Buy ebook Electronic circuits with matlab®, pspice®, and smith chart wŏn-yŏng yang cheap price

Page 1


https://ebookmass.com/product/electronic-circuits-with-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Destination C1 & C2 : grammar & vocabulary with answer key 18 [printing]. Edition Malcolm Mann

https://ebookmass.com/product/destination-c1-c2-grammar-vocabularywith-answer-key-18-printing-edition-malcolm-mann/

ebookmass.com

Foundations of Analog and Digital Electronic Circuits (ISSN)

https://ebookmass.com/product/foundations-of-analog-and-digitalelectronic-circuits-issn/

ebookmass.com

Electronic Devices and Circuits S. Salivahanan

https://ebookmass.com/product/electronic-devices-and-circuits-ssalivahanan/

ebookmass.com

The Big R-Book: From Data Science to Learning Machines and Big Data Philippe J. S. De Brouwer

https://ebookmass.com/product/the-big-r-book-from-data-science-tolearning-machines-and-big-data-philippe-j-s-de-brouwer/

ebookmass.com

Digital SAT Math Practice Questions Vibrant Publishers

https://ebookmass.com/product/digital-sat-math-practice-questionsvibrant-publishers/

ebookmass.com

Acute Care for Nurses (Student Survival Skills) (Jan 17, 2023)_(1119882451)_(Wiley-Blackwell) 1st Edition Boyd

https://ebookmass.com/product/acute-care-for-nurses-student-survivalskills-jan-17-2023_1119882451_wiley-blackwell-1st-edition-boyd/

ebookmass.com

Muddy Thinking in the Mississippi River Delta 1st Edition Ned Randolph

https://ebookmass.com/product/muddy-thinking-in-the-mississippi-riverdelta-1st-edition-ned-randolph/

ebookmass.com

The AI Delusion Gary Smith

https://ebookmass.com/product/the-ai-delusion-gary-smith/

ebookmass.com

Racial and Ethnic Relations, Census Update 9th Edition –Ebook PDF Version

https://ebookmass.com/product/racial-and-ethnic-relations-censusupdate-9th-edition-ebook-pdf-version/

ebookmass.com

https://ebookmass.com/product/introduction-to-chemical-engineering-cm-van-t-land/

ebookmass.com

ElectronicCircuitswithMATLAB ® , PSpice®,andSmithChart

ElectronicCircuitswithMATLAB® , PSpice®,andSmithChart

WonY.Yang,JaekwonKim,KyungW.Park, DonghyunBaek,SungjoonLim, JingonJoung,SuhyunPark,HanL.Lee, WooJuneChoi,andTaehoIm

Thiseditionfirstpublished2020

©2020JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofWonY.Yang,JaekwonKim,KyungW.Park,DonghyunBaek,SungjoonLim,Jingon Joung,SuhyunPark,HanL.Lee,WooJuneChoi,andTaehoImbeidentifiedastheauthorsofthis workhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorks doesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thiswork’suseordiscussionof MATLAB® softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipbyThe MathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLAB® software. Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork. Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeaware thatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofit oranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential, orotherdamages.

LibraryofCongressCataloging-in-Publicationdataappliedfor ISBN:9781119598923

Coverdesign:Wiley

Coverimage:©green_01/Shutterstock

Setin10/12ptWarnockbySPiGlobal,Pondicherry,India

PrintedintheUnitedStatesofAmerica 10987654321

Toourparentsandfamilies wholoveandsupportus and toourteachersandstudents whoenrichedourknowledge

Contents

Preface xiii

AbouttheCompanionWebsite xv

1LoadLineAnalysisandFourierSeries 1

1.1LoadLineAnalysis 1

1.1.1 Load LineAnalysisofaNonlinearResistorCircuit 3

1.1.2LoadLineAnalysisofaNonlinear RL circuit 7

1.2Voltage-CurrentSourceTransformation 10

1.3Thevenin/NortonEquivalentCircuits 11

1.4Miller’sTheorem 18

1.5FourierSeries 18

1.5.1ComputationofFourierCoefficientsUsingSymmetry 20

1.5.2CircuitAnalysisUsingFourierSeries 29

1.5.3RMSValueandDistortionFactorofaNon-Sinusoidal PeriodicSignal 35 Problems 36

2DiodeCircuits 43

2.1The v-i Characteristicof Diodes 43

2.1.1Large-SignalDiodeModelforSwitchingOperations 44

2.1.2Small-SignalDiodeModelforAmplifyingOperations 44

2.2Analysis/SimulationofDiodeCircuits 46

2.2.1ExamplesofDiodeCircuits 46

2.2.2Clipper/ClamperCircuits 51

2.2.3Half-waveRectifier 53

2.2.4Half-waveRectifierwithCapacitor – PeakRectifier 53

2.2.5Full-waveRectifier 57

2.2.6Full-waveRectifierwith LC Filter 59

2.2.7PrecisionRectifiers 62

2.2.7.1ImprovedPrecisionHalf-waveRectifier 63

2.2.7.2PrecisionFull-waveRectifier 65

2.2.8Small-Signal(AC)AnalysisofDiodeCircuits 67

2.3ZenderDiodes 75 Problems 85

3BJTCircuits 105

3.1BJT(BipolarJunctionTransistor) 106

3.1.1Ebers-Moll Representation ofBJT 106

3.1.2OperationModes(Regions)ofBJT 109

3.1.3ParametersofBJT 109

3.1.4Common-BaseConfiguration 111

3.1.5Common-EmitterConfiguration 113

3.1.6Large-Signal(DC)ModelofBJT 115

3.1.7Small-Signal(AC)ModelofBJT 142

3.1.8AnalysisofBJTCircuits 143

3.1.9BJTCurrentMirror 156

3.1.10BJTInverter/Switch 161

3.1.11Emitter-CoupledDifferentialPair 165

3.2BJTAmplifierCircuits 168

3.2.1Common-Emitter(CE)Amplifier 169

3.2.2Common-Collector(CC)Amplifier(EmitterFollower) 173

3.2.3Common-Base(CB)Amplifier 180

3.2.4MultistageCascadedBJTAmplifier 187

3.2.5Composite/CompoundMulti-StageBJTAmplifier 199

3.3LogicGatesUsingDiodes/Transistors[C-3,M-1] 209

3.3.1DTLNANDGate 209

3.3.2TTLNANDGate 215

3.3.2.1BasicTTLNANDGateUsingTwoBJTs 215

3.3.2.2TTLNANDGateUsingThreeBJTs 218

3.3.2.3Totem-PoleOutputStage 222

3.3.2.4Open-CollectorOutputandTristateOutput 227

3.3.3ECL(Emitter-CoupledLogic)OR/NORGate 229

3.4DesignofBJTAmplifier 239

3.4.1DesignofCEAmplifierwithSpecifiedVoltageGain 232

3.4.2DesignofCCAmplifier(EmitterFollower)withSpecifiedInput Resistance 239

3.5BJTAmplifierFrequencyResponse 243

3.5.1CEAmplifier 243

3.5.2CCAmplifier(EmitterFollower) 248

3.5.3CBAmplifier 255

3.6BJTInverterTimeResponse 259 Problems 266

4FETCircuits 303

4.1Field-EffectTransistor(FET) 303

4.1.1 JFET (JunctionFET) 304

4.1.2MOSFET(Metal-Oxide-SemiconductorFET) 313

4.1.3MOSFETUsedasaResistor 327

4.1.4FETCurrentMirror 328

4.1.5MOSFETInverter 338

4.1.5.1NMOSInverterUsinganEnhancementNMOSasaLoad 342

4.1.5.2NMOSInverterUsingaDepletionNMOSasaLoad 347

4.1.5.3CMOSInverter 350

4.1.6Source-CoupledDifferentialPair 355

4.1.7CMOSLogicCircuits 359

4.2FETAmplifer 360

4.2.1Common-Source(CS)Amplifier 362

4.2.2CDAmplifier(SourceFollower) 366

4.2.3Common-Gate(CG)Amplifier 370

4.2.4Common-Source(CS)AmplifierwithFETLoad 373

4.2.4.1CSAmplifierwithanEnhancementFETLoad 373

4.2.4.2CSAmplifierwithaDepletionFETLoad 376

4.2.5MultistageFETAmplifiers 380

4.3DesignofFETAmplifier 398

4.3.1DesignofCSAmplifier 398

4.3.2DesignofCDAmplifier 405

4.4FETAmplifierFrequencyResponse 409

4.4.1CSAmplifier 410

4.4.2CDAmplifier(SourceFollower) 415

4.4.3CGAmplifier 419

4.5FETInverterTimeResponse 423 Problems 428

5OPAmpCircuits 467

5.1OPAmpBasics [Y-1] 468

5.2OPAmpCircuitswithResistors [Y-1] 471

5.2.1OPAmpCircuitswithNegativeFeedback 471

5.2.1.1InvertingOPAmpCircuit 471

5.2.1.2Non-InvertingOPAmpCircuit 473

5.2.1.3VoltageFollower 476

5.2.1.4LinearCombiner 477

5.2.2OPAmpCircuitswithPositiveFeedback 479

5.2.2.1InvertingPositiveFeedbackOPAmpCircuit 480

5.2.2.2Non-InvertingPositiveFeedbackOPAmpCircuit 481

5.3First-OrderOPAmpCircuits [Y-1] 485

5.3.1First-OrderOPAmpCircuitswithNegativeFeedback 485

5.3.2First-OrderOPAmpCircuitswithPositiveFeedback 487

5.3.2.1Square(Rectangular)-WaveGenerator 487

5.3.2.2Rectangular/Triangular-WaveGenerator 490

5.3.3555TimerUsingOPAmpasComparator 492

5.4Second-OrderOPAmpCircuits [Y-1] 495

5.4.1MFB(Multi-FeedBack)Topology 495

5.4.2Sallen-KeyTopology 496

5.5ActiveFilter [Y-1] 502

5.5.1First-OrderActiveFilter 502

5.5.2Second-OrderActiveLPF/HPF 503

5.5.3Second-OrderActiveBPF 505

5.5.4Second-OrderActiveBSF 507

Problems 512

6AnalogFilter 523

6.1AnalogFilterDesign 523

6.2Passive Filter 533

6.2.1 Low-passFilter(LPF) 533

6.2.1.1Series LR Circuit 533

6.2.1.2Series RC Circuit 535

6.2.2High-passFilter(HPF) 535

6.2.2.1Series CR Circuit 535

6.2.2.2Series RL Circuit 536

6.2.3Band-passFilter(BPF) 537

6.2.3.1SeriesResistor,anInductor,andaCapacitor(RLC) CircuitandSeries Resonance 536

6.2.3.2Parallel RLC CircuitandParallelResonance 539

6.2.4Band-stopFilter(BSF) 541

6.2.4.1Series RLC Circuit 541

6.2.4.2Parallel RLC Circuit 544

6.2.5QualityFactor 545

6.2.6InsertionLoss 549

6.2.7FrequencyScalingandTransformation 549

6.3PassiveFilterRealization 553

6.3.1 LC Ladder 553

6.3.2L-TypeImpedanceMatcher 561

6.3.3T-and П-TypeImpedanceMatchers 565

6.3.4Tapped-C ImpedanceMatchers 571

6.4ActiveFilterRealization 576 Problems 586

7SmithChartandImpedanceMatching 601

7.1TransmissionLine 601

7.2Smith Chart 608

7.3ImpedanceMatchingUsingSmithChart 616

7.3.1ReactanceEffectofaLosslessLine 616

7.3.2Single-StubImpedanceMatching 618

7.3.2.1Shunt-ConnectedSingleStub 618

7.3.2.2Series-ConnectedSingleStub 622

7.3.3Double-StubImpedanceMatching 626

7.3.4TheQuarter-WaveTransformer 631

7.3.4.1BinomialMultisectionQWT 633

7.3.4.2ChebyshevMultisectionQWT 634

7.3.5FilterImplementationUsingStubs [P-1] 635

7.3.6ImpedanceMatchingwithLumpedElements 646 Problems 661

8Two-PortNetworkandParameters 677

8.1Two-PortParameters [Y-1] 677

8.1.1DefinitionsandExamplesofTwo-PortParameters 678

8.1.2RelationshipsAmongTwo-PortParameters 685

8.1.3InterconnectionofTwo-PortNetworks 689

8.1.3.1SeriesConnectionand z-parameters 690

8.1.3.2Parallel(Shunt)Connectionand y-parameters 690

8.1.3.3Series-Parallel(Shunt)Connectionand h-parameters 691

8.1.3.4Parallel(Shunt)-SeriesConnectionand g-parameters 691

8.1.3.5CascadeConnectionand a-parameters 692

8.1.4CurseofPortCondition 692

8.1.5CircuitModelswithGivenParameters 697

8.1.5.1CircuitModelwithGiven z-parameters 697

8.1.5.2CircuitModelwithGiven y-parameters 699

8.1.5.3CircuitModelwithGiven a/b-parameters 699

8.1.5.4CircuitModelwithGiven h/g-parameters 699

8.1.6PropertiesofTwo-PortNetworkswithSource/Load 700

8.2ScatteringParameters 709

8.2.1DefinitionofScatteringParameters 709

8.2.2Two-PortNetworkwithSource/Load 714

8.3GainandStability 723

8.3.1Two-PortPowerGains [L-1,P-1] 723

8.3.2Stability [E-1,L-1,P-1] 728

8.3.3DesignforMaximumGain [M-2,P-1] 733

8.3.4DesignforSpecifiedGain [M-2,P-1] 740 Problems 746

AppendixALaplaceTransform 761

AppendixBMatrixOperationswithMATLAB 767

AppendixCComplexNumberOperationswithMATLAB 773

AppendixDNonlinear/DifferentialEquationswithMATLAB 775

AppendixESymbolicComputationswithMATLAB 779

AppendixFUsefulFormulas 783

AppendixGStandardValuesofResistors,Capacitors,andInductors 785

AppendixHOrCAD/PSpice® 791

AppendixIMATLAB® Introduction 831

AppendixJDiode/BJT/FET 835

Bibliography 845

Index 849

Preface

Theaimofthisbookisnottoletthereadersdrownedintoaseaofcomputations.Morehopefully,itaimstoinspirethereaderswithmindandstrength tomakefulluseoftheMATLABandPSpicesoftwaressothattheycanfeel comfortablewithmathematicalequationswithoutcaringabouthowtosolve themandfurthercanenjoydevelopingtheirabilitytoanalyze/designelectronic circuits.Itaimsalsotopresentthereaderswithasteppingstonetoradio frequency(RF)circuitdesignfromjunior–seniorleveltosenior-graduate levelbydemonstratinghowMATLABcanbeusedforthedesignandimplementationofmicrostripfilters.Thefeaturesofthisbookcanbesummarized asfollows:

1)Forrepresentativeexamplesofdesigning/analyzingelectroniccircuits,the analyticalsolutionsarepresentedtogetherwiththeresultsofMATLAB designandanalysis(basedonthetheory)andPSpicesimulation(similarto theexperiment)intheformoftrinity.Thisapproachgivesthereadersnot onlyinformationaboutthestateoftheart,butalsoconfidenceinthe legitimacyofthesolutionaslongasthesolutionsobtainedbyusingthetwo softwaretoolsagreewitheachother.

2)Forrepresentativeexamplesofimpedancematchingandfilterdesign,the solutionusingMATLABandthatusingSmithcharthavebeenpresented forcomparison/crosscheck.Thisapproachisexpectedtogivethereaders notonlyconfidenceinthelegitimacyofthesolution,butalsodeeper understandingofthesolution.

3)Thepurposesofthetwosoftwares,MATLABandPSpice,seemtobe overlappedanditispartlytrue.However,theycanbedifferentiatedsince MATLABismainlyusedtodesigncircuitsandperformapreliminary analysisof(designed)circuitswhilePSpiceismainlyusedfordetailedand almostreal-worldsimulationof(designed)circuits.

4)Especially,itpresentshowtouseMATLABandPSpicenotonlyfor designing/analyzingelectronicandRFcircuitsbutalsoforunderstanding theunderlyingprocessesandrelatedequationswithouthavingtostruggle withtime-consuming/error-pronecomputations.

Thecontentsofthisbookarederivedfromtheworksofmany(knownor unknown)greatscientists,scholars,andresearchers,allofwhomaredeeply appreciated.Wewouldliketothankthereviewersfortheirvaluablecomments andsuggestions,whichcontributetoenrichingthisbook.

WealsothankthepeopleoftheSchoolofElectronicandElectricalEngineering,Chung-AngUniversityforgivingusanacademicenvironment.Without affectionsandsupportsofourfamiliesandfriends,thisbookcouldnotbe written.Wegratefullyacknowledgetheeditorial,BrettKurzmanandproductionstaffofJohnWiley&Sons,Inc.includingProjectEditorAntonySami andProductionEditorViniprammiaPremkumarfortheirkind,efficient,and encouragingguide.

Programfilescanbedownloadedfromhttps://wyyang53.wixsite.com/mysite/ publications.Anyquestions,comments,andsuggestionsregardingthisbook arewelcomeandtheyshouldbemailedtowyyang53@hanmail.net. WonY.Yangetal.

AbouttheCompanionWebsite

Donotforgettovisitthecompanionwebsiteforthisbook:

www.wiley.com/go/yang/electroniccircuits

ScanthisQRcodetovisitthecompanionwebsite.

Thereyouwillfindvaluablematerialdesignedtoenhanceyourlearning, includingthefollowing:

• LearningOutcomesforallchapters

• Exercisesforallchapters

• Referencesforallchapters

• Furtherreadingforallchapters

• FiguresforChapters16,22,and30

LoadLineAnalysisandFourierSeries

CHAPTEROUTLINE

1.1LoadLineAnalysis,1

1.1.1LoadLineAnalysisofaNonlinearResistorCircuit,3

1.1.2LoadLineAnalysisofaNonlinear RL circuit,7

1.2Voltage-CurrentSourceTransformation,10

1.3Thevenin/NortonEquivalentCircuits,11

1.4Miller’sTheorem,18

1.5FourierSeries,18

1.5.1ComputationofFourierCoefficientsUsingSymmetry,20

1.5.2CircuitAnalysisUsingFourierSeries,29

1.5.3RMSValueandDistortionFactorofaNon-SinusoidalPeriodicSignal,35 Problems,36

1.1LoadLineAnalysis

The v-i characteristicofanonlinearresistorsuchasadiodeoratransistoris oftendescribedbyacurveonthe v-i planeratherthanbyamathematicalrelation.The v-i characteristiccurvecanbeobtainedbyusingacurvetracerfor nonlinearresistors.Toanalyzecircuitscontaininganonlinearresistor,we shouldusethe loadlineanalysis.Tograsptheconceptoftheloadline,consider thegraphicalanalysisofthecircuitinFigure1.1(a),whichconsistsofalinear resistor R1,anonlinearresistor R2,aDCvoltagesource Vs,andanACvoltage sourceofsmallamplitude vδ Vs.Kirchhoff’svoltagelaw(KVL)canbeapplied aroundthemeshtoyieldthemeshequationas

ElectronicCircuitswithMATLAB®,PSpice®,andSmithChart,FirstEdition.WonY.Yang, JaekwonKim,KyungW.Park,DonghyunBaek,SungjoonLim,JingonJoung,SuhyunPark, HanL.Lee,WooJuneChoi,andTaehoIm.

©2020JohnWiley&Sons,Inc.Published2020byJohnWiley&Sons,Inc. Companionwebsite:www.wiley.com/go/yang/electroniccircuits

Nonlinear resistor circuit

Graphical analysis method 1

(Load line) Q Operating point Slope

The characteristic curve of the nonlinear resistor

Graphical analysis method 2 using load line

wherethe v-i relationshipof R2 isdenotedby v2(i)andrepresentedbythecharacteristiccurveinFigure1.1(b).Wewillconsideragraphicalmethod,which yieldsthe quiescent, operating,or biaspoint Q =(IQ, VQ),thatis,apairof thecurrentthroughandthevoltageacross R2 for vδ =0.

Sincenospecificmathematicalexpressionof v2(i)isgiven,wecannotuseany analyticalmethodtosolvethisequationandthatiswhywearegoingtoresortto agraphicalmethod.First,wemaythinkofplottingthegraphfortheLHS(lefthandside)ofEq.(1.1.1)andfindingitsintersectionwithahorizontallineforthe RHS(right-handside),thatis, v = Vs asdepictedinFigure1.1(b).Anotherwayis toleaveonlythenonlineartermontheLHSandmovetheotherterm(s)intothe RHStorewriteEq.(1.1.1)as

Figure1.1 Graphicalanalysisofalinear/nonlinearresistorcircuit.

1.1LoadLineAnalysis 3

andfindtheintersection,calledthe operatingpoint anddenotedby Q (quiescent point),ofthegraphsforbothsidesasdepictedinFigure1.1(c).Thestraightline withtheslopeof R1 iscalledthe loadline.Thisgraphicalmethodisbetterthan thefirstoneintheaspectthatitdoesnotrequireustoplotanewcurvefor v2(i) + R1i.Thatiswhyitiswidelyusedtoanalyzenonlinearresistorcircuitsinthe nameof ‘loadlineanalysis’.Notethefollowing:

• Mostresistorsappearinginthisbookarelinearinthesensethattheirvoltages arelinearlyproportionaltotheircurrentssothattheirvoltage-current relationships(VCRs)aredescribedbyOhm’slaw

andconsequently,their v-i characteristicsaredescribedbystraightlinespassingthroughtheoriginwiththeslopescorrespondingtotheirresistanceson the i-v plane.However,theymayhavebeenmodeledorapproximatedtobe linearjustforsimplicityandconvenience,becauseallphysicalresistorsmore orlessexhibitsomenonlinearcharacteristic.Theproblemiswhetherornot themodelingisvalidintherangeofpracticaloperationsothatitmayyieldthe solutionwithsufficientaccuracytoservetheobjectiveofanalysisanddesign.

• Acurvetracerisaninstrumentthatdisplaysthe v-i characteristiccurveofan electricelementonacathode-raytube(CRT)whentheelementisinserted intoanappropriatereceptacle.

1.1.1LoadLineAnalysisofaNonlinearResistorCircuit

ConsiderthecircuitinFigure1.1(a),wherealinearloadresistor R1 = RL anda nonlinearresistor R connectedinseriesaredrivenbyaDCvoltagesource Vs inserieswithasmall-amplitudeACvoltagesourceproducingthevirtualvoltage as

TheVCR v(i)ofthenonlinearresistor R isdescribedbythecharacteristiccurve inFigure1.2.

AsdepictedinFigure1.2,theupper/lowerlimitsaswellastheequilibrium valueofthecurrent i throughthecircuitcanbeobtainedfromthethreeoperatingpoints,thatis,theintersections(Q1, Q,and Q2)ofthecharacteristiccurve withthefollowingthreeloadlines.

Figure1.2 Variationofthevoltageandcurrentofanonlinearresistoraroundtheoperating point Q.

Althoughthisapproachgivestheexactsolution,wegainnoinsightintothe solutionfromit.Instead,wetakearatherapproximateapproach,whichconsists ofthefollowingtwosteps.

• Findtheequilibrium(IQ, VQ)atthemajoroperatingpoint Q,whichisthe intersectionofthecharacteristiccurvewiththeDCloadline(1.1.5b).

• Findthetwoapproximateminoroperatingpoints Q1 and Q2 fromtheintersectionsofthetangenttothecharacteristiccurveat Q withthetwominor loadlines(1.1.5a)and(1.1.5c).

Thenwewillhavethecurrentas

Withthe dynamic, small-signal,or ACresistancerd definedtobetheslopeof thetangenttothecharacteristiccurveat Q as

letusfindtheanalyticalexpressionsof IQ and iδ intermsof Vs and vδ,respectively.ReferringtotheencircledareaaroundtheoperatingpointinFigure1.2, wecanexpress iδ intermsof vδ as

1.1LoadLineAnalysis

Thiscorrespondstoapproximatingthecharacteristiccurveintheoperation rangebyitstangentattheoperatingpoint.Notingthat

• theloadlineandthetangenttothecharacteristiccurveat Q areatanglesof (180 θ L)and θ tothepositive i-axis,

• theslopeoftheloadlineistan(180 θ L)= tan θ L anditmustbe RL,which istheproportionalitycoefficientin i oftheloadlineEq.(1.1.2);tan θ L =RL,and

• theslopeofthetangenttothecharacteristiccurveat Q isthedynamicresistance rd definedbyEq.(1.1.7);tan θ = rd, wecanwriteEq.(1.1.8)as

Nowwedefinethe static or DCresistance ofthenonlinearresistor R tobethe ratioofthevoltage VQ tothecurrent IQ attheoperatingpoint Q as

sothattheDCcomponentofthecurrent, IQ,canbewrittenas

Finally,wecombinetheaboveresultstowritethecurrentthroughandthe voltageacrossthenonlinearresistor R asfollows.

Thisresultimpliesthatthenonlinearresistorexhibitstwofoldresistance,thatis, the staticresistanceRs toaDCinputandthe dynamicresistancerd toanAC inputofsmallamplitude.Thatiswhy rd isalsocalledthe(small-signal) AC resistance,while Rs iscalledthe DCresistance.

Remark1.1OperatingPointandStatic/DynamicResistances ofaNonlinearResistor

1) Foranonlinearresistor R2 connectedwithlinearresistorsinacircuitexcited byaDCsourceandasmall-amplitudeACsource,its operatingpointQ = (VQ, IQ)istheintersectionofitscharacteristiccurve v(i)andtheloadline.

2) The v-interceptoftheloadline(v = Vs RLi)isdeterminedbytheDCcomponent(Vs)ofthevoltagesource.Theslopeoftheloadlineisdeterminedby theequivalentresistance(RL)ofthelinearpartseenfromthepairofterminalsofthenonlinearresistor(seeProblem1.2).

3) The static or DCresistance (Rs)istheratioofthevoltage VQ tothecurrent IQ attheoperatingpoint Q.

4) The dynamic, small-signal, AC,or incrementalresistance (rd)istheslopeof thetangenttothecharacteristiccurveat Q.

5) Oncewehave RL, Rs,and rd,wecanuseFormulas(1.1.12)and(1.1.13)tofind approximateexpressionsforthevoltageandcurrentofthenonlinear resistor.

6) Asforlinearresistors,wedonotsaythestaticordynamicresistance,since theyareidentical.

7) TherelationshipbetweentheAC(small-signal)componentsofvoltage acrossandcurrentthroughthenonlinearresistorcanbeattributedtothe TaylorseriesexpansionofitsVCR v(i)uptothefirst-ordertermaround theoperatingpoint Q =(VQ, IQ).

Remark1.2DCAnalysisandSmall-Signal(AC)Analysis

1) Theproceduretoanalyzeacircuit(whichcontainsnonlinearresistorslikea diodeoratransistorandisdrivenbyahighDCvoltagesource Vs [forbiasing] andalowACvoltagesource vδ sin ωt [foramplification])consistsoftwo steps.Thefirststep,calledDCanalysis,istoremovetheACvoltagesource vδ sin ωt andfindtheoperatingpoint Q =(VQ, IQ)ofthenonlinearresistor, whichcorrespondstotheloadlineanalysis.Thesecondstep,calledsmallsignal(AC)analysis,istofindthedynamicresistance rd ofthenonlinear resistor(fromtheslopeofits i-v characteristiccurveorthederivativeof itsVCRequationat Q-point),removetheDCvoltagesource Vs,regard thenonlinearresistorasalinearresistor rd (correspondingtoalinear 1LoadLineAnalysisandFourierSeries

approximationofthecharacteristiccurve),andfindtheACcomponents(iδ sin ωt, rdiδ sin ωt)ofthecurrentthroughandvoltageacrossthenonlinear resistor.TheDCsolutionandACsolutioncanbeaddeduptoyieldthecompletesolution.

2) Asthemagnitude vδ oftheACvoltagebecomeslarge,thelarge-signalmodel (seeSection2.1.1foradiode)orthecharacteristiccurveitselfmighthaveto beusedforanalysissincethenonlinearbehaviorofthenonlinearresistor maybecomeconspicuous,leadingtounignorabledistortionofthevoltage/currentwaveformsobtainedusingthesmall-signalanalysis.

1.1.2LoadLineAnalysisofaNonlinear RL circuit

Asanexampleofapplyingtheloadlineanalysisforanonlinearfirst-ordercircuit,considerthecircuitofFigure1.3.1(a),whichconsistsofanonlinearresistor,alinearresistor R =2 Ω,andaninductor L =14H,andisdrivenbyaDC voltagesourceof Vs =12VandanACvoltagesource vδ sin ωt =2.8sin t[V].

The v-i relationshipofthenonlinearresistoris v(i)= i3 anddescribedbythe characteristiccurveinFigure1.3.1(b).ApplyingKVLyieldsthefollowingmesh equation:

(1.1.15)

First,wecandrawtheloadlineonthegraphofFigure1.3.1(b)tofindthe operatingpoint Q fromtheintersectionoftheloadlineandthe v-i characteristic curveofthenonlinearresistor.Ifthefunction v(i)= i3 ofthecharacteristiccurve isavailable,wecanalsofindtheoperatingpoint Q astheDCsolutionto Eq.(1.1.15)byremovingtheACsourceandthetimederivativetermtowrite

+ I 3

=12 (1.1.16) andsolvingitas IQ =2A, VQ = v2 IQ = I 3 Q =8V Q = IQ , VQ =2A,8V (1.1.17)

Eq.(1.1.16)canbesolvedbyrunningthefollowingMATLABstatements: >>eq_dc=@(i)2*i+i.^3-12;I0=0;IQ=fsolve(eq_dc,I0)

Then,asapreparationforanalyticalapproach,welinearizethenonlinear differentialequation(1.1.15)aroundtheoperatingpoint Q bysubstituting i = IQ + δi =2+ δi intoitandneglectingthesecondorhigherdegreetermsin δi as

Notethatwecansettheslopeofthecharacteristiccurveasthedynamicresistance rd ofthenonlinearresistor:

(1.1.19)

andapplyKVLtothecircuitwiththeDCsource Vs removedandthenonlinear resistorreplacedby rd towritethesamelinearizedequationasEq.(1.1.18):

Wesolvethefirst-orderlineardifferentialequationwithzeroinitialcondition δi(0)=0toget δi(t)byrunningthefollowingMATLABstatements: >>symss

dIs=2.8/(s^2+1)/14/(s+1);dit_linearized=ilaplace(dIs) dit1_linearized=dsolve('Dx=-x+0.2*sin(t)','x(0)=0')%Alternatively

Thisyields

dit_linearized=exp(-t)/10-cos(t)/10+sin(t)/10

whichmeans

WeaddthisACsolutiontotheDCsolution IQ towritetheapproximateanalyticalsolutionfor i(t)as

Now,referringtoAppendixD,weusetheMATLABnumericaldifferential equation(DE)solver ‘ode45()’ tosolvethefirst-ordernonlineardifferential equation(1.1.15)bydefiningitasananonymousfunctionhandle:

>>di=@(t,i)(12+2.8*sin(t)-2*i-i.^3)/14;%Eq.(1.1.15) andthenrunningthefollowingMATLABstatements:

>>i0=IQ;tspan=[010];%InitialvalueandTimespan [t,i_numerical]=ode45(di,tspan,i0);%Numericalsolution Wecanalsoplotthenumericalsolutiontogetherwiththeanalyticalsolution asblackandredlines,respectively,byrunningthefollowingMATLAB statements:

>>i_linearized=eval(IQ+dit_linearized);%Analyticalsolution(1.1.22) plot(t,i_numerical,'k',t,i_linearized,'r')

Nonlinear solution i(t) Linearized solution i(t)

Figure1.3.2 Thelinearizedsolutionandnonlinearsolutionforthenonlinear RL circuitof Figure1.3.1.

%elec01f03.m – fortheanalysisofanonlinearRLCircuit clear,clf

globalRLLVsvd

N=1000;i_step=0.003;i=[0:N]*i_step;%Rangeonthecurrentaxis RL=2;L=14;Vs=12;vd=2.8; eq_dc=@(i,RL,Vs)Vs-RL*i-i.^3;%Eq.(1.1.16):DCpartofEq.(1.1.20) IQ=fsolve(eq_dc,0,optimset('fsolve'),RL,Vs)%CurrentatoperatingpointQ VQ=IQ^3;%VoltageattheQ-point v=Vs-RL*i;%Loadline v2=i.^3;%Characteristiccurve

i1=1.7:i_step:2.3;%Rangeonwhichtoplotthetangentline v4=3*IQ^2*(i1-IQ)+VQ;%TangentlinetothecharacteristiccurveatQ subplot(211),plot(i,v,'k',i,v2,'b',i1,v4,'r',IQ,VQ,'mo') %UsetheLaplacetransformtosolvethelinearizeddifferentialeq. symss

dIs=0.2/(s^2+1)/(s+1);dit_linearized=ilaplace(dIs) %Thisyields0.1*(exp(-t)-cos(t)+sin(t))+2;Eq.(1.1.22). %Alternatively,usethesymbolicdifferentialsolverdsolve()as dit1_linearized=dsolve('Dx=-x+0.2*sin(t)','x(0)=0') %UsenonlinearODEsolverode45()tosolveEq.(1.1.15). di=@(t,i)(12+2.8*sin(t)-2*i-i.^3)/14;%Eq.(1.1.15) [t,i]=ode45(di,[010],IQ);%NumericalsoltoEq.(1.1.15) i_linearized=eval(IQ+dit_linearized);%Eq.(1.1.22)fortimeranget %PlottheAnalytical(linearized)andNumerical(nonlinear)solutions. subplot(212),plot(t,i,'k',t,i_linearized,'r'),ylabel('i(t)') legend('Nonlinearsolutioni(t)','Linearizedsolutioni(t)') title('Analytical(linearized)andNumerical(nonlinear)solutions')

Thiswillyieldtheplotsofthenumericalsolution i(t)andtheapproximate analyticalsolution(1.1.22)forthetimeinterval[0,10s]asdepictedin Figure1.3.2.

Overall,wecanruntheaboveMATLABscript “elec01f03.m” toget Figure1.3.1(b)(theloadlinetogetherwiththecharacteristiccurve)and Figure1.3.2(thenumericalnonlinearsolutiontogetherwiththeanalyticallinearizedsolution)together.

1.2Voltage-CurrentSourceTransformation

Twoelectriccircuitsaresaidtobe externallyequivalent withrespecttoapairof terminalsiftheirterminalvoltage-currentrelationshipsareidenticalsothat theyareindistinguishablefromoutside.The sourcetransformation refersto 1LoadLineAnalysisandFourierSeries

1.3Thevenin/NortonEquivalentCircuits 11

Voltage source with a series resistorCurrent source with a parallel resistor

Figure1.4 Equivalenceofvoltageandcurrentsources.

theconversionofavoltagesourceinserieswithanelementlikearesistor (Figure1.4(a))toacurrentsourceinparallelwiththeelement(Figure1.4(b)), orviceversainsuchawaythatthetwocircuitsare(externally)equivalent w.r.t.theirterminalcharacteristics.Whatistherelationshipamongthevalues ofthevoltagesource Vs,thecurrentsource Is,theseriesresistor Rs,andthe parallelresistor Rp requiredfortheexternalequivalenceofthetwosource models?Tofinditout,wewritetheVCRofeachcircuitas

wherethecurrentthrough Rp isfoundtobe(i + Is)byapplyingKCLatthetop nodeoftheresistor Rp inFigure1.4(b).Inorderforthesetwopolynomialequations(in i)tobeidenticalforanyvalueof v and i,theircoefficients(includingthe constantterm)shouldbethesame:

This sourceequivalencecondition isusedforvoltage-to-currentorcurrent-tovoltagesourcetransformation.

1.3Thevenin/NortonEquivalentCircuits

Thevenin’stheoremsaysthatanynetworkconsistingoflinearelementsand independent/dependentsourcesasshowninFigure1.5(a)maybereplacedat apairofitsterminals(nodes)bytheTheveninequivalentcircuit,whichconsists ofasingleelementofimpedance ZTh inserieswithasingleindependentvoltage source VTh (seeFigure1.5(b)),wherethevaluesof ZTh and VTh aredetermined asfollows:

Thevenin/Nortonequivalentsofanarbitrarycircuitseenfromterminals

T1.Thevenineqavuivalentvoltagesource VTh:

The open-circuitvoltage acrosstheterminals,thatis,thevoltageacross theopen-circuitedterminals a-b (with ZL = ∞).

T2.Theveninequivalentimpedance ZTh:

Theequivalentimpedanceofthecircuit(withalltheindependentsources removed)seenfromtheterminals a-b,whereanimpedanceisa ‘generalized’ resistance.

Norton’stheoremsaysthatanylinearnetworkmaybereplacedatapairof itsterminalsbytheNortonequivalentcircuit,whichconsistsofasingleelement ofimpedance ZNt inparallelwithasingleindependentcurrentsource INt (seeFigure1.5(c)),wherethevaluesof ZNt and INt aredeterminedasfollows:

N1.Nortonequivalentcurrentsource INt:

The short-circuitcurrent throughtheterminals,thatis,thecurrentthrough theshort-circuitedterminals a-b (with ZL =0).

N2.Nortonequivalentimpedance ZNt:

Theequivalentimpedanceofthecircuit(withalltheindependentsources removed)seenfromtheterminals a-b

SinceTheveninandNortonequivalentsareequivalentinrepresentingalinear circuitseenfromapairoftwoterminals,onecanbeobtainedfromtheotherby usingthesourcetransformationintroducedinSection1.2.Thissuggests anotherformulaforfindingtheequivalentimpedanceas

Notethatweshouldfindtheequivalentimpedanceafterremovingevery independentsource,thatis,witheveryvoltage/currentsourceshort-/opencircuited.Fornetworkshavingnodependentsource,theseries/parallelcombinationand Δ-Y/Y-Δ conversionformulasoftensufficeforthepurposeof

Figure1.5

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Buy ebook Electronic circuits with matlab®, pspice®, and smith chart wŏn-yŏng yang cheap price by Education Libraries - Issuu