https://ebookmass.com/product/brain-computer-interfacesvolume-168-handbook-of-clinical-neurology-volume-168-1st-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Trapped: Brides of the Kindred Book 29 Faith Anderson
https://ebookmass.com/product/trapped-brides-of-the-kindredbook-29-faith-anderson/
ebookmass.com
Neuroscience for Neurosurgeons (Feb 29, 2024)_(110883146X)_(Cambridge University Press) 1st Edition Farhana Akter
https://ebookmass.com/product/neuroscience-for-neurosurgeonsfeb-29-2024_110883146x_cambridge-university-press-1st-edition-farhanaakter/
ebookmass.com
Cardiology-An Integrated Approach (Human Organ Systems) (Dec 29, 2017)_(007179154X)_(McGraw-Hill) 1st Edition Elmoselhi
https://ebookmass.com/product/cardiology-an-integrated-approach-humanorgan-systems-dec-29-2017_007179154x_mcgraw-hill-1st-editionelmoselhi/
ebookmass.com
Lazy Manu2019s Guide to Enlightenment https://ebookmass.com/product/lazy-mans-guide-to-enlightenment/
ebookmass.com
Henke’s Med-Math: Dosage Calculation, Preparation, and Administration 8th Edition – Ebook PDF Version
https://ebookmass.com/product/henkes-med-math-dosage-calculationpreparation-and-administration-8th-edition-ebook-pdf-version/
ebookmass.com
Samuel Beckett and the Politics of Aftermath James Mcnaughton
https://ebookmass.com/product/samuel-beckett-and-the-politics-ofaftermath-james-mcnaughton/
ebookmass.com
Spectacles in the Roman World: A Sourcebook Siobhán Mcelduff
https://ebookmass.com/product/spectacles-in-the-roman-world-asourcebook-siobhan-mcelduff/
ebookmass.com
American government : institutions and policies Sixteenth Edition Bose
https://ebookmass.com/product/american-government-institutions-andpolicies-sixteenth-edition-bose/
ebookmass.com
Population and Community Health Nursing (6th Edition –Ebook PDF Version) 6th Edition – Ebook PDF Version
https://ebookmass.com/product/population-and-community-healthnursing-6th-edition-ebook-pdf-version-6th-edition-ebook-pdf-version/
ebookmass.com
Constitutional Change in the European Union: Towards a Federal Europe Andrew Duff
https://ebookmass.com/product/constitutional-change-in-the-europeanunion-towards-a-federal-europe-andrew-duff/
ebookmass.com
BRAIN-COMPUTER INTERFACES HANDBOOKOFCLINICAL NEUROLOGY SeriesEditors MICHAELJ.AMINOFF,FRANÇOISBOLLER,ANDDICKF.SWAAB
VOLUME168
ELSEVIER
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2020ElsevierB.V.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgencycanbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other than asmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.
Withrespecttoanydrugorpharmaceuticalproductsidentified,readersareadvisedtocheckthemostcurrent informationprovided(i)onproceduresfeaturedor(ii)bythemanufacturerofeachproducttobeadministered,to verifytherecommendeddoseorformula,themethodanddurationofadministration,andcontraindications.Itis theresponsibilityofpractitioners,relyingontheirownexperienceandknowledgeoftheirpatients,tomake diagnoses,todeterminedosagesandthebesttreatmentforeachindividualpatient,andtotakeallappropriate safetyprecautions.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditorsassumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-444-63934-9
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: Nikki Levy
EditorialProjectManager: KristiAnderson
ProductionProjectManager: SujathaThirugnanaSambandam
CoverDesigner: AlanStudholme
TypesetbySPiGlobal,India
vHandbook of Clinical Neurology 3rd Series Available titles
Vol. 79, The human hypothalamus: basic and clinical aspects, Part I, D.F. Swaab, ed. ISBN 9780444513571
Vol. 80, The human hypothalamus: basic and clinical aspects, Part II, D.F. Swaab, ed. ISBN 9780444514905
Vol. 81, Pain, F. Cervero and T.S. Jensen, eds. ISBN 9780444519016
Vol. 82, Motor neurone disorders and related diseases, A.A. Eisen and P.J. Shaw, eds. ISBN 9780444518941
Vol. 83, Parkinson’s disease and related disorders, Part I, W.C. Koller and E. Melamed, eds. ISBN 9780444519009
Vol. 84, Parkinson’s disease and related disorders, Part II, W.C. Koller and E. Melamed, eds. ISBN 9780444528933
Vol. 85, HIV/AIDS and the nervous system, P Portegies and J. Berger, eds. ISBN 9780444520104
Vol. 86, Myopathies, F.L. Mastaglia and D. Hilton Jones, eds. ISBN 9780444518996
Vol. 87, Malformations of the nervous system, H.B. Sarnat and P Curatolo, eds. ISBN 9780444518965
Vol. 88, Neuropsychology and behavioural neurology, G. Goldenberg and B.C. Miller, eds. ISBN 9780444518972
Vol. 89, Dementias, C. Duyckaerts and I. Litvan, eds. ISBN 9780444518989
Vol. 90, Disorders of consciousness, G.B. Young and E.F.M. Wijdicks, eds. ISBN 9780444518958
Vol. 91, Neuromuscular junction disorders, A.G. Engel, ed. ISBN 9780444520081
Vol. 92, Stroke Part I: Basic and epidemiological aspects, M. Fisher, ed. ISBN 9780444520036
–
Vol.93,Stroke – PartII:Clinicalmanifestationsandpathogenesis,M.Fisher,ed.ISBN9780444520043
Vol.94,Stroke – PartIII:Investigationsandmanagement,M.Fisher,ed.ISBN9780444520050
Vol.95,Historyofneurology,S.Finger,F.BollerandK.L.Tyler,eds.ISBN9780444520081
Vol.96,Bacterialinfectionsofthecentralnervoussystem,K.L.RoosandA.R.Tunkel,eds.ISBN9780444520159 Vol.97,Headache,G.NappiandM.A.Moskowitz,eds.ISBN9780444521392
Vol.98,SleepdisordersPartI,P.MontagnaandS.Chokroverty,eds.ISBN9780444520067 Vol.99,SleepdisordersPartII,P.MontagnaandS.Chokroverty,eds.ISBN9780444520074
Vol.100,Hyperkineticmovementdisorders,W.J.WeinerandE.Tolosa,eds.ISBN9780444520142 Vol.101,Musculardystrophies,A.AmatoandR.C.Griggs,eds.ISBN9780080450315 Vol.102,Neuro-ophthalmology,C.KennardandR.J.Leigh,eds.ISBN9780444529039
Vol.103,Ataxicdisorders,S.H.SubramonyandA.Durr,eds.ISBN9780444518927
Vol.104,Neuro-oncologyPartI,W.GrisoldandR.Sofietti,eds.ISBN9780444521385 Vol.105,Neuro-oncologyPartII,W.GrisoldandR.Sofietti,eds.ISBN9780444535023 Vol.106,Neurobiologyofpsychiatricdisorders,T.SchlaepferandC.B.Nemeroff,eds.ISBN9780444520029 Vol.107,EpilepsyPartI,H.StefanandW.H.Theodore,eds.ISBN9780444528988 Vol.108,EpilepsyPartII,H.StefanandW.H.Theodore,eds.ISBN9780444528995
Vol.109,Spinalcordinjury,J.VerhaagenandJ.W.McDonaldIII,eds.ISBN9780444521378
Vol.110,Neurologicalrehabilitation,M.BarnesandD.C.Good,eds.ISBN9780444529015
Vol.111,PediatricneurologyPartI,O.Dulac,M.LassondeandH.B.Sarnat,eds.ISBN9780444528919
Vol.112,PediatricneurologyPartII,O.Dulac,M.LassondeandH.B.Sarnat,eds.ISBN9780444529107 Vol.113,PediatricneurologyPartIII,O.Dulac,M.LassondeandH.B.Sarnat,eds.ISBN9780444595652
Vol.114,Neuroparasitologyandtropicalneurology,H.H.Garcia,H.B.TanowitzandO.H.DelBrutto,eds. ISBN9780444534903
Vol.115,Peripheralnervedisorders,G.SaidandC.Krarup,eds.ISBN9780444529022 Vol.116,Brainstimulation,A.M.LozanoandM.Hallett,eds.ISBN9780444534972
Vol.117,Autonomicnervoussystem,R.M.BuijsandD.F.Swaab,eds.ISBN9780444534910
Vol.118,Ethicalandlegalissuesinneurology,J.L.BernatandH.R.Beresford,eds.ISBN9780444535016 Vol.119,NeurologicaspectsofsystemicdiseasePartI,J.BillerandJ.M.Ferro,eds.ISBN9780702040863 Vol.120,NeurologicaspectsofsystemicdiseasePartII,J.BillerandJ.M.Ferro,eds.ISBN9780702040870 Vol.121,NeurologicaspectsofsystemicdiseasePartIII,J.BillerandJ.M.Ferro,eds.ISBN9780702040887 Vol.122,Multiplesclerosisandrelateddisorders,D.S.Goodin,ed.ISBN9780444520012 Vol.123,Neurovirology,A.C.TselisandJ.Booss,eds.ISBN9780444534880
Vol.124,Clinicalneuroendocrinology,E.Fliers,M.KorbonitsandJ.A.Romijn,eds.ISBN9780444596024
V1 AVAILABLE TITLES (C研tinuoo)
Vol. 125, Alcohol and the nervous system, E.V. Sullivan and A. PfelTerbaum, eds. ISBN 9780444626196
Vol. 126, Diabetes and the nervous systen1, O.W. Zochodne and R.A. Malik, eds. ISBN 9780444534804
Vol. 127, Traumatic brain injury P'art I, J.H. Grafman and A.M. Salazar, eds. ISBN 9780444528926
Vol. 128, Traumatic bmin injury Part U, J.H. Grafman and A.M. Sala纽, eds. ISBN 9780444635211
Vol. 129, The human auditory system: Fundamental organization and c血cal disorders, G.G. Celesia and G. Hickok, eds. ISBN 9780444626301
Vol. 130, Neurology of sexual and bladder disorders, O.B. Vodu如k and F. Boller, eds. ISBN 9780444632470
Vol. 131, Occupational neurology, M Lotti and M.L. Bleecker, eds. ISBN 9780444626271
Vol. 132, Neurocu比neous syndromes, M.P. Islam and E.S. Roach, eds. ISBN 9780444627025
Vol. 133, Autoimmune neurology, S」Piuock and A. Vincent, eds. ISBN 9780444634320
Vol. 134, Gliornas, M.S. Berger and M. Weller, eds. ISBN 9780128029978
Vol. I35, Neuroimaging Part I, J.C. Masdeu and R.G. Go迅lez, eds. ISBN 9780444534859
Vol. I36, Neuroimaging Part II, J.C. Ma吐eu and R.G. Gon动lez.. ed.s. ISBN 9780444534866
Vol. 137, Neuro-otology, J.M. Furman and T. Lempert, eds. ISBN 9780444634375
Vol. I38, Neuroepidemiolo切, C. Rosano, M.A. Ucram and M. Ganguli, eds. ISBN 9780I28029732
Vol. 139, Functional neurologic disorders, M. Hallett, J. Stone 叩d A. Carson, eds. ISBN 9780128017722
Vol. 140, Critical care neurology Part I, E.F.M. Wij小cks and A.H. Kramer, eds. ISBN 9780444636003
Vol. 141, Critical care neurolo窃Part U, E.F.M. Wijdicks and A.H. Kramer, eds. ISBN 9780444635990
Vol. 142, Wilson disease, A. Czlonkowska and M.L. Schilsky, eds. ISBN 9780444636003
Vol. 143, Arteriovcnous and cavemous malformations, R.F. Spet2ler, K. Moon and R.O. Almefly, eds. ISBN 9780444636409
Vol. 144, Huntington disease, A.S. Feigin and K.E. Anderson, eds. ISBN 9780128018934
Vol. 145, Neuropathology, G.G. Kovacs and I. Alafuzoft; eds. ISBN 9780128023952
\bl. 146, Cerebrospinal fluid in neurologic disorders, F. Oeisenhammer, C.E. Teunissen and H. Tumani, eds. ISBN 9780128042793
Vol. 147, Neurogenetics Part l, O.H. Gescbwind, H.L. Paulson and C. Klein, eds. ISBN 9780444632333
Vol. 148, Neurogenetics Part U, D.H. Geschwind, H.L. Paulson and C. Klein, eds. ISBN 9780444640765
Yol. 149, Metastatic diseases of the nervous system, 0. Schiffand M.J. v叩 den Bent, eds. ISBN 9780128111611
Yol. 150, Brain banking in ncurologie and psychiatrie diseases, L Huitinga and M.J. Webster, eds ISBN 9780444636393
Vol. 151,.几e parietal lobe, G. V;tllar and H.B. Coslett, eds. ISBN 9780444636225
Vol. 152, The neurology ofHIV infection, BJ. Brew, ed. ISBN 9780444638496
Vol. 153, Human prion diseases, M. Pocchiari and J.C. Manson, eds. ISBN 9780444639455
Yol. 154, The cerebellum: From embryol处;y to diagnostic investigations, M. Manto and T.A.G..M. Huisman, eds ISBN 9780444639561
Vol. 155, The cerebellum: Disorders and treatn1ent, M. Manto and T.A.G.M. Huisman, eds. ISBN 9780444641892
Yol. 156, Thermoregulation: from basic neuroscience to clinical neurology Part I, A.A. Romanovsky, ed. ISBN 9780444639127
Vol. 157,Thermoregulation: From basic neuroscience to clinical neurology Part II, A.A Romanovsky, ed ISBN 9780444640741
Vol. 158, Sports neurology, B. Hainline and R.A. Stern, eds. ISBN 9780444639547
Vol. 159, Balance, gait, and falls, B.L. Day and S.R. Lord, eds. JSBN 9780444639165
Vol. 160, Clinical neurophysiology: Basis and technical a平ctS, K.H. Levin ,md P. Chauvel, eds. ISBN 9780444640321
Vol. 161,Clinical neurophysiology.: Diseases and disorders, K.H. Le\'in and P. Chauvel, eds. ISBN 9780444641427
Vol. 162, Neonatal neuroloi,,y, L.S. Oe Vries and H.C. Glass, eds. ISBN 9780444640291
Vol. 163, The fron也I lobes, M. O'Esposito and J.H. Grafrnan, eds. ISBN 9780128042816
Vol. 164, Smell and taste, Richard L. Doty, ed. ISBN 9780444638557
Vol. 165, Psychopharmacology of neurologic disease, V.I. Reus and D. Lindqvist, eds. ISBN 9780444640123
Vol. 166, Cingulatc cortex, BA Vogt, 叫ISBN 9780444641960
Vol. 167, Geriatric neurology, S.T. OeKosky and S. Asthana, eds. ISBN 9780128047668
All volumes in the 3rd Series ofthe Handbook of Clinical Neurology are published electronically, on Science Oir忱t: h1tp://www.sciencedircc1.co111'science/lrnndbooks/00729752
Foreword Amongthefeaturesdifferentiatinghumansfromotherspecies,onestandsout:theabilitytomanufactureanduse complextoolsandinstruments,manyofwhichhavetrulyrevolutionizedourwayoflife.Twoofthesearethestarting pointofthisvolume.First,computers,theinventionofwhichmaygoback500yearstoLeonardodaVinci(orperhaps othersbeforehim)and,inthemodernage,toAlanTuring.Certainly,50orsoyearsago,fewwouldhavepredictedthat insomeformtheywouldbeinthehandsofhalfthepeopleonourplanet.Secondistheabilitytorecordbrainactivity, whichcanbetracedbacktoHansBerger ’sworkontheelectroencephalogram(EEG)almost100yearsago.Theconjunctionoftheseapproacheshasgivenrisetoabrandnewfieldofresearch:thebrain-computerinterface(BCI).Itis traditionallythoughtthatthemainfunctionofthebrainisthatoftransformingsensoryinputintomotorandhormonal output.Tothis,wecannowaddthefactthatBCIutilizesnoveltypesofoutputfromthebraintomonitor,restore,or enhancethenaturalfunctioningofthecentralnervoussystem,includingitsthinking.Theemergenceofthistrulynew fieldofneurosciencepromptedustoproposeforthefirsttimeavolumeofthe HandbookofClinicalNeurology entirely dedicatedtoBCI.
Asexpected,thevolumecoversawidevarietyoftopics.ItopenswithtwochaptersdefiningBCIanditsprinciples. ThefollowingchaptersexplorethewaysthatBCIscanguiderehabilitationeffortsinconditionssuchasstrokesand spinalcordlesionsbyimprovingthecapacityofonlinemonitoringofbrainactivity.TheyshowhowBCIcansignificantlyimpactneurologicrehabilitation.OneofthemainpotentialapplicationsofBCIisinimprovingcommunications.Thisisillustratedmostsignificantlyinpatientswithlocked-insyndromeorwithslowlyprogressiveamyotrophic lateralsclerosis.Intheselatterpatients,BCIhelpscommunicationinend-of-lifecircumstances,whichisparamountin preservingpatientautonomyanddignity BCIsemploytheperson’sneuralsignalstoaidcommunicationinsteadof relyingonmuscleactivity.AchapterontraumapresentstheresultsofstudiesusingBCIinconsciouspatientswith traumaticbraininjuriesandinanimalmodelsofinjurytoshowthatBCIcanimprovecognitiveimpairmentsinboth animalmodelsandpatients.AchapterdedicatedtochronicneuropathicpainafterspinalcordinjuriesshowsthatBCI mayhaveasubstantialinfluenceoncorticaltopographicorganization.Anotherchapterdiscussestheuseofimagined movementsofparalyzedbodypartsandneurofeedbackforthepreventionortreatmentofchronicneuropathicpain. ThevolumeincludeschaptersdealingwithBCIapplicationstovirtualrealitydevicesandvideogames,andhowto monitortheperformanceofprofessionalandoccupationaloperators,forinstance,whiledriving.Techniquesthatare nowstandardsuchasEEGandfunctionalmagneticresonanceimagingarerevisited,showinghowtheycanbestbe usedinBCIresearchapplications.
Thefinalchaptersofthevolumedealwithimportantgeneralprinciples,specificallywithethicalaspectsofthese newtechniquesastheyentermedicalpractice.BCIcansatisfyseveralgoalsoftraditionalmedicine,suchashelping patientstolivewiththeirdisabilitiesandmaintaindignityandself-esteem.OtheraspectsofBCIareconsideredbut arenotentirelyresolved,forinstance,makingsurethatpatientscanmaintaincompleteprivacyorclarifyingthe decision-makingprocess.Thevolumeendswithareviewofindustrialperspectivesanditaddressesthetranslational gapconcerningtheknowledgeofhowtobringBCIsfromthelaboratorytothefield.Thereiscurrentlyalackofutility andaccessibilityofmanyBCIdevices;effortsareunderwaytoadoptuser-centereddesignsforBCIresearchand development.
Wehavebeenfortunatetohaveaseditorsofthisvolumetwodistinguishedscholars:NickF.Ramsey,BrainCenter, UniversityMedicalCenterUtrecht,Utrecht,theNetherlands,andJosedelR.Millán,CarolCockrellCurranEndowed Chair,DepartmentofElectricalandComputerEngineering&DepartmentofNeurology,UniversityofTexasatAustin, UnitedStates.Bothhavebeenattheforefrontofresearchinneuroscienceformanyyears.Theyhaveassembledatruly internationalgroupofauthorswithacknowledgedexpertisetoproducethisauthoritative,comprehensive,and up-to-datevolume.TheavailabilityofthevolumeelectronicallyonElsevier ’sScienceDirectsiteaswellasinprint formatshouldensureitsreadyaccessibilityandfacilitatesearchesforspecificinformation.
Wearegratefultothetwovolumeeditorsandtoallthecontributorsfortheireffortsincreatingsuchaninvaluable resource.Asserieseditorswereadandcommentedoneachofthechapterswithgreatinterestandareconfidentthat cliniciansandresearchersinmanydifferentdisciplineswillfindmuchinthisvolumetoappealtothem.
And,finally,wethankElsevier,ourpublisher,and,inparticular,MichaelParkinsoninScotland,NikkiLevyand KristiAndersoninSanDiego,andSujathaThirugnanaSambandamatElsevierGlobalBookProductioninChennaifor theirunfailingandexpertassistanceinthedevelopmentandproductionoftheseHCNvolumes.
MichaelJ.Aminoff
Franc ¸ oisBoller
DickF.Swaab
Preface Brain-computerinterface(BCI)technologyhasincreasinglyfounditswayintothenews.Largecompanies,including FacebookandNeuralink,havebecomeinterestedintheprospectofofferingtheircustomersawaytocommunicate withoutakeyboardandhavestartedtheirownresearchprogramsonBCI.Scientistsclaimthatbrainsignalscan beinterpretedwellenoughtocontrolroboticarmsandwheelchairs,andeventospeakthroughacomputer.Yet,as isoftenthecasewithnewfrontiersinscience,actualachievementsandwhattheymeanforpeopleandsocietyare difficulttoassess.TheBCIfieldisparticularlydifficulttoappraisebecausemultipledisciplinesareinvolved,andeach reportsonperformanceandutilityaccordingtoitsownstandards.TheeditorsofthisvolumehavebeeninvolvedinBCI researchandarewellpositionedintheBCIcommunityasleadersoftheinternationalBCISociety.Wefeltthatitisthe righttimefortheBCIcommunitytoinformcliniciansofthestateofaffairsinBCIresearch,andtogiveawell-informed impressionofwhatwecanexpecttoseeinclinicalcontextsincomingyears.
MostbooksonBCIaddressthetechnicalaspects,anddescriberesearchandperformanceinhealthyvolunteers. Indeed,applicationsthatbenefithealthypeoplewouldmarkasignificantstepintranslatingwhathasbeendiscovered inbrainresearch,toapplicationsforthecommunityatlarge.Interfacingwithcomputers,forinstance,couldextend beyondkeyboardsandvoicecontrol,perhapsincreasingthespeedofinteractionandliberatinghandsandspeech forotheractivities.Or,BCImayenhancesafetyintheoperationofmachineryandvehicles.Aroadmapcomposed fortheEuropeanUnionin2015bytheBCIcommunitydetailsthevariousdomainsthatstandtobenefitfromresearch anddevelopmentofBCIsystems.* Theauthorsenvisionedmultipleapplicationstomatureinthecomingyearsand formulated thisvisionasfollows:
In2025,awidearrayofapplicationswillusebrainsignalsasanimportantsourceofinformation.Wewillsee routineapplicationsinprofessionalcontext,personalhealthmonitoring,andmedicaltreatment.Weenvision afuturewherehumansandinformationtechnologyareseamlesslyandintuitivelyconnectedbyintegrating variousbiosignals,particularlybrainactivity.Peoplewillbesupportedinchoosingthebesttimeformaking difficultandimportantdecisions.Peopleworkinginsafety-relevantfieldswillbecapableofanticipating fatigue,andauthoritiesmayfindgood(evidence-based)reasonstoincorporatesuchapplicationsinregulations.Game,health,education,andlifestylecompanieswilllinkbrainandotherbiosignalswithuseful applicationsforabroadcommunity.Peoplewillwanttomonitortheirbrainstatestoprovidethemwithreliable estimatesoftheirmentalcapacityandperformancelevel.RehabilitationwillbenefitfromBCI-based treatmentsinthecomingyears.Strokerehabilitationwillbenefitfromplugandplayhomeuseofnon-invasive BCIsystems.Restorationoflostmotorfunctionswilllikelyrequirefullyimplantableneuralrecordingand stimulationdevices.Inthelongerrun,newtreatmentsofbraindisordersmayincludeelectroceuticals,where BCIsareusedtoprovidecorrectiveneurostimulationforepilepsy,depression,Parkinson’sdisease,andschizophrenia.RestorationofmobilityinpeoplewithparaplegiawillbeachievedwithBCI-basedlocomotion systems,wheredecodedbrainsignalseithercontrolanexoskeletonoractivatelimbmusclestimulation programsforwalking.
Sincepublicationofthisroadmap,severaldevelopmentshaveemergedthatstrengthenthisvision.Researchwith implantableBCIsystemsinpeoplewithsevereparalysishasincreaseddramatically,accompaniedbyasteepincrease inreportsinrespectedmedicaljournals.Separately,severallargecompanieshavestartedwell-fundedresearch programsonBCI,hopingtodevelopsolutionsforable-bodiedpeopletocommunicatefaster.Withthelarge
*RoadmapBNCI,2015. TheFutureinBrain/Neural-ComputerInteraction:Horizon2020.ISBN:978-3-85125-379-5,https://doi. org/10.3217/978-3-85125-379-5.
investmentsmadetodevelopBCIsystems,wecanexpectasteadyincreaseinpublicreportsonthetopic,and applicationsarelikelytoentertherecreationalandmedicalmarketsinthecomingdecade.
Inthecurrentvolume,theauthors,representingthefullspectrumoftheinternationalBCIcommunity,focus primarilyonmedicalapplications.MediacoverageofBCIapplicationshasmadeitdifficultforclinicianstoassess theutilityfortheirpatients,notablybecauseresearchfindingspublishedinscientificandmedicaljournalstendto berathertechnicalandevokeoverlypositiveinterpretationsbyreporters.Withthepresentin-depthcoverageofmedical applications,theeditorshopetoinformreaderswithamedicalbackgroundorinterestofthecurrentcapabilities, realisticpromises,challenges,andpitfallsofhumanBCIsolutions.SincemuchBCIresearchhasbeen,andstillis, conductedinhealthypopulations,researchoutsidethemedicalarenaislikelytoberelevantformedicalapplications also,leadingtheeditorstoincludethemostrelevantmaterialinthisvolume.Moreover,forreaderstofullyunderstand BCIanditsapplications,theprinciplesofmeasurementandanalysisofbrainsignalsdeserve,andreceive,attention. Finally,thevariousstakeholdersneedtoberecognizedandheard,especiallysinceBCIresearchtouchesupon unchartedterritoryintermsofethics,involvementof(andimpacton)projectedusers,andindustrialinvolvement. Theeditorshavecomposedthevolumewiththeseconsiderationsinmind.
ThefirsttwochaptersaddressthedefinitionsandprinciplesofBCIandformtheconceptualframeworkfortherest ofthevolume.Next,thevariousneurologicdisordersthatmaybenefitfromBCIaredetailed(Chapters3–6),followed by the typesofapplicationsthatarerelevantfordifferentdisorders(Chapters7–14).In Chapters15–17,theapplication of BCI tohealthypeopleandforresearchonbrainfunctionisexplained.Theprinciplesofvarioustypesofbrainsignals andmeasurementsareaddressedin Chapters18–23,includingprocessingofthesignalstoenableBCIinbothpatients and healthy volunteers.Thefinalchapters(Chapters24–26)addressethicalandindustrialconsiderationsandthe importance ofinvolvingtargetuserpopulations,especiallypatientsandpeoplewithdisabilities,fordevelopment ofBCIsystems.
ThetimelineofBCIresearchisofinterest.TheBCIfieldisamere50yearsold,withitsbeginningattributedto nonhumanprimatestudiesinthelate1960s.Monkeyswereatthattimeshowntobeabletoregulatefiringratesof singleneurons,usingfeedback.WhenEEGrecordingsystemsbecamewidelyavailableandelectricalrhythmswere showntorespondtobehavior(suchasthemagnitudeofthemurhythm,whichdeclinesduringmotoractions),arapidly increasingnumberofresearchteamsbecameengagedindevelopingtechnologiestoextractbrainsignalsforBCI.With increasingcomputingpower,machinelearningalgorithmsandcomplexsignalmodelsfoundtheirwayintothefield. Afteryearsofresearchwithnonhumanprimates,andseveralpioneeringinitiativesintheUnitedStates,peoplewith severeparalysiswereincludedinhumanBCIstudieswithelectrodesimplantedundertheskull.In2019,closeto 30peoplewereimplantedwithelectrodes(Chapters8and13)orcompletesystems(Chapter7),andthisnumber is increasing steadilyinanincreasingnumberofcountries.Asofyet,ahandfulofresearchteamshavesucceeded inbringingBCItechnologyintothehomesofparalyzedpeople,andtoenabletheuserstocommunicatewiththeir caregivers.Inparallel,internationalBCIcompetitionsinvolvingpeoplewithsevereparalysis,suchasCybathlon, arepowerfulvehiclestobringBCItechnologyoutsideofthelaboratoryandadvancethefield.Thesestudieshave generatedproofofprincipleofclinicalutilityofBCIandheraldedincreasedinstitutionalandindustrialeffortsto developimplantableandnoninvasivesystemsforcommercialexploitation.LargecompaniessuchasNeuralink, Kernel,andFacebookenteredthefraywithrecreationalapplicationsinmind.Thesewell-fundedindustrialactivities arelikelytogeneratetechnologiesthatcanalsosupportmedicalapplications.
Thisvolumeofferscliniciansandclinicalresearchersacomprehensiveperspectiveonthestateofaffairsinthefield ofBCIformedicalapplications.Thepitfalls,challenges,andpromisesareexplainedanddiscussed,allowingreadersto getasolidgraspofthetopicandtoassessprofessionalandpublicreportsonBCI.
NickF.Ramsey JosedelR.Millán
Contributors J.Annen
ComaScienceGroup,GIGA-Consciousness;Centredu Cerveau,UniversityHospitalofLiège,Liège,Belgium ComaScienceGroup,GIGA-Consciousness,University ofLiègeandUniversityHospitalofLiège,Liège, Belgium
P.Aricò
DepartmentofMolecularMedicine,SapienzaUniversity ofRome;Brainsignssrl,Rome,Italy
F.Babiloni
DepartmentofMolecularMedicine,SapienzaUniversity ofRome;Brainsignssrl,Rome,Italy
A.P.Batista
DepartmentofBioengineering,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
D.Bavelier
FacultyofPsychologyandEducationSciences;Campus Biotech,UniversityofGeneva,Geneva,Switzerland
G.Borghini
DepartmentofMolecularMedicine,SapienzaUniversity ofRome;Brainsignssrl,Rome,Italy
C.E.Bouton
CenterforBioelectronicMedicine,FeinsteinInstitutefor MedicalResearch,NorthwellHealth,Manhasset,NY, UnitedStates
T.Brandmeyer
OsherCenterforIntegrativeMedicine,University CaliforniaSanFrancisco(UCSF),SanFrancisco,CA, UnitedStates
C.Cannard
CentredeRechercheCerveauetCognition,PaulSabatier University,Toulouse,France;InstituteofNoetic Sciences,Petaluma,CA,UnitedStates
R.Chavarriaga
CenterforNeuroprosthetics, EcolePolytechnique FederaledeLausanne,Geneva;InstituteofApplied InformationTechnology(InIT),ZurichUniversityof AppliedSciencesZHAW,Winterthur,Switzerland
J.Collinger
DepartmentofBioengineering;DepartmentofPhysical MedicineandRehabilitation,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
V.Conde
DanishResearchCentreforMagneticResonance, CopenhagenUniversityHospitalHvidovre, Copenhagen,Denmark;ClinicalNeuroscience Laboratory,DepartmentofPsychology,Norwegian UniversityofScienceandTechnology,Trondheim, Norway
J.delR.Millán
DepartmentofElectricalandComputerEngineeringand DepartmentofNeurology,TheUniversityofTexasat Austin,Austin,TX,UnitedStates
A.Delorme
CentredeRechercheCerveauetCognition,PaulSabatier University,Toulouse,France;InstituteofNoetic Sciences,Petaluma;SwartzCenterforComputational Neuroscience,InstituteofNeuralComputation(INC), UniversityofCaliforniaSanDiego,SanDiego,CA, UnitedStates
T.J.Denison
MedtronicRTGImplantables,Minneapolis,MN, UnitedStates;MRCBrainNetworkDynamicsUnit, UniversityofOxford,Oxford,UnitedKingdom
G.DiFlumeri
DepartmentofMolecularMedicine,SapienzaUniversity ofRome;Brainsignssrl,Rome,Italy
R.Gaunt
DepartmentofBioengineering;DepartmentofPhysical MedicineandRehabilitation,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
R.Goebel
DepartmentofCognitiveNeuroscience,Maastricht University;MaastrichtBrainImagingCenter(M-BIC), Maastricht,TheNetherlands
O.Gosseries
ComaScienceGroup,GIGA-Consciousness;Centredu Cerveau,UniversityHospitalofLiège,Liège,Belgium ComaScienceGroup,GIGA-Consciousness,University ofLiègeandUniversityHospitalofLiège,Liège, Belgium
D.A.Heldman
GreatLakesNeuroTech,Cleveland,OH,UnitedStates
D.Hermes
DepartmentofPhysiology&BiomedicalEngineering, MayoClinic,Rochester,MN,UnitedStates;Department ofNeurology&Neurosurgery,UMCUtrechtBrain Center,UniversityMedicalCenter,Utrecht,The Netherlands
A.Herrera
DepartmentofBioengineering,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
L.R.Hochberg
SchoolofEngineeringandCarneyInstituteforBrain Science,BrownUniversity;CenterforNeurorestoration andNeurotechnology,VeteransAffairsMedicalCenter, Providence,RI;CenterforNeurotechnologyand Neurorecovery,MassachusettsGeneralHospital, HarvardMedicalSchool,Boston,MA,UnitedStates
C.Hughes
DepartmentofBioengineering,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
I.Iturrate
CenterforNeuroprosthetics, EcolePolytechnique FederaledeLausanne,Geneva,Switzerland
B.Jarosiewicz
BrainGate,BrownUniversity,Providence,RI, UnitedStates
S.Kleih
InstituteofPsychology,UniversityofWurzburg, Wurzburg,Germany
E.Klein
DepartmentofNeurology,OregonHealthandScience University,Portland,OR;DepartmentofPhilosophy, UniversityofWashington,Seattle,WA,UnitedStates
A.Kubler InstituteofPsychology,UniversityofWurzburg, W€ urzburg,Germany
S.Laureys
ComaScienceGroup,GIGA-Consciousness;Centredu Cerveau,UniversityHospitalofLiège,Liège,Belgium ComaScienceGroup,GIGA-Consciousness,University ofLiègeandUniversityHospitalofLiège,Liège, Belgium
R.Leeb MindMazeSA,Lausanne,Switzerland
M.Masciullo DepartmentofNeurorehabilitation,FondazioneSanta LuciaIRCCS,Rome,Italy
D.Mattia NeuroelectricalImagingandBrainComputerInterface Laboratory,FondazioneSantaLuciaIRCCS,Rome, Italy
K.J.Miller DepartmentofNeurosurgery,MayoClinic,Rochester, MN,UnitedStates
K.T.Mitchell DepartmentofNeurology,DukeUniversity,Durham, NC,UnitedStates
M.Molinari DepartmentofNeurorehabilitation,FondazioneSanta LuciaIRCCS,Rome,Italy
D.W.Moran BiomedicalEngineering,WashingtonUniversity, St.Louis,MO,UnitedStates
G.R.Muller-Putz InstituteforNeuralEngineering,LaboratoryofBrainComputerInterfaces,GrazUniversityofTechnology, Graz,Austria
M.Nahum
SchoolofOccupationalTherapy,FacultyofMedicine, HebrewUniversityofJerusalem,Jerusalem,Israel
F.Nijboer
FacultyofElectricalEngineering,Mathematicsand ComputerScience,UniversityofTwente,Enschede, TheNetherlands
D.Perez-Marcos MindMazeSA,Lausanne,Switzerland
F.Pichiorri
NeuroelectricalImagingandBrainComputerInterface Laboratory,FondazioneSantaLuciaIRCCS,Rome, Italy
C.L.Pulliam
MedtronicRTGImplantables,Minneapolis,MN, UnitedStates
N.F.Ramsey
BrainCenter,UniversityMedicalCenterUtrecht, Utrecht,TheNetherlands
V.Ronca
DepartmentofMolecularMedicine,SapienzaUniversity ofRome;Brainsignssrl,Rome,Italy
R.Rupp
ExperimentalNeurorehabilitation,SpinalCordInjury Center,HeidelbergUniversityHospital,Heidelberg, Germany
H.R.Siebner
DanishResearchCentreforMagneticResonance, CopenhagenUniversityHospitalHvidovre;Department ofNeurology,CopenhagenUniversityHospital Bispebjerg,Copenhagen,Denmark
B.Sorger DepartmentofCognitiveNeuroscience,Maastricht University;MaastrichtBrainImagingCenter(M-BIC), Maastricht,TheNetherlands
S.R.Stanslaski MedtronicRTGImplantables,Minneapolis,MN, UnitedStates
P.A.Starr DepartmentofNeurosurgery,UniversityofCalifornia, SanFrancisco,SanFrancisco,CA,UnitedStates
M.J.Vansteensel BrainCenter,UniversityMedicalCenterUtrecht, Utrecht,TheNetherlands
T.M.Vaughan NationalCenterforAdaptiveNeurotechnologies, WadsworthCenter,NewYorkStateDepartmentof Health,Albany,NY,UnitedStates
M.Vilela SchoolofEngineeringandCarneyInstituteforBrain Science,BrownUniversity,Providence,RI, UnitedStates
A.Vozzi DepartmentofMolecularMedicine,SapienzaUniversity ofRome;Brainsignssrl,Rome,Italy
H.Wahbeh InstituteofNoeticSciences,Petaluma,CA, UnitedStates
J.R.Wolpaw NationalCenterforAdaptiveNeurotechnologiesand StrattonVAMedicalCenter,WadsworthCenter,Albany, NY,UnitedStates
Foreword vii
Pref.tee ix
Contributors xi
1. Human brain function and brnin�omputcr interfaces
1 N.F. Ra11tsey {Utrecht. The Netherlands)
2. Brain-computer interfaces: Definitions nod priocip厄
15 J.R. iv.。/pall\ J. def R. Mil/011, and N.F. Ra1nsey {Albany and Austin, U11ited States; a,1d Utrecht, The Netherlands)
3. Stroke and potential benefits ofbrain-computer interface
25 M. Moliriari mid M. Masci11/lo {Rome, Italy)
4 B . p . f . ram-com uter mter aces for people with amyotropbic lateral 艾lerosis
33 T.M. Vaughan (Albany. U11i回Stat动
5. Brain damage by trauma
39 V. Cc11de皿d H.R. Sieb11er (Cope11l,age11, Denmarkand Tro,uJheim, Norwa_刃
6. Spinal cord lesions
51 R Rupp (Heidelberg. Ge11na11y)
7. Brain-computer interfaces for comn1unication
67 M.J. Va,,stee,isel a11d B.Ja,-osiewicz (U11动t, The Netherla11ds a11d Provide,1ce, U11ited States)
8. Applications of brain-computer interfaces to the control ofrobotic and prosthetic arms
87 M. V,/e/a a叫L.R. Hochberg (Providence a11d Bosto11, UnitedStates)
9. Brain-computer interfaces in ncurologic rehabilitation practice
101 F. Pichiorri QJld D. Mattia (Rome, Italy)
10. Video games as rich cn\'ironments to foster brain plasticity
117 M. Nahum and D. Bavelier (Jerusalem, Israeland Geneva, Switzer/a吵
11. Brain•computer interfaces forconsciousness assessment and communication in severely brain-injured pa ticnts
137 J. Anne,�S. la旷句s, and 0. Gwserics (Liege, Be/g/11111)
12, Smart ncuromodulation in movement disorders
153 K.T. Mitchell and P.A. Starr (Durham and San Francisco, United States)
13. Bidirectional brain-computer interfaces
163 C.Hugh邸, A.Her,切ra, R. Gaunt, and J. Co/linger (Pittsbw-gh, United States)
HandbookofClinicalNeurology, Vol.168(3rdseries)
Brain-ComputerInterfaces
N.F.RamseyandJ.delR.Millán,Editors
https://doi.org/10.1016/B978-0-444-63934-9.00001-9
Copyright©2020ElsevierB.V.Allrightsreserved
Humanbrainfunctionandbrain-computerinterfaces NICKF.RAMSEY∗
BrainCenter,UniversityMedicalCenterUtrecht,Utrecht,TheNetherlands
Abstract
Humanbrainfunctionresearchhasevolveddramaticallyinthelastdecades.Inthischaptertheroleof modernmethodsofrecordingbrainactivityinunderstandinghumanbrainfunctionisexplained.Current knowledgeofbrainfunctionrelevanttobrain-computerinterface(BCI)researchisdetailed,withan emphasisonthemotorsystemwhichprovidesanexceptionallevelofdetailtodecodingofintendedor attemptedmovementsinparalyzedbeneficiariesofBCItechnologyandtranslationtocomputer-mediated actions.BCItechnologiesthatstandtobenefitthemostofthedetailedorganizationofthehumancortex are,andfortheforeseeablefuturearelikelytobe,reliantonintracranialelectrodes.Theseevolvingtechnologiesareexpectedtoenableseverelyparalyzedpeopletoregainthefacultyofmovementandspeechin thecomingdecades.
INTRODUCTION Withtheadventoftechniquestorecordandimage humanbrainfunction,hugestrideshavebeenmadein locatingfunction-specificbrainregionsandinterpreting theiractivity.Functionalmagneticresonanceimaging (fMRI)inparticularhasledtoincreasinglydetailed mapsoffunctions,withthelatestscannersoperatingat amagneticfieldof7Tandmakingsubmillimeterimagingpossible(Fracassoetal.,2018).Inthischapter I addressthevarioustechniquesusedcurrently,andin thepast,torelatebrainregionstospecificfunctions andbetterunderstandthehumanbrain.Ourunderstandingofhumanbrainfunctionisofparticularinterest forbrain-computerinterface(BCI)research,which standstobenefitfromusingthisknowledgeforoptimal decodingofneuralactivity.
BCIsstandtobenefitfromtheaccruedknowledge offunctionaltopography,andinparticularimplantable BCIsthatarestartingtomeetthedailyneedsofseverely paralyzedpeople(Vansteenseletal.,2016).Electroencephalography (EEG)(Chapter18)andfunctional near infrared spectroscopy(fNIRS)(Chapter21)carry
promise as noninvasivetechniques,buttheirinherent lowspatialresolutionpreventsthemfromcapitalizing onthedetailedtopographicalorganizationofthecortex. Giventhatthedetailedorganizationprovidesopportunitiestodiscriminatedetailedactionsandperceptions, suchasmovementofindividualfingersorperception ofdifferentauditoryinputs,intracranialBCIsolutions carrythemostsignificantpromisefortranslating intendedlimbmovementsandspeechtoactuatorssuch asroboticlimbsandsyntheticspeech,respectively. Peoplewhomaybenefitthemostfromcurrentdevelopmentsinthisareaareprimarilypeoplewithlocked-in syndrome(LIS)duetobrainstemstrokeoradegenerativemotorneurondiseasesuchasamyotrophiclateral sclerosis(ALS)(Chapter4),butwithmaturationof the technology,intracranialBCIsmaywellbecome attractiveforpeoplewithspinalcordlesion(Chapter6) or cerebralpalsy.
Animportantlimitationtothedevelopmentof fullyimplantableintracranialBCIsforhumansisthe hardware.Currently,systemsthatmaybeusedforBCI (e.g., Vansteenseletal.,2016)aredesignedforthe purpose of closed-loopbrainstimulationformovement
∗Correspondenceto:N.F.Ramsey,PhD,Heidelberglaan100,RoomG.03.130,Utrecht,3584CX,TheNetherlands. Tel:+31-88-755-6863,Email:n.f.ramsey @umcutrecht.nl
disorders(e.g.,Parkinson’sdisease)(Swannetal.,2018) orepilepsy (Skarpaasetal.,2019)andcontainonlyafew channels (amplifiers).Forfullexploitationofthedetailed braintopography,manymorechannelsarerequired,but intheabsenceofotherclinicalapplicationsthatwould justifythecostofhardwaredevelopment,thesedevices needtobedesignedforBCIspecifically.Sincethe BCIfieldisinitsinfancy,themarketsizeisunknown, whichplaceshighcommercialriskswithpotentialmanufacturers.Asaresult,suchdevicesarenotyetavailable. Nevertheless,researchontranslatingbrainactivityto specificactionswithmultiplechannelsisongoing,providingabasisfor(near)-futuremultichannelintracranial BCIsystems.
HISTORYOFLINKINGBRAINTO BEHAVIOR Thenotionthatthehumanbrainexhibitsamodularorganizationwasputforwardasearlyasthe17thcentury, whenWillisclaimedthatfunctionsoriginatedfrom thebrain(Finger,2005).Itwasnotuntiltheearly 19th centurythatresearchintotopographyofbrainfunctionstookholdintheresearcharena,whenphysicians triedtolinkspecificfunctionstolocationsontheskull. Althoughthisartofphrenology(Combe,1851)lacked the systematicorderinganddefinitionofbrainfunctions thatis,inmodernday,firmlyembeddedinrelated disciplines,itdidarguablyheraldthebeginningofbrain functionresearch.Theearly20thcenturywitnessedthe beginningofneuropsychology,whenitbecamepossible tostudypeoplewithspecificbrainlesionsdueinpart toadvancedweaponryinwar.Theinvestigationinto therelationshipbetweensuchlesionsandbehaviorled toincreasinglyrefinedmethodsformeasuringbehavior. ExamplesofpioneersincludeBrocaandWernicke (Broca,1865; Wernicke,1974).Inthe1930s,Penfield and colleagues initiatedthefieldofhumanbrainmappingwithdirectelectricalstimulation(ESM)ofthe cortexduringsurgery,adevelopmentthatmadeprogress intheareaofunderstandingbrainfunctionnolonger dependentonbrainlesions(PenfieldandBoldrey, 1937).Muchoftheirworkhasbeenthebasisofour understandingoflanguageandmotorfunction.ESMin awakepatientsiseventodayusedwidelyinneurosurgery todeterminewhereimportantfunctions,notablymovementandlanguage,thatneedtobesparedduringbrain tissueremovalforthetreatmentofpatientswithbrain tumorsorepilepsyarelocated.ESMcausesabrief sensationordisruptionoffunctioninsensoryandassociativecortex,avirtuallesionasitwere,andaslow musclecontractioninmotorcortex.Withtheadventof computers,inthe1960s,combinedwithEEGwhich wasdiscoveredinthe1920s(Berger,1931),functional
mapping no longerdependedonrealorvirtuallesions. Yetthedeeperbrainstructuresresisteddetectionof neuralelectricalsignals.Thiswasnolongeralimitation whenmethodssuchaspositronemissiontomography (PET)intheearly1980s,andfMRIin1992became availabletoimagebloodflow,andinparticular,changes inbloodflowfollowingexecutionofspecifictasks (Ogawaetal.,1992).Thelatterrapidlybecameapreferred instrumentformappingbrainfunctions,inpart becauseMRIscannersprovedtobeveryusefulin radiologyand,asaresult,becamewidelyavailable. Twomoretechniquesfoundtheirwaytohumanresearch: single-cellrecordingswithmicroelectrodesandelectrocorticography(ECoG)withdiscelectrodesembeddedin asiliconsheetforcorticalsurfacerecordings.
Inthischapter,anoverviewisgivenofhowthe describedtechniquesimprovedourunderstandingof thecorticalsubstrateofhumanbehavior.Whatwenow knowabouttheorganizationofbrainfunctionsdirectly affectsBCIresearchnotonlyinunderstandingmechanismsbutalsointhedesignofaBCIsystem.
MEASUREMENTOFBRAINFUNCTIONS Brainfunctionexperimentscanbedividedinto(virtual) lesionstudiesandimagingstudies.Forlesionstudies, emphasisliesondescribingthedirectbehavioralconsequenceindetailsoastodistinguishfromindirectconsequences.Oneexampleisinabilitytospeak,whichcould resultfrominabilitytoactivatemuscles,tocomprehend, ortoformulatewords,eachofwhichinvolvesadifferent, albeitmutuallyconnected,brainregion.Thechallengein lesionstudiesistonarrowdownthebehavioralmeasure andtherebyreducethenumberofindirectlyrelatedbrain regionsinordertomapfunctiontoanatomy.Imaging studiesrequireahighdegreeofselectivityinthefunction thatisevoked,andtheydosobydesigningtasks(called “paradigms”)forparticipants.Mostoften,paradigms consistoftwotasksthatareadministeredinanalternatingscheme.Onetaskisdesignedtoactivatebrainregions thataredirectlyrelatedtothefunctionofinterestbutwill inevitablyalsoactivateregionsthatarenot,suchasthose involvedinseeingtheinstructionsorpressingaresponse button.Todistinguishdirectfromindirectregions,a secondtaskisdesignedtoengageonlythelatterregions. Theparticipantperformstheparadigmwhileimage dataareacquiredcontinuously,generatingaseriesof dataframes.Insubsequentanalyses,eachpartofthe brain(channelsorbraintissuevolumeelementscalled “voxels”)istestedforitsresponsivenesstothealternatingtask.Onlythoseregionsthatresponddifferentlyto thetasksareconceptuallyrelatedtothefunctionof interestsinceallotherregionseitherdonotrespondat allorrespondtobothtasksinthesameway.
Severaldifficultchallengesinlinkingbrainregionsto specificfunctionslimitthestrengthofevidenceofbrain functionexperiments.Forone,theclassicalviewofthe brainasbeingorganizedmodularly,withspecificregions beingresponsibleforspecificfunctionsandthereby allowingformappingoneontotheother,isflawed.It isnowrecognizedthatnetworksunderliefunctions,with feedforward,feedback,andmodulatingconnections. Accordingly,itisnotpossibletoidentifyallthenetwork nodes(regions)becauselevelsofdetectableactivityare continuousratherthandiscrete(onvsoff).Moreover, regionsmayactivateatdifferentpointsintimeduring executionofatask,suchasgeneratingandspeakinga word,andmayactivatetoobrieflytodetect.Asimaging techniquesbecomebetteratmeasuringinmoredetailand faster,improvingspatialandtemporalresolution,the complexityofbrainfunctionsintermsofunderlyingneuronalmechanismsisbecomingmoreevident.Another dilemmaisthatlesionandimagingstudiesoftendo notagree.Thedominantexplanationisthatwhereas lesionstudiesidentifyregionsthatareindispensable forafunction,imagingstudiesidentifyadditional regionsthatplayarolebutarenotindispensable.For instance,fMRImapsoflanguageinpatientsplanned forsurgerytypicallydisplaytwiceasmanyregionsas subsequentlyfoundduringESM(Ruttenetal.,2002).
The concept ofneuralnetworkssupportingfunctions accommodatesthisphenomenon,inthatnetworkscan consistofbothcentralnodesthatactasbottleneckfor informationtransfer(acommontermforneurons influencingeachotherbymeansofactionpotentials) andperipheralnodesalongparallelpathways(Oliveira et al., 2017).Theformerareindispensablewhereasthe latter constituteredundancyinprocessinginformation. Redundancymostlikelyexiststoimprovebothperformancebysimultaneouslyprocessinginformationin differentwaysandresiliencetotissuedamageordysfunction(Oliveiraetal.,2017).Athirdchallengeis spatial resolution.Asimagingbecomesbetteratmeasuringindetail,thedenseinterconnectednessofthecortex requiresustorethinkfunctionaltopography.
Virtuallesiontechniquesarecurrentlysparselyused forresearch.ESMisusedmainlyduringsurgeryin awakepatientsforclinicalpurposestoidentifybothgray andwhitemattertobespared(Ritaccioetal.,2018). Recording exactlocationsofstimulationformapping researchisrarelydoneduetotheworkflowandtime constraints.ESMisalsoperformedinECoGpatients whospend1–2weekswiththeimplantfordiagnostic purposes.ItisperformedthroughtheECoGelectrodes, allowingfordetermininglocationsofelectrodes(onpresurgicalMRI)andthusforlinkingfunctiontolocationin asystematicmanner.Usingthisprocedure,comparisons canbemadebetweenneuralactivityandeffectsof
stimulationinthesameelectrodes(Baueretal.,2013). Transcranialmagneticstimulation(TMS)isanoninvasivetechniqueforperturbingbrainfunction(ValeroCabre et al.,2017).Effectsofbriefmagneticpulsesor trains of pulsesonongoingactivityofasubjectcanbe quitelocalized,dependingonthestimulationcoilused. Formappingofthemotorcortex,TMShasshownsimilar resultsasESM,and(toalesserdegree)asmagnetoencephalography(MEG,seefollowingparagraphs) (Taraporeetal.,2012).
Electricalrecording Recentdecadeshaveseenasurgeinnoninvasiveimagingtechniques.ApartfromEEG,whereincreasing numbersofelectrodesareusedtoincreasesensitivity andarguablyspatialresolution,MEGcanbeusedtoinfer electricalactivity(Baillet,2017).Itdoessobyrecording the electrom agneticcorrelateofcurrentsinthebrain.By this,giventheorthogonalorientationofelectricaland magneticfields,EEGandMEGcanberegardedascorrelatedbutcomplimentarymodalities.MEGishardly affectedbytheinsulatingpropertiesofboneandtissue and,assuch,isbetteratlocalizingcurrentsourcesthan EEG.This,however,comesatthepriceofsensitivity becausethemagneticfieldsgeneratedbybrainactivity areweak.Specificneuralevents,generallyinvokedwith specificparadigms,canbecharacterizedinspaceand time.SpatialresolutionislimitedforEEGandMEGto centimeter,anddecreaseswithdistancetothesensors duetoarapiddecreaseofsignalstrength(signaldrops withdistancesquaredorcubed).Temporalresolution isquitehighsincetheelectricalpotentialsvaryrapidly withbrainactivity.Eventscanbedeterminedintime uptotensofmillisecondsaccurately,allowingfor sequencingpotentialstodescribeaneventsuchasthe positivepotentialpeakaround300msafterstimuluspresentation(P300,see Chapter18).Sincethesensorsare relatively far awayfromneuraltissue,theysamplefrom largevolumesoftissueand,assuch,recordcoherent electricaleventsacrosscentimetersofcortex.Although isolatedactivityofasmallpatchofseveralmillimeters couldconceptuallybedetected,theactualresolution remainsintheorderofcentimetersbecausesurrounding tissueisalsoactiveanddilutestheisolatedsignal.
Toincreasespatialresolution,sensorsneedtobe closertothebrain.Thiscanbeachievedbysurgically positioningelectrodesonthesurfaceof,ordeepinside, thebrain.ECoGisclinicallyusedinpatientswith intractableepilepsywhenthesourceofseizuresand thelocationoftheeloquentcortex(brainareasrequired forprimarysensory,motor,andlanguagefunction) needstobedeterminedaccurately(andEEGdoesnot providesufficientinformation)(Keeneetal.,2000).
Thestandardelectrodegridsconsistoftwosandwiched siliconsheetswithsmallsteelorplatinumdiscs(2–4mm diameterspaced1cmapart)inbetween.Theelectrodes recorddirectlyfromthecorticalsurfacethroughholes punchedinthebrain-facingsiliconsheetandcoverthe partofthecortexthatissuspectedtoharbortheseizure source(s).Depthelectrodeshaveasimilarsurfaceper electrode,butheretheyconsistofringsalongasilicon wireofabout1mmthickandareusedwhensources aresuspectedtobelocatedinsubcorticalstructures. Intracraniallyrecordedsignalsarequitedifferentfrom EEGbecauserecordingsaredominatedbysignalgeneratedbytheneuraltissueimmediatelyunderneathor aroundtheelectrodes,andmoreremotesourcesbarely contributeduetotherapidsignaldrop(sameprinciple asEEG).Clinicalgrids,duetotheir1cmspacing,record onlyfrom4%oftissueunderneath,butgridsusedfor research,withspacingof3mm(smallestpossiblefor traditionalmanufacturing),capturemoreofthedetailed topographicalorganizationof,forexample,sensoryand motorcortices.Smallerspacingispossiblebutsuchgrids requirenewmanufacturingtechniques,whichareslow toobtainregulatoryapprovalforhumanuse.Depthelectrodemeasurefromdistributedpatchesofdeepbrain structureandarelocatedonthebasisofdiagnosticneeds and,assuch,arelessinformativeformappingfunctions incorticaldetail.
Recordingsatthelevelofsingleneuronscapturethe mostdetailbutrequireindwellingmicroelectrodeelectrodes.Microelectrodearraysareavailableforhuman use(Blackrockarrays)withabout100electrodesona 4mmby4mmcorticalpatch(Chapter8).Sinceeach electrode canrecordseveralneurons,thisarraycaptures activityfromseveralhundredsofneurons.
Sizeanddistanceofelectrodesfromneuraltissue affectssignalfeatures,mainlyduetoaveragingacross neurons.Whereasmicroelectrodearrayscandetect actionpotentialsor “spikes,” ECoGsamplesfromseveralhundredthousandneuronsandEEGfrom10million ormore.Thefrequencycontentdiffersaccordingly,with thepowerofhighfrequenciesdroppingwithnumberof recordedneurons.Frequencymattersinelectrophysiologysincebandsarethoughttorepresentdifferentpropertiesofcorticaltissue.Lowerfrequenciesuptoabout 30Hz,thedominantfeaturesofEEG,representmodulatingoscillationsoriginatingfrombasalstructures(notably thethalamus),whicharethoughttoregulatecortical excitability(Milleretal.,2012).Between30Hzand about 200 Hz,arangecapturedwellwithECoG,there arenoclearfrequenciespresent,exceptforspecific stimulusmanipulations(Hermesetal.,2015),butthe power averagedacrossthefrequencyrangerepresents localizedneuralactivity.This “high-frequencyband” (HFB)signalcorrelateswithfiringratesofpyramidal
cellsmeasuredwithindwellingelectrodes,buttheunderlyingmechanismisthoughttocorrelatewithdendritic membranepotentials(Milleretal.,2012; Chapter19). HFB signalaccordinglyreflectsnotonlyfiringratebut alsointracorticalactivity.Frequenciesintheorderof 1000Hzanduprepresentactionpotentialsgenerated bypyramidalcells.
Cerebrovascularrecording Thehumanbrainpossessesahighlyregulatedvascular supplysystem.Asimagingmethodsbecomemore detailedandaccurate,itisbecomingclearthatblood supplyiscloselytitratedtolocalmetabolicdemand,a principlecalledneurovascularcoupling.Asaconsequenceofthiscoupling,imagingbloodflowwhilea participantisperformingaparadigmallowsonetoobtain arepresentationofassociatedneuralactivitychanges. Bloodflowchangesonlyatandnearcorticaltissuethat isactivatedbythetask.
fMRIisthemostwidelyusedtechniquetomapbrain activity,anddoessowithincreasingdetail.Studieswith MRIscannersthatoperateatamagneticfieldstrengthof 7Teslahaveshownthatbloodflowchangescanbe confinedtosubmillimeter-sizedvoxels,confirmingtight neurovascularcoupling(Fracassoetal.,2018).Images acquired at lowerresolutions,suchas3–4mmat3T, aremoresensitivetoconfoundingvascularproperties relatedtosupplyinganddrainingvessels,whichcause someblurringoftheresultingactivitymaps.fMRIutilizesthedifferentmagneticpropertiesofoxygenated anddeoxygenatedhemoglobin(Glover,2011).Whereas the forme rdoesnotaffectthesurroundingmagnetic field(imposedbythescanner),thelattercausesasmall disturbancethatreducesthesignalrecorded.Sinceneural activityinducesalocalincreaseinoxygendemand,the localconcentrationofdeoxyhemoglobinincreases brieflyandthesignaldecreasesslightly.However,the arterialsupplyandbloodflowrapidlyincrease,causing drainageofthedeoxyhemoglobin,whichinturncauses thesignaltoincrease.Thisincreaseexceedsthesignal presentwhenthelocaltissueisatrest(baselinedeoxyhemoglobinconcentration),resultinginanactivity-related increaseinMRIsignal.Ofnote,asingleneuralevent canbedetectedthroughbloodflow,butsincethevascularresponsetoachangeinmetabolicdemandstartsto riseafter2sandtakes15stofullyreturntobaseline, fMRIcannotdistinguisheventsthatfolloweachother withinabout1s,althoughsometypesofanalyses suggestshortertimescanbedistinguishedwithspecific paradigms(Menonetal.,1998).
fNIRS likewiseutilizesthemetaboliceffecton oxy-anddeoxyhemoglobinconcentrationbutdoes sobypassinginfraredlightthroughthecortex
(VillringerandChance,1997; FranceschiniandBoas, 2004).Thiscanbedonenoninvasivelyduetothefact thatinfraredlightpassesthoughscalpandskullsufficientlytoreachcorticaltissue,andcanbedetectedupon exit(throughskullandscalp).Thetwostatesofhemoglobinabsorbdifferentinfraredfrequenciescausinga slightdropindetectedintensitywheneitherchanges. fNIRScarriesthebenefitofbeingportableandaffordable,butitsuffersfromlowspatialresolution,small signalchanges,andalimitedrangeofcorticalaccess (intheorderof1–2cmfromtheskull).
PETtracesradioactivitythatisattachedtomolecules ortracers(CherryandPhelps,2002).Apartfrom themanyreceptortracers,watercanbelabeledwith oxygen-15,aradioactivecompoundwitharapiddecay time(half-life2min).Whenlabeledwaterisbrought intothebloodstream,itpassesthroughthebrainwhere almostallofitisexchangedwithwaterinthetissue. Sincemorewaterisexchangedwheremetabolicdemand ishigh,theresultingimagesprovideamapofactivity muchlikefMRI,albeitwithamuchlongeracquisition time.Asingleimagetakesabout1minwithPET, whereasfMRIrequiresonlyasecondortwo.Water PETisrarelyusedforbrainactivityresearch,being replacedbyfMRIforavarietyofreasonsincluding affordability,wideavailability,lackofradioactive compounds,andfasterimageacquisition.
Howdoimagingtechniquescompare? Thedifferentbrainimagingtechniqueshavebeencomparedtoeachotherintryingtobetterunderstandthe natureandsourcesofacquiredsignals.Comparison makesmostsenseifthecomparedtechniquesmeasure atsimilarspatialresolutionsandthusmeasurethesame volumeofcorticaltissue.Comparisonsacrossdifferent resolutionsaredifficulttointerpretgiventhefactthat theyarelikelytomeasuredifferentphenomenasuchas describedforEEGversusECoG.Nevertheless,studies havebeenconductedtocomparefMRItoEEG(with
limitedspatialdetail),andtheygenerallyrevealanegativecorrelationbetweenfMRIandlowfrequencyoscillationssuchasthe a (8–12Hz)(Laufsetal.,2003), b (12–30Hz)(Ritteretal.,2009),and y ranges(3–7Hz) (Scheeringaetal.,2008).ComparisonsbetweenfMRI andECoGhaveshownsignificantagreementinspatial terms,especiallyfor7TMRI.Inastudyby Sieroetal. (2014),twoepilepsypatientsplannedforanECoG procedurewerescannedat7Tduringperformanceofa paradigmwheretheymovedthumb,index,andlittlefingersseparately.Duringsurgery,eachhadahigh-density gridplacedoverthesensorimotorhandregionwithelectrodesspaced3mmapart.Intheweekofdiagnosticprocedures,theyperformedthesametask,andthechanges inHFBpowerweremappedonthegrid.Theresulting ECoGactivitypatternwasthencomparedtothe7T fMRIresults,whichhadaresolutionof1.6mm,after coregistrationofgridandfMRIonthesameanatomical scan(Hermesetal.,2010).Thestudyrevealedtwofindings.First,thecentersofactivityforthethreefingers werelocatedwithinapatchof1cm2 onthemotorhand knob(Fig.1.1),confirmingtheexistenceofhandtopography.Second,thecentersforfMRIandECoGwereless than3mmawayfromeachother,whichconfirmsthe correlationbetweenHFBpowerandfMRIsignal.In anotherstudy,Hermes(Hermesetal.,2012)alsocomparedfMRI(at3T)toECoGandfoundthattheamplitudesofsignalchangesinthehandregionduringa simplefingertappingparadigmweresignificantlycorrelatedforthehigh-frequencybandbutmuchlesssoforthe 12–30Hzoscillations.AgreementsbetweenHFBand fMRIhavealsobeenreportedinseveralstudiesaddressingdifferentbrainfunctionssuchasmotionperception (Gaglianeseetal.,2017),workingmemory(Ramsey etal.,2006; Vansteenseletal.,2010),andaudiovisual processing(Haufeetal.,2018).Yetnotallstudiesfind highagreements,indicatingthatinsomebrainregions therelationshipisnotasstraightforward(Ojemann etal.,2013).Highcorrelationshavealsobeenfound betweenfMRIandlocalfieldpotentialsrecordedwith
indwellingmicroelectrodeelectrodes(Mukameletal., 2005; Niretal.,2007).Localfieldpotentials,likeECoG, measure fluctuationsofelectricalpotentialsurrounding theindwellingelectrodes(Chapters19 and 20).Ofnote, in animalresearch, Logothetis(2003) elegantlyshowed that the fMRIsignalcorrelatesbestwithincoming signalsandlocalprocessing(localfieldpotentials measuredwithindwellingmicroelectrodeelectrodes) asopposedtooutgoingactionpotentials,afindingthat resonateswiththenotionthatECoGalsodetectslocal processing(Milleretal.,2012)and,thereforecorrelates, well withfMRI.
FUNCTIONALORGANIZATION Thelastseveraldecadeshaveprovidedawealthof knowledgeaboutthefunctionalorganizationofthe humancortex,withtheadventofaccessibleMRI scannersandstudieswithECoGinepilepsypatients. YearsofresearchwithfMRIinhealthyvolunteers increasedinterestinfunctionalatlases,buildingonearlieratlasesmadeonthebasisofcytoarchitecturesuch asBrodmann(Brodmann,1908; Loukasetal.,2011) and coordinatesystemssuchastheonedevelopedby Talairach(TalairachandTournoux,1988).Withsoftware for processing MRIimagesbecomingavailable(Cox, 1996; Ashburner,2012; Jenkinsonetal.,2012),and the adoption ofacommonanatomicalreferenceframe (astandardanatomicalimageaveragedacrossmany healthyvolunteerssuchasonefromtheMontrealNeurologicalInstitute),itbecamepossibletoprojectastandard atlastoanindividualbrain.Thenewatlasesaredefinedon thecommonanatomicalreferencebrain,basedmainlyon cytoarchitectureandspatio-anatomicalborders(sulciand gyri)orfMRI,andcanbeprojectedontoanindividual brainafterwarpingonetotheother(Tzourio-Mazoyer et al.,2002; Mandaletal.,2012; Jamesetal.,2016).
Connections betweenregionsareinvestigatedby mappingfibertractsusingdiffusiontensorimaging andcorrelatedactivitybetweenregionsusingfMRI(resting-statefMRI).Thelatterinparticularledtoidentificationofmultiplelarge-scalenetworksbasedonfunctional connectivity,withawidearrayofanalyticalapproaches (Leeetal.,2013; Smithaetal.,2017).Thiswaslateralso applied toECoG,wherethehightemporalresolution allowedfordeterminingdirectionofinformationflow betweenregions(Korzeniewskaetal.,2008; Wang et al., 2014).Althoughquiteinterestingfromascientific pointof view,large-scalenetworkinformationisnotyet exploitedinBCIresearch,giventhatthemostprogressis beingmadewithimplantedelectrodearraysorgridsthat coveronlyconstrainedcorticalregions(sincetheyare placedformedicaldiagnosticreasons).However,recent worksuggeststhatconnectivitycanalsobeobserved
withinspecificbrainregionssuchasthevisualcortex (Raemaekersetal.,2014),whichcouldbeusefulfor decoding methods.
Inwhatfollows,thebrainfunctionsandcorrespondingbrainregionsarediscussedthatarerelevantforBCI.
Motorcortex ThefirstfunctionofrelevanceformostBCIapplications isthemotorcortex.Movementisindispensableforinteractingwiththeoutsideworldandforcommunicating one’sdesires,ideas,andneeds.Allthoseareexpressed viathemotorcortex,whethertheyconcernreaching andgraspingorspeaking.Themotorcortexexhibitsa well-describedrelationshipwithbodyparts,asfirst describedby PenfieldandBoldrey(1937).Detailsof the hand weremappedwithinthehandregionofthe motorcortexwithfMRI(Kleinschmidtetal.,1997; Olmanetal.,2012)andECoG(Milleretal.,2009), and a combined7TfMRI–ECoGstudysubsequently showedthatallfingersarerepresentedinacorticalpatch of1–2cm(Sieroetal.,2014).Detectingindividual fingers is, however,notstraightforwardasthereissignificantoverlapinactivityacrossfingers.Thiswasrecently capturedbyusingananalyticalmethodfromvision researchcalledthepopulationreceptivefield(PrF) method(DumoulinandWandell,2008)thattakesinto account the possibilitythateachdetailedpatchofcortex canrespondtomultiplestimulisuchasadjacentpositions ofadiscretelightsourceinthevisualfieldoradjacent fingersofthehand.Eachstimulusactivatesaparticular focusinacorticalregion,butadjacentstimulialsoactivatethisfocusalbeitlessstrongly.ForPrFmappingin eachfocus(voxel)aGaussiandistributionofresponses acrossstimuliiscomputed.Thevoxelisthenassigned tothestimulusitrespondsstrongestto.Howstronglya voxelrespondstoadjacentstimuliiscapturedasthe widthoftheGaussiandistribution.Awidedistribution meansavoxelrespondstoawiderangeofadjacentstimuli,andanarrowdistributionmeansitrespondsonlyto immediatelyadjacentstimuli.UsingPrF,Schellekens etal.showedaclearsomatotopicorganizationofthe fingers(Schellekensetal.,2018),ascanbeseenin Fig.1.2,whichpersistsintotheprimarysomatosensory cortex. A plausibleexplanationoffocirespondingto multiplefingersisthateachfingeractivatesthefociof allotherfingers,eitherdirectlyorindirectlyvialateral connections,toinformthemofplannedandexecuted movements.Giventhatallfingersessentiallyalways operatetogether,passingoninformationaboutindividualfingermovementislikelytobenefitmanualdexterity.
ApartfromtheclearBCIapplicationofrecordingindividualfingersforcontrolofaroboticarm,useofhand areasignalshasbeeninvestigatedforcommunication.
Fig.1.2. PrFmapofthe lefthand obtainedwith7TfMRIinahealthyvolunteer.Each color indicatesthepreferredresponsefora particularfingerindicatedonthe right (Schellekensetal.,2018).
BleichnershowedthatfourhandgesturesoftheAmerican SignLanguagethatrepresentlettersofthealphabetcould bedecodedwith7TfMRIfromsensorimotorcortex,with anaccuracyof63%atachancelevelof25%,usingactivitypatternanalysis(Bleichneretal.,2014).Subsequent researchwithhigh-densityECoGincreaseddecodingto 85%(Bleichneretal.,2016; Brancoetal.,2017).Bruurmijnreplicatedthe7Tresultswithsixgestures,achieving almost75%correctdecoding(Bruurmijnetal.,2017)in healthyvolunteers.Inthesamestudy,agroupofaboveelbowamputeeswasalsoincludedtoassessfeasibilityof decodingattemptedgestures(asaproxyforparalysis)in theabsenceofmovementandsomatosensoryfeedback. Decodingperformancewas64%,andfurtheranalysis showedthatthesomatotopicdistributionofthehand wasunaffected.TheseresultssuggestthatattemptedgesturesmaybedecodableinpeoplewithLISforspelling. Decodingofhandmovementsmayfurtherimproveonce theexactrelationshipbetweensensorimotorcortex,individualmuscles(kinetics),andgestures(kinematics)is betterunderstood.Branco,inareviewoftheseissues, concludedthatmultiplekineticandkinematicparameters mapontosensorimotoractivityandrecommendedtaking theseintoaccountincontrolmodelstoimprovedecoding forBCI(Brancoetal.,2019).
Somatotopyofthemotorcortexextendstotheface area,althoughlessobviousthanthehandarea.Asrecent as2013,articulatorsincludingtongue,lips,jaw,and larynxwereforthefirsttimemappedusinghigh-density ECoGgrids(Bouchardetal.,2013).Directclassification ofthefourarticulatorswaslatershownwithfMRI (Bleichneretal.,2015).Severalgroupsutilizedtheconceptofsomatotopytodecodeelementsofspeech,with highdensityECoGfromthefaceareaortheinferior sensorimotorcortex.HerefMRIdoesnotperformwell atdiscriminatingspeechelements(datanotpublished), whichmaywellbeduetothelowtemporalresolutionin thatthevascularresponseistooslowforfMRItodetect individual,rapidlysequenced,articulatormovement
Fig.1.3. ElectrodesrecordinganHFBactivityresponseinthe sensorimotorfaceareaduringproductionofphonemes. Colors indicateeachoffiveparticipants(epilepsypatients). Black and coloreddots representelectrodes(allhigh-densityECoGgrids) inMNIspace(projectedontoanaverageof12normalbrains) (Ramseyetal.,2018).
fromthearticulationofphonemes,syllables,orwords. ECoGstudiesusingbothspatialandtemporalinformationhaverevealeditispossibletodistinguishphonemes (Mugleretal.,2018; Ramseyetal.,2018)fromtheface area(see Fig.1.3).Asingesturedecoding,decoding (attempted)speechfromthefaceareamaybenefit frombetterunderstandingoftherelationshipbetween articulatormovementsandcorticalactivity.Salari,for instance,reportedthattheHFBresponseinthefacearea duringpronunciationofasinglephonemeisaffectedby previousphonemes,timebetweensequentialphonemes, anddurationofpronunciation(Salarietal.,2018a,b, 2019),suggestingthatmodelsoftheneuralresponses maybenefitaccuracyofdecodingspeech.Decoding of “attempted” speechinpeoplewithLISiscurrentlyan attractiveapproachforcommunicationBCI(Mesgarani etal.,2014; Martinetal.,2016; Mugleretal.,2018; Anumanchipallietal.,2019).
Somatosensorycortex Muchliketheprimarymotorcortex,theprimarysomatosensorycortexexhibitsdetailedsomatotopy.Individual digitscanbediscriminated(Kolasinskietal.,2016), and even alongthephalangesofasinglefingerexhibit topographicaldistinction(Sanchez-Panchueloetal., 2012).Importantly,inthelatter,multiplefociwere observed similartoreportsforauditory(Formisano et al., 2003)andvisualcortex(ArcaroandKastner, 2015).Thesomatosensorycortexrespondstoexternal input, butitalsoactivatesaheadofplannedmovements, reflectingfeed-forwardactivationfrommotorplanning areas,aswasalsoshownbyBruurmijninthestudy withamputees(Bruurmijnetal.,2017).Somatotopyin humans hasbeenfurtherinvestigatedwithindwelling electrodearrays,whichshowedlimbandfingerspecific responsesuponstimulationofsingleelectrodesinprimarysomatosensorycortex(Flesheretal.,2016).As descri bed in Chapter13,decodingsensoryfeedbackis of great interestforcontrolofaroboticarm.
Visualcortex ThevisualcortexhasbeenatargetforEEG-basedBCI, whereaparticularpropertyofthevisualcortexisutilized. Whengazingataflickeringlight,thecortexrespondsby activatingatthesamerate,andthiscanbedetectedwith scalpEEG(Muller etal.,1998). Thesteadystatevisual evokedpotentialcanbeusedtodeterminetowhichof severalpositionsofthevisualfieldthesubjectisattendingto,byplacingflashinglightsofdifferentfrequencies inthosepositions(Allisonetal.,2008).Thefrequency recorded fromthescalpindicatesthepositionthatwas attendedto.Thevisualcortexcanalsobeusedtodetect visuospatialattentiondirectly.Anderssonsucceededin decodingdirectionofvisualattentionwithgazefixed atthecenterofthevisualfieldwith7TfMRIinrealtime (Anderssonetal.,2011)andshowedthatdecodingwas also feasible withonlyvoxelsatthesurfaceofthebrain thatcanbeaccessedwithECoGgrids(Anderssonetal., 2013b).DirectproofofapplicabilityforBCIwasprovided by havingsubjectsnavigatearobotinrealtime (inanotherroomwithcamerafeedbacktothesubject) whileintheMRIscanner(Anderssonetal.,2013a). The robot wascontrolledbyattendingtotheleftorright ofascreentorotatetherobotandtothetoptomakeit moveforward.Subjectssucceededindirectingtherobot alonganindicatedtrajectory,indicatingfeasibilityof movingawheelchairinBCIapplicationsbysimply attendingtothedesireddirectionofmotion.Similar resultswereobtainedwithEEGandtwodirectionsof covertattention(Toninetal.,2013)andEEGcombining covert attentiontospatial,color,andshapefeaturesof itemstobeselectedonascreen(Trederetal.,2011).With
a different approach, Sendenetal.(2019) succeededin distinguishing fourimaginedlettersusing7TfMRIfrom primaryvisualcortex(V1–3),utilizingvisualtopography(Polimenietal.,2010).Althoughthisisanearlystep, one can imagineavisualcortexBCIsystemforpeople withLISwhocoulduseittospelllettersandwords. Howsuchasystemwouldignoreactualvisualinputis yettobedetermined.
Auditorycortex Decodingauditoryinputhasmainlybeeninvestigated withECoG.Theauditorycortexisonlypartlyexposed atthesurfaceaccessibletoECoG,butseveralgroups haveshownthatspectro-temporalaspectsofspeech andmusiccanbereconstructedfromperisylviancortex toacertaindegree.Martinmanagedtoreconstructboth heardandimaginedmusicplayedbyoneparticipanttoa promisingdegree(Martinetal.,2018),findingpartial overlap of theregion’sresponsetoboth.Decodingimaginedspeechwasalsostudiedbythesamegroup,but hereperformancewasratherlimitedcomparedtodecodingofheardorspokenwords(Martinetal.,2016).Others have focusedonauditorycortextoreconstructspeechby translatingbrainsignalsdirectlyorindirectlytoauditory output(spectrograms),withconsiderableperformance rates(Pasleyetal.,2012; Mesgaranietal.,2014; Akbarietal.,2019).Changandcolleaguesstudiedfeasibilityofdecodingspeechfromlargehigh-densitygridscoveringfrontal,parietal,andtemporallobes(Anumanchipalli et al.,2019).Theyusedasophisticatedanalysistomap brainactivitytoarticulatormovementsderivedfrom theaudiosignalandthen,fromthere,translatedsignals toaspeechsynthesizer.Whenlistenerswereaskedtotranscribewordsinsentencessynthesizedfromthebrainsignal decoders,havingalimitedsetofwordstochoosefrom, theycorrectlydidsoinalmosthalfofthesentences. However,sincetheauditorycortex(whichresponds tothesubjects ’ ownvoice)wasincludedindecoding, thereissomeworktodobeforearealBCIapplication canbeachieved.Nevertheless,theappealofbeingable todecodeattemptedspeechincommunication-disabled peoplewillinspirefurtherresearch.
Cognition MostoftheBCIapproachesfocusontheprimarycortex, asdescribedintheprecedingparagraphs.Conceptually, decodingcognitiveprocesseswouldbeattractivesince theymayprovideawindowtodetectintendedactions. SomeofthenoninvasiveapproachesutilizecognitionrelatedbrainactivitysuchastheP300EEGBCIand theerrordetectionprinciple(Chapter18).Sinceboth P300 andtheerrorpotentialonlyoccurwhenaperson isengagedinadeliberatetask,theyareregardedas
cognitiveprocesses.P300isapotentialthatfollows perceptionofanunexpectedandinfrequentstimulus (aflashorsound)andreliesonfocusedvisualorauditory attention.Thesourceisthoughttolieintheparietal cortex,althoughothersourceshavebeenreported. P300isaresponsethatlooksthesameonmultiple EEGorECoGelectrodesand,assuch,canbeusedas aselectioneventforthestimulusbeingobservedin BCI.(Inamatrixoficons,typicallyletters,eachicon flashesatadifferentmomentintime.)Theerrorpotential constitutesaresponsetoanunexpectedoutcomeofa cognitiveactionandisgeneratedwhenamistakeis perceived(Buttfieldetal.,2006).Itisthoughttooriginate from theanteriorcingulatecortexandcanbeused tocorrecterrorsmadeduringBCI-basedspelling. Anotherapproachistorecordsignalsfromregions involvedincognitiondirectly,suchasthoseforming thecognitivecontrolnetwork.Inparticular,thedorsolateralprefrontalcortexisregardedastheprimaryregion responsibleforallocatingcognitiveresources.Damage tothisregionleadstoaninabilitytochangemental strategy.Itisalsoinvolvedinworkingmemory,where itisthoughttocoordinateinformationflowandmaintain short-termmemoryofthatinformationintheauditory andvisualcortices.Itwasshownthatactivityinthis regioncanbewellregulatedbyperformingmentalarithmetic(Ramseyetal.,2006).Moreover,specificfocithat become activeduringarithmeticandthatsupportBCI inECoGpatientscanbefoundinthedorsolateral prefrontalcortex(Vansteenseletal.,2010).Inanindividual with LISduetolate-stageALS,electrodeswere placedonDLPFCtoprovideabackupincasethe electrodesonthemotorcortexfail(ALSaffectsthe motorneurons)(Vansteenseletal.,2016).BCIcontrol proved to bepossiblewiththeseelectrodes,supporting thenotionofcontrollabilityofthetargetedregion (manuscriptinpreparation).
FUTUREPERSPECTIVE WithintracranialBCIsystems,thedetailedcortical organizationofthehumanbraincanbecapturedto translateintentionstoactioninmoredetailthanwith noninvasivesystems.Multipleregionsarecurrently beinginvestigated,andwithadvanceddataanalysis, suchasneuralnetworks,deeplearning,andsupportvectormachines,performancecanbeexpectedtoimprove. BothindwellingmicroelectrodearraysandECoGgrids haveproducedpromisingresults,withdifferentprinciplesunderlyingeachapproach.Microelectrodearrays capitalizeondecadesofnonhumanprimateresearchinto mainlymotorandvisualregions,explainingafocuson decodinglimbmovementsforBCI.ECoGcapitalizes onthewealthofknowledgeaccruedwithnoninvasive imagingofthehumanbrainand,assuch,canreadily
targetanyregionaccessibleatthesurface.Itisunlikely thatoneapproachwillprevailoverothers,beitnoninvasiveorimplantable,sincedifferentsolutionsmaywell servedifferentneedsofendusers,andtheywilllikely appreciateachoiceofsolutions.Itwillalsotaketime forendusers,theircaregivers,andthemedicalprofession toadoptnewBCIsolutions,allowingtimeforprototype BCIsystemstobetestedinhumansandindustryto becomemoreengaged.Atanyrate,needsforBCI solutionsarelikelytorisewithaprojectedincreasein populationageandtheassociatedriskofneurologic deficits(Ramseyetal.,2014).Thefuturewillseeincreasinglysophisticateddecodingofbrainactivity,someof whichwillsatisfyend-userneedswhileotherapproaches maynot.OfparticularinterestareBCIsthatrestore communicationabilities(Chapter7)andBCIsthatclose the loopbetweenbrainandlimbwithsomatosensory feedback(Chapters13 and 22).Onafinalnote,alternative braininterfacingtechniques,suchasoptogenetics(Kim et al.,2017)orfocusedultrasound(Legonetal.,2014; Dizeuxetal.,2019)mayproveusefulforBCI,butas with manytechnologies,thetranslationtosafehuman useisanuncertainpath.
REFERENCES AkbariH,KhalighinejadB,HerreroJLetal.(2019).Towards reconstructingintelligiblespeechfromthehumanauditory cortex.SciRep 9:874. https://doi.org/10.1038/s41598018-37359-z
Allison BZ, McFarlandDJ,SchalkGetal.(2008).Towards anindependentbrain-computerinterfaceusingsteadystate visualevokedpotentials.ClinNeurophysiol 119:399–408. https://doi.org/10.1016/j.clinph.2007.09.121
Andersson P, PluimJPW,SieroJCWetal.(2011).Real-time decodingofbrainresponsestovisuospatialattentionusing 7TfMRI.PLoSOne 6:e27638. https://doi.org/10.1371/ journal.pone.0027638
Andersson P, PluimJPW,ViergeverMAetal.(2013a). Navigationofatelepresencerobotviacovertvisuospatial attentionandreal-timefMRI.BrainTopogr 26:177–185. https://doi.org/10.1007/s10548-012-0252-z
Andersson P, RamseyNF,ViergeverMAetal.(2013b).7T fMRIrevealsfeasibilityofcovertvisualattention-based brain-computerinterfacingwithsignalsobtainedsolely fromcorticalgreymatteraccessiblebysubduralsurface electrodes.ClinNeurophysiol 124:2191–2197. https:// doi.org/10.1016/j.clinph.2013.05.009.
AnumanchipalliGK,ChartierJ,ChangEF(2019).Speechsynthesisfromneuraldecodingofspokensentences.Nature 568:493. https://doi.org/10.1038/s41586-019-1119-1
Arcaro MJ, KastnerS(2015).Topographicorganizationof areasV3andV4anditsrelationtosupra-arealorganization oftheprimatevisualsystem.VisNeurosci 32:E014. https://doi.org/10.1017/S0952523815000115
Ashburner J (2012).SPM:ahistory.Neuroimage 62 – 248: 791 – 800. https://doi.org/10.1016/j.neuroimage.2011. 10 .025
BailletS(2017).Magnetoencephalographyforbrainelectrophysiologyandimaging.NatNeurosci 20:327–339. https://doi.org/10.1038/nn.4504
BauerPR,VansteenselMJ,BleichnerMGetal.(2013). Mismatchbetweenelectrocorticalstimulationandelectrocorticographyfrequencymappingoflanguage.BrainStimul 6: 524–531. https://doi.org/10.1016/j.brs.2013.01.001
Berger H (1931). UberdasElektrenkephalogrammdes Menschen.ArchPsychiatrNervenkr 94:16–60. https:// doi.org/10.1007/BF01835097
Bleichner MG, JansmaJM,SellmeijerJetal.(2014).Giveme asign:decodingcomplexcoordinatedhandmovements usinghigh-fieldfMRI.BrainTopogr 27:248–257. https://doi.org/10.1007/s10548-013-0322-x
Bleichner MG, JansmaJM,SalariEetal.(2015). Classificationofmouthmovementsusing7TfMRI. JNeuralEng 12:066026. https://doi.org/10.1088/17412560/12/6/066026
Bleichner MG, FreudenburgZV,JansmaJMetal.(2016). Givemeasign:decodingfourcomplexhandgesturesbased onhigh-densityECoG.BrainStructFunct 221:203–216. https://doi.org/10.1007/s00429-014-0902-x
Bouchard KE, MesgaraniN,JohnsonKetal.(2013). Functionalorganizationofhumansensorimotorcortex forspeecharticulation.Nature 495:327–332. https://doi. org/10.1038/nature11911
Branco MP, FreudenburgZV,AarnoutseEJetal.(2017). Decodinghandgesturesfromprimarysomatosensorycortexusinghigh-densityECoG.Neuroimage 147:130–142. https://doi.org/10.1016/j.neuroimage.2016.12.004
Branco MP, deBoerLM,RamseyNFetal.(2019).Encoding ofkineticandkinematicmovementparametersinthesensorimotorcortex:abrain-computerinterfaceperspective. EurJNeurosci 50:2755–2772. https://doi.org/10.1111/ ejn.14342
Broca P (1865).Surlesie ` gedelafacultedulangagearticule. BullMemSocAnthropolParis 6:377–393. https://doi.org/ 10.3406/bmsap.1865.9495
BrodmannK(1908).Beitrage zur histologischenLokalisation derGrosshirnrinde,JohannAmbrosiusBarth,Leipzig. BruurmijnMLCM,PereboomIPL,VansteenselMJetal. (2017).Preservation ofhandmovementrepresentation inthesensorimotorareasofamputees.Brain 140: 3166–3178. https://doi.org/10.1093/brain/awx274
Buttfield A, FerrezPW,MillanJdR(2006).Towardsarobust BCI:errorpotentialsandonlinelearning.IEEETrans NeuralSystRehabilEng 14:164–168. https://doi.org/ 10.1109/TNSRE.2006.875555
CherrySR,PhelpsME(2002).18—imagingbrainfunctionwith positronemissiontomography.In:AWToga,JCMazziotta (Eds.),Brainmapping:themethods,secondedn.Academic Press,485–511. https://doi.org/10.1016/B978-0126930191/50020-4.
Combe G (1851).Asystemofphrenology,BenjaminB. Mussey&Company,Boston.Retrievedfrom, http:// archive.org/details/systemofphrenolo00combuoft Cox R W(1996).AFNI:softwareforanalysisandvisualizationoffunctionalmagneticresonanceneuroimages.
ComputBiomedRes 29:162 – 173. https://doi.org/ 10.1 0 06/cbmr.1996.0014
Dizeux A, GesnikM,AhnineHetal.(2019).Functionalultrasoundimagingofthebrainrevealspropagationoftaskrelatedbrainactivityinbehavingprimates.NatCommun 10:1400. https://doi.org/10.1038/s41467-019-09349-w Dumoulin SO, WandellBA(2008).Populationreceptivefield estimatesinhumanvisualcortex.Neuroimage 39:647–660. https://doi.org/10.1016/j.neuroimage.2007.09.034.
Finger S (2005).ThomasWillis:thefunctionalorganizationof thebrain.Retrievedfrom, https://www.oxfordscholarship. com/view/10.1093/acprof:oso/9780195181821.001.0001/ acprof-9780195181821-chapter-7.
Flesher SN, CollingerJL,FoldesSTetal.(2016).Intracortical microstimulationofhumansomatosensorycortex.Sci TranslMed 8:361ra141. https://doi.org/10.1126/scitranslmed.aaf8083.
Formisano E, KimD-S,DiSalleFetal.(2003).Mirrorsymmetrictonotopicmapsinhumanprimaryauditory cortex.Neuron 40:859–869. https://doi.org/10.1016/ S0896-6273(03)00669-X.
Fracasso A, LuijtenPR,DumoulinSOetal.(2018).Laminar imagingofpositiveandnegativeBOLDinhumanvisual cortexat7T.Neuroimage 164:100–111. https://doi.org/ 10.1016/j.neuroimage.2017.02.038.
FranceschiniMA,BoasDA(2004).Noninvasivemeasurement of neuronalactivitywithnear-infraredopticalimaging.Neuroimage 21:372–386.
GaglianeseA,VansteenselMJ,HarveyBMetal.(2017). Correspondence between fMRIandelectrophysiology duringvisualmotionprocessinginhumanMT. Neuroimage 155:480–489. https://doi.org/10.1016/j. neuroimage.2017.04.007.
Glover GH (2011).Overviewoffunctionalmagneticresonanceimaging.NeurosurgClinNAm 22:133–139. https://doi.org/10.1016/j.nec.2010.11.001
Haufe S, DeGuzmanP,HeninSetal.(2018).ElucidatingrelationsbetweenfMRI,ECoG,andEEGthroughacommon naturalstimulus.Neuroimage 179:79–91. https://doi.org/ 10.1016/j.neuroimage.2018.06.016
Hermes D, MillerKJ,NoordmansHJetal.(2010).Automated electrocorticographicelectrodelocalizationonindividually renderedbrainsurfaces.JNeurosciMethods 185:293–298. https://doi.org/10.1016/j.jneumeth.2009.10.005
Hermes D, MillerKJ,VansteenselMJetal.(2012). NeurophysiologiccorrelatesoffMRIinhumanmotorcortex.HumBrainMapp 33:1689–1699. https://doi.org/ 10.1002/hbm.21314
Hermes D, MillerKJ,WandellBAetal.(2015).Gammaoscillationsinvisualcortex:thestimulusmatters.TrendsCogn Sci 19:57–58. https://doi.org/10.1016/j.tics.2014.12.009
James GA, HazarogluO,BushKA(2016).Ahumanbrainatlas derivedvian-cutparcellationofresting-stateandtaskbasedfMRIdata.MagnResonImaging 34:209–218. https://doi.org/10.1016/j.mri.2015.10.036
Jenkins onM,BeckmannCF,BehrensTEJetal.(2012).FSL. Neuroimage 62:782 – 790. https://doi.org/10.1016/j. neuroi mage.2011.09.015.
KeeneDL,WhitingS,VentureyraEC(2000). Electrocorticography.EpilepticDisord 2:57–63. KimCK,AdhikariA,DeisserothK(2017).Integrationofoptogenetics with complementarymethodologiesinsystems neuroscience.NatRevNeurosci 18:222–235. https://doi. org/10.1038/nrn.2017.15
Kleinschmidt A, NitschkeMF,FrahmJ(1997).Somatotopyin thehumanmotorcortexhandarea.Ahigh-resolutionfunctionalMRIstudy.EurJNeurosci 9:2178–2186. https://doi. org/10.1111/j.1460-9568.1997.tb01384.x
Kolasinski J, MakinTR,JbabdiSetal.(2016).Investigating thestabilityoffine-graindigitsomatotopyinindividual humanparticipants.JNeurosci 36:1113–1127. https:// doi.org/10.1523/JNEUROSCI.1742-15.2016
Korzeniewska A, CrainiceanuCM,KusRetal.(2008). Dynamicsofevent-relatedcausalityinbrainelectrical activity.HumBrainMapp 29:1170–1192. https://doi.org/ 10.1002/hbm.20458
Laufs H, KleinschmidtA,BeyerleAetal.(2003).EEGcorrelatedfMRIofhumanalphaactivity.Neuroimage 19:1463–1476. https://doi.org/10.1016/S1053-8119(03) 00286-6
Lee MH, SmyserCD,ShimonyJS(2013).Resting-statefMRI: areviewofmethodsandclinicalapplications.Am JNeuroradiol 34:1866–1872. https://doi.org/10.3174/ ajnr.A3263
Legon W, SatoTF,OpitzAetal.(2014).Transcranialfocused ultrasoundmodulatestheactivityofprimarysomatosensorycortexinhumans.NatNeurosci 17:322–329. https://doi.org/10.1038/nn.3620
Logothetis NK (2003).TheunderpinningsoftheBOLD functionalmagneticresonanceimagingsignal.JNeurosci 23:3963–3971. https://doi.org/10.1523/JNEUROSCI.2310-03963.2003
Loukas M, PennellC,GroatCetal.(2011).Korbinian Brodmann(1868–1918)andhiscontributionstomapping thecerebralcortex.Neurosurgery 68:6–11. https://doi. org/10.1227/NEU.0b013e3181fc5cac
Mandal PK, MahajanR,DinovID(2012).Structuralbrain atlases:design,rationale,andapplicationsinnormaland pathologicalcohorts.JAlzheimer’sDis 31:S169–S188. https://doi.org/10.3233/JAD-2012-120412
MartinS,BrunnerP,IturrateIetal.(2016).Wordpairclassificationduringimaginedspeechusingdirectbrainrecordings. SciRep 6:25803. https://doi.org/10.1038/srep25803.
Martin S, MikuttaC,LeonardMKetal.(2018).Neuralencodingofauditoryfeaturesduringmusicperceptionand imagery.CerebCortex 28:4222–4233. https://doi.org/ 10.1093/cercor/bhx277.
MenonRS,LuknowskyDC,GatiJS(1998).Mentalchronometry using latency-resolvedfunctionalMRI.ProcNatl AcadSciUSA 95:10902–10907.
MesgaraniN,CheungC,JohnsonKetal.(2014).Phonetic feature encoding inhumansuperiortemporalgyrus. Science 343:1006–1010. https://doi.org/10.1126/science. 1245994
Miller KJ, ZanosS,FetzEEetal.(2009).Decouplingthe corticalpowerspectrumrevealsreal-timerepresentation
ofindividualfingermovementsinhumans.JNeurosci 29:3132–3137. https://doi.org/10.1523/JNEUROSCI. 5506-08.2009
Miller KJ, HermesD,HoneyCJetal.(2012).Humanmotor corticalactivityisselectivelyphase-entrainedonunderlyingrhythms.PLoSComputBiol 8:e1002655. https://doi. org/10.1371/journal.pcbi.1002655
Mugler EM, TateMC,LivescuKetal.(2018).Differential representationofarticulatorygesturesandphonemes inprecentralandinferiorfrontalgyri.JNeurosci 38: 9803–9813. https://doi.org/10.1523/JNEUROSCI.120618.2018
Mukamel R, GelbardH,ArieliAetal.(2005).Coupling betweenneuronalfiring,fieldpotentials,andfMRIin humanauditorycortex.Science 309:951–954. https:// doi.org/10.1126/science.1110913
Muller MM,PictonTW,Valdes-SosaPetal.(1998).Effectsof spatialselectiveattentiononthesteady-statevisualevoked potentialinthe20–28Hzrange.CognBrainRes 6: 249–261. https://doi.org/10.1016/S0926-6410(97)00036-0 Nir Y, FischL,MukamelRetal.(2007).Couplingbetween neuronalfiringrate,gammaLFP,andBOLDfMRIis relatedtointerneuronalcorrelations.CurrBiol 17: 1275–1285. https://doi.org/10.1016/j.cub.2007.06.066
Ogawa S, TankDW,MenonRetal.(1992).Intrinsicsignal changesaccompanyingsensorystimulation:functional brainmappingwithmagneticresonanceimaging.Proc NatlAcadSciUSA 89:5951–5955. https://doi.org/ 10.1073/pnas.89.13.5951.
OjemannGA,OjemannJ,RamseyNF(2013).Relationbetween functionalmagneticresonanceimaging(fMRI)andsingle neuron,localfieldpotential(LFP)andelectrocorticography (ECoG)activityinhumancortex.FrontHumNeurosci 7:34. https://doi.org/10.3389/fnhum.2013.00034
Oliveira FF, MarinSM,BertolucciPHF(2017).Neurological impressionsontheorganizationoflanguagenetworksin thehumanbrain.BrainInj 31:140–150. https://doi.org/ 10.1080/02699052.2016.1199914
Olman CA, PickettKA,SchallmoM-Petal.(2012).Selective BOLDresponsestoindividualfingermovementmeasured withFMRIat3T.HumBrainMapp 33:1594–1606. https:// doi.org/10.1002/hbm.21310
Pasley BN, DavidSV,MesgaraniNetal.(2012). Reconstructingspeechfromhumanauditorycortex. PLoSBiol 10:e1001251. https://doi.org/10.1371/journal. pbio.1001251
Penfield W, BoldreyE(1937).Somaticmotorandsensory representationinthecerebralcortexofmanasstudiedby electricalstimulation.Brain 60:389–443. https://doi.org/ 10.1093/brain/60.4.389.
Polimeni JR, FischlB,GreveDNetal.(2010).Laminar analysisof7TBOLDusinganimposedspatialactivation patterninhumanV1.Neuroimage 52:1334–1346. https:// doi.org/10.1016/j.neuroimage.2010.05.005.
RaemaekersM,SchellekensW,vanWezelRJAetal.(2014). Patternsofrestingstateconnectivityinhumanprimaryvisual corticalareas:a7TfMRIstudy.Neuroimage 84:911–921. https://doi.org/10.1016/j.neuroimage.2013.09.060.