Carbon-based nanomaterials and nanocomposites for gas sensing navinchandra gopal shimpi - Quickly do

Page 1


https://ebookmass.com/product/carbon-based-nanomaterialsand-nanocomposites-for-gas-sensing-navinchandra-gopal-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Environmental Applications of Carbon Nanomaterials-Based Devices 1st. Edition Shadpour Mallakpour

https://ebookmass.com/product/environmental-applications-of-carbonnanomaterials-based-devices-1st-edition-shadpour-mallakpour/

ebookmass.com

Carbon Capture Technologies for Gas-Turbine-Based Power Plants Hamidreza Gohari Darabkhani

https://ebookmass.com/product/carbon-capture-technologies-for-gasturbine-based-power-plants-hamidreza-gohari-darabkhani/

ebookmass.com

Carbon Capture Technologies for Gas-Turbine-Based Power Plants Hamidreza Gohari Darabkhani

https://ebookmass.com/product/carbon-capture-technologies-for-gasturbine-based-power-plants-hamidreza-gohari-darabkhani-2/

ebookmass.com

Principles and Practice of Pain Medicine 3rd Edition Carol

https://ebookmass.com/product/principles-and-practice-of-painmedicine-3rd-edition-carol-a-warfield/

ebookmass.com

For F*ck's Sake: Why Swearing is Shocking, Rude, & Fun

https://ebookmass.com/product/for-fcks-sake-why-swearing-is-shockingrude-fun-rebecca-roache/

ebookmass.com

Oppressive Liberation: Sexism in Animal Activism Lisa Kemmerer

https://ebookmass.com/product/oppressive-liberation-sexism-in-animalactivism-lisa-kemmerer/

ebookmass.com

Reframing Postcolonial Studies: Concepts, Methodologies, Scholarly Activisms David D. Kim (Editor)

https://ebookmass.com/product/reframing-postcolonial-studies-conceptsmethodologies-scholarly-activisms-david-d-kim-editor/

ebookmass.com

Health Policy Analysis: An Interdisciplinary Approach 3rd Edition

https://ebookmass.com/product/health-policy-analysis-aninterdisciplinary-approach-3rd-edition/

ebookmass.com

Positive Behavioral Supports for the Classroom

https://ebookmass.com/product/positive-behavioral-supports-for-theclassroom/

ebookmass.com

Temptress : a Single Dad Small Town Romance (Whiskey Dolls Book 5) Jessica Prince

https://ebookmass.com/product/temptress-a-single-dad-small-townromance-whiskey-dolls-book-5-jessica-prince/

ebookmass.com

CARBON-BASED NANOMATERIALSAND NANOCOMPOSITES FORGASSENSING

CARBON-BASED NANOMATERIALSAND NANOCOMPOSITES FORGASSENSING

Editedby

NAVINCHANDRAGOPALSHIMPI

DepartmentofChemistry,UniversityofMumbai,Santacruz(East), Mumbai,Maharashtra,India

SHILPAJAIN

DepartmentofChemistry,JaiHindCollege,Churchgate, Mumbai,Maharashtra,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-821345-2

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: SabrinaWebber

EditorialProjectManager: RafaelGuilhermeTrombaco

ProductionProjectManager: KameshRamajogi

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Listofcontributors

ShilpaJain DepartmentofChemistry,JaiHindCollege, Mumbai,Maharashtra,India

MohammadKhalid GrapheneandAdvanced2DMaterials ResearchGroup,SchoolofEngineeringandTechnology,Sunway University,JalanUniversity,SubangJaya,Malaysia

JolinaRodrigues DepartmentofChemistry,Universityof Mumbai,Santacruz(East),Mumbai,Maharashtra,India

TanushreeSen DepartmentofChemistry,Universityof Mumbai,Santacruz(East),Mumbai,Maharashtra,India

AksharaPareshShah DepartmentofChemistry,Universityof Mumbai,Santacruz(East),Mumbai,Maharashtra,India

NavinchandraGopalShimpi DepartmentofChemistry, UniversityofMumbai,Santacruz(East),Mumbai,Maharashtra, India

GolnoushZamiri CentreofAdvancedMaterials,Mechanical Engineering,FacultyofEngineering,UniversityofMalaya,Kuala Lumpur,Malaysia

Listofcontributors.................................................xi

Abouttheeditors.................................................xiii

Preface...................................................................xv

Part1Introductiontocarbonbased nanomaterials.......................................1

1Carbon-basedsmartnanomaterials.......................3

ShilpaJainandNavinchandraGopalShimpi

1.1Introductiontocarbon-based nanomaterials.................................................3

1.2Typesofcarbonnanomaterials.....................6

1.2.1Carbonnanotubes.................................6

1.2.2Fullerenes...............................................8

1.2.3Graphene...............................................9

1.2.4Carbonnanofibers...............................11

1.3Synthesismethodologiesandvariations......12

1.4Gassensorsandtheircomparison.............16 References...........................................................19

2Carbonnanomaterials-basedgassensors.........25

ShilpaJain,AksharaPareshShahand NavinchandraGopalShimpi

2.1Typesofgassensorsbasedon carbon-basednanomaterials.......................26

2.1.1Electrochemicalsensors.....................27

2.1.2Electrical/chemiresistivesensors.......27

2.1.3Mass-sensitivegassensors................29

2.1.4Thermometric(calorimetric) gassensors..........................................30

2.2Parametersofgassensor............................31

2.2.1Sensitivity............................................31

2.2.2Selectivity.............................................32

3.6.1Carbonnanotubesandmetal

3.7.1Grapheneandmetalormetaloxide nanocompositeforgassensor...........68

3.7.2Grapheneandpolymers nanocompositesforgassensor.........72

3.8Conclusion....................................................73

Acknowledgment................................................74 References...........................................................74

Part2Applicationofcarbon

4Carbonnanotube-basedgassensors..................83

TanushreeSenand

NavinchandraGopalShimpi

4.1Introduction..................................................83

4.2Sensingmechanism.....................................85

4.3Carbonnanotube/metal nanocomposite-basedgassensors............87

4.4Carbonnanotube/semiconducting metaloxidenanocomposite-based gassensors...................................................89

4.5Carbonnanotube/conductingpolymer nanocompositesforgassensors................93

4.6Functionalizedcarbonnanotubesas gassensors...................................................97

4.7Conclusionsandoutlook.............................98

References...........................................................99

5Carbonnanofiber-basedgassensors................105

JolinaRodrigues,ShilpaJain, NavinchandraGopalShimpiand AksharaPareshShah

5.1Introduction.................................................105

5.2Methodsofcarbonnanofiber preparation..................................................106

5.2.1Electrospinning..................................106

5.2.2Catalyticthermalchemicalvapor depositiongrowth.............................107

5.2.3Substratemethod..............................109

5.3Fabrication/constructionofcarbon nanofibers....................................................110

5.3.1Carbonnanofibersmodified withmetaloxides..............................110

5.4Carbonnanofibersasgassensors.............111

5.4.1ZnO/CNFs.........................................111

5.4.2Sn SnO2/CNFs................................111

5.4.3CNFs/polystyrene............................113

5.4.4SnO2/CNFs.......................................114

5.4.5V2O5/CNFs........................................114

5.4.6Au-Pt/CNFs.......................................115

5.4.7Multifunctionalcarbon nanofibers........................................116

5.4.8Mesoporouscarbonnanofibers.....117

5.4.9WO3/CNFs........................................117

5.4.10Ni/CNFs............................................118

5.4.11CNFs/PPy..........................................119

5.4.12WS2/CNFs.........................................119

5.4.13Ni-CNF..............................................119

5.4.14Graphiticcarbonnanofibers...........121

5.4.15Graphitic-carbonnanofibers/ polyacrylate.....................................122

5.4.16PAN/(PAN-b-PMMA)........................122

5.4.175,6;11,12-di-o-phenlyenetetracene/ carbonnanofibers...........................123 References..........................................................125

6Graphene-basedgassensors..............................127

AksharaPareshShah,ShilpaJainand NavinchandraGopalShimpi

6.1Gassensormechanism..............................129

6.2Grapheneanditsderivative/metalbasedgassensor.........................................131

6.3Grapheneanditsderivative/metal oxide-basedgassensor..............................134

6.4Grapheneanditsderivative/polymer basedgassensor.........................................140 References..........................................................142

73DHierarchicalcarbon-basedgassensors....149

JolinaRodrigues,ShilpaJainand

NavinchandraGopalShimpi

7.1Introduction.................................................149

7.2Importanceof3Dnanomaterial.................150

7.3Construction/fabricationof3D architectures................................................151

7.43-Dmetaloxide/graphene nanocompositeasgassensors..................153

7.53-Dfunctionalizedgraphene nanocompositeasgassensors..................163

7.63-Dmetaldopedgraphene nanocompositeasgassensors..................166

7.73-Dmetaloxide/carbonnanotubeand metaloxide/grapheneoxide/carbon nanotubenanocomposite asgassensors.............................................167

7.7.1Sensingmechanismsof3DTiO2/ graphene-carbonnanotubes gassensors........................................169

7.83Dmetaloxide/carbonnanocomposite asgassensors.............................................171

7.93Dgraphene-basedgassensors................174 References..........................................................178

8Conductingpolymer-basedgassensors...........181

JolinaRodrigues,ShilpaJainand

NavinchandraGopalShimpi

8.1Introduction.................................................181

8.2Conductingpolymers-basedgassensors...182

8.3Polyanilineasagassensingmaterial.......183

8.4Polypyrroleasgassensingmaterial..........190

8.5Polythiopheneasgassensingmaterial.....207 References..........................................................228

9Futureprospects:carbon-based nanomaterialsandnanocomposites..................233

ShilpaJain,NavinchandraGopalShimpi andAksharaPareshShah

References..........................................................237

Abouttheeditors

Dr.NavinchandraGopalShimpi hasbeenworkingasan ProfessorattheDepartmentofChemistry,UniversityofMumbai, Mumbai,sinceApril2014.Previously,hewasassociatedwiththe UniversityInstituteofChemicalTechnology,Jalgaon.HecompletedPhDfromNorthMaharashtraUniversity,Jalgaon,in2006. HewastherecipientofYoungScientistAwardfromAsianPolymer Associationin2014andDnyanjotiPuraskarin2008fromShirsathe Foundation,Jalgaon.Sofar,hehaspublishedmorethan100 papersininternationaljournalsofgoodimpactfactoranddeliveredmorethan40lecturesasaninvitedspeaker.Hehasgenerated Rs1.65croresforoutstandingresearchfromvariousfundingagencies.HeisatpresenthandlingoneresearchprojectfromUGC, NewDelhi,andoneconsultancyprojectfromIndofilChemicals Ltd,Thane.Sofar,fourteenstudentshavecompletedtheirPhD, andeightaredoingtheirPhDunderhisguidance.Heishaving twograntedpatents,andfourareunderexamination.Moreover, hehasguided15studentsfortheirMTechdissertation.Besides this,hehasorganizedfivenational andinternationalconferences withfivestaffdevelopmentprogramsandfourprofessionalcertificatecourses.Heisanassociateeditorofthe InternationalJournal ofChemicalStudies andworkedasaleadguesteditorfor AdvancementinPolymericNanomaterialsandNanocomposites,a specialissueof InternationalJournalofPolymerScience

Dr.ShilpaJain hasbeenworkingasanassistantprofessorat theDepartmentofChemistry,JaiHindCollege,Universityof Mumbai,Mumbai,sinceNovember2016.Shehasdoneher PhD.undertheguidanceofDr.NavinchandraShimpifromthe DepartmentofChemistry,UniversityofMumbai.HerPhD. topicwas“Techniquedevelopmentinsynthesisofsmartnanomaterialsandtheirapplicationinsensing.”Herresearchareas includenanomaterials,nanotechnology,gassensors,andpolymernanocomposites.Shehasworkedonhybridnanomaterials andnanocompositesandtheirapplicationinhighlyefficient gassensors.Herotherareasofresearchinterestare morphology-dependentsensing,carbon-basednanostructures, andnanocatalysts.Shehaspublished10researchpapersin variousinternationaljournalswithhighimpactfactorhaving morethan200citations.

Preface

Carbon-basedNanomaterialsandNanocompositesforGas Sensing mainlydealswiththeapplicationofcarbon-based nanomaterials(CBNs)suchascarbonnanotubes,fullerenes, graphene,andcarbonnanofibersandtheirnanocompositesin gassensing.Variousnanomaterialssuchasmetaloxides,semiconductingmetaloxides,polymers,nanocomposites,andCBNs havebeenstudiedextensivelyforthedetectionofvariousgases. CBNsareconsideredasasubstituteofexpensiveelectronic gradesemiconductorsbecauseoftheirextraordinaryproperties andeasymanufacturing.Theyareconsideredasoneofthe primemembersofsmartnanomaterialsandadvancednanotechnology.CBNswithhighaspectratio,highcarriermobility, uniquestructure,andpropertiesareexcellentchemicalandbiologicalsensors.Carbonnanostructureswithinherentproperties becomeanidealsensingmaterialforthenextgenerationof sensortechnology.Gassensorshavebecomeessentialcomponentinseveralindustries,processcontrolunit,andenvironmentalmonitoring.Thisbookbeginswiththedescriptionof CBNs,theirtypes,synthesismethodologies,properties,and theirapplicationingassensing.Inaddition,itprovidesanoverviewofvariousCBNsandtheirapplication,challenges,and opportunitiesforhighlyefficientgassensors.Thisbookfocuses ontheuniquecharacteristicoftheseCBNs,whichenhancesthe selectivitytowardaspecificgasandcanbeeasilytailoredwith functionalizationanddoping.Italsodescribesvarioustypesof gassensorsbasedonCBNsandtheirfabricationandsensing mechanism.Itfurtherdiscussesthemodificationsinmicrostructure,doping,functionalization,andhybridnanocompositeswithconductingpolymerstoattainselectivityand sensitivitytowardparticulargaswithmaximumgasresponse.

ThisbookgivesabroadideaaboutvarioustypesofCBNs, theirproperties,synthesismethodology,andapplicationingas sensing.Itintroducesthereaderswiththerecentdevelopments, technology,andimportanceofCBNsinhighlyefficientand smartgassensors.Also,itcoversseveralaspectsintermsof societal,academic,industrial,andresearchbenefits.Thisbook willbeofgreatimportancenotonlytothelearnersbutalsoto themoreexperiencedresearchers,researchscholars,andstudentsofpostgraduateandgraduatelevels.Theintentionbehind

editingthisbookistointroducethereaderstothefascinating worldofcarbon-basednanostructuresandtheirapplicationin gassensing.Basedonthetheme,thisbookisdividedintotwo parts: Partone:IntroductiontoCarbonbasedNanomaterials, whichcontainsthreechapters andParttwo:ApplicationofcarbonNanomaterialsingassensing,whichcontainsfivechapters.

Chapter1presentsabriefintroductiononCBNsandtheir types,properties,andsynthesistechniques.Itgivesabriefcomparisononvarioustypesofgassensors.

Chapter2presentsindetailtheparametersofgassensors, varioustypesofgassensors,theirsensingmechanism,fabrication,andfunctionalizationofCBNs.

Chapter3presentsinbriefthedetectionmechanism,carbon nanomaterials,andnanocompositesforsensingsuchascarbon black,carbonnanofibers,carbonnanotubes,andgraphene.The nanocompositeswithpolymersarediscussedforgassensing.

Chapter4dealswithcarbonnanotube-basedgassensorsin detail.Theirsensingmechanism,synthesismethodologies, characterization,andfunctionalizationarediscussedthoroughly.Inaddition,thischapterfocusesonCNT-basednanocompositeswithmetals,semiconductingmetaloxides,and conductingpolymerssuchaspolyanilineandpolypyrrole.All theseCBNsandnanocompositesarediscussedforbeingused ashighlyefficientgassensors.

Chapter5focusesoncarbonnanofiber-basedgassensors. Methodsofnanofiberpreparationsuchaselectrospinning, vapordepositionandsubstratemethod,characterization,and functionalizationarediscussed.Nanocompositesofcarbon nanofiberswithmetals,semiconductingmetaloxides,andconductingpolymersarediscussedwiththeirgassensingcapabilities.Thischapteralsocoversmesoporousandgraphiticcarbon nanofibersandtheircompositeswithpolymers.

Chapter6focusesongraphene-basedgassensors.Sensing mechanism,fabrication,characterization,andextraordinary sensingcapabilitiesofgrapheneanditsderivativesareindicated.Nanocompositesofgrapheneanditsderivativeswith metals,metaloxides,andconductingpolymersarediscussed withleadstohighlyselectiveandsensitivegassensorswith maximumresponse.

Chapter7dealswith3Dhierarchicalcarbon-basedgassensors.Theirimportance,synthesismethodologies,andfabricationof3Darchitecturesarediscussed.Furthermore, nanocompositeswithmetals,semiconductingmetaloxides,graphene,anditsderivativesarediscussedaseffectivegassensing materials.3DhierarchicalcarbonwithCNT,metal-doped

graphene,metaloxide/grapheneoxide,metaloxide/CNTare discussedinthischapter.Suchfunctionalizednanocomposites arepromisingcandidatesforsmartsensors.

Chapter8coversconductingpolymersandtheirapplication ingassensing.Conductingpolymerssuchaspolyaniline,polypyrrole,andpolythiophenearestudiedindetail.Theirsynthesis technique,thinfilms,characterization,doping,andfunctionalizationarediscussed.Theiradvantageinroomtemperature sensingisexploredwithhighlyselectiveandsensitivegassensorwithmaximumresponse.

Chapter9presentstheadvantages,challenges,andopportunitiesassociatedwiththeuseofcarbon-basednanostructures andtheirapplicationingassensing.Itdealswiththefuture prospectsofcarbon-basednanostructuresassmartgassensors.

NavinchandraGopalShimpi ShilpaJain

Carbon-basedsmart nanomaterials

ShilpaJain1 andNavinchandraGopalShimpi2

1DepartmentofChemistry,JaiHindCollege,Mumbai,Maharashtra,India

2DepartmentofChemistry,UniversityofMumbai,Santacruz(East),Mumbai, Maharashtra,India

Nanoscienceandnanotechnologyaidincontrollingmatterand buildingitsunitsatombyatom,layerbylayerintomoreadvanced systems.Itinvolvessubsequentfindingsofpropertiesandphenomenaatnanoscale(10 9 m)andmanipulationofmaterialsat nanometersizes.Nanotechnologyenablesworkingatmolecular levelsandcreatingthelargerstructurewithfundamentallynew molecularorganizationandproperties [1 4].Rapidlygrowing technologynotonlyrequiresminiaturizationofdevicesbutalsoan ultimateperformancewithspecificfunctionalityandselectivity. Therecenttrendintechnologyrequiressmartnanomaterialsand systemswithspecificfunctionalityandthoroughunderstandingof theirproperties.Recentadvancementinanalysistechniqueshas enabledexaminationandprobingofatomsandmoleculeswith greatprecision,leadingtocomprehensiveunderstanding,expansion,anddevelopmentofnanoscienceandnanotechnology. Withnanodimensions,materialsurfacetovolumeratioincreases manifold,leadingtoanemergenceofquantumsizeeffectsand thesurfaceatomeffects.Thiscanchangeorenhancechemical reactivity,electronic,optical,mechanical,magneticandtransport characteristicsofnanomaterialascomparedtotheirbulkanalogs [5,6].Owingtotheiradvancedpropertiesandspecificfunctionalities,nanomaterialshaveshownvastuseinseveralfields rangingfromenergystoragedevicestobiomedicalfields [7 9].

1.1Introductiontocarbon-basednanomaterials

Currently,carbon-basednanomaterials(CBNs)arevastly studiedandexploredbecauseoftheirexceptionalelectronic, optical,thermal,andmechanicalproperties.TheseCBNshave shownvastapplicationsinmaterialscience,energystorage

1

[16].

devices,aerospace,optoelectronics,catalysis,lightemitters,biotechnologyandsensorsetc. [10 15] Fig.1.1 illustratestheapplicationofCBNsinvariousfieldsbasedontheirproperties [16]

Owingtotheirexceptionallyhighmechanicalstrength,opticalproperties,electrical,magneticandthermalconductivity, CBNsareconsideredasoneoftheprimemembersofsmart nanomaterialsandadvancednanodevices.Carbonitselfis aninimitableuniqueelementwiththerelativeabundanceof 180 270ppm [17].Carbonisthemostsignificantelement(after oxygen)inthehumanbody [18],earthcrust(17thinrelative abundance),andtheentireuniverse(6thmostcommon) [19]. Carbonhasauniquepropertyofcatenationanditcanform severalmetastablephasesatambientconditions.Conventionally, carbonhastwoallotropesknownasgraphiteanddiamond(crystallineform),whichareentirelydifferentfromeachotherin crystalstructureandproperties.Diamondisanelectricallyinsulatingandhardestnaturalsubstanceknown,whilegraphiteis softandconducting [20 22].Thevariousnanocrystallineforms ofcarbonwerediscoveredattheendof20thcenturywith

Figure1.1 Propertiesandapplicationsofcarbon-basednanomaterialsinvariousfields

progressinnanotechnology.Fullerenes(C60)werediscovered byHaroldKroto,RichardSmalleyandRobertCurlin1985ina sootyresidueofvaporizedgraphiteintheheliumatmosphere. Fullerenescanbedescribedascagelikemoleculeswith60carbonatoms(heldbysingleanddoublebonds).Fullerenescan beimaginedashollowsphereresemblingfootballwith12pentagonaland20hexagonalfaces.Consideringtheproperties andapplicationinvariousfields,thetriowasawardedwiththe “NobelprizeinChemistry”in1996fortheirdiscoveryandsynthesisoffullerenes.Theirdiscoveryfueledintenseresearchof CBNsandfurtherin1991,aJapanesephysicistSumioIijima discoveredcarbonnanotubes(CNTs)usinganarcdischarge methodandstartedaneweraofcarbon-basedsmartnanomaterials.DiscoveryofCNTanditsextraordinarypropertiesacceleratedthegrowthofCBNs.Furtherin2004,AndreGeimand KonstaninNovoselovextractedsingleatomthickcarbontermed as“graphene”fromgraphiteusingmicromechanicalcleavageor scotch-tapemethodattheUniversityofManchester.Theywere awardedknighthoodand2010Nobelprizeinphysicsfortheir discoveryofthewondermaterialgraphenes.

Thevariousnanocrystallineformsofcarbonconsistofcarbonnanotubes,fullerenes,carbonfibers,nondiamond,andgraphene,whichareillustratedin Fig.1.2.

Figure1.2 Differenttypesofcarbonnanostructures.

Table1.1Comparisonofsomepropertiesofcarbon-basednanomaterials [30 32].

1.2Typesofcarbonnanomaterials

CBNscanbebroadlyclassifiedasCNTs,fullerenes [23,24], carbonnanofibers(CNFs),graphene [25,26],anditsderivatives suchasgrapheneoxide,reducedgrapheneoxide,andquantum dots [27 29].PropertiesofCBNscomparedwithgraphiteare shownin Table1.1.

1.2.1Carbonnanotubes

Carbonnanotubesaredefinedashollowcylindersofcarbon withthehexagonallatticeofsinglegraphiticsheetsrolledup withinthediameterrangeoffewnanometers.Theyarefurther classifiedassinglewalledcarbonnanotube(SWCNT,diameter , 1nm)ormultiwalledcarbonnanotube(MWCNT,diameter . 100nm).ThediscoveryofCNTiscreditedtoProf.Sumio Iijimawitharevolutionarypaper“Helicalmicrotubesofgraphiticcarbon”reportingMWCNTsfromarcdischargemethod [33].Carbonsourcewasco-vaporizedinthepresenceoftransitionmetalcatalystironinanAr/CH4 atmosphereandtheCNTs werefoundinthedepositedsoot.Furtherin1993,Bethune etal.synthesizedCNTbyvaporizingcarbonmonoxideand graphiteunderheliumatmosphereandacceleratedresearchon CNTs [34].MWCNTscontainsmanytubesofgraphenewhich arerolledmultipletimeswithaninterlayerspacingof3.4A ˚ . Twomodels“RussianDollmodelandSwissrollmodel”are usedtodescribeMWCNTs [35 37] asillustratedin Fig.1.3.

Figure1.3 (A)Swissrollmodel,(B)Russiandollmodelofcarbonnanotubes. [Ref-nanotechweb.org, nanotech-now.com].

Figure1.4 Graphenesheetlatticewiththelatticevector“a”and“b”andtheangles θ and ϕ,whichdeterminethe typeofnanotube.

AccordingtotheSwissrollmodel,asinglesheetofgraphiteis rolledinarounditselfresemblingascrollofparchmentora rollednewspaper.IntheRussianDollmodel,sheetsofgraphite arearrangedinconcentriccylinderslikesmallerdiameter SWCNTwithinalargerdiameterSWCNT [38 40].

Onthebasisofstructure,CNTscanbefurtherclassifiedas armchair,zigzag,andchiraldependingontherollinggraphitic sheetsasshownin Fig.1.4.Thenanotubesaregenerally describedas(n,m),where“n”indicatesthecarbonatoms aroundthetube,and“m”determinestheoffsetofNTswrappingaround.DuringtheformationofcylindricalpartofCNT,

Table1.2Comparisonofsomepropertiesofcarbonnanotubes [41 43].

endsofchiralvectormeeteachotherduringrollingofthegraphenesheet.Thischiralvectoranddifferentvaluesofnandm determinesthechiralityor“twist”oftheCNT.Itispossibleto recognizezigzag(n or m 5 0, θ 5 0degrees),armchair(n 5 m, θ 5 30degrees),andchiralCNTs(0degrees , θ , 30degrees) bytheircross-sectionalstructureandpatternacrossdiameter (Fig.1.4).

Dependingonlength,diameter,chirality,andfunctionalization,CNTscanbemetallicorsemiconductiveandpossess intrinsicsuperconductivity,highthermalconductivity,andfield emissionproperties [41,42].Owingtohighaspectratioand ballisticone-dimensionalelectronictransport,CNTsareconductingwithminimalheatingloss(currentdensitiesupto109 to 1010 A/cm2) [43].Furthermore,reactionswithinCNTsinterwall canredistributecurrentnon-uniformlyovertheindividual tubes.Owingtoexceptionallyhighelectronicandthermalproperties,SWCNTsareusedinsmartminiaturizedelectronics. CNTshaveextraordinarymechanicalpropertiesandtheirmeasuredtensilestrength,rigidityandelasticityaremorethan someindustrialhigh-strengthmaterialssuchaskevlar,hightensilesteelandcarbonfibers.SeveralcompositesofCNTsarealso studiedwithmetaloxides,ceramicsandclaywhichenhanceits multifunctionalnature.Attributabletoitsuniquemechanical, thermal,opticalandelectricalproperties,CNTsshowinteresting potentialinthefieldofelectronics,optics,fieldemission,flat paneldisplays,andreinforcingmaterials [42,44]. Table1.2 shows variousphysicalandelectricalpropertiesofCNTs.

1.2.2Fullerenes

Fullerenesaretheman-madethirdallotropeofcarbonwith structuresimilartofootballandnamedafterarchitectRichard BuckminsterFuller.Theyarecagedmoleculeswiththesheet

Differenttypesoffullerenes.

likehexagonalandpentagonal(orsometimesheptagonal)rings, whichmakesitnon-planarandimpartclosedshellstructure [45].Thestructureoffullerenescomprisesoftruncatedicosahedronbutwithouthexagonalpacking.Thestructureoffullerenes comprisesofhexagons,pentagons(orevenheptagons)which bendsthesheetintospheres,ellipsesorcylinders.Fullerenes consistofabout20hexagonaland B12pentagonalrings(icosahedralsymmetry)withclosedcagestructureandthisstructural andelectronicbondingleadstohighstability [46].Depending onthedifferentnumberofpentagonalandhexagonalrings,an infinitenumberoffullerenescanexist. Fig.1.5 showsthestructuresofvariousfullereneswithsizevariation.Thefullerenes showhighaffinityfororganicmoleculessuchasC60 with60 π electronsareusedasgoodadsorbent.Although,itcan’tadsorb metalions,anionsandpolarmoleculeswhichimpartsselectivityandthereforefullerenescanbeusedaselectrochemicalsensors.Fullerene-basednanostructuresarefoundtobepotential sensingmaterialforthesurfaceacousticwave-andquartz microbalances-basedgassensors.

1.2.3Graphene

Grapheneknownas“Wondermaterial”issingleatomthick carbonmonolayer(sp2-bonded)withhoneycombcrystallattice andinterlayerspacingof3.4A ˚ andbondlengthof1.42A ˚ [25,26].Grapheneisstrongerthandiamondwithextremelyhigh tensilestrength(130GPa).Uniquecovalentlybondedandplanartwo-dimensionalstructurewiththevanderWaal’sforces makesitharderthandiamond,tougherthansteelyetlighter thanaluminum.Grapheneismostattractiveandstudiedmaterialofthepresenteraowingtoitsuniquestructureandextraordinaryproperties.Theedgeandbasalplanesofgrapheneshows

Figure1.5

variantelectrochemicalpropertiessuchasedgehashigherelectronmotion,greaterspecificcapacitanceandcatalyticpower [47].Graphenehassomepeculiarpropertiessuchasoptically transparentwithhighelectronmobility,impermeability,high electricalandthermalconductivityandextremelyhighsurface areaetc. [48 51].Itisexpectedthatdefectfreesinglesheet ofgrapheneshouldpossessexcellenttransportproperties andexperimentallyithasremarkablyhighelectronmobility (200,000cm2/Vs,RT),lowresistivity(10 6 Ω cm),lowerthan metallicsilverandunexpectedlyhightransparency(onlyabsorbs B2.3%ofwhitelight).Owingtotheseextraordinaryelectrical andopticalproperties,extremelyhighsurfaceareaandfree π electrons,itistermedasawondermaterialandidealcandidate forseveralapplications [26,51].Variousderivativesofgraphene suchasgrapheneoxide(GO)andreducedgrapheneoxide(rGO) havedifferentpotentialapplicationsduetothepresenceof free π π electron,aromaticringandreactivefunctionalgroups. GOhasoxygenousfunctionalgroupswithhydroxylandepoxide groupsonitsbasalplaneandcarboxylic,ketoneandaldehyde groupsonitslayeredge [52].Thereareseveralmethods purposedforthestructureofGOnamelytheHofmann,Ruess, Scholz-Boehm,Nakajima-Matsuo,Lerf-KlinowskiandSzabo models [53] asshownin Fig.1.6.Afterdetailedandcomprehensiveanalysisbysolid-stateNMRandX-raydiffraction,the“LerfKlinowski”molecularstructureiswidelyacceptedastherole modelofGO [54].

Duringanoxidationprocess,variousdefects,impurities, structuraldisorders,fragmentation,andotherstructuralattributesaregeneratedwhichinfluenceselectronic,opticaland adsorptionproperties.Further,GOcanbeconvertedintoreduced grapheneoxide(rGO,withcarbontooxygenratioof8:1 246:1) bychemicalorphysicalreductionmethods [20].Anotherderivativeofgraphenewithmicro,meso-andmicroporousstructure knownas“three-Dimensionalhierarchalgraphene”possess uniquefunctionalities.Controllablesynthesiswhichdetermines theporosity,surfacearea,highelectrontransportandsuperior electrochemicalperformancesmakesitaversatilematerial andimpartshighstructuralandmechanicalpropertiesover CNTsandgraphene.Anotherattractivenanomaterialisgraphenequantumdots(GQDs).Theycanbedescribedasazerodimensionalgraphenesheetwithsizelessthan100nminone toafewlayers(3 10) [51].TheGQDsexhibitshighsurface area,hightransparency,highphotoluminescence,excellenthole transportingproperties,andchemicalstabilityduetoquantum confinement [55,56].

Figure1.6 Structuresofpristinegraphene(A)anditsgrapheneoxidederivativesbasedonHofmann(B),Ruess (C),Scholz-Boehm(D),Nakajima-Matsuo(E),Lerf-Klinowski(F),andSzabo(G)models [54].

1.2.4Carbonnanofibers

Carbonnanofibersaretheultralong,thinstrandofcarbon (diameter B10 1000nm)withatomsbondedtogetherincrystalliteandalignedparalleltothelongeraxisofthefiber.Fibers havingdiameterlessthan100nmaregenerallyconsidered asNFs(asperNationalScienceFoundation) [57].CNFsare widelystudiedowingtotheirexceptionalphysicalandchemical propertieswhichissimilartofullerenesandCNTs [58,59]. CNFsinheritshighaspectratio,highthermalandelectricalconductivity,lowdensity,smallernumberofdefects,highspecific

modulusandstrength,whichmakesthempotentialcandidate forvariousapplications.Theuniquecrystalalignmentimparts highmechanicalstrengthtoCNFs.Asthediameterdecreases, surfacefunctionalitiessuchassurfacearea,mechanicaland thermalpropertiesenhancesmanifold [30,60].InCNFs,the graphitelayersformananglewithinnertubeaxis,whichmay beholloworsolidlikeinterior.TherangeofCNFsdiameter is B10to500nmwithlength B10 μm.Duetobasalandedge planes,CNFscanbeeasilyfunctionalizedandtheirsurfacecan bemodifiedaccordinglyformingfunctionalhybridCNF-based nanomaterials.ThesefunctionalizedCNFshavepotentialapplicationinthevariousfieldsofenergy,sensors,biomedicine, nanoelectronics,environmentalscienceandtissueengineering [31,32,61,62].

Polyacrylonitrile(PAN)isoneofthemostcommonpolymer forthesynthesisofCNFs.PANhasseveraladvantagesover otherprecursorssuchasstability,spinnabilityandability forlargescaleproduction.PANisextensivelyexploreddueto itshighcarboncontentandabilitytotailorCNFsstructurewith variousfunctionalities,dopingandsurfacemodifications. VariousPANbasedprecursors,compositesandblendsaresynthesizedfromPANhomopolymerforfunctionalizedCNFs. NanocompositesoftheseCNFswithmetals,SMOs,polymers, CNTsetc.arestudiedforvariousapplications.Thesenanocompositeshaveextremelyhighsurfaceareaandexcellentthermal, mechanical,electricalandopticalproperties.Theyhavepotentialapplicationingassensors,biosensors,tissueengineering andenergystoragedevices.

1.3Synthesismethodologiesandvariations

ThereareseveralmethodsforthesynthesisofCBNs,but thesearebroadlyclassifiedasthetop-downandbottom-up approach.Intop-downapproach,carbonnanomaterialslike CNTs,grapheneandCNFsetc.aregeneratedfrombulkcarbon materialsuchasgraphite.Severalmethodssuchaslaser ablation,chemicalexfoliationandarc-dischargemethodetc. areusedastop-downapproach.Whilebottom-upapproach includeschemicalvapordepositionandpyrolysistechniques, whereCNTs,graphene,andCNFsetc.aresynthesizedfrom simplehydrocarbons.

Intop-downapproach,thearc-dischargemethodisoneof theprimarymethodsusedforthesynthesisofCNTsandfullerenes [33,63].Inthismethod,hightemperatureisgenerated

usinganelevatedcurrent(B20 25V)betweenthetwocarbon electrodeswhichinstigatesvaporizationofoneofthecarbon electrodes.Thesecarbonvaporsgetdepositedonthesurface oftheotherelectrode(rod-shapedcarbongrowth)leadingto CNTsandfullerenesaccordingtoreactionconditions.Thecarbonrodsinanarc-vaporizationchamberareplacedendtoend separatedbyadistanceof1mminaninertgasatmosphere atlowpressure.Fromarc-dischargetechnique,althoughCNTs areobtainedinhigheryieldbutthemixtureofcomponents areobtainedwhichentailsfurtherpurificationtechniquesand removalofresidualcatalyticmetalsfromcrudeproduct [6,64]. Anotherfamoustop-downtechnique“Laserablation”involves removalofmatterfromthesurface(evaporationorsublimation) usingalaserbeamatthelowerfluxinaclosedchamberathigh vacuumoraninertatmosphere.Normallylaserisusedincontinuouspulses,sothelaserintensityisusuallykepthighto carryoutlaserablationofmaterial.In1995Guoetal.studied laserablationtechniqueusingablockofgraphiteandfurther withcatalyticmetalinit [65,66].Differentcatalyticmetalssuch ascobalt,niobium,platinum,nickelandcopperetc.wereused forthegrowthofCNTsfromcarbonplasmastate.Inbottomup approach,chemicalvapordeposition(CVD)isanimportant techniqueforthesynthesisofvariousCBNs.InCVD,carbonin itsgaseousformisdepositedonasubstrateatambienttemperature.Severalfactorssuchasnatureofgas,catalyst,pressure andtemperatureofthereactionchamberinfluencesthegrowth ofCBNs.Hydrocarbonssuchasmethane,acetyleneand xyleneetc.areusedasprecursorgasforthesynthesisofCNTs andgraphenealongwithcarriergases [67,68].Thesegasesat hightemperaturereactsanddecomposes,whenintocontact withaheatedsubstrateresultinginsolidgrowthontothesubstrate.AlthoughthehistoryofCVDtechniquedatesbackto the19thcentury,butin1890someFrenchresearchersstudied thegrowthofcarbonfilamentsusingcyanogen(overred-hot porcelain)whichacceleratedtheinterestinCVDtechnique [69]. In1993Yacamanetal.usedCVDtechniquetogrowMWCNTs fromacetylenegasusingironparticlesascatalystat 600 C 800 C [70].SinceSWCNTshavehigherenergyofformation,thetemperatureoftheCVDchambershouldbenotably higher(900 C 1200 C)andprecursorgaseslikecarbonmonoxideormethaneareusedowingtotheirsuperiorstability(comparedtoacetylene)athighertemperatures.InCVDtechnique, propertiesofCNTssuchaslength,shape,chirality,defects, diameterandgraphitizationetc.canbetailoredandcontrolled usingseveralfactorssuchasprecursorgas,temperatureand

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.