References182

11.GroundwaterresourcesinNigeria:Casestudy ofdistributionandqualityatamedium-sizeurban settlement-scale183 AdebayoOluwoleEludoyinandAdewoleAbrahamFajiwe 11.1Introduction183 11.2Researchproblem185 11.3Studyarea186 11.4Materialsandmethods189 11.5Results189 11.6Discussion200 References202

12.AssessinggroundwaterpotentialzoneofOngriver basinusinggeospatialtechnology207

SanjoyGarai,SkMujibarRahaman,MasjudaKhatun, PulakeshDasandSharadTiwari

12.1Introduction207

12.2Studyarea208

12.3Materialsandmethods209

12.4Resultanddiscussion210

12.5Conclusion225 References226

13.Innovativetrendanalysisofgroundwaterresources underchangingclimateinMaldadistrict,India229

TapashMandalKunalChakrabortyandSnehasishSaha

13.1Introduction229

13.2Studyarea231

13.3Databaseandmethodology232

13.4Resultsanddiscussion234

13.5Conclusion245 Acknowledgments245 Conflictofinterest245 References245

14.Assessingvulnerabilityofgroundwaterresourcein urbanandsub-urbanareasofSiliguri,NorthBengal (India):AspecialreferencetoLULCalteration249

MantuDas,BaiduryaBiswasandSnehasishSaha

14.1Introduction249

14.2Briefdescriptionofthestudyarea250

14.3Studymaterialsandmethodology250

14.4Resultsanddiscussion263

14.5Groundtruthvalidationofthegroundwatervulnerability map267

14.6Conclusion269 Acknowledgement270 Conflictoftheinterest270 References270

15.Groundwaterfluctuationandagriculturalinsecurity: AgeospatialanalysisofWestBengalinIndia275 SantuGuchhait,GourDolui,SubhrangsuDasandNirmalyaDas

15.1Introduction275

15.2StudyArea276

15.3Dataandmethods277

15.4Resultsanddiscussion278

15.5Conclusion283 References286

16.Assessmentofgroundwaterqualityforirrigation purposes:AcasestudyofHooghlyDistrict, WestBengal,India289 SadikMahammad,Md.MofizulHoque,AznarulIslam andArijitMajumder

16.1Introduction289 16.2Studyarea290 16.3Datasetsandmethodology292 16.4Resultsanddiscussion296

16.5Conclusion309 References310

17.Geo-spatialassessmentofgroundwaterdroughtrisk duetodroughtpropagationintheUpper DwarakeshwarRiverBasin(UDRB),WestBengal315 UjjalSenapati,DebasishTalukdar,DipankarSahaandTapanKumarDas

17.1Introduction315

17.2Studyarea318

17.3Methodology318

17.4PhysicalGWDrisk321

17.5Meteorologicaldroughtrisk(Mr)321

17.6Parametersusedinmeteorologicaldroughtrisk assessment323

17.7Hydro-geologicalexposure(He)324

17.8Socio-economicGWDvulnerability327 17.9Result329

17.10IntegratedGWDRmap332 17.11Discussion334

17.12Validation334

17.13Conclusion336 Acknowledgement337 Conflictofinterest337 Reference338

18.Assessmentofgroundwaterlevelfluctuationsinand aroundRanchidistrict,Jharkhandusinggeospatial datasetsandmethods341 PranavPratikandPriyankPravinPatel

18.1Introduction341

18.2Thestudyarea342

18.3Objectives343

18.4Datasetsandmethods343

18.5Resultsandfindings345

19.Groundwaterconservationandmanagement: Recenttrendsandfutureprospects371 GouriSankarBhunia,PravatKumarShitandSoumenBrahma 19.1Introduction371

20.Seasonalfluctuationofgroundwatertableandits impactonrurallivelihood:Avillagelevelstudyat coastalbeltofPurbaMedinipurDistrict,India385 SubrataJanaandSriparnaJana 20.1Introduction385

Contributors

ParthaPratimAdhikary

ICAR-IndianInstituteofWaterManagement,Bhubaneswar,Odisha,India

BiswaranjanBehera

ICAR-IndianInstituteofWaterManagement,Bhubaneswar,Odisha,India

BiswajitBera

DepartmentofGeography,Sidho-Kanho-BirshaUniversity,Purulia,India

AmitBera

DepartmentofEarthSciences,IndianInstituteofEngineeringScienceandTechnology, Howrah,WestBengal,India

RajKumarBhattacharya

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

GouriSankarBhunia

DepartmentofGeography,NaliniPrabhaDevRoyCollege,Bilaspur,Chhattisgarh,India

BaiduryaBiswas

DepartmentofGeographyandAppliedGeography,UniversityofNorthBengal,Raja Rammohunpur,Darjeeling,WestBengal,India

SoumenBrahma

DepartmentofGeography,NaliniPrabhaDevRoyCollege,Bilaspur,Chhattisgarh,India

AnanyaChakraborty

DepartmentofEarthSciences,IndianInstituteofEngineeringScienceandTechnology, Howrah,WestBengal,India

KunalChakraborty

DepartmentofGeographyandAppliedGeography,UniversityofNorthBengal,Darjeeling, India

PujaChowdhury

DepartmentofEarthSciences,IndianInstituteofEngineeringScienceandTechnology, Howrah,WestBengal,India

KousikDas

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

MantuDas

DepartmentofGeographyandAppliedGeography,UniversityofNorthBengal,Raja Rammohunpur,Darjeeling,WestBengal,India

SandipanDas

SymbiosisInstituteofGeoinformatics(SIG),SymbiosisInternational(DeemedUniversity), Pune,India

PritiranjanDas

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

PulakeshDas

WorldResourcesInstituteIndia,NewDelhi,India

SubhrangsuDas

DepartmentofGeography,UtkalUniversity,Odisha,India

NirmalyaDas

DepartmentofGeography,PanskuraBanamaliCollege(Autonomous),Panskura,WestBengal, India

TapanKumarDas

DepartmentofGeography,CoochBeharCollege,CoochBehar,WestBengal,India

NilanjanaDasChatterjee

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

Ch.JyotipravaDash

ICAR-IndianInstituteofSoilandWaterConservation,ResearchCentre,Koraput,Odisha,India

GourDolui

DepartmentofGeography,PanskuraBanamaliCollege(Autonomous),Panskura,WestBengal, India

AdebayoOluwoleEludoyin

DepartmentofGeography,ObafemiAwolowoUniversity,Ile-Ife,Nigeria

AdewoleAbrahamFajiwe

DepartmentofGeography,ObafemiAwolowoUniversity,Ile-Ife,Nigeria

SanjoyGarai

InstituteofForestProductivity,Lalgutwa,Ranchi,India

AnadiGayen

CentralGroundWaterBoard,EasternRegion,Kolkata,DepartmentofWaterResources, RiverDevelopmentandGangaRejuvenation,MinistryofJalShakti, GovernmentofIndia,India

ArijitGhosh

DepartmentofGeography,Sidho-Kanho-BirshaUniversity,Purulia,India

SantuGuchhait

DepartmentofGeography,PanskuraBanamaliCollege(Autonomous),Panskura,WestBengal, India

Md.MofizulHoque

DepartmentofGeography,AliahUniversity,Kolkata,India

AznarulIslam

DepartmentofGeography,AliahUniversity,Kolkata,India

SubrataJana

DepartmentofGeography,BeldaCollege,Belda,PaschimMedinipur,India

SriparnaJana

DepartmentofGeography,BajkulMilaniMahavidyalaya,Bajkul,PurbaMedinipur,India

MasjudaKhatun

InstituteofForestProductivity,Lalgutwa,Ranchi,India

SatishS.Kulkarni

DepartmentofGeology,BharatiyaMahavidyalaya,Amravati,India

JotirmayeeLenka

ICAR-IndianInstituteofSoilandWaterConservation,ResearchCentre,Koraput,Odisha,India

SadikMahammad

DepartmentofGeography,AliahUniversity,Kolkata,India

BiswajitMaity

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

ArijitMajumder

DepartmentofGeography,JadavpurUniversity,Kolkata,India

SurajkumarMallick

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

TapashMandal

DepartmentofGeographyandAppliedGeography,UniversityofNorthBengal,Darjeeling, India

S.Mohanty

ICAR-IndianInstituteofWaterManagement,Bhubaneswar,Odisha,India

SwatilekhaParihari

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

PriyankPravinPatel

DepartmentofGeography,PresidencyUniversity,Kolkata

PranavPratik

DepartmentofGeography,PresidencyUniversity,Kolkata

SkMujibarRahaman

InstituteofForestProductivity,Lalgutwa,Ranchi,India

SomnathRudra

DepartmentofGeography,VidyasagarUniversity,Midnapore,WestBengal,India

SnehasishSaha

DepartmentofGeographyandAppliedGeography,UniversityofNorthBengal,Darjeeling, India

DipankarSaha

DepartmentofGeography,CoochbeharPanchananBarmaUniversity,CoochBehar, WestBengal,India

UjjalSenapati

DepartmentofGeography,CoochbeharPanchananBarmaUniversity,CoochBehar, WestBengal,India

PravatKumarShit

DepartmentofGeography,RajaN.L.KhanWomen’sCollege(Autonomous),Midnapore, WestBengal,India

DebasishTalukdar

DepartmentofGeography,CoochbeharPanchananBarmaUniversity,CoochBehar, WestBengal,India

SharadTiwari

InstituteofForestProductivity,Lalgutwa,Ranchi,India

SumedhR.Warghat

DepartmentofGeology,BharatiyaMahavidyalaya,Amravati,India

PrincipleofGIScienceand geostatisticsingroundwater modeling

GouriSankarBhunia a andPravatKumarShit b a DEPARTMENTOFGEOGRAPHY,NALINIPRABHADEVROYCOLLEGE,BILASPUR, CHHATTISGARH,INDIA b DEPARTMENTOFGEOGRAPHY,RAJAN.L.KHANWOMEN’S COLLEGE(AUTONOMOUS),MIDNAPORE,WESTBENGAL,INDIA

1.1Introduction

TheoriginsofGISciencecanbetracedbacktotwokeynotespeechesbyMichaelF.Goodchild oftheUniversityofCalifornia,SantaBarbaraataconferenceinEurope.“ProgressoftheGIS ResearchAgenda”atthe2ndEuropeanGISConferenceheldinBrussels,BelgiuminJuly1990 andApril1991.GIScienceisanexistingtechnologyandresearchfieldofgeographicinformationsystem(GIS),mapping(mapping),geodesy(measurementoftheearthitself),surveying (measurementofnaturalandman-madefeaturesontheearth),orphotographs(measurements usingphotographs),globalpositioningsystemsorGPS(accurateandaccuratepositioningofthe groundsurfaceusingsatellites),digitalimageprocessing(processingandanalysisofimagedata), remotesensing(RS)(observationoftheEarthfromspaceorunderwater),quantitativespatial analysisandmodeling(RouhaniandHall,1989).Therefore,GISciencecoversissuessuchas spatialdatastructure,analysis,accuracy,meaning,cognition,andvisualization,sometraditional dealingswiththephysicalprocessesoftheearth,andtheinteractionbetweenhumansand theearth.Overlappingareasofthediscipline(e.g.,geography,geology,andgeophysics,marine science,ecology,environmentalsciences,appliedmathematics,spatialstatistics,physics),and mutualbetweenhumansandcomputertechnology.Fieldsdealingwithaction(e.g.,computer science,informationscience,cognitivescience,cognitivepsychology,artificialintelligence).

ItisimportanttodistinguishbetweenGISandGIScience.WhileGISisprimarilyconcerned withhardwareandsoftwareforcapturing,manipulating,anddisplayinggeographicdataand information(e.g.,GISasacontainerfordata,maps,andsoftwaretools),GIScienceisessentially “ThesciencebehindGIS”or“thesciencebehindthesystem.”Inaddition,startingwiththe basicquestionsthatoccurusingGIS(suchastrackingerrorsthroughthesystem),asystematic surveyofgeographicinformationfromscientificmethods(scale,accuracy,andquantitative analysisofgeospatialdata).ScienceperformedusingGIS(e.g.,developingspatialmodelsto predictsusceptibilitytolocallandslides,ordevelopingagent-basedmodels)simulatingvehicle

movementsorinteractionswithintransportationnetworksAmodel,table,orspatialstatisticthat representstheenvironmentalimpactthatresultsfromadecisiontocommercializeaproperty.

Thescienceofgeostatisticshasgrownenormouslyfromitsrootsinminingaround50years agoandencompassesawiderangeofdisciplines.Geoscientistsoftenhaveinterpolationand estimationproblemswhenanalyzingsparsedatafromfieldobservations.ortemporaryphenomena.GeostatisticsoriginatedintheminingandoilindustriesstartingwiththeworkofDanie Krigeinthe1950sandwasdevelopedbyGeorgesMatheroninthe1960s.Mostgeologicaldata (e.g.,rockproperties,pollutantconcentrations)oftendonotmeettheseassumptions,asthey canbeheavilybiasedand/orhaveaspatialrelationship(i.e.,datavaluesforlocationsthat areclosertogethertendtobemoresimilartodatavaluesforlocationsthatarefurtherapart locations).Comparedtoclassicstatistics,whichexaminethestatisticaldistributionofasample dataset,geostatisticstakeintoaccountboththestatisticaldistributionofthesampledataand thespatialcorrelationbetweenthesampledata.Becauseofthisdifference,severalgeosciencerelateddifficultiescanbemoreefficientlyimplementedusinggeostatisticalmethods.Sincethen, geostatisticshasexpandedtomanyotherareasrelatedtothegeosciences,suchashydrogeology, hydrology,meteorology,oceanography,geochemistry,geography,soilscience,forestry,landscapeecology.

Geostatisticsrequiresasignificantamountofcomputationalwork,includingtwoimportant andtime-consumingprocesses:estimatingthesemivariogramanddeterminingtheoptimal semivariogrammodel.However,geostatisticsoftenprovidesthemostaccurateestimatesbecausetheytakeintoaccountthespatialstructureofthevariablesandalsoallowthequantificationofthecorrespondingestimationerror.Geostatisticsusuallyincludesdifferenttypes ofkrigingmethodssuchassimple,universal,probability,indicator,disjunctive,andkriging. Krigingquantifiesthespatialcorrelationofdata,calledvariography,andpresentspredictionsof wherethereisnomeasurementdata.Theintentionofgeostatisticsistoexpecttheviablespatial distributionofaproperty.Suchpredictionregularlytakestheshapeofamaporasequenceof maps.Twosimplesortsofpredictionexistestimationandsimulation(Leeatal.,2010).Onthe otherhand,thesimulationcreatesmanysimilarmaps(sometimescalled“images”)ofthepropertydistributionusingthesamespatialcorrelationmodelthatisrequiredforkriging.Basedon theabovediscussion,thepresentchapterdescribedabouttheroleofGIScienceandgeostatistics ingroundwatermappingandmodeling.

1.2GISandgroundwater

Withthedawnofgeographicinformationsystems,especiallyafterthe1990s,ithasgreatlyimprovedthedisplay,interpretation,andpresentationofgroundwaterqualityassessmentsatlarge spatialscales(LoandYeung,2003).GISiscapableofcollecting,storing,analyzing,manipulating, retrieving,anddisplayinglargevolumesofspatialdataforrapidorganization,quantification, andinterpretationfordecision-makinginareassuchasscienceandtechnology,engineering, andenvironment.Ithasproventobeapowerfultoolforanalyzingandmappinghydrogeological/hydrogeologicaldataonspatialandtemporalscalestoprovideusefulinformationon

Chapter1 PrincipleofGIScienceandgeostatisticsingroundwatermodeling3 spatialvariability,helpingultimatebenefitindecision-making(MachiwalandJha,2014).GIS applicationsareusefulforstudiesassessinggroundwaterquality,especiallymappingspatial variationinwaterquality,modelinggroundwaterflowandpollution,anddesigninggroundwater qualitymonitoringnetworks(Jhaetal.,2007).Inaddition,GIS-basedwaterqualitymappingis essentialforpollutionhazardmodeling,assessment,andconservationplanning,anddetection ofenvironmentalchanges(Chenetal.,2004).

Infact,waterqualitycanbedefinedfordifferentuses(drinkingwater,agriculturalirrigation, livestock,industry,etc.),atdifferenttimesandspaces,andbydifferentparameters(chemical, physical,microbiological,radioactive).Someparametersaremoreproblematicthanothers intermsofhealthissues.WhencalculatingWQIusingGIS,youcanimplementanumberof applicationsthatleadtotheproperandsustainablemanagementofwaterresources.Thenext subsectionhighlightstheapplicationofWQIinthefieldofhydrogeology.Here,thegroundwater qualityindex(Machiwaletal.,2011),thepollutionindex(Backmanetal.,1998),andthemetal pollutionindex(Girietal.,2010),andtheaquiferwaterqualityindex(MelloulandCollin,1998) weredevelopedtodefinethewaterqualityofgroundwater.Withthefurtherdevelopmentofcomputingsystems,WQIisnowintegratedintoGISandprovidesquantitativemapsofgroundwater qualityindifferentgeographicregionsandsizes(SadatNoorietal.,2014).

Inanefforttoprovideageneraloverviewofgroundwaterpollutioninanarea, Backman etal.(1998) testedtheapplicabilityofgroundwaterpollutionindex(Cd )mappinginFinlandand inSlovakia.Overthepastdecade,anumberofstudieshaveintegratedtheGWQIconceptintoGIS tosupportdifferentgroundwaterqualityassessmentstrategies,aswellaspropermanagement andmonitoringofaquifersandgroundwaterresources. Babikeretal.(2007) proposedaGISbasedGWQIwiththeaimofsummarizingavailablewaterqualitydataineasy-to-understand maps.TheyusedGIStoimplementtheproposedGWQIandtotestthesensitivityofthemodel.In theirGIS-basedGWQIspace-timestudy, Machiwaletal.(2011) developed,followingtheGWQI map,anoptimalindexfactor(OIF)togenerateapotentialGWQI(PGWQI)mapofwesternIndia. VulnerabilitymapscanbecalculatedusingGIS,whichenablesspatialdataacquisition,while providingaveragevaluesfordataprocessingsuchasgeoreferenced,integration,aggregation, orspatialanalysis(BurroughandMcDonnell,1998).Manyapproacheshavebeendevelopedto assessaquifervulnerabilityandcanbedividedintothreecategories:(1)overlayandindexing techniques,(2)amethodusingaprocess-basedsimulationmodel,and(3)astatisticalmethod (Tesorieroetal.,1998).ManymethodsofGMMcandistinguishthedegreeoffragilityatthe regionallevelwherevariouslithologyexistsandaremainlyusedforgroundwaterprotectionof porousaquifers.DRASTIC(Alleretal.,1987),GOD(Foster,1987),AVI(VanStempvoortetal., 1993)andSINTACS(Civita,1994).AcompleteoverviewofexistingmethodscanbefoundinVrba andZaporozec(1994)andGoguandDassargues(2000).

1.3Remotesensingandgroundwater

Theavailabilityofgroundwaterinanyterrainislargelydeterminedbytheprevalenceand orientationoftheprimaryandsecondaryporosity.Theexplorationofgroundwaterincludes

thedelineationandmappingofvariouslithological,structural,andgeomorphologicalunits. Satellite-basedRSdatafacilitatethecreationoflithological,structural,andgeomorphological maps,especiallyattheregionallevel.RStypicallyproducesdataintheformofgridsorregions, whichcanbetransmutedintodistributionmodelsthroughnumerousprocessingapproaches, suchasmachinelearningalgorithms.ByapplyingthefeaturesofRSdatatogroundwaterresources,thepointhydrologicalmodelofgroundwatercanbeextendedglobally.

VisualexplanationofRSimagesisattainedinacompetentandeffectivemannerusingkeys orbasicinterpretationelements(Sabins,1987).Investigationsofthespectralreflectivityofrockformingmineralsdeliverthephysicalbasisfortheremotepurposeofterrestrialmaterials.Data areanimperativepartofinvestigationsassociatedwithtectonics,engineering,geomorphology, andtheinvestigationofnaturalresourcesforinstancegroundwater,oil,andminerals.ThemappingoflineamentsfromdifferentRSimagesisafrequentlyusedstepingroundwaterexploration inhardrockareas,takingtheformoflineamentsinaerialimagesorRSdata.Thesurface appearanceofgeologicalstructures,forexample,fissures(faults,joints,dikes,andveins),shear zones,andfoliationsareoftenexposedorcharacterizedaslineamentsinaerialphotographsor RSdata.

1.4Geostatisticsandgroundwater

Geostatisticshasplayedagrowingroleinthecharacterizationandmodelingoftheoiltank andmodeling,mainlypromotedbyrecognitionthatheterogeneityinpetrophysicalproperties (i.e.,permeabilityandporosity)dominatesthewaterflowofthewaterflow,thetransportof solderedandmultifocalmigrationinthesubstrate. RouhaniandHall(1989) appliedspacetimekrigingtogeohydrologybyusingintrinsicrandomfunctions(polynomialspace-timecovariance)forspatiotemporalgeostatisticalanalyzesofpiezometricdata.Morerecently,spatiotemporalkriginghasbeenusedtoestimatethewaterleveloftheQuerétaro-Obrajueloaquifer (Mexico)usingaproductsummodelwithsphericalcomponentsinalargespatio-temporal dataset(JúnezFerreiraandHerrera,2013)andtheseasonalfluctuationsinwaterdepths.In Dutch,naturereservesusinganexponentialspace-timevariogrammetricmodel(Hoogland etal.,2010).Inaddition,thespace-timeordinarykrigingwasusedtodesignprecipitationnetworksandtoanalyzeprecipitationvariationsinspaceandtime(Biondi,2013; Rajaetal.,2016) andwastestedinacomparativestudytoestimaterunofftimeseriesatuncalibratedlocations (SkøienandBlöschl,2007).

Sparselymonitoredwatershedsarenotfrequentlymonitoredviaareaandtime,andconsequently,statisticsavailabilityisathingrestrictinginsimpletermsspatialortemporalanalysis (Fig.1.1).Thisproblemandtherelateddemandingsituationsrounduncertaintyofboundary conditions,thewaythatitisdifficulttosetupadynamicnumericalmodel.GIS-basedgeostatisticaltechniqueshelptocreatesurfacesthatincorporatethestatisticalpropertiesofthedatabeing measured.Manymethodsareassociatedwithgeostatistics,buttheyallbelongtotheKriging family.Simple,universal,probability,indicators,anddisjunctivekrigingareusuallysomeofthe availablegeostatisticalmethods(ESRI,2016). Chaudhryetal.(2019) usedintegratedexploratory

Geostatisticalmethodsandtechniquesusedingroundwaterestimation.

factoranalysisandconventionalkriging(OK)approachestoidentifysourcesofgroundwaterpollutionintheLupunagardistrictofPunjab.Afive-factormodelhasbeenproposedthatexplains morethan89.11%ofthetotalvariationingroundwaterquality.Threesemivariogrammodels, exponent,gauss,andsphere,fitthedatasetwellandarecross-validatedwithpredictivestatistics. TheASCE TaskCommittee(1990) hasapplied(1)mapping,(2)simulationofhydrologicalvariables,(3)estimationusingflowequations,and(4)samplingoftheapplicationofgeostatistical modelingtechniquesingroundwaterhydrology.Reviewedinfivemajorsectionsofdesign,and (5)geostatisticsmodelingapplicationingroundwatersystemsmanagement.

1.5Geocomputationalmodelingandgroundwater

Groundwatermanagementmodelsarepowerfulforaquifermanagementusingoptimization andsimulationmethodssuchaslinearprogrammingandquadraticprogrammingthatcombinegroundwaterregulatedflowsandtransportequationstosolvegroundwatermanagement problems.Formanyyears,groundwaterhydrogeologistshavetriedtoappraisegroundwater resourcesusingnumericalimitationmodels.Theapplicationofnumericalsimulationmodelsby researchersinthefieldofgroundwaterhydrologyhasfacilitatedtoimprovetheunderstanding ofaquiferfunctionsintheregionregardingspecificaspectsofthegroundwatersystemand totestthehypothesis.Thegroundwatermanagementmodelcanbedividedintotwomain groups.Theseareaphysicalclassificationmodelandadata-drivenclassificationmodel.Physical classificationmodelsarereliantupontheuseofphysicalconstraintsofthegroundwaterbed togovernchangesinwaterlevel;however,thesemodelsaredifficulttoimplement,expensive, andmustbesharedtoobtainnumericalinformation.Thegroupsofdata-drivenmodelsare differentiatedaccordingtotheobjectivefunction,wherebythedecisionisbasedonlyonthe hydraulicfunctionsofthegroundwaterandtheother,whosemanagementdecisionisbasedon theevaluationofthepolicy,aswellasanassignmentoftheeconomyofthegroundwater.The groundwatermodel,basedondatainitsprimitivestructure,hasfourbasiccomponents:itis notlinearintermsofitsdecisionvariables;requiresthesolutionofnonlinearpartialdifferential equationstodescribegroundwatertransportandflow;itisstochasticasitsprimaryuncertain sourceisrelatedtotheaquifersimulationmode,and;itisamixed-integerprogrammingdecision becauseitcontainsbothdiscreteandcontinuousobjectivefunctions(Yeh,2015; Wada,2016).

FIGURE1.1

• Simulation modeling methods in groundwater resource management

Improved random forest regression

• Solve the problem of data scarcity on a site and low dimensional data

Canonical correlation forest algorithm

• To overcome the variation in ground water level prediction

Support Vector Machine

• To provide accurate predictions without an increase in costly computational time

Artificial Neural Network (ANN)

• To overcome the challenges with both ANN and SVM models

Thelatestdata-basedclassificationmodels,suchasartificialneuralnetworktechnology, geneticprogramming,theAdaptiveNeuroFuzzyInferenceSystemandadaptiveneuro-fuzzy inferencesystemandthesupportvectormachineaswellastimeseriesmethodssuchasthe autoregressiveintegratedmovingaverage,themulti-objectivefunctionapproachandtheautoregressivemovingaveragearealternativestestedonphysicalmodelsandtreatedasstandard nonlinearestimatorsthatcanovercomethedifficultiesassociatedwithphysicalmodelsandare lessexpensive(Diersch,2005; Aderemietal.,2021).Inaddition,therearenumericalgroundwater modelsthathavebeendevelopedfromaconceptualmodel.However,thesemodelsoftenignore thecomplexityandfocusonlyonthebasicrationaleofgroundwatersystems(Hosseiniand Mahjouri,2016).Withtheadvancesindataminingformodeling,optimization,andsimulation techniquesforgroundwaterresourcemanagement,theuseoffinitedifferencesandfiniteelementshasincreasedexponentially(LeeandCheng,1974;TysonandWeber,1963).Consequently, boththefiniteelementmodelingtechniqueandfinite-differencemodeltechniquewerewidely usedforthegroundwaterflowmodel,thehydro-economicmodel,calibration(C),sensitivity analysis,aswellasvalidation/verification(V). Fig.1.2 showsasummaryofthelatestdata-driven modelingmethodsforgroundwaterresourcemanagement.

1.6Geospatialintelligenceandgroundwatermodeling

Theeffectivemanagementofthegroundwaterresources,aswellasthemodeling,dependson theavailabilityofhigh-qualitydataontheobservationwellinformation.Informationaboutthe aquiferpropertiesmayincludechangesinthewatertable,storage,flowrate,replenishment,and runoff,amongothers.Furthermore,informationongroundwaterresourcesislackingduetoa dearthofproperintegrationbetweentheequipmentdeployed,irrelevant,andinconsistentdata

Adaptive NeuroFuzzy Inference System (ANFIS)
FIGURE1.2 Data-drivengroundwaterresourcemanagementmodelingmethods.

Chapter1 PrincipleofGIScienceandgeostatisticsingroundwatermodeling7

duetothelackoflarge-scalestationaryflowobstacles,aprocessofnonautomatedgroundwater analysis,andabsenceofinteroperabilityinprevioussystems(Suetal.,2020; Laraichietal., 2016).Thereareseveralsystemsformonitoringthewatertable.Thesesystemsdifferinterms oftechnology,monitoring,andmanagementtasks,scalability,thesolutiontheyprovide,and theimpactoncosts.Inaddition,thereisariskthatmostofthegroundwaterlevelmonitoring networkswillberegularlyabandonedduetoadeclineinglobalgroundwatermonitoring.

Inthepastfewyears,theInternethaschangedthewaypeoplelive.ThisconceptofIoThas beenadoptedinmanyareasofhumanactivity,includingintelligentwaterlevelandgroundwatermanagement.Hence,thetechniquesoftheIoTareusedtocollect,transmit,andanalyze necessarydataaboutwatertabledata.ThemainadvantageofIoTimplementationisthatit canbecombinedwithvarioustechnologiessuchaswirelesssensors,cloudcomputing,ubiquitouscomputing,RFIP,andsoftwaretomanagegroundwaterleveldatainoneenvironment. IoTinvolvesthecombinationofintelligenttechnologies,suchassensorsforcollectingdata inanetworkareawithacombinationofIDEsoftwareonthecloudserver(Vijayakumarand Ramya,2015).

RSisanexampleofaclassicwayofobtainingurgentlyneededhydrologicaldataforgroundwaterlevelmeasurementsviatheInternet.AlthoughSRcanbeusedtoobtaincertainparameters ofgroundwaterresources(Zhouetal.,2013),theseparametersareusuallynotusefulformodelinggroundwatermanagement.Asaresult,anothermodelisrequiredtomanipulatethecaptured dataintousableorverifiabledataasinputintospatiallydistributedmodels.Theessentialand mostrelevantdataformodelinggroundwaterresourcemanagementisinformationonrecharge andrunoff(Xiaoetal.,2017).IoTandmachinelearningtechniquescanbeusedtosolvethese challenges(Fauntetal.,2010).However,thedifferenceineachmeasurementwelldependsonthe technologyusedandthefrequencyofthemeasurementdata.TheapplicationofIoTtomonitor thedailyfluctuationsinthewatertableandthesafetyqualityintheminingenvironmentwas carriedoutby Reddyetal.(2016) usingsensortechnologies.Inaddition, Neyensetal.(2018),the qualityandquantityofthegroundwaterfromadesktopusingtheIoT-enabledenvironmental datamanagementinterface(EMI)technology.

1.7WebGISandgroundwaterresource

Startingwiththedevelopmentofwebtechnologiesin1993,variousdatabaseadministrators havebeguntodevelopweb-basedgeographicinformationsystems(WebGIS)tostorereal-time, aggregated,high-speeddatastreams.Hence,theWebGIStechniqueworksbestintermsofuser qualityofService,usablebyseveralusers,costreduction,globalreach,andcross-compatibility. TheGISsoftwareisknownasArcViewandtheGroundwaterModel(MODFLOW)wascombined forthenumericalmodelingofgroundwaterresourcesbyChennaiandMammou(Cheniniand Mammou,2010).Thecombinationofmanagedaquiferrechargeandtheglobalgroundwater informationserviceoftheInternationalGroundwaterResourcesAssessmentCenter(IGRAC’s GGIS)hasbeensuccessfullyimplementedusingadvancedhistoricaldatafromapproximately 1200sitesurveysinapproximately62countries(StefanandAnsems,2018).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.