Carbon dioxide capture and conversion: advanced materials and processes nanda s. - Get the ebook in

Page 1


https://ebookmass.com/product/carbon-dioxide-capture-andconversion-advanced-materials-and-processes-nanda-s/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization Dr. Inamuddin

https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-carbon-dioxide-capture-andutilization-dr-inamuddin/ ebookmass.com

Atomic and Nano Scale Materials for Advanced Energy Conversion, Volume 2 Zongyou Yin

https://ebookmass.com/product/atomic-and-nano-scale-materials-foradvanced-energy-conversion-volume-2-zongyou-yin/

ebookmass.com

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials Sekhar Chandra Ray

https://ebookmass.com/product/magnetism-and-spintronics-in-carbon-andcarbon-nanostructured-materials-sekhar-chandra-ray/ ebookmass.com

The Communist Manifesto in the Revolutionary Politics of 1848: A Critical Evaluation David Ireland

https://ebookmass.com/product/the-communist-manifesto-in-therevolutionary-politics-of-1848-a-critical-evaluation-david-ireland/

ebookmass.com

Her Perfect Life Rebecca Taylor

https://ebookmass.com/product/her-perfect-life-rebecca-taylor/

ebookmass.com

Of Glass and Lavender: The Ascension Rising Series - Book 1 K. R. Rainbolt

https://ebookmass.com/product/of-glass-and-lavender-the-ascensionrising-series-book-1-k-r-rainbolt/

ebookmass.com

Trauma Counseling: Theories and Interventions 1st Edition, (Ebook PDF)

https://ebookmass.com/product/trauma-counseling-theories-andinterventions-1st-edition-ebook-pdf/

ebookmass.com

Abyss (The Mercy Blades Book 4) Clarissa Bright

https://ebookmass.com/product/abyss-the-mercy-blades-book-4-clarissabright/

ebookmass.com

Mais Esperto que o Diabo Napoleon Hill [Hill

https://ebookmass.com/product/mais-esperto-que-o-diabo-napoleon-hillhill/

ebookmass.com

PRACTITIONER'S GUIDE TO GAAS 2021 : covering all sass, ssaes, ssarss, and interpretations. Joanne M. Flood

https://ebookmass.com/product/wiley-practitioners-guide-togaas-2021-covering-all-sass-ssaes-ssarss-and-interpretations-joanne-mflood/

ebookmass.com

CarbonDioxideCapture andConversion

CarbonDioxideCapture andConversion

AdvancedMaterialsandProcesses

DepartmentofChemicalandBiologicalEngineering, UniversityofSaskatchewan,Saskatoon,Saskatchewan, Canada

DAI-VIETN.VO

CenterofExcellenceforGreenEnergyandEnvironmental Nanomaterials,NguyenTatThanhUniversity, HoChiMinhCity,Vietnam

VAN-HUYNGUYEN

ChettinadHospitalandResearchInstitute, ChettinadAcademyofResearchandEducation, Kelambakkam,TamilNadu,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85585-3

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: EmeraldLi

ProductionProjectManager: SujathaThirugnanaSambandam

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

1.AbriefoverviewofrecentadvancementsinCO2 captureand valorizationtechnologies1

BiswaR.Patra,ShivaP.Gouda,FalguniPattnaik,SonilNanda, AjayK.DalaiandSatyanarayanNaik

1.1 Introduction1

1.2 CO2 emissions3

1.3 CO2 captureandstoragetechnologies4

1.4 ValorizationofCO2 toproducevaluablechemicals9

1.5 Conclusions12 Acknowledgments12 References12

2.SustainableutilizationofCO2 towardacirculareconomy: prospects,challenges,andopportunities17

BamideleVictorAyodele,SitiIndatiMustapa,MayAliAlsaffarand Dai-VietN.Vo

2.1 Introduction17

2.2 OverviewofpathwaysforCO2 emissions19

2.2.1 CO2 emissionsinresidentialandcommercialbuilding20

2.2.2 CO2 emissionsinindustrialprocesses21

2.2.3 CO2 emissionsinthetransportationsector22

2.2.4 CO2 emissionselectricitygeneration22

2.3 StrategiesandcirculareconomicmodelformitigationofCO2 emissionsanditssustainableutilization24

2.3.1 StrategiesforCO2 emissionreduction24

2.4 ProcessesforsustainableutilizationofCO2 forvalue-addedproducts27

2.4.1 CO2 reformingofhydrocarbonandbiomass28

2.4.2 CO2 hydrogenationtorenewablefuelsandvalue-addedproducts29

2.5 OvercomingthechallengesofCO2 valorizationtosustainableproducts31

2.6 Conclusions32 References33

3.CO2 conversiontechnologiesforcleanfuelsproduction37

AhmadSalamFarooqi,MohammadYusuf,NoorAsmawatiMohdZabidi, KhairuddinSanaullahandBawadiAbdullah

3.1 Introduction37

3.2 MethodsforCO2 conversion38

3.3 CO2 conversionintomethanol39

3.4 CO2 conversionintosynthesisgas43

3.5 CO2 conversiontomethane(methanation)reaction46

3.6 CO2 conversionintodimethylether51

3.7 CO2 conversionintogasoline55

3.8 Conclusions58

Acknowledgments58 References58

4.Upcyclingofcarbonfromwasteviabioconversioninto biofuelandfeed65

SiewYoongLeong,ShamsulRahmanMohamedKutty, PakYanMohandQunliangLi

Abbreviations65

4.1 Introduction65

4.2 UpcyclingofCO2 bymicroalgae66

4.3 Upcyclingofcarbonbyinsectlarvae72

4.4 BiomethanationofCO2 byanaerobicdigestion80

4.5 Importanceofbioconversionincircularbioeconomy80

4.6 Opportunityandchallengesinbioconversionofcarbonsource82

4.7 Conclusions86 References86

5.Organicbase-mediatedfixationofCO2 intovalue-added chemicals93

CongChienTruongandDineshKumarMishra

Abbreviations93

5.1 Introduction94

5.2 Organicbase-mediatedtransformationofCO2 intovalue-addedproducts95

5.2.1 Linear/cyclicureaandcarbamoylazides95

5.2.2 Linear/cycliccarbamates97

5.2.3 Linear/cycliccarbonates98

5.2.4 Polyureas polycarbonates103

5.2.5 CO2 reduction-derivedproducts105

5.2.6 Carboxylicacidsandtheiresterderivatives109

5.2.7 Five-memberedheterocycles111

5.2.8 Six-memberedheterocycles114

5.3 Conclusions120 References120

6.CatalyticconversionofCO2 intomethanol129 NorHafizahBerahimandNoorAsmawatiMohdZabidi

Abbreviations129

6.1 Introduction130

6.2 Methanolusesandapplications131

6.2.1 Chemicalfeedstock131

6.2.2 Energysource132

6.2.3 Otheruses132

6.2.4 Industrialmethanolsynthesis132

6.2.5 HydrogenationofCO2 intomethanol133

6.3 CO2 activationanditsthermodynamicchallengesformethanol reduction135

6.4 CatalystsforhydrogenationofCO2 intomethanol136

6.4.1 Cu/ZnO-basedcatalysts136

6.4.2 Catalystsupports138

6.4.3 Catalystpromoters142

6.5 Factorsaffectingmethanolsynthesis145

6.5.1 Catalystpretreatment145

6.5.2 Reactionconditions148

6.6 Deactivationofthecatalysts153

6.7 Conclusions154 References155

7.Applicationofcalciumlooping(CaL)technologyfor CO2 capture163 NaderMahinpey,SeyedMojtabaHashemi,S.ToufighBararpourand DavoodKarami

7.1 Introduction163

7.2 Calciumloopingprocess164

7.3 ReactivitydecayofCaO-basedsorbents167

7.3.1 Sintering168

7.3.2 Reactionwithimpurities170

7.3.3 Attrition170

7.4 NaturalandsyntheticCaO-basedsorbents172

7.4.1 Naturalsorbents173

7.4.2 Syntheticsorbents181

7.5 Kineticsmodelingofcalciumloopingprocess188

7.6 Conclusionsandperspectives192 References194

8.Dryreformingofmethaneandbiogastoproducesyngas: areviewofcatalystsandprocessconditions201

ZahraAlipour,VenuBabuBorugadda,HuiWangandAjayK.Dalai Abbreviations201

8.1 Introduction201

8.2 Heterogeneouscatalystfordryreforming203

8.2.1 Noblemetal-basedcatalyst203

8.2.2 Nonnoblemetal-basedcatalysts206

8.2.3 Bimetalliccatalysts208

8.3 Effectsofsupports212

8.4 Roleofmodifiers215

8.5 Roleofpreparationmethods219

8.6 Effectsofprocessconditions224

8.7 Roleofprecursor227

8.8 Conclusions228 Acknowledgments230 References230

9.Advancesintheindustrialapplicationsofsupercriticalcarbon dioxide237

JudeA.Okolie,SonilNanda,AjayK.DalaiandJanuszA.Kozinski

9.1 Introduction237

9.2 UniquepropertiesofSCCO2 238

9.3 IndustrialapplicationsofSCCO2 240

9.3.1 Extractionofbioactivecompounds240

9.3.2 Extractionofcannabinoids242

9.3.3 Conversionofwasteheatintopower243

9.3.4 Catalysis244

9.3.5 Sustainableenergygeneration245

9.3.6 Biomasspretreatmentandrecoveryofvalue-addedbiochemicals246

9.3.7 Otherindustrialapplications247

9.4 Conclusionsandperspectives250

Acknowledgments251 References251

10.ApplicationofmembranetechnologyforCO2 captureand separation257

WaiFenYong,CanZengLiangandChaitanyakumarReddyPocha

Abbreviations257

Listofsymbols258

10.1 Introduction259

10.2 Transportmechanismsforgasseparation260

10.2.1 Diffusioninporousmembranes261

10.2.2 Diffusioninnonporousmembranes262

10.3 Membranepreparation264

10.3.1 Preparationofpolymericmembranes264

10.3.2 Preparationofinorganicmembranes267

10.4 Polymericmembranes269

10.4.1 Polymerblendsmembranes269

10.4.2 Mixedmatrixmembranes273

10.5 Inorganicmembranes274

10.5.1 Carbonmolecularsievemembranes274

10.5.2 Ceramicmembranes276

10.5.3 Zeolitemembranes279

10.6 Conclusionsandperspectives281 References282

11.Sequestrationofcarbondioxideintopetroleumreservoirfor enhancedoilandgasrecovery291

MinhajUddinMonir,AzrinaAbdAziz,FatemaKhatun, MostafaTarekandDai-VietN.Vo

Abbreviations291

11.1 Introduction291

11.2 Oilandgasreservoirs293

11.3 Advancedoilandgasrecoverymechanism295

11.3.1 Enhancedoilrecovery296

11.3.2 Enhancedgasrecovery297

11.3.3 Challengesandstrategyforincreasedoil/gasrecovery297

11.4 FundamentalsofCO2 gasinjection297

11.4.1 SourcesofCO2 298

11.4.2 Surfacefacilities301

11.5 Technologiesforenhancedoil/gasrecovery302

11.5.1 CO2 injectionforenhancedoilrecovery302

11.5.2 CO2 injectionforenhancedgasrecovery303

11.5.3 CO2 solubilityinoilandgas305

11.5.4 CO2 injectionfacilitiesandprocessdesignconsiderations305

11.6 Economicevaluation305

11.7 Conclusions306 References307

Listofcontributors

BawadiAbdullah

DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,BandarSeri Iskandar,Perak,Malaysia

ZahraAlipour

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

MayAliAlsaffar

DepartmentofChemicalEngineering,UniversityofTechnology-Iraq,Baghdad,Iraq

BamideleVictorAyodele

DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,SeriIskandar, Perak,Malaysia

AzrinaAbdAziz

FacultyofCivilEngineeringTechnology,UniversitiMalaysiaPahang,Kuantan,Pahang, Malaysia

S.ToufighBararpour

DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada

NorHafizahBerahim

DepartmentofFundamentalandAppliedSciences,UniversitiTeknologiPETRONAS, BandarSeriIskandar,Perak,Malaysia

VenuBabuBorugadda

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

AjayK.Dalai

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

AhmadSalamFarooqi

DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,BandarSeri Iskandar,Perak,Malaysia

ShivaP.Gouda

DepartmentofChemistry,CollegeofEngineeringandTechnology,Bhubaneswar, Odisha,India

SeyedMojtabaHashemi

DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada

DavoodKarami

DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada

FatemaKhatun

FacultyofCivilEngineeringTechnology,UniversitiMalaysiaPahang,Kuantan,Pahang, Malaysia

JanuszA.Kozinski

FacultyofEngineering,LakeheadUniversity,ThunderBay,Ontario,Canada

ShamsulRahmanMohamedKutty

DepartmentofCivilandEnvironmentalEngineering,UniversitiTeknologiPETRONAS, SeriIskandar,PerakDarulRidzuan,Malaysia

SiewYoongLeong

DepartmentofPetrochemicalEngineering,UniversitiTunkuAbdulRahman,Kampar, PerakDarulRidzuan,Malaysia

QunliangLi

SchoolofChemistryandChemicalEngineering,GuangxiUniversity,Nanning,Guangxi, China

CanZengLiang

DepartmentofChemicalandBiomolecularEngineering,NationalUniversityof Singapore,Singapore,Singapore

NaderMahinpey

DepartmentofChemicalandPetroleumEngineering,UniversityofCalgary,Calgary, Alberta,Canada

DineshKumarMishra

DepartmentofChemicalEngineering/ResearchInstituteofIndustrialScience,Hanyang University,Seoul,RepublicofKorea

PakYanMoh

IndustrialChemistryProgramme,FacultyofScienceandNaturalResources,Universiti MalaysiaSabah,KotaKinabalu,Sabah,Malaysia

MinhajUddinMonir

DepartmentofPetroleumandMiningEngineering,JashoreUniversityofScienceand Technology,Jashore,Bangladesh

SitiIndatiMustapa

InstituteofEnergyPolicyandResearch,NationalEnergyUniversity,KajangSelangor, Malaysia

SatyanarayanNaik

CentreforRuralDevelopmentandTechnology,IndianInstituteofTechnologyDelhi, NewDelhi,Delhi,India

SonilNanda

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

JudeA.Okolie

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

BiswaR.Patra

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

FalguniPattnaik

CentreforRuralDevelopmentandTechnology,IndianInstituteofTechnologyDelhi, NewDelhi,Delhi,India

ChaitanyakumarReddyPocha

SchoolofEnergyandChemicalEngineering,XiamenUniversityMalaysia,Selangor DarulEhsan,Selangor,Malaysia

KhairuddinSanaullah

DepartmentofChemicalEngineeringandEnergySustainability,UniversitiMalaysia Sarawak,KotaSamarahan,Sarawak,Malaysia

MostafaTarek

FacultyofChemicalandNaturalResourcesEngineering,UniversitiMalaysiaPahang, Kuantan,Pahang,Malaysia

CongChienTruong

DepartmentofBio-functionalMolecularEngineering,UniversityofToyama,Toyama, Japan

Dai-VietN.Vo

CenterofExcellenceforGreenEnergyandEnvironmentalNanomaterials,NguyenTat ThanhUniversity,HoChiMinhCity,Vietnam

HuiWang

DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan, Saskatoon,Saskatchewan,Canada

WaiFenYong

SchoolofEnergyandChemicalEngineering,XiamenUniversityMalaysia,Selangor DarulEhsan,Selangor,Malaysia

MohammadYusuf

DepartmentofChemicalEngineering,UniversitiTeknologiPETRONAS,BandarSeri Iskandar,Perak,Malaysia

NoorAsmawatiMohdZabidi

DepartmentofFundamentalandAppliedSciences,UniversitiTeknologiPETRONAS, BandarSeriIskandar,Perak,Malaysia

Abouttheeditors

Dr.SonilNanda isaResearchAssociateatthe UniversityofSaskatchewaninSaskatoon, Saskatchewan,Canada.HereceivedhisPhDdegree inbiologyfromtheYorkUniversity,Canada;MSc degreeinappliedmicrobiologyfromtheVellore InstituteofTechnology(VITUniversity),India; andBScdegreeinmicrobiologyfromtheOrissa UniversityofAgricultureandTechnology,India. Dr.Nanda’sresearchareasincludetheproduction ofadvancedbiofuelsandbiochemicalsusingthermochemicalandbiochemicalconversiontechnologiessuchasgasification, pyrolysis,carbonization,torrefaction,andfermentation.Hehasgained expertiseinhydrothermalgasificationofvariousorganicwastesandbiomass,includingagriculturalandforestryresidues,industrialeffluents, municipalsolidwastes,cattlemanure,sewagesludge,foodwastes,waste tires,andpetroleumresidues,toproducehydrogenfuel.Hisparallelinterestsincludethegenerationofhydrothermalflamesforthetreatmentof hazardouswastes,agronomicapplicationsofbiochar,phytoremediationof heavymetalcontaminatedsoils,aswellascarboncaptureandsequestration.Dr.Nandahaspublished15books,70bookchapters,andover130 peer-reviewedjournalarticles.Heistheeditorofbooksentitled New DimensionsinProductionandUtilizationofHydrogen (Elsevier), Recent AdvancementsinBiofuelsandBioenergyUtilization (SpringerNature), BiorefineryofAlternativeResources:TargetingGreenFuelsandPlatform Chemicals (SpringerNature), FuelProcessingandEnergyUtilization (CRC Press), BioprocessingofBiofuels (CRCPress),and CatalyticandNoncatalytic UpgradingofOils (AmericanChemicalSociety),tonameafew.Dr.Nanda servesasafellowmemberoftheSocietyforAppliedBiotechnologyin India,aswellasaLifeMemberoftheIndianInstituteofChemical Engineers,AssociationofMicrobiologistsofIndia,IndianScience CongressAssociation,andtheBiotechResearchSocietyofIndia.Heis alsoanactivememberofseveralchemicalengineeringsocietiesacross NorthAmericasuchastheAmericanInstituteofChemicalEngineers,the ChemicalInstituteofCanada,theCombustionInstitute-CanadianSection, andEngineersWithoutBordersCanada.Dr.Nandaisanassistantsubject

editorforthe InternationalJournalofHydrogenEnergy (Elsevier)aswellasan associateeditorforthe EnvironmentalChemistryLetters (SpringerNature) and AppliedNanoscience (SpringerNature).Hehasalsoeditedseveralspecial issuesinrenownedjournalssuchasthe InternationalJournalofHydrogen Energy (Elsevier), ChemicalEngineeringScience (Elsevier), BiomassConversion andBiorefinery (SpringerNature), WasteandBiomassValorization (Springer Nature), TopicsinCatalysis (SpringerNature), SNAppliedSciences (Springer Nature),and ChemicalEngineering&Technology (Wiley).

Dr.Dai-VietN.Vo istheDirectoroftheCenter ofExcellenceforGreenEnergyandEnvironmental NanomaterialsatNguyenTatThanhUniversityin HoChiMinhCity,Vietnam.HereceivedhisPhD degreeinchemicalengineeringfromtheUniversity ofNewSouthWalesinSydney,Australia,in2011. Hehasworkedasapostdoctoralfellowatthe UniversityofNewSouthWalesinSydneyand TexasA&MUniversityinQatar,Doha.Formerly, hewasaseniorlecturerattheFacultyofChemical &NaturalResourcesEngineeringintheUniversitiMalaysiaPahangin Kuantan,Malaysia(2013 19).Hisresearchareasincludetheproduction ofgreensyntheticfuelsviaFischer Tropschsynthesisusingbiomassderivedsyngasfromvariousreformingprocesses.Heisalsoanexpertin advancedmaterialsynthesisandcatalystcharacterization.Duringtheearly daysofhiscareer,heworkedasaprincipalinvestigatorandcoinvestigator for21differentfundedresearchprojectsrelatedtosustainableandalternativeenergy.Hehaspublished6books,20bookchapters,andmorethan 300peer-reviewedjournalarticlesandconferenceproceedings.Hehas servedinthetechnicalandpublicationcommitteesofnumerousinternationalconferencesinchemicalengineering,catalysis,andrenewable energy.Dr.Voistheeditorofbooksentitled NewDimensionsinProduction andUtilizationofHydrogen (Elsevier), BiorefineryofAlternativeResources: TargetingGreenFuelsandPlatformChemicals (SpringerNature),and Fuel ProcessingandEnergyUtilization (CRCPress).Dr.Voisanassistantsubject editorforthe InternationalJournalofHydrogenEnergy (Elsevier)andaguesteditorforseveralspecialissuesinhigh-impact-factorjournalssuchasthe InternationalJournalofHydrogenEnergy (Elsevier), Chemosphere (Elsevier), ComptesRendusChimie (Elsevier), WasteandBiomassValorization (Springer), TopicsinCatalysis (Springer), JournalofChemicalTechnology&Biotechnology (Wiley), ChemicalEngineering&Technology (Wiley),andseveralothers.He isalsoanassociateeditorforthe EnvironmentalChemistryLetters (Springer Nature)and AppliedNanoscience (SpringerNature).Heisaneditorialboard memberofmanyinternationaljournals,including SNAppliedSciences (Springer), ScientificReports (SpringerNature),and PLoSOne.Dr.Vohas beenawardedasaTopPeerReviewer2019poweredbyPublons.

Dr.Van-HuyNguyen receivedtheBSdegree (2008)inenvironmentalengineeringfromtheHo ChiMinhCityUniversityofTechnology, Vietnam,andanMSdegree(2010)inchemical engineeringfromtheNationalTaiwanUniversity (NTU).HeobtainedhisPhDdegreeinchemical engineeringfromtheNationalTaiwanUniversity ofScienceandTechnologyin2015.Hehasgained theknowledgeandexperienceofworkinginboth academiaandindustry.BeforejoiningChettinad AcademyofResearchandEducationasaVisitingProfessor,heworkedat BinhDuongUniversity,TonDucThangUniversity,andDuyTan UniversityinVietnam.Dr.Nguyenhaspublishedover110peerreviewedjournalarticles,10bookchapters,andpresentedatmanyinternationalconferences.Currently,heistheassociateeditorforthe Applied Nanoscience (SpringerNature)andeditorialboardmemberof PLoSOne. Heisalsothemanagingguest-editorandguest-editorof10specialissues injournalsofreputesuchasthe JournalofChemicalTechnology& Biotechnology (Wiley), ArabianJournalofChemistry (Elsevier), Topicsin Catalysis (Springer), ChemicalEngineeringScience (Elsevier), Biomass ConversionandBiorefinery (Springer), MaterialsLetters (Elsevier), Journalof EnvironmentalChemicalEngineering (Elsevier), SustainableChemistryand Pharmacy (Elsevier),and EnvironmentalScienceandPollutionResearch (Springer).HeisaneditorforeditedbooksunderproductioninElsevier aboutphotocatalysis,CO2 capture,andconversion.Dr.Nguyenisan activereviewerformanyhigh-impactjournalspublishedbyElsevier, ACS,Wiley,SpringerNature,RSC,MDPI,andPLoSPublishers.His researchworkshavegainedbroadinterestthroughhishighlycited researchpublications,bookchapters,conferencepresentations,andworkshoplectures.Hisresearchfocusesonchemicalandmaterialaspectsof (photo)catalyticprocessesandabasicunderstandingof(photo)catalysts, emphasizingtheimportanceofcleanenergyindealingwithenvironmentalproblems,andproductionofvalue-addedchemicals.

Preface

Excessiveutilizationoffossilfuelsandpetrochemicalsalongwiththe increasedindustrialmanufacturingprocesses,emissionsfromautomobiles, andanthropogenicactivitieshasresultedinariseintheCO2 levelsinthe atmosphere.AhigherlevelofCO2 intheatmosphereisaleadingcause ofglobalwarmingandclimatechange.Biofuels,biochemicals,andbioproductshavealowercarbonfootprintbecausetheCO2 liberatedfrom theirend-useisutilizedduringphotosynthesistoproducenewplantbiomass.Nevertheless,thereisagrowinginterestincarboncapturingand sequestrationtechniquesalongwiththeirutilizationformanufacturing value-addedindustrialproducts.Thisbookcoversthecurrentresearch anddevelopmentofsomeleadingtechnologiesforcapturingandutilizing CO2 forhigh-valueindustrialprocessesandproductmanufacturing.

Chapter1 byPatraetal.givesanoverviewofseveralsourcesofCO2 generationalongwithsomerecentdevelopmentsinCO2 capturingand storagetechnologies.ThechapteralsodiscussestheutilizationofCO2 for producingvalue-addedmaterialsusingvarioussustainabletechnologies. Chapter2 byAyodeleetal.describestheprospects,challenges,and opportunitiesforsustainableutilizationofCO2 towardsacirculareconomy.Processessuchasreforminghydrocarbonsandbiomass,aswellas hydrogenation,arereportedfortheutilizationofCO2 inproducing renewablefuelsandvalue-addedproducts. Chapter3 byFarooqietal. comprehensivelyreviewsthecurrentprogressandadvancementsofCO2 conversionintovaluablefuels,includingmethane,dimethylether,methanol,andgasoline. Chapter4 byLeongetal.discussestheopportunityand challengesinthebioconversionofcarbonsources,whichcouldprovide promisingandclosed-loopsolutionsforfoodsecurity,energy,resource scarcity,andreductionofCO2 emissions. Chapter5 byTruongand Mishragivesabroadoutlineontheutilityofhomogeneousorganicbases forthedirectandsmoothconversionofCO2 intourea,carbamates,carbonates,polymers,carboxylicacidderivatives,methanol,andheterocyclic compounds. Chapter6 byBerahimandZabidihighlightstheprogress madebytheongoingresearchanddevelopmentinthecatalyticconversionofCO2 intomethanolwithafocusondevelopingCu/ZnO-based catalysts,catalystactivity,andtheimpactofprocessvariablesontheformationofproducts. Chapter7 byMahinpeyetal.reviewsthecurrent

progressmadeintheapplicationofCaO-basedsorbentsinthecalciumloopingprocessappliedinpost-andprecombustiontechnologies.

Chapter8 byAlipouretal.describestheevaluationofvariousheterogeneouscatalystsforthedryreformingprocessbyutilizingCO2.Thechapterdiscussestheeffectsofcatalystcomponents,catalystpreparation methods,andtheimpactofreformingprocessconditionsonthecatalytic activityandcokedeposition. Chapter9 byOkolieetal.providesanoverviewoftheuniquepropertiesofsupercriticalCO2 anditsapplicationsin industrialprocessessuchashydrotreatingofbiofuels,extractionofbioactivecompounds,includingcannabinoids,biomasspretreatment,sterilizationofmedicalequipment,andconversionofwasteheatintopower.

Chapter10 byYongetal.elucidatesthefundamentalsofgastransport throughpolymericandinorganicmembranesfollowedbymembrane preparationstrategies,modificationsmethodsinpolymericandinorganic membranesaswellasprospectsofmembraneseparationforCO2 capture. Chapter11 byMoniretal.presentsadetailedstudyoftheeffectivenessof theapplicationofenhancedoilandgastechnologyinanunconventional petroleumreservoir.Thischapterevaluatestheprospectsandchallengesof CO2 sequestrationinoilandgasreservoirsfortheirenhancedrecovery.

Wearegratefultoalltheauthorsforcontributingtheirhigh-quality chapterstowardthedevelopmentofthisbook.Wealsoexpressour sincerethankstothestaffandassociatesatElsevierfortheirenthusiastic assistanceandsupportinthepreparationofthisbook.Ourspecialthanks gotoSusanDennis(Publisher),EmeraldLi(EditorialProjectManager), R.VijayBharath(ProductionProjectManager),SujathaThirugnana Sambandam(PublishingServicesManager)andChristianJ.Bilbow (CoverDesigner).

CHAPTER1

Abriefoverviewofrecent advancementsinCO2 capture andvalorizationtechnologies

BiswaR.Patra1,ShivaP.Gouda2,FalguniPattnaik3,SonilNanda1, AjayK.Dalai1

andSatyanarayanNaik3

1DepartmentofChemicalandBiologicalEngineering,UniversityofSaskatchewan,Saskatoon, Saskatchewan,Canada

2DepartmentofChemistry,CollegeofEngineeringandTechnology,Bhubaneswar,Odisha,India

3CentreforRuralDevelopmentandTechnology,IndianInstituteofTechnologyDelhi,NewDelhi,Delhi, India

1.1Introduction

Therisinghumanpopulation,urbanization,andindustrializationhaveled toenvironmentalpollution,specificallycarbondioxide(CO2)emission. CO2 istheprimarygreenhousegasthathasemanatedthedeteriorationof theclimateanditsconcentrationintheatmosphereenduredanexponentialgrowthfrom284ppm(1850)to409ppm(2018)(Patraetal.,2021). ThemajorshareofCO2 releasedtotheatmospherecomesfromfossil fuelcombustion(Fig.1.1).Theglobalenergyconsumptionisestimatedto reach815quadrillionBtuin2040comparedto582Btuin2017(Anwar etal.,2020;Patraetal.,2021).Theglobalenergydemandismostly achievedbynonrenewablefossilfuels,whichamplifiestheemissionof CO2 bycausingasteepincreaseingreenhousegas(GHG)level. Approximately77%ofthetotalGHGemissionissharedbyCO2 and removalofsuchanexcessiveamountfromtheatmospherebecomesunachievablethroughforestsandoceans(Ellabbanetal.,2014).Furthermore, otherrenewablealternativestofossilfuelssuchassolar,wind,hydropower,andbiofuelscouldlimitCO2 emissionstosomeextent(Nanda etal.,2014;Okolieetal.,2021b).Asapotentialsolutiontomitigatecarbonemissions,biofuelscanbederivedfromrenewablebiomassthrough sustainableconversiontechnologies(Jhaetal.,2022;Nandaetal.,2021; Pattnaiketal.,2022;Singhetal.,2021).

AmidtheincreasingconcernoveranthropogenicCO2 emissions,the IntergovernmentalPanelonClimateChange(IPCC)haslauncheda

https://doi.org/10.1016/B978-0-323-85585-3.00011-0

©2022ElsevierB.V. Allrightsreserved.

Figure1.1 CO2 emissionsfromcombustionoffossilfuels. FromIEA2020.Available from: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview (Accessedon 23April2021).

globalresponseplantolimittheglobalwarmingtemperatureto1.5°Cto reduceitscatastrophicimpacts(Nandaetal.,2016a,b;Masson-Delmotte etal.,2018).Currently,theglobalperspectiveforCO2 utilizationisestimatedat3.7Gt/year,whichaccountsforonly10%oftotalCO2 emissionsglobally(Anwaretal.,2020).Despiteseveralresponseplanstolimit CO2 emissionsandshiftingfocustowardrenewableenergy,thefossilfuel dominanceisstillpersistent,andsomeestimaterevealsthatitwillaccount for65%oftheenergysourcesby2100(MacDowelletal.,2017). Therefore,consideringallsuchapprehensions,implementationofcarbon captureandstorage(CCS)technologyhasemergedasalong-termpromisinglow-costcarbon-neutralenergyalternativeandeffectivemethodologyinmitigatingcarboncontentsfromtheatmosphere(MacDowell etal.,2017;Zhangetal.,2020).TheintegrationofindustrieswithCCS hasanenormouspotentialinsequesteringcarbonandsubstantialproductionoffuelsandotherbeneficialproducts(PerathonerandCenti,2014). Theresultingprojectscouldbeabletoachieveanoverwhelmingcarbonbasedproductsmarketof$0.8 1.1trillion(Koytsoumpaetal.,2018).

Inaddition,CCSandcarbon-captureutilization(CCU)canbeintegratedintocarboncapture,utilizationandsequestration(CCUS)asa

cutting-edgesustainablemethodologytolessentheseverityofclimate change(Nandaetal.,2016a,b;Kangetal.,2021).Initially,CO2 iscapturedintheCCUSmethodfromafluegasstreamofcombustedfossil fuelandfurtherpurifiedtoproduceaCO2 streamwithhighpurity.This highpurestreamcanbesequesteredorutilizedtoproduceenergyand value-addedchemicalssuchasmethanol,urea,salicylicacid,carbonates, formicacid,ammonia,etc.(Zhangetal.,2020).

1.2CO2 emissions

Overtheyears,variousCO2 emissionsourceshavebeenidentifiedthat aregeographicallydistributedaroundtheworld.Thepowerandindustry sectorscombinedarelikelytoincreasepredominantly,accountingfor about60%oftotalCO2 emissions.Therearedifferentsectoralsourcesof CO2 emissionsincludingfuelcombustion,electricityandheatproduction, transport,residential,commercialandpublicservices(Fig.1.2).ThesesectorsgenerateCO2 fromtypicallargestacks,coal,oil,andgas(Buietal., 2018;Ranaetal.,2018;Ranaetal.,2019;Ranaetal.,2020;Khanetal., 2020).

Figure1.2 CO2 emissionsfromdifferentsectors. FromIEA2020.Availablefrom: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview (Accessedon 23April2021).

CO2 isreleasedasanundesirableproductinpetrochemicalprocesses, mainlywhensyntheticgasisusedasanintermediate.Theblastfurnaces thatareusedforsteelproductionusecoalandcokeastheirprimaryfuels, whileoilandgasaretheprimaryfuelsintherefiningandchemicalsectors.CO2 isalsogeneratedattheplaceswherecarbonisusedasfeedstock, areducingagentformetalproduction,incalcination,andthefermentationofbiomass.Coalisthedominantfuelinthepowersector,accounting for36%ofglobalelectricityin2020.Eventually,during2019 2020, therewasatemporarydecreaseintheemissionsofCO2 duetothe COVID-19relatedforcedconfinementsintermsofreducedindustrial manufacturing,masstransportationandaviation(LeQuéréetal.,2020). However,globalcoaluseisanticipatedtoreboundin2021withglobal CO2 emissionsofaround640Mt(IEA,2020).

Amongthedevelopedcountriesandmajoremergingeconomy nations,Chinaemitted28%ofglobalCO2 emissionsin2018followedby theUSA(15%),India(7%),Canada(2%),andRussia(5%)(IEA,2020). SinceemissionsofCO2 isoneofthemajorreasonsforglobalclimate change,theyearlyexplodingpopulationgrowthfrom6.2billionin2000 to7.8billionpopulationin2020hasnotonlyincreasedrapidenergyconsumptionratebutalsoposedtremendousenvironmentalchallengesalong withtheincreaseofCO2 emissions(Fig.1.3)(Dongetal.,2018;Ribeiro etal.,2019).

1.3CO2 captureandstoragetechnologies

Asdiscussedintheabovementionedsections,CO2 isgeneratedasoneof thebyproductsduringthecombustionofbiomassandvariousfossilfuels inindustrialorpowerplants.SeparationofCO2 fromindustrialsources, compression,anddeliverytoageologiclocationforstorageorincreased oilrecoveryareallpartsofCCS(Razaetal.,2019).Ithasawiderangeof industrialapplications,includingexcellentCO2 mitigationfromtheprocessorexhaustgases,aswellasnaturalgas(NG)processing.Tocapture CO2 fromlargepointsourcessuchasfossilfuelpowerplants,thereare threemajortechnicalsolutionssuchaspost-combustion,pre-combustion, andoxy-combustion(oxy-fueling)(Kannicheetal.,2010).Accordingto thesetechnologies,CO2 issegregatedfromtheH2 inpre-combustion,N2 inpost-combustion,andfromH2Ointheoxy-fuelingprocess,wherethe hydrocarbonfuelsarecombustedinthepresenceofO2.Moreover,inthe

Figure1.3 CO2 emissionsvsworldpopulationbyyears. FromIEA2020.Availablefrom: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview (Accessedon23 April2021).

NGprocessing,CO2 needstobeseparatedfrommethaneandotherlight hydrocarbons(AraújoanddeMedeiros,2017).

CombustionoffossilfuelslikecoalandNGgeneratevariousexhaust emissionsincludingfluegases,whichareacombinationofCO2,N2,and certainoxygenatedmolecules(e.g.,SO2,NO2,andO2)(Adamsetal., 2020).Thiscombustionoffossilfuelsisthemajorprocessinvarious powerplants.Inthesecases,CO2 canbeseparatedfromtheexhaustgases producedbythecombustionoffossilfuelsviapost-combustioncapture (PCC)(Kárászováetal.,2020).Particulatematter,nitrogenoxides,and sulfuroxidesareremovedfromtheexhaustgases.Inthepost-combustion CO2 captureprocess,theexhaustedgasescomingfromtheindustrialor powerplantsarepassedthroughaliquidsolvent,whichisusuallyan amine-basedsolvent(suchasmonoethanolordiethanolamine)(Hüser etal.,2017;Saeedetal.,2018).TheamineselectivelyabsorbstheCO2, capturingmorethan85%ofCO2 andenablingnitrogenandoxygento bereleasedintotheenvironment.AfterseparatingCO2 fromtheamine solution,itiscompressedintoaliquifiedform.

Besidestheamine-basedsolvents,variousconcentratedalkalinesolutionslikeKOHandNaOHareefficientabsorbentsfortheseparationof

CO2 fromtheexhaustgaseswithanefficiencyof92% 99%(61% 90% efficiencybyamine-basedsolvents)duetohigherreactivityoftheCO2 amongotherconstituentgases(Pengetal.,2012).Thehigherreactivity oftheCO2 withthealkalinesolutionsreliesontheacidicnatureofCO2 andstrongacid baseinteractionbetweenCO2 andalkalinesolution.The chemicalreactionofthecapturingofCO2 bytheabovealkalinesolution ispresentedbelow(Eqs.1.1 1.3):

MajorbottlenecksofusingthealkalinesolutionfortheCO2 capture arethecorrosivenatureandnonrecyclabilityofthealkalinesolution, whichresultsintheadditionofthehighercosttothecapturingprocess (Chaubeyetal.,2017).Torectifytheabovelimitations,insteadofusing purealkalinesolutions,amixtureoforganicsolventsandthealkaline solutionisused,whichalsoenhancestheabsorbanceofCO2 (Pengetal., 2012).Inthepost-combustiontechniques,varioussolidadsorbentsare usedtoabsorbCO2 fromthefluegasesincludingmetal-organicframeworks[e.g.,MIL-101(Cr),Ni-MOF-1,Ni3O-MOF,JLU-MOF58,and NKU-21a],zeolites,andactivatedcarbons(Yeetal.,2013;Chenetal., 2017;Mukherjeeetal.,2019;Tranetal.,2019;Younasetal.,2020; Congetal.,2021).Furthermore,membraneseparationtechniques hasbeenpopularizedduetotheircost-effectiveandefficientseparationof CO2

Variouspolymericandzeolite-basedmembranesareusedforthe captureofCO 2 ,followingagasdiffusionmechanism( Sniderand Verweij,2014;Hussainetal.,2015 ).Post-combustioncapturetechniquesforcapturingCO 2 fromthefluegasesgeneratedfromtheindustrialorpowerplants,NGprocessingunits,andotherlargerplantslike steelplantscanbeconvenientlyinstalledinthepre-existingplants withoutmakinganyfurthermodification( Basileetal.,2011 ). Therefore,thesepost-combustiontechniquesarehighlyapplicableand significantforthevariouscoal-firedorNG-firedpowerplantstocaptureorseparateCO 2 ,whichalsosubsequentlydiminishesthegreenhousegasemissionstotheatmosphere.

HCO3 1 OH -CO2 3 1 H2 O(1.3)

Unlikepost-combustioncapture,pre-combustioncaptureisimplementedforcapturingCO2 beforethecombustionprocess.Thistechnique ofCO2 captureconsistsoffourmajorstages(CarpenterandLong,2017):

1. ConversionoffossilfuelssuchasNGsandcoalorbiomassintosyngas (CO 1 H2).

2. Inthesecondstage,COreactswithwatertoformCO2 andH2 (water-gasshiftreaction).

3. Finally,toenhancethecombustibility,CO2 isseparatedfromH2 by capturingitbyvarioustechniquesmentionedin Table1.1

4. Finally,theseparatedCO2 isliquified,compressed,andbottledfor variouspurposes.

Inthepre-combustioncapture,boththeabsorptionandadsorption techniquesarepotentiallyimplementedusingvariousphysicalorchemical solventsandporousmaterialsmentionedin Table1.1,whicharesimilar tothepost-combustioncapturetechniques.Thepre-combustiontechniquesareconsideredthemostefficientprocesseswithalowrisk.TheefficiencyofCO2 captureoftheprocessesunderpre-combustioncapture techniquesisfoundtobe90% 95%(Basileetal.,2011).Unlikepostcombustioncaptureprocesses,pre-combustionprocessesrequireahigher amountofcapitaltoestablishatotallynewplantfortheseparationof CO2 fromthesyngasproducingH2 simultaneously.Thistechniqueis widelyusedinoilrefineriesandpowerplantsonanindustrialscale.

AmongthedifferentCO2 capturetechniques,oxy-fuelcombustionor oxy-fuelingisthemostsignificantmethodfortheseparationandcapture ofCO2 foritseconomicalapproaches.Oxy-fuelingadoptsthemethodof separatingO2 fromtheair,andthecost-effectivenessofthemethodis duetotheinexpensivenessandaccessibilityofairorO2 (Kannicheetal., 2010;Wuetal.,2018).Inthecombustionandgasificationprocess,oxygenwithapurityof97%isusedintheboiler,whichsubsequentlyproducesfluegascontainingahighlysignificantamountofCO2 andH2O (75%CO2)withaminimumcontentofNOx andSOx.Fromtheflue gas,particulatematterandothertracegasesareremoved,andthenthe wetCO2 gasiscondensedtoremoveresidualwatercontentandto increasetheconcentrationofCO2 from75%to99%(Kannicheetal., 2010).Inthisway,itiseasiertoseparateCO2 fromthefluegasandcaptureitforfurtheruses.Inthepreliminarystageoftheoxy-fuelingprocess, pureoxygenisseparatedfromairusingvarioustechniqueslikemembrane separationandmolecularsieving,whichisusedinthecombustionprocess (Hammetal.,2017).Thisoxygenisolationprocessincreasesthetotalcost

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.