https://ebookmass.com/product/carbon-dioxide-capture-andconversion-advanced-materials-and-processes-nanda-s/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization Dr. Inamuddin
https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-carbon-dioxide-capture-andutilization-dr-inamuddin/ ebookmass.com
Atomic and Nano Scale Materials for Advanced Energy Conversion, Volume 2 Zongyou Yin
https://ebookmass.com/product/atomic-and-nano-scale-materials-foradvanced-energy-conversion-volume-2-zongyou-yin/
ebookmass.com
Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials Sekhar Chandra Ray
https://ebookmass.com/product/magnetism-and-spintronics-in-carbon-andcarbon-nanostructured-materials-sekhar-chandra-ray/ ebookmass.com
The Communist Manifesto in the Revolutionary Politics of 1848: A Critical Evaluation David Ireland
https://ebookmass.com/product/the-communist-manifesto-in-therevolutionary-politics-of-1848-a-critical-evaluation-david-ireland/
ebookmass.com
Her Perfect Life Rebecca Taylor
https://ebookmass.com/product/her-perfect-life-rebecca-taylor/
ebookmass.com
Of Glass and Lavender: The Ascension Rising Series - Book 1 K. R. Rainbolt
https://ebookmass.com/product/of-glass-and-lavender-the-ascensionrising-series-book-1-k-r-rainbolt/
ebookmass.com
Trauma Counseling: Theories and Interventions 1st Edition, (Ebook PDF)
https://ebookmass.com/product/trauma-counseling-theories-andinterventions-1st-edition-ebook-pdf/
ebookmass.com
Abyss (The Mercy Blades Book 4) Clarissa Bright
https://ebookmass.com/product/abyss-the-mercy-blades-book-4-clarissabright/
ebookmass.com
Mais Esperto que o Diabo Napoleon Hill [Hill
https://ebookmass.com/product/mais-esperto-que-o-diabo-napoleon-hillhill/
ebookmass.com
PRACTITIONER'S GUIDE TO GAAS 2021 : covering all sass, ssaes, ssarss, and interpretations. Joanne M. Flood
https://ebookmass.com/product/wiley-practitioners-guide-togaas-2021-covering-all-sass-ssaes-ssarss-and-interpretations-joanne-mflood/
ebookmass.com
CarbonDioxideCapture andConversion
CarbonDioxideCapture andConversion
AdvancedMaterialsandProcesses
Editedby SONILNANDA
DepartmentofChemicalandBiologicalEngineering, UniversityofSaskatchewan,Saskatoon,Saskatchewan, Canada
DAI-VIETN.VO
CenterofExcellenceforGreenEnergyandEnvironmental Nanomaterials,NguyenTatThanhUniversity, HoChiMinhCity,Vietnam
VAN-HUYNGUYEN
ChettinadHospitalandResearchInstitute, ChettinadAcademyofResearchandEducation, Kelambakkam,TamilNadu,India
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierB.V.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-85585-3
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
EditorialProjectManager: EmeraldLi
ProductionProjectManager: SujathaThirugnanaSambandam
CoverDesigner: ChristianJ.Bilbow
TypesetbyMPSLimited,Chennai,India
1.AbriefoverviewofrecentadvancementsinCO2 captureand valorizationtechnologies1
BiswaR.Patra,ShivaP.Gouda,FalguniPattnaik,SonilNanda, AjayK.DalaiandSatyanarayanNaik
1.1 Introduction1
1.2 CO2 emissions3
1.3 CO2 captureandstoragetechnologies4
1.4 ValorizationofCO2 toproducevaluablechemicals9
1.5 Conclusions12 Acknowledgments12 References12
2.SustainableutilizationofCO2 towardacirculareconomy: prospects,challenges,andopportunities17
BamideleVictorAyodele,SitiIndatiMustapa,MayAliAlsaffarand Dai-VietN.Vo
2.1 Introduction17
2.2 OverviewofpathwaysforCO2 emissions19
2.2.1 CO2 emissionsinresidentialandcommercialbuilding20
2.2.2 CO2 emissionsinindustrialprocesses21
2.2.3 CO2 emissionsinthetransportationsector22
2.2.4 CO2 emissionselectricitygeneration22
2.3 StrategiesandcirculareconomicmodelformitigationofCO2 emissionsanditssustainableutilization24
2.3.1 StrategiesforCO2 emissionreduction24
2.4 ProcessesforsustainableutilizationofCO2 forvalue-addedproducts27
2.4.1 CO2 reformingofhydrocarbonandbiomass28
2.4.2 CO2 hydrogenationtorenewablefuelsandvalue-addedproducts29
2.5 OvercomingthechallengesofCO2 valorizationtosustainableproducts31
2.6 Conclusions32 References33
3.CO2 conversiontechnologiesforcleanfuelsproduction37
AhmadSalamFarooqi,MohammadYusuf,NoorAsmawatiMohdZabidi, KhairuddinSanaullahandBawadiAbdullah
3.1 Introduction37
3.2 MethodsforCO2 conversion38
3.3 CO2 conversionintomethanol39
3.4 CO2 conversionintosynthesisgas43
3.5 CO2 conversiontomethane(methanation)reaction46
3.6 CO2 conversionintodimethylether51
3.7 CO2 conversionintogasoline55
3.8 Conclusions58
Acknowledgments58 References58
4.Upcyclingofcarbonfromwasteviabioconversioninto biofuelandfeed65
SiewYoongLeong,ShamsulRahmanMohamedKutty, PakYanMohandQunliangLi
Abbreviations65
4.1 Introduction65
4.2 UpcyclingofCO2 bymicroalgae66
4.3 Upcyclingofcarbonbyinsectlarvae72
4.4 BiomethanationofCO2 byanaerobicdigestion80
4.5 Importanceofbioconversionincircularbioeconomy80
4.6 Opportunityandchallengesinbioconversionofcarbonsource82
4.7 Conclusions86 References86
5.Organicbase-mediatedfixationofCO2 intovalue-added chemicals93
CongChienTruongandDineshKumarMishra
Abbreviations93
5.1 Introduction94
5.2 Organicbase-mediatedtransformationofCO2 intovalue-addedproducts95
5.2.1 Linear/cyclicureaandcarbamoylazides95
5.2.2 Linear/cycliccarbamates97
5.2.3 Linear/cycliccarbonates98
5.2.4 Polyureas polycarbonates103
5.2.5 CO2 reduction-derivedproducts105
5.2.6 Carboxylicacidsandtheiresterderivatives109
5.2.7 Five-memberedheterocycles111
5.2.8 Six-memberedheterocycles114
5.3 Conclusions120 References120
6.CatalyticconversionofCO2 intomethanol129 NorHafizahBerahimandNoorAsmawatiMohdZabidi
Abbreviations129
6.1 Introduction130
6.2 Methanolusesandapplications131
6.2.1 Chemicalfeedstock131
6.2.2 Energysource132
6.2.3 Otheruses132
6.2.4 Industrialmethanolsynthesis132
6.2.5 HydrogenationofCO2 intomethanol133
6.3 CO2 activationanditsthermodynamicchallengesformethanol reduction135
6.4 CatalystsforhydrogenationofCO2 intomethanol136
6.4.1 Cu/ZnO-basedcatalysts136
6.4.2 Catalystsupports138
6.4.3 Catalystpromoters142
6.5 Factorsaffectingmethanolsynthesis145
6.5.1 Catalystpretreatment145
6.5.2 Reactionconditions148
6.6 Deactivationofthecatalysts153
6.7 Conclusions154 References155
7.Applicationofcalciumlooping(CaL)technologyfor CO2 capture163 NaderMahinpey,SeyedMojtabaHashemi,S.ToufighBararpourand DavoodKarami
7.1 Introduction163
7.2 Calciumloopingprocess164
7.3 ReactivitydecayofCaO-basedsorbents167
7.3.1 Sintering168
7.3.2 Reactionwithimpurities170
7.3.3 Attrition170
7.4 NaturalandsyntheticCaO-basedsorbents172
7.4.1 Naturalsorbents173
7.4.2 Syntheticsorbents181
7.5 Kineticsmodelingofcalciumloopingprocess188
7.6 Conclusionsandperspectives192 References194
8.Dryreformingofmethaneandbiogastoproducesyngas: areviewofcatalystsandprocessconditions201
ZahraAlipour,VenuBabuBorugadda,HuiWangandAjayK.Dalai Abbreviations201
8.1 Introduction201
8.2 Heterogeneouscatalystfordryreforming203
8.2.1 Noblemetal-basedcatalyst203
8.2.2 Nonnoblemetal-basedcatalysts206
8.2.3 Bimetalliccatalysts208
8.3 Effectsofsupports212
8.4 Roleofmodifiers215
8.5 Roleofpreparationmethods219
8.6 Effectsofprocessconditions224
8.7 Roleofprecursor227
8.8 Conclusions228 Acknowledgments230 References230
9.Advancesintheindustrialapplicationsofsupercriticalcarbon dioxide237
JudeA.Okolie,SonilNanda,AjayK.DalaiandJanuszA.Kozinski
9.1 Introduction237
9.2 UniquepropertiesofSCCO2 238
9.3 IndustrialapplicationsofSCCO2 240
9.3.1 Extractionofbioactivecompounds240
9.3.2 Extractionofcannabinoids242
9.3.3 Conversionofwasteheatintopower243
9.3.4 Catalysis244
9.3.5 Sustainableenergygeneration245
9.3.6 Biomasspretreatmentandrecoveryofvalue-addedbiochemicals246
9.3.7 Otherindustrialapplications247
9.4 Conclusionsandperspectives250
Acknowledgments251 References251
10.ApplicationofmembranetechnologyforCO2 captureand separation257
WaiFenYong,CanZengLiangandChaitanyakumarReddyPocha
Abbreviations257
Listofsymbols258
10.1 Introduction259
10.2 Transportmechanismsforgasseparation260
10.2.1 Diffusioninporousmembranes261
10.2.2 Diffusioninnonporousmembranes262
10.3 Membranepreparation264
10.3.1 Preparationofpolymericmembranes264
10.3.2 Preparationofinorganicmembranes267
10.4 Polymericmembranes269
10.4.1 Polymerblendsmembranes269
10.4.2 Mixedmatrixmembranes273
10.5 Inorganicmembranes274
10.5.1 Carbonmolecularsievemembranes274
10.5.2 Ceramicmembranes276
10.5.3 Zeolitemembranes279
10.6 Conclusionsandperspectives281 References282
11.Sequestrationofcarbondioxideintopetroleumreservoirfor enhancedoilandgasrecovery291
MinhajUddinMonir,AzrinaAbdAziz,FatemaKhatun, MostafaTarekandDai-VietN.Vo
Abbreviations291
11.1 Introduction291
11.2 Oilandgasreservoirs293
11.3 Advancedoilandgasrecoverymechanism295
11.3.1 Enhancedoilrecovery296
11.3.2 Enhancedgasrecovery297
11.3.3 Challengesandstrategyforincreasedoil/gasrecovery297
11.4 FundamentalsofCO2 gasinjection297
11.4.1 SourcesofCO2 298
11.4.2 Surfacefacilities301
11.5 Technologiesforenhancedoil/gasrecovery302
11.5.1 CO2 injectionforenhancedoilrecovery302
11.5.2 CO2 injectionforenhancedgasrecovery303
11.5.3 CO2 solubilityinoilandgas305
11.5.4 CO2 injectionfacilitiesandprocessdesignconsiderations305
11.6 Economicevaluation305
11.7 Conclusions306 References307
Listofcontributors
BawadiAbdullah
DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,BandarSeri Iskandar,Perak,Malaysia
ZahraAlipour
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
MayAliAlsaffar
DepartmentofChemicalEngineering,UniversityofTechnology-Iraq,Baghdad,Iraq
BamideleVictorAyodele
DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,SeriIskandar, Perak,Malaysia
AzrinaAbdAziz
FacultyofCivilEngineeringTechnology,UniversitiMalaysiaPahang,Kuantan,Pahang, Malaysia
S.ToufighBararpour
DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada
NorHafizahBerahim
DepartmentofFundamentalandAppliedSciences,UniversitiTeknologiPETRONAS, BandarSeriIskandar,Perak,Malaysia
VenuBabuBorugadda
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
AjayK.Dalai
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
AhmadSalamFarooqi
DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,BandarSeri Iskandar,Perak,Malaysia
ShivaP.Gouda
DepartmentofChemistry,CollegeofEngineeringandTechnology,Bhubaneswar, Odisha,India
SeyedMojtabaHashemi
DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada
DavoodKarami
DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada
FatemaKhatun
FacultyofCivilEngineeringTechnology,UniversitiMalaysiaPahang,Kuantan,Pahang, Malaysia
JanuszA.Kozinski
FacultyofEngineering,LakeheadUniversity,ThunderBay,Ontario,Canada
ShamsulRahmanMohamedKutty
DepartmentofCivilandEnvironmentalEngineering,UniversitiTeknologiPETRONAS, SeriIskandar,PerakDarulRidzuan,Malaysia
SiewYoongLeong
DepartmentofPetrochemicalEngineering,UniversitiTunkuAbdulRahman,Kampar, PerakDarulRidzuan,Malaysia
QunliangLi
SchoolofChemistryandChemicalEngineering,GuangxiUniversity,Nanning,Guangxi, China
CanZengLiang
DepartmentofChemicalandBiomolecularEngineering,NationalUniversityof Singapore,Singapore,Singapore
NaderMahinpey
DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada
DineshKumarMishra
DepartmentofChemicalEngineering/ResearchInstituteofIndustrialScience,Hanyang University,Seoul,RepublicofKorea
PakYanMoh
IndustrialChemistryProgramme,FacultyofScienceandNaturalResources,Universiti MalaysiaSabah,KotaKinabalu,Sabah,Malaysia
MinhajUddinMonir
DepartmentofPetroleumandMiningEngineering,JashoreUniversityofScienceand Technology,Jashore,Bangladesh
SitiIndatiMustapa
InstituteofEnergyPolicyandResearch,NationalEnergyUniversity,KajangSelangor, Malaysia
SatyanarayanNaik
CentreforRuralDevelopmentandTechnology,IndianInstituteofTechnologyDelhi, NewDelhi,Delhi,India
SonilNanda
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
JudeA.Okolie
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
BiswaR.Patra
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
FalguniPattnaik
CentreforRuralDevelopmentandTechnology,IndianInstituteofTechnologyDelhi, NewDelhi,Delhi,India
ChaitanyakumarReddyPocha
SchoolofEnergyandChemicalEngineering,XiamenUniversityMalaysia,Selangor DarulEhsan,Selangor,Malaysia
KhairuddinSanaullah
DepartmentofChemicalEngineeringandEnergySustainability,UniversitiMalaysia Sarawak,KotaSamarahan,Sarawak,Malaysia
MostafaTarek
FacultyofChemicalandNaturalResourcesEngineering,UniversitiMalaysiaPahang, Kuantan,Pahang,Malaysia
CongChienTruong
DepartmentofBio-functionalMolecularEngineering,UniversityofToyama,Toyama, Japan
Dai-VietN.Vo
CenterofExcellenceforGreenEnergyandEnvironmentalNanomaterials,NguyenTat ThanhUniversity,HoChiMinhCity,Vietnam
HuiWang
DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada
WaiFenYong
SchoolofEnergyandChemicalEngineering,XiamenUniversityMalaysia,Selangor DarulEhsan,Selangor,Malaysia
MohammadYusuf
DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,BandarSeri Iskandar,Perak,Malaysia
NoorAsmawatiMohdZabidi
DepartmentofFundamentalandAppliedSciences,UniversitiTeknologiPETRONAS, BandarSeriIskandar,Perak,Malaysia
Abouttheeditors
Dr.SonilNanda isaResearchAssociateatthe UniversityofSaskatchewaninSaskatoon, Saskatchewan,Canada.HereceivedhisPhDdegree inbiologyfromtheYorkUniversity,Canada;MSc degreeinappliedmicrobiologyfromtheVellore InstituteofTechnology(VITUniversity),India; andBScdegreeinmicrobiologyfromtheOrissa UniversityofAgricultureandTechnology,India. Dr.Nanda’sresearchareasincludetheproduction ofadvancedbiofuelsandbiochemicalsusingthermochemicalandbiochemicalconversiontechnologiessuchasgasification, pyrolysis,carbonization,torrefaction,andfermentation.Hehasgained expertiseinhydrothermalgasificationofvariousorganicwastesandbiomass,includingagriculturalandforestryresidues,industrialeffluents, municipalsolidwastes,cattlemanure,sewagesludge,foodwastes,waste tires,andpetroleumresidues,toproducehydrogenfuel.Hisparallelinterestsincludethegenerationofhydrothermalflamesforthetreatmentof hazardouswastes,agronomicapplicationsofbiochar,phytoremediationof heavymetalcontaminatedsoils,aswellascarboncaptureandsequestration.Dr.Nandahaspublished15books,70bookchapters,andover130 peer-reviewedjournalarticles.Heistheeditorofbooksentitled New DimensionsinProductionandUtilizationofHydrogen (Elsevier), Recent AdvancementsinBiofuelsandBioenergyUtilization (SpringerNature), BiorefineryofAlternativeResources:TargetingGreenFuelsandPlatform Chemicals (SpringerNature), FuelProcessingandEnergyUtilization (CRC Press), BioprocessingofBiofuels (CRCPress),and CatalyticandNoncatalytic UpgradingofOils (AmericanChemicalSociety),tonameafew.Dr.Nanda servesasafellowmemberoftheSocietyforAppliedBiotechnologyin India,aswellasaLifeMemberoftheIndianInstituteofChemical Engineers,AssociationofMicrobiologistsofIndia,IndianScience CongressAssociation,andtheBiotechResearchSocietyofIndia.Heis alsoanactivememberofseveralchemicalengineeringsocietiesacross NorthAmericasuchastheAmericanInstituteofChemicalEngineers,the ChemicalInstituteofCanada,theCombustionInstitute-CanadianSection, andEngineersWithoutBordersCanada.Dr.Nandaisanassistantsubject

editorforthe InternationalJournalofHydrogenEnergy (Elsevier)aswellasan associateeditorforthe EnvironmentalChemistryLetters (SpringerNature) and AppliedNanoscience (SpringerNature).Hehasalsoeditedseveralspecial issuesinrenownedjournalssuchasthe InternationalJournalofHydrogen Energy (Elsevier), ChemicalEngineeringScience (Elsevier), BiomassConversion andBiorefinery (SpringerNature), WasteandBiomassValorization (Springer Nature), TopicsinCatalysis (SpringerNature), SNAppliedSciences (Springer Nature),and ChemicalEngineering&Technology (Wiley).
Dr.Dai-VietN.Vo istheDirectoroftheCenter ofExcellenceforGreenEnergyandEnvironmental NanomaterialsatNguyenTatThanhUniversityin HoChiMinhCity,Vietnam.HereceivedhisPhD degreeinchemicalengineeringfromtheUniversity ofNewSouthWalesinSydney,Australia,in2011. Hehasworkedasapostdoctoralfellowatthe UniversityofNewSouthWalesinSydneyand TexasA&MUniversityinQatar,Doha.Formerly, hewasaseniorlecturerattheFacultyofChemical &NaturalResourcesEngineeringintheUniversitiMalaysiaPahangin Kuantan,Malaysia(2013 19).Hisresearchareasincludetheproduction ofgreensyntheticfuelsviaFischer Tropschsynthesisusingbiomassderivedsyngasfromvariousreformingprocesses.Heisalsoanexpertin advancedmaterialsynthesisandcatalystcharacterization.Duringtheearly daysofhiscareer,heworkedasaprincipalinvestigatorandcoinvestigator for21differentfundedresearchprojectsrelatedtosustainableandalternativeenergy.Hehaspublished6books,20bookchapters,andmorethan 300peer-reviewedjournalarticlesandconferenceproceedings.Hehas servedinthetechnicalandpublicationcommitteesofnumerousinternationalconferencesinchemicalengineering,catalysis,andrenewable energy.Dr.Voistheeditorofbooksentitled NewDimensionsinProduction andUtilizationofHydrogen (Elsevier), BiorefineryofAlternativeResources: TargetingGreenFuelsandPlatformChemicals (SpringerNature),and Fuel ProcessingandEnergyUtilization (CRCPress).Dr.Voisanassistantsubject editorforthe InternationalJournalofHydrogenEnergy (Elsevier)andaguesteditorforseveralspecialissuesinhigh-impact-factorjournalssuchasthe InternationalJournalofHydrogenEnergy (Elsevier), Chemosphere (Elsevier), ComptesRendusChimie (Elsevier), WasteandBiomassValorization (Springer), TopicsinCatalysis (Springer), JournalofChemicalTechnology&Biotechnology (Wiley), ChemicalEngineering&Technology (Wiley),andseveralothers.He isalsoanassociateeditorforthe EnvironmentalChemistryLetters (Springer Nature)and AppliedNanoscience (SpringerNature).Heisaneditorialboard memberofmanyinternationaljournals,including SNAppliedSciences (Springer), ScientificReports (SpringerNature),and PLoSOne.Dr.Vohas beenawardedasaTopPeerReviewer2019poweredbyPublons.

Dr.Van-HuyNguyen receivedtheBSdegree (2008)inenvironmentalengineeringfromtheHo ChiMinhCityUniversityofTechnology, Vietnam,andanMSdegree(2010)inchemical engineeringfromtheNationalTaiwanUniversity (NTU).HeobtainedhisPhDdegreeinchemical engineeringfromtheNationalTaiwanUniversity ofScienceandTechnologyin2015.Hehasgained theknowledgeandexperienceofworkinginboth academiaandindustry.BeforejoiningChettinad AcademyofResearchandEducationasaVisitingProfessor,heworkedat BinhDuongUniversity,TonDucThangUniversity,andDuyTan UniversityinVietnam.Dr.Nguyenhaspublishedover110peerreviewedjournalarticles,10bookchapters,andpresentedatmanyinternationalconferences.Currently,heistheassociateeditorforthe Applied Nanoscience (SpringerNature)andeditorialboardmemberof PLoSOne. Heisalsothemanagingguest-editorandguest-editorof10specialissues injournalsofreputesuchasthe JournalofChemicalTechnology& Biotechnology (Wiley), ArabianJournalofChemistry (Elsevier), Topicsin Catalysis (Springer), ChemicalEngineeringScience (Elsevier), Biomass ConversionandBiorefinery (Springer), MaterialsLetters (Elsevier), Journalof EnvironmentalChemicalEngineering (Elsevier), SustainableChemistryand Pharmacy (Elsevier),and EnvironmentalScienceandPollutionResearch (Springer).HeisaneditorforeditedbooksunderproductioninElsevier aboutphotocatalysis,CO2 capture,andconversion.Dr.Nguyenisan activereviewerformanyhigh-impactjournalspublishedbyElsevier, ACS,Wiley,SpringerNature,RSC,MDPI,andPLoSPublishers.His researchworkshavegainedbroadinterestthroughhishighlycited researchpublications,bookchapters,conferencepresentations,andworkshoplectures.Hisresearchfocusesonchemicalandmaterialaspectsof (photo)catalyticprocessesandabasicunderstandingof(photo)catalysts, emphasizingtheimportanceofcleanenergyindealingwithenvironmentalproblems,andproductionofvalue-addedchemicals.

Preface
Excessiveutilizationoffossilfuelsandpetrochemicalsalongwiththe increasedindustrialmanufacturingprocesses,emissionsfromautomobiles, andanthropogenicactivitieshasresultedinariseintheCO2 levelsinthe atmosphere.AhigherlevelofCO2 intheatmosphereisaleadingcause ofglobalwarmingandclimatechange.Biofuels,biochemicals,andbioproductshavealowercarbonfootprintbecausetheCO2 liberatedfrom theirend-useisutilizedduringphotosynthesistoproducenewplantbiomass.Nevertheless,thereisagrowinginterestincarboncapturingand sequestrationtechniquesalongwiththeirutilizationformanufacturing value-addedindustrialproducts.Thisbookcoversthecurrentresearch anddevelopmentofsomeleadingtechnologiesforcapturingandutilizing CO2 forhigh-valueindustrialprocessesandproductmanufacturing.
Chapter1 byPatraetal.givesanoverviewofseveralsourcesofCO2 generationalongwithsomerecentdevelopmentsinCO2 capturingand storagetechnologies.ThechapteralsodiscussestheutilizationofCO2 for producingvalue-addedmaterialsusingvarioussustainabletechnologies. Chapter2 byAyodeleetal.describestheprospects,challenges,and opportunitiesforsustainableutilizationofCO2 towardsacirculareconomy.Processessuchasreforminghydrocarbonsandbiomass,aswellas hydrogenation,arereportedfortheutilizationofCO2 inproducing renewablefuelsandvalue-addedproducts. Chapter3 byFarooqietal. comprehensivelyreviewsthecurrentprogressandadvancementsofCO2 conversionintovaluablefuels,includingmethane,dimethylether,methanol,andgasoline. Chapter4 byLeongetal.discussestheopportunityand challengesinthebioconversionofcarbonsources,whichcouldprovide promisingandclosed-loopsolutionsforfoodsecurity,energy,resource scarcity,andreductionofCO2 emissions. Chapter5 byTruongand Mishragivesabroadoutlineontheutilityofhomogeneousorganicbases forthedirectandsmoothconversionofCO2 intourea,carbamates,carbonates,polymers,carboxylicacidderivatives,methanol,andheterocyclic compounds. Chapter6 byBerahimandZabidihighlightstheprogress madebytheongoingresearchanddevelopmentinthecatalyticconversionofCO2 intomethanolwithafocusondevelopingCu/ZnO-based catalysts,catalystactivity,andtheimpactofprocessvariablesontheformationofproducts. Chapter7 byMahinpeyetal.reviewsthecurrent
progressmadeintheapplicationofCaO-basedsorbentsinthecalciumloopingprocessappliedinpost-andprecombustiontechnologies.
Chapter8 byAlipouretal.describestheevaluationofvariousheterogeneouscatalystsforthedryreformingprocessbyutilizingCO2.Thechapterdiscussestheeffectsofcatalystcomponents,catalystpreparation methods,andtheimpactofreformingprocessconditionsonthecatalytic activityandcokedeposition. Chapter9 byOkolieetal.providesanoverviewoftheuniquepropertiesofsupercriticalCO2 anditsapplicationsin industrialprocessessuchashydrotreatingofbiofuels,extractionofbioactivecompounds,includingcannabinoids,biomasspretreatment,sterilizationofmedicalequipment,andconversionofwasteheatintopower.
Chapter10 byYongetal.elucidatesthefundamentalsofgastransport throughpolymericandinorganicmembranesfollowedbymembrane preparationstrategies,modificationsmethodsinpolymericandinorganic membranesaswellasprospectsofmembraneseparationforCO2 capture. Chapter11 byMoniretal.presentsadetailedstudyoftheeffectivenessof theapplicationofenhancedoilandgastechnologyinanunconventional petroleumreservoir.Thischapterevaluatestheprospectsandchallengesof CO2 sequestrationinoilandgasreservoirsfortheirenhancedrecovery.
Wearegratefultoalltheauthorsforcontributingtheirhigh-quality chapterstowardthedevelopmentofthisbook.Wealsoexpressour sincerethankstothestaffandassociatesatElsevierfortheirenthusiastic assistanceandsupportinthepreparationofthisbook.Ourspecialthanks gotoSusanDennis(Publisher),EmeraldLi(EditorialProjectManager), R.VijayBharath(ProductionProjectManager),SujathaThirugnana Sambandam(PublishingServicesManager)andChristianJ.Bilbow (CoverDesigner).
CHAPTER1
Abriefoverviewofrecent advancementsinCO2 capture andvalorizationtechnologies
BiswaR.Patra1,ShivaP.Gouda2,FalguniPattnaik3,SonilNanda1, AjayK.Dalai1
andSatyanarayanNaik3
1DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan,Saskatoon, Saskatchewan,Canada
2DepartmentofChemistry,CollegeofEngineeringandTechnology,Bhubaneswar,Odisha,India
3CentreforRuralDevelopmentandTechnology,IndianInstituteofTechnologyDelhi,NewDelhi,Delhi, India
1.1Introduction
Therisinghumanpopulation,urbanization,andindustrializationhaveled toenvironmentalpollution,specificallycarbondioxide(CO2)emission. CO2 istheprimarygreenhousegasthathasemanatedthedeteriorationof theclimateanditsconcentrationintheatmosphereenduredanexponentialgrowthfrom284ppm(1850)to409ppm(2018)(Patraetal.,2021). ThemajorshareofCO2 releasedtotheatmospherecomesfromfossil fuelcombustion(Fig.1.1).Theglobalenergyconsumptionisestimatedto reach815quadrillionBtuin2040comparedto582Btuin2017(Anwar etal.,2020;Patraetal.,2021).Theglobalenergydemandismostly achievedbynonrenewablefossilfuels,whichamplifiestheemissionof CO2 bycausingasteepincreaseingreenhousegas(GHG)level. Approximately77%ofthetotalGHGemissionissharedbyCO2 and removalofsuchanexcessiveamountfromtheatmospherebecomesunachievablethroughforestsandoceans(Ellabbanetal.,2014).Furthermore, otherrenewablealternativestofossilfuelssuchassolar,wind,hydropower,andbiofuelscouldlimitCO2 emissionstosomeextent(Nanda etal.,2014;Okolieetal.,2021b).Asapotentialsolutiontomitigatecarbonemissions,biofuelscanbederivedfromrenewablebiomassthrough sustainableconversiontechnologies(Jhaetal.,2022;Nandaetal.,2021; Pattnaiketal.,2022;Singhetal.,2021).
AmidtheincreasingconcernoveranthropogenicCO2 emissions,the IntergovernmentalPanelonClimateChange(IPCC)haslauncheda
https://doi.org/10.1016/B978-0-323-85585-3.00011-0
©2022ElsevierB.V. Allrightsreserved.
Figure1.1 CO2 emissionsfromcombustionoffossilfuels. FromIEA2020.Available from: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview (Accessedon 23April2021).
globalresponseplantolimittheglobalwarmingtemperatureto1.5°Cto reduceitscatastrophicimpacts(Nandaetal.,2016a,b;Masson-Delmotte etal.,2018).Currently,theglobalperspectiveforCO2 utilizationisestimatedat3.7Gt/year,whichaccountsforonly10%oftotalCO2 emissionsglobally(Anwaretal.,2020).Despiteseveralresponseplanstolimit CO2 emissionsandshiftingfocustowardrenewableenergy,thefossilfuel dominanceisstillpersistent,andsomeestimaterevealsthatitwillaccount for65%oftheenergysourcesby2100(MacDowelletal.,2017). Therefore,consideringallsuchapprehensions,implementationofcarbon captureandstorage(CCS)technologyhasemergedasalong-termpromisinglow-costcarbon-neutralenergyalternativeandeffectivemethodologyinmitigatingcarboncontentsfromtheatmosphere(MacDowell etal.,2017;Zhangetal.,2020).TheintegrationofindustrieswithCCS hasanenormouspotentialinsequesteringcarbonandsubstantialproductionoffuelsandotherbeneficialproducts(PerathonerandCenti,2014). Theresultingprojectscouldbeabletoachieveanoverwhelmingcarbonbasedproductsmarketof$0.8 1.1trillion(Koytsoumpaetal.,2018).
Inaddition,CCSandcarbon-captureutilization(CCU)canbeintegratedintocarboncapture,utilizationandsequestration(CCUS)asa
cutting-edgesustainablemethodologytolessentheseverityofclimate change(Nandaetal.,2016a,b;Kangetal.,2021).Initially,CO2 iscapturedintheCCUSmethodfromafluegasstreamofcombustedfossil fuelandfurtherpurifiedtoproduceaCO2 streamwithhighpurity.This highpurestreamcanbesequesteredorutilizedtoproduceenergyand value-addedchemicalssuchasmethanol,urea,salicylicacid,carbonates, formicacid,ammonia,etc.(Zhangetal.,2020).
1.2CO2 emissions
Overtheyears,variousCO2 emissionsourceshavebeenidentifiedthat aregeographicallydistributedaroundtheworld.Thepowerandindustry sectorscombinedarelikelytoincreasepredominantly,accountingfor about60%oftotalCO2 emissions.Therearedifferentsectoralsourcesof CO2 emissionsincludingfuelcombustion,electricityandheatproduction, transport,residential,commercialandpublicservices(Fig.1.2).ThesesectorsgenerateCO2 fromtypicallargestacks,coal,oil,andgas(Buietal., 2018;Ranaetal.,2018;Ranaetal.,2019;Ranaetal.,2020;Khanetal., 2020).
Figure1.2 CO2 emissionsfromdifferentsectors. FromIEA2020.Availablefrom: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview (Accessedon 23April2021).
CO2 isreleasedasanundesirableproductinpetrochemicalprocesses, mainlywhensyntheticgasisusedasanintermediate.Theblastfurnaces thatareusedforsteelproductionusecoalandcokeastheirprimaryfuels, whileoilandgasaretheprimaryfuelsintherefiningandchemicalsectors.CO2 isalsogeneratedattheplaceswherecarbonisusedasfeedstock, areducingagentformetalproduction,incalcination,andthefermentationofbiomass.Coalisthedominantfuelinthepowersector,accounting for36%ofglobalelectricityin2020.Eventually,during2019 2020, therewasatemporarydecreaseintheemissionsofCO2 duetothe COVID-19relatedforcedconfinementsintermsofreducedindustrial manufacturing,masstransportationandaviation(LeQuéréetal.,2020). However,globalcoaluseisanticipatedtoreboundin2021withglobal CO2 emissionsofaround640Mt(IEA,2020).
Amongthedevelopedcountriesandmajoremergingeconomy nations,Chinaemitted28%ofglobalCO2 emissionsin2018followedby theUSA(15%),India(7%),Canada(2%),andRussia(5%)(IEA,2020). SinceemissionsofCO2 isoneofthemajorreasonsforglobalclimate change,theyearlyexplodingpopulationgrowthfrom6.2billionin2000 to7.8billionpopulationin2020hasnotonlyincreasedrapidenergyconsumptionratebutalsoposedtremendousenvironmentalchallengesalong withtheincreaseofCO2 emissions(Fig.1.3)(Dongetal.,2018;Ribeiro etal.,2019).
1.3CO2 captureandstoragetechnologies
Asdiscussedintheabovementionedsections,CO2 isgeneratedasoneof thebyproductsduringthecombustionofbiomassandvariousfossilfuels inindustrialorpowerplants.SeparationofCO2 fromindustrialsources, compression,anddeliverytoageologiclocationforstorageorincreased oilrecoveryareallpartsofCCS(Razaetal.,2019).Ithasawiderangeof industrialapplications,includingexcellentCO2 mitigationfromtheprocessorexhaustgases,aswellasnaturalgas(NG)processing.Tocapture CO2 fromlargepointsourcessuchasfossilfuelpowerplants,thereare threemajortechnicalsolutionssuchaspost-combustion,pre-combustion, andoxy-combustion(oxy-fueling)(Kannicheetal.,2010).Accordingto thesetechnologies,CO2 issegregatedfromtheH2 inpre-combustion,N2 inpost-combustion,andfromH2Ointheoxy-fuelingprocess,wherethe hydrocarbonfuelsarecombustedinthepresenceofO2.Moreover,inthe
Figure1.3 CO2 emissionsvsworldpopulationbyyears. FromIEA2020.Availablefrom: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview (Accessedon23 April2021).
NGprocessing,CO2 needstobeseparatedfrommethaneandotherlight hydrocarbons(AraújoanddeMedeiros,2017).
CombustionoffossilfuelslikecoalandNGgeneratevariousexhaust emissionsincludingfluegases,whichareacombinationofCO2,N2,and certainoxygenatedmolecules(e.g.,SO2,NO2,andO2)(Adamsetal., 2020).Thiscombustionoffossilfuelsisthemajorprocessinvarious powerplants.Inthesecases,CO2 canbeseparatedfromtheexhaustgases producedbythecombustionoffossilfuelsviapost-combustioncapture (PCC)(Kárászováetal.,2020).Particulatematter,nitrogenoxides,and sulfuroxidesareremovedfromtheexhaustgases.Inthepost-combustion CO2 captureprocess,theexhaustedgasescomingfromtheindustrialor powerplantsarepassedthroughaliquidsolvent,whichisusuallyan amine-basedsolvent(suchasmonoethanolordiethanolamine)(Hüser etal.,2017;Saeedetal.,2018).TheamineselectivelyabsorbstheCO2, capturingmorethan85%ofCO2 andenablingnitrogenandoxygento bereleasedintotheenvironment.AfterseparatingCO2 fromtheamine solution,itiscompressedintoaliquifiedform.
Besidestheamine-basedsolvents,variousconcentratedalkalinesolutionslikeKOHandNaOHareefficientabsorbentsfortheseparationof
CO2 fromtheexhaustgaseswithanefficiencyof92% 99%(61% 90% efficiencybyamine-basedsolvents)duetohigherreactivityoftheCO2 amongotherconstituentgases(Pengetal.,2012).Thehigherreactivity oftheCO2 withthealkalinesolutionsreliesontheacidicnatureofCO2 andstrongacid baseinteractionbetweenCO2 andalkalinesolution.The chemicalreactionofthecapturingofCO2 bytheabovealkalinesolution ispresentedbelow(Eqs.1.1 1.3):
MajorbottlenecksofusingthealkalinesolutionfortheCO2 capture arethecorrosivenatureandnonrecyclabilityofthealkalinesolution, whichresultsintheadditionofthehighercosttothecapturingprocess (Chaubeyetal.,2017).Torectifytheabovelimitations,insteadofusing purealkalinesolutions,amixtureoforganicsolventsandthealkaline solutionisused,whichalsoenhancestheabsorbanceofCO2 (Pengetal., 2012).Inthepost-combustiontechniques,varioussolidadsorbentsare usedtoabsorbCO2 fromthefluegasesincludingmetal-organicframeworks[e.g.,MIL-101(Cr),Ni-MOF-1,Ni3O-MOF,JLU-MOF58,and NKU-21a],zeolites,andactivatedcarbons(Yeetal.,2013;Chenetal., 2017;Mukherjeeetal.,2019;Tranetal.,2019;Younasetal.,2020; Congetal.,2021).Furthermore,membraneseparationtechniques hasbeenpopularizedduetotheircost-effectiveandefficientseparationof CO2
Variouspolymericandzeolite-basedmembranesareusedforthe captureofCO 2 ,followingagasdiffusionmechanism( Sniderand Verweij,2014;Hussainetal.,2015 ).Post-combustioncapturetechniquesforcapturingCO 2 fromthefluegasesgeneratedfromtheindustrialorpowerplants,NGprocessingunits,andotherlargerplantslike steelplantscanbeconvenientlyinstalledinthepre-existingplants withoutmakinganyfurthermodification( Basileetal.,2011 ). Therefore,thesepost-combustiontechniquesarehighlyapplicableand significantforthevariouscoal-firedorNG-firedpowerplantstocaptureorseparateCO 2 ,whichalsosubsequentlydiminishesthegreenhousegasemissionstotheatmosphere.
HCO3 1 OH -CO2 3 1 H2 O(1.3)
Unlikepost-combustioncapture,pre-combustioncaptureisimplementedforcapturingCO2 beforethecombustionprocess.Thistechnique ofCO2 captureconsistsoffourmajorstages(CarpenterandLong,2017):
1. ConversionoffossilfuelssuchasNGsandcoalorbiomassintosyngas (CO 1 H2).
2. Inthesecondstage,COreactswithwatertoformCO2 andH2 (water-gasshiftreaction).
3. Finally,toenhancethecombustibility,CO2 isseparatedfromH2 by capturingitbyvarioustechniquesmentionedin Table1.1
4. Finally,theseparatedCO2 isliquified,compressed,andbottledfor variouspurposes.
Inthepre-combustioncapture,boththeabsorptionandadsorption techniquesarepotentiallyimplementedusingvariousphysicalorchemical solventsandporousmaterialsmentionedin Table1.1,whicharesimilar tothepost-combustioncapturetechniques.Thepre-combustiontechniquesareconsideredthemostefficientprocesseswithalowrisk.TheefficiencyofCO2 captureoftheprocessesunderpre-combustioncapture techniquesisfoundtobe90% 95%(Basileetal.,2011).Unlikepostcombustioncaptureprocesses,pre-combustionprocessesrequireahigher amountofcapitaltoestablishatotallynewplantfortheseparationof CO2 fromthesyngasproducingH2 simultaneously.Thistechniqueis widelyusedinoilrefineriesandpowerplantsonanindustrialscale.
AmongthedifferentCO2 capturetechniques,oxy-fuelcombustionor oxy-fuelingisthemostsignificantmethodfortheseparationandcapture ofCO2 foritseconomicalapproaches.Oxy-fuelingadoptsthemethodof separatingO2 fromtheair,andthecost-effectivenessofthemethodis duetotheinexpensivenessandaccessibilityofairorO2 (Kannicheetal., 2010;Wuetal.,2018).Inthecombustionandgasificationprocess,oxygenwithapurityof97%isusedintheboiler,whichsubsequentlyproducesfluegascontainingahighlysignificantamountofCO2 andH2O (75%CO2)withaminimumcontentofNOx andSOx.Fromtheflue gas,particulatematterandothertracegasesareremoved,andthenthe wetCO2 gasiscondensedtoremoveresidualwatercontentandto increasetheconcentrationofCO2 from75%to99%(Kannicheetal., 2010).Inthisway,itiseasiertoseparateCO2 fromthefluegasandcaptureitforfurtheruses.Inthepreliminarystageoftheoxy-fuelingprocess, pureoxygenisseparatedfromairusingvarioustechniqueslikemembrane separationandmolecularsieving,whichisusedinthecombustionprocess (Hammetal.,2017).Thisoxygenisolationprocessincreasesthetotalcost
