Bonded joints and repairs to composite airframe structures 1st edition duong - The full ebook set is

Page 1


BondedJointsandRepairstoCompositeAirframe Structures1stEditionDuong

https://ebookmass.com/product/bonded-joints-and-repairs-tocomposite-airframe-structures-1st-edition-duong/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advances in Engineered Cementitious Composite Materials, Structures, and Numerical Modeling Y. X. Zhang

https://ebookmass.com/product/advances-in-engineered-cementitiouscomposite-materials-structures-and-numerical-modeling-y-x-zhang/ ebookmass.com

Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis 1st Edition Pengfei Liu

https://ebookmass.com/product/damage-modeling-of-composite-structuresstrength-fracture-and-finite-element-analysis-1st-edition-pengfei-liu/

ebookmass.com

Psychiatry Morning Report: Beyond the Pearls 1st Edition Tammy Duong

https://ebookmass.com/product/psychiatry-morning-report-beyond-thepearls-1st-edition-tammy-duong/

ebookmass.com

The State of China’s State Capitalism: Evidence of Its Successes and Pitfalls 1st ed. Edition Juann H. Hung

https://ebookmass.com/product/the-state-of-chinas-state-capitalismevidence-of-its-successes-and-pitfalls-1st-ed-edition-juann-h-hung/ ebookmass.com

Korea’s Quest for Economic Democratization: Globalization, Polarization and Contention 1st Edition Youngmi Kim (Eds.)

https://ebookmass.com/product/koreas-quest-for-economicdemocratization-globalization-polarization-and-contention-1st-editionyoungmi-kim-eds/ ebookmass.com

SketchUp for Interior Design: 3D Visualizing, Designing, and Space Planning 2nd Edition Lydia Sloan Cline

https://ebookmass.com/product/sketchup-for-interiordesign-3d-visualizing-designing-and-space-planning-2nd-edition-lydiasloan-cline/ ebookmass.com

Make Space for Happiness Tracy Mccubbin

https://ebookmass.com/product/make-space-for-happiness-tracy-mccubbin/ ebookmass.com

Tonight We Steal the Stars (1969) John Jakes

https://ebookmass.com/product/tonight-we-steal-the-stars-1969-johnjakes/ ebookmass.com

Red Dead Redemption John Wills

https://ebookmass.com/product/red-dead-redemption-john-wills/ ebookmass.com

Digital International Relations Andrey Baikov

https://ebookmass.com/product/digital-international-relations-andreybaikov/

ebookmass.com

BondedJointsand

BondedJointsand RepairstoComposite AirframeStructures

ChunH.Wang

CongN.Duong

AcademicPressisanimprintofElsevier

125LondonWall,London,EC2Y5AS,UK

525BStreet,Suite1800,SanDiego,CA92101-4495,USA

225WymanStreet,Waltham,MA02451,USA

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK

Copyright # 2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguinginPublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ForinformationonallAcademicPresspublications visitourwebsiteat http://store.elsevier.com/

ISBN:978-0-12-417153-4

Preface

Advancedfiber-reinforcedpolymercompositesarenowwidelyusedinaircraftconstruction,forbothprimaryandsecondarystructuralapplications.Forinstance,the constructionsofboththeAirbus350andBoeing787aircraftemployadvancedfiber compositesasmorethan50%oftotalweight.Thisdemandsnewdevelopmentsin designandanalysismethodologies,applicationprocesses,andnondestructive inspectiontechniquesforbondedjointsandbondedrepairs.Theaimofthisbook isthereforetoprovideacomprehensivecoverageofrecentadvancesthatarerelevant tosafety-criticalcompositestructures.Inparticular,thisbookfocusesonthemajor challengesfacedduringrepairsofcompositestructures,incomparisontoconventionalmetalliccomponentsthatarethesubjectofrelatedbooks(Bakeretal., 2002;DuongandWang,2007).

Intendedtobeusefultopracticingengineers,designers,andresearchersinthe field,thisbookgrewoutofrecentresearchthattheauthorsconductedattheRoyal MelbourneInstituteofTechnology(RMIT),theDefenceScienceandTechnology Organisation(DSTO,Australia),andtheBoeingCompanyoverthepast10years. Thetopicsaddressedhereinaredevelopedtotheextentthatthepresentationissufficientlyself-explanatory.Hence,itcouldserveasastate-of-the-artreferenceguide topractitioners,engineers,andscientistswhoareinterestedinfurtherresearchinthis field.Thisbookfocusesonthedesignandanalysismethodologiesandapplication processesofdoublerandscarfrepairsofcompositeairframestructures,alongwith theirrepresentativejoints.

Theauthorshaveorganizedthebookinto10chapters. Chapter1 presentsanoverviewofthecompositerepairtechnology,withabriefsummaryofthekeyconcepts andanalysismethodologies,certificationrequirements,andscopeofapplications. Chapter2 outlinesrelevantfailurecriteriaforadhesivesandcomposites,followed byadescriptionofvariousanalyticalmethodsfordoublerjointsandscarfjoints in Chapters3 and 4,respectively.Toaddressthemajorchallengeofcertifyingadhesivelybondedrepairstoprimaryandsafety-criticalstructures, Chapter5 outlinesthe analyticalandnumericalmethodsforquantifyingtheeffectsofabnormalitiessuchas disbondonthestrengthofadoublerjoint.Similarconsiderationofdamagetolerance forascarfjointisgivenin Chapter6.Eventhoughdiscussionsdelineatedin Chapters 5 and 6 aremostlylimitedtobondedjoints,theydemonstratetheessentialconcept neededfordamagetoleranceanalysisofbondedrepairs.Incontrast,thedesignand analysisofexternalrepairsandinternalrepairstomeetstaticstrengthrequirements aredescribedrespectivelyin Chapters7 and 8 Chapter9 thendiscussestheaspectof themanufacturingprocessinbondedrepairs.Finally,nondestructivetechniquesfor inspectionofthestructuralintegrityoftherepairsarebrieflyreviewedin Chapter10.

Theauthorswouldliketoexpresstheirthankstoanumberofcolleagues. Between1995and2009Chun-HuiWangspent14yearsworkingattheDefenceScienceandTechnologyOrganisation(DSTO),whereheenjoyedexcellentmentoring byDrsFrancisRose,AlanBaker,andRichardChester,withwhomhehascoauthored

manyscientificpublicationscitedinthisbook.Duringthisperiodoftime,hecontributedsignificantlytothedevelopmentnewmethodologiesforthedesignofcompositerepairs,aninsituquantitativeimagingmethodforstructuralhealth monitoring,andfatiguelifeprediction.Manyofhisresearchresultshavetranslated intopracticaloutcomesthroughDefencestandards,commercialsoftwares,andpatents.HeisindebtedtomanyofhiscolleaguesatDefenceScienceandTechnology Organisation(DSTO)fortheirwonderfulfriendship,contributions,andsupport.He wouldalsoliketothankDrsAndrewRider,AlexHarman,PaulChang,PaulCallus, andJohnWangascoauthorsofmanyofresearchpapersthatformthebasisof thisbook.

Since1999,thesecondauthorhashadseveralopportunitiestoworkonthedevelopmentsofdesignandanalysismethodologiesforbondedrepairapplications.First, heworkedonmetallicairframestructuresthroughtheCompositeRepairofAircraft Structures(CRAS)programfundedbytheUnitedStatesAirForceResearchLaboratory(AFRL).Subsequently,heworkedoncompositeairframestructuresthrough Boeinginternalresearchprograms.Heisthereforeindebtedtohiscolleaguesfor theircontributionstoandsupportofthiscompositerepairresearch.Inparticular, hewouldliketothankDrsJohnZ.Lin,JohnHart-Smith,JinYu,JohnTracy,and Mr.RustyKeller,aswellasthemanagementoftheBoeingCompany.Last,but nottheleast,bothauthorsaregratefultotheirfamiliesfortheirunwaveringlove, encouragement,patience,andsupportwhilethisbookwasbeingwritten. September2015

REFERENCES

Baker,A.A.,Rose,L.R.F.,Jones,R.,2002.Adcvancesinthebondedcompositerepairof metallicaircraftstructure.Amsterdam:Elsevier. Duong,C.N.,Wang,C.H.,2007.CompositeRepair:TheoryandDesign.Oxford:Elsevier.463.

Introductionandoverview 1

1.1 AIMOFBOOK

Advancedfiber-reinforcedpolymercompositesarenowwidelyusedinaircraftconstruction,forbothprimaryandsecondarystructuralapplications.Forinstance,the Airbus350andBoeing787aircraftemploymorethan50%weightofadvancedfiber compositesintheconstruction.Thisgreatuseofcompositesinsafety-criticalsystemscanbeattributedtomanyadvantagesoffiber-reinforcedcomposites,suchas higherspecificstrengthandstiffness,higherimmunitytocostlystructuraldegradation,suchascorrosiondamageandfatiguecrackingthatplaguealuminumandother lightalloyscommonlyfoundinoldgenerationsofaircraft.Beyondaerospaceapplications,suchasautomotivevehicles,windturbines,offshoreoilandgasproduction equipment,andcivilinfrastructures,therehasalsobeenarapidriseintheuseoffiber compositesasakeylightweightingtechnologytoreducefuelconsumptionandto improveenergyefficiency.

Theaimofthisbookistoprovideacomprehensivecoverageofdesign,analyses, applicationprocesses,andnondestructiveevaluationofadhesivelybondedrepairsof compositestructuresofcriticalimportancetooperationalsafety.Inparticular,this bookfocusesonthemajordifferencesbetweenrepairsofcompositestructures andconventionalmetalliccomponents,withthelatterbeingthesubjectofrelated books(Bakeretal.,2002;DuongandWang,2007).Inthecaseofconventional metallicstructure,repairsgenerallyhaveoneofthreeobjectives:fatigueenhancement,crackpatching,andcorrosionrepair(DuongandWang,2007).Bycontrast, structuresmadeofadvancedcompositestructuresdonotsufferfatigueorcorrosion damage,butaremoresusceptibletoin-servicedamage,forexample,bymechanical impact(hailstones,birdstrikes,tooldrops,andrunwaydebris),lighteningstrikes, andoverheating.Thisisduetocomposites’relativelylow-matrixdominatedproperties,suchasthrough-thicknessstrengthandtoughness.

Someexamplesofimpact-induceddamageincompositelaminatesareshownin Figure1.1,illustratingthecomplexnatureofinterplyandintraplycrackingthat extendslaterallyfromthepointofimpact.Itisworthnotingthatthedelamination damagetendstooccurthroughouttheentirethicknessofcompositelaminates,for boththinandthicksectionstructures.Thistypeofmatrix-dominateddamagecan outspreadinthebackfaceregion,withmuchofthedamagebeinghiddenfromexaminationoftheexternalsurface.Thematrixdamageintheformofdelaminationcan significantlyreducetheflexuralstiffnessandhencethecompressivestrength.Ifthe

Examplesofimpactdamageinfibercomposites.(a)MorphednaturalandUVlights imageof21-plyCytecIM7/977-3subjected18Jimpact.(b)VTM264laminate(56plies [45/0/ 45/90]7S)subjectedto32Jimpact.

damageisofsufficientsize,exceedingtheallowabledamagelimitpertinenttothe designload,delaminationmaypropagateundertheappliedmechanicalloading,furtherreducingtheresidualcompressivestrength.Thereforetoensurecontinuing safety,itiscriticallyimportanttorepairdamageoncedetectedandreturnthestructuralstiffnessandstrengthtotheoriginaldesignlevel(FAA,2010).

Thisbookisintendedtobeusefultopracticingengineers,designers,and researchersinthefield,withtheprimaryfocusonthedesign/analysismethodologies andapplicationprocesses.Thisfirstchapterpresentsanoverviewofthecomposite repairtechnology,withabriefsummaryofthekeyconceptsandanalysismethodologies,certificationrequirements,andscopeofapplications. Chapter2 outlinesrelevant failurecriteriaforadhesiveandcomposites,followedbyadescriptionofvariousanalyticalmethodsforanalyzingdoublerjointsandscarfjointsin Chapters3 and 4, respectively.Toaddressthemajorchallengeofcertifyingadhesivelybondedrepairs toprimaryandsafety-criticalstructures, Chapter5 outlinestheanalyticalandnumericalmethodsforquantifyingtheeffectsofabnormalitysuchasdisbondonthestrength ofadoublerjoint.Similardamagetolerantconsiderationforascarfjointisgivenin Chapter6.Eventhoughdiscussionsdelineatedin Chapters5 and 6 aremostlylimited tobondedjoints,theydemonstratetheessentialconceptneededfordamagetolerance

(a)
(b)
The point of impact
37.13 mm
FIGURE1.1

analysisofbondedrepairs.Incontrast,thedesignandanalysisofdoublerrepairsand internal(scarfandstepped)repairstomeetstaticstrengthrequirementsaredescribed respectivelyin Chapters7 and 8. Chapter9 thendiscussestheaspectofmanufacturing processinbondedrepairs.Finally,nondestructivetechniquesforinspectionofthe structuralintegrityoftherepairsarebrieflyreviewedin Chapter10.

1.2 CRITICALITYOFSTRUCTUREANDDAMAGE

Aircraftstructuresaregenerallyclassifiedasfollowsintermsofcriticalityofthe structure:

•criticalstructure,whoseintegrityisessentialinmaintainingtheoverallflight safetyoftheaircraft(e.g.,principalstructuralelementsintransportcategory aircraft);

•primarystructurecarriesflight,ground,orpressurizationloads,andwhosefailure wouldreducetheaircraft’sstructuralintegrity;

•secondarystructurethat,ifitwastofail,wouldaffecttheoperationoftheaircraft butnotleadtoitsloss;and

•tertiarystructure,inwhichfailurewouldnotsignificantlyaffectoperationofthe aircraft.

Inspection,damageassessment,andrepairrequirementsdiffersignificantlybetween theseclassifications.However,evenwithinasinglecomponent,theallowabledamagetypeandsize(andconsequentlyacceptablerepairactions)willvaryaccordingto thecriticalityofthedamagedregion.Theoriginalequipmentmanufacturer(OEM) generallyzonesanaircraftcomponentintermsoftheseregions,andspecifiesrepair limitsandthepertinentrepairproceduresinthestructuralrepairmanual(SRM). DamagesoutsidethescopeoftheSRM,particularlytocriticalregionsofprimary structure,requireengineeringdesigndispositionandapprovalbytheOEM(orits delegate);thisbookdescribessomenewdesignoptionsdemonstratedbyrecent researchresults.

Foreignobjectimpactisusuallythemaintypeofdamageconcerningcomposite aircraftstructures.Toensurecontinuingairworthiness,itisnecessarytoidentify damageseverityanddetectabilityaspartoftheongoingmaintenanceprocess.Currentairworthinessregulations(FAA,2010)classifyvariousdamagetypesintofive categories,asindicatedin Figure1.2 thatillustratestherelationshipbetweendesign strengthanddamagesize:

• Category1:Allowabledamageorallowablemanufacturingdefectsthatdonot degradestructuralintegrity,andhencemaygoundetectedbyscheduled inspections.Structurescontainingthistypeofdamagearecapableofsustaining theultimateloadforthelifeoftheaircraftstructure.Someexamplesinclude barelyvisibleimpactdamage(BVID),smalldelamination,porosity,small scratches,andsoforth.Norepairsareneeded.

FIGURE1.2

Allowablestrengthversusdamagesize.

• Category2:Damagethatcanbereliablydetectedatscheduledinspection intervals.Thistypeofdamageshouldnotgrowor,ifsloworarrestedgrowth occurs,theresidualstrengthofthedamagedstructureduringtheinspection internalissufficientlyabovethelimitloadcapability.Someexamplesinclude visibleimpactdamage,deepgougesordebonding,andmajorlocaloverheating damage.Repairsareneededtorestorethedesignultimateloadcapability.

• Category3:Damagethatcanbereadilydetected,withinafewflights,by operationsormaintenancepersonnelwithoutspecialskillsincomposite inspection.Thestructurecanstillmaintainlimitornearlimitloadcapability. Repairsarerequiredimmediatelytorestoredesignultimateloadcapability.

• Category4:Discretesourcedamagethatwillreducethestructuralstrengthto belowthedesignlimitloadsuchthatflightmaneuversbecomelimited(i.e., structurecanmaintainsafeflightatreducedlevels).Examplesincluderotor burst,birdstrikes,tireburst,andseverein-flighthail.Repairsareneeded immediatelyafterflight.

• Category5:Severedamageoutsidedesignbutisself-evidentandknownto operations,suchasanomalousgroundcollisionwithservicevehicles,flight overloadconditions,abnormallyhardlandings,andsoforth.Immediaterepairis required.

Analyticalmethodsforassessingtheresidualstrengthofdamagedcompositecomponentsareneededtoensurethatonlynecessarilyrequiredrepairsareundertaken. Essentially,oneofthefollowingdecisionsmustbemade:

•Norepairaction—damageisnegligible.

•Onlyneededcorrectioniscosmeticorsealingrepairbecausedamageisminor.

•Structuralrepairisrequired(iffeasible)becausestrengthisreducedbelowultimate designallowable,orhasthepotentialtobereducedinsubsequentservice.

•Replacementisrequiredasrepairisnoteconomicallyortechnicallyfeasibleand componentmustbereplaced.

7 1.3 Typesofcompositerepairsandcertificationcriteria

ForBVID,quitelargeareasofdamage(typically25mmdiameter)canbetolerated foroldergenerationcarbon/epoxysystems(andbrittlehigh-temperaturesystems) withoutfailuresoccurringbelowtheultimatedesignstrainallowable,generally around5000microstrainforquasi-isotropiclaminatesmadeofunidirectional(tape) lamina.Recently,advancedcomputationalmodelingtechniqueshavebeenshownto beabletoaccuratelypredicttheresidualstrengthofcompositelaminatescontaining holesofvarioussizesandshapes(Wangetal.,2011a;Ridhaetal.,2014).Thus,the residualstrengthassessmentofastructurefollowingimpactdamagecanbeperformedsimilarlybyusingtheseadvancedcomputationalmethods.

FatiguestudieshavealsoshownthatBVIDwillnotgrowunderrealisticcyclic strainlevelsfortypicalcarbon/epoxylaminates.Thisisanimportantpointbecause BVIDwilloftennotbedetecteduntila100%nondestructiveinspectionisundertaken.Eventhoughthereisapossibilityofdamagegrowthandresidualstrengthdegradationunderhygrothermalcyclingconditions,thisappearstobeaseriousconcern onlyunderseverecyclingconditions.Thispossiblycatastrophicflawgrowthunder severehygrothermalcyclingmayresultfromexpansionofentrappedmoisturedueto freezingorsteamformationonheatingduringsupersonicflight.

Forsafety-criticalstructures,coupons,structuraldetails,elements,andsubcomponentsarerequiredtobetestedunderfatigueloadingtodeterminethesensitivityof structuretodamagegrowthandtodemonstratetheircompliancewitheithernogrowthorslow-growthrequirements.Thisistoensurethatadamagedstructure shouldnotbeexposedtoanexcessiveperiodoftimewhenitsresidualstrengthis lessthantheultimate.Oncethedamage(greaterthantheallowabledamagesize undercategory1)isdetected,thecomponentiseitherrepairedtorestoreultimate loadcapabilityorreplaced.

1.3 TYPESOFCOMPOSITEREPAIRSANDCERTIFICATION CRITERIA

Structuralrepairscanbeperformedbymechanicalfastening,adhesivebonding,and hybridfasteningandbonding.Thedamagedmaterialisfirstcutoutasastraightsidedholeonwhichanexternaldoublerisattached,referringto Figure1.3a,orsculpturedtoformascarfofshallowangletoaccommodateascarfpatch,referringto Figure1.3b.Therepairpatchcanbethenattachedusingmechanicalfastenersor adhesivebonding.Cross-sectionalviewsoftheresultingrepairsareshownin Figures1.4 and 1.5,respectively.Whilethemajorintentofinternalrepairistoensure thattherepairedcomponentconformstotheexternalshapeofthestructure, alow-profiledoublerisacceptableinthemajorityofaircraftapplications.

Apartfromthestructuralsafetyconsiderations,repairsarerequiredtomeetother importantfunctionalrequirements,suchaslighteningstrikeprotection,radarsignature,aerodynamicperformance,andaesthetics.Inthiscontext,aninternalrepair, suchasthoseillustratedin Figures1.4b,c and 1.5b,c,isincreasinglythepreferred

Structuralrepairs:(a)externaldoublerrepairand(b)scarfrepair.

choiceofrepairs.Forexample,repairsthatprotrudeintotheairfieldnotonlyaddto theaerodynamicdragbutalsoadverselyaffecttheresalevaluesofpassengeraircraft.

Historically,adhesivelybondedrepairconceptsanddesignmethodologieshave beendevelopedtoaddresssecondarystructures,withoutconsideringsomeofthekey designrequirements(Wangetal.,2011a,2015;Gohetal.,2013)facedbysafetycriticalstructures.Forexample,existingdesignmethodologies(Wangand Gunnion,2008a,b)forinternal(scarf)repairsarecommonlybasedonanalyzing thepristinejointsasillustratedin Figure1.5c.Inotherwords,theultimateloadcarryingcapacityoftherepairiscalculatedwithoutconsideringanydisbondand delamination.Theplanformofthescarfrepairdependsonthelaminatelayup(which affectstheorthotropyofthecomposite)andtheappliedloads(WangandGunnion, 2008a,b,2009).Thisdesignmethodologyofanalyzingthepristinejointsandrepairs, however,isnotsuitableforsafety-criticalaircraftstructures,becauserecentairworthinessregulations(FAA,2005)requirethattherepairedstructurecanrestorethe damagetoleranceandfatiguedurabilityoftheoriginalstructure.Themajordesign requirementsinclude:

•Thescarfedstructure,withoutrepair,asillustratedin Figure1.6a,mustbeableto sustainthedesignlimitload(Wangetal.,2011a).Thisrequirementstemsfrom

(a)
(b)
Scarf repair patch
Doubler
Scarfed aircraft skin
FIGURE1.3

FIGURE1.4

Cross-sectionalviewsofmechanicallyfastenedrepairs:(a)externaldoublerboltedrepair (smalldamage),(b)internalboltedrepair(largedamage),(c)internalmultistepboltedrepair, and(d)internalscarfboltedrepair.

thecurrentlackofnondestructiveinspectiontechniquesthatcandetectweak bonds(Adams,2011).

•Therepairedstructuremustbeabletocarrythedesignultimateloadeveninthe presenceofallowabledamagesuchasdisbondorimpactdamage,asillustratedin Figure1.6b,andcanreachthefatigueenduranceoftheoriginalstructure.

Astheangleofscarfdecreases,theresidualstrengthofacompositestructurecontainingascarfedholedecreases(duetohigherstressconcentration)whilethebonded strengthofascarfjointincreases,referringto Figure1.7.Scarfrepairdesigns,therefore,mustbalancebetweentwocontradictingrequirements:shallowtaperangleis neededtomeettheultimatestrength,whichistypically50%abovethedesignlimit

(c)
(d)
(a)
(b)

FIGURE1.5

Cross-sectionalviewsofadhesivelybondedrepairs:(a)externaldoublerbondedrepair, (b)internalmultistepbondedrepair,(c)internalscarfbondedrepair,and(d)doublerscarfrepair.

FIGURE1.6

(a)Scarfedcompositeand(b)scarfjointcontainingadisbond(Gohetal.,2013).

FIGURE1.7

Effectsofscarfangleonresidualstrengthandrepairstrength.

(b) (c) (a)
(a)
(b)
Flaw

load,whereassteeptaperisnecessarytoensuretheresidualstrengthtomeetthe designlimit.Inaddition,bondlineflaws(Wangetal.,2011b)andexternalimpact damage(HarmanandWang,2007)mustalsobeconsideredinthedesignofstructuralrepairsforsafety-criticalstructures.

1.4 OVERVIEWOFREPAIRDESIGNANDANALYSISPROCESS

Theanalysisprocessforrepairofdamagetostructureisdividedintothreephases:

(a) Assessthestructuralsignificanceofdamageonsystemsafety.

(b) Evaluatetheresidualstrengthofanunrepairedstructurewithacleanupdamage againsttherequirementofmeetingdesignlimitload.

(c) Determinethenecessaryrepairparameters(size,shape,andthicknessofa doublerrepair,orsize,shape,andtaperingangleofascarfrepair).

Phase(c)abovenormallyrequiresthefollowingthreeanalysissteps:

(i) Loadattractionanalysis:Todeterminethelocalincreaseofstressorstrainin theskinjustoutsidethepatchduetothelocalincreaseinoverallstiffnessof therepair.Thislocalstiffnessincreasecausesloadfromthesurrounding structuretobeattractedtotherepairlocation.Theskinstressconcentration atthedamagecutoutedge(aftertherepair)andthepatchstressesarealso affectedbytheloadattraction.

(ii) Bondstrengthanalysis:Todeterminethemaximumstressorstraininthe adhesiveofabondedrepair.Repairparametershavesignificantinfluenceson bondstrength.Theadhesivestressorstrainnormallypeaksattheedgesof repairpatchanddamagecutout,andplyterminationsinascarfrepair(Wang andGunnion,2008a).

(iii) Damagetoleranceanddurabilityanalysisofrepairs:Therepairs,bothdoubler andscarf,needtosustainthedesignultimateloadinthepresenceofdetectable flawsinthebondlineoranimpactdamage.Inaddition,anyacceptable manufacturingflawmustbedemonstratedtomeetano-growthrequirement underafatigueloadinguntiltheendoftheaircraftservicelife.

However,noteveryrepairtyperequiresallthreeoftheaboveanalysissteps.For example,asinternalrepairssuchasscarforsteppedrepairsnormallyinvolvea ply-by-plyreplacementofthedamagedpliesthatresultinnooverallstiffness increaseintherepairarea,aloadattractionanalysismaynotbeneededinthiscase.

1.5 EFFECTOFLOADATTRACTIONINPATCHDESIGN

Asmentionedin Section1.4,whentheoverallstiffnessoftherepairincreases,load fromthesurroundingstructureisattractedtotherepairlocation,resultinginalocal increaseofstressorstrainintheskinoutsidethepatchaswellastheadhesivestress

FIGURE1.8

Effectofloadattraction.Flowofloadlinesintopatchedregion.

orstrain,eventhoughstressorstrainintheskinunderneaththepatchwillbereduced. Thiseffectofloadattractionthereforemustbeconsideredinthepatchdesignunder thiscircumstance.Forsimplicityandforintroductorypurpose,closed-formsolutions fortheparticularcasewhereboththeplateandpatchareisotropicandhavethesame Poisson’sratio, νp ¼ νs,willbepresentedinthissection.Furthermore,theskinisalso assumedtocontainnodamageandrigidlybondedtoadoublerpatch,referringto Figure1.8.Thislatterrigidbondassumptionwillbeshownin Chapters3 and 7 tobeappropriateinatypicalbondedrepair.Theprospectivestressintheskinwithin thepatchedregion( x jj < A)isconstantandgivenby(DuongandWang,2007):

Theparameter S isthestiffnessratio,thatis, S ¼ Eptp/Ests, Ep and tp aretheYoung’s modulusandthicknessofthedoublerpatch,while Es and ts arethepertinentparametersoftheskin, A and B aresemiaxesofanellipticalpatch,and Σ isanapplied biaxialstressratio.Itisclearthatthestress-reductionfactor ϕ dependsonthreenondimensionalparameters:(i)thestiffnessratio S,(ii)theaspectratio B/A,and(iii)the appliedstressbiaxialityratio Σ .

ToillustratetheimportantfeaturesofEquation (1.1),thevariationofthestressreductionfactor ϕ withthepatchaspectratioisshownin Figure1.9a forthreeloadingconfigurations:(i)uniaxialtension(Σ ¼ 0),(ii)equalbiaxialtension(Σ ¼ 1),and (iii)pureshear(Σ ¼ 1),setting S ¼ 1and νs ¼ 1/3forallcases.Itcanbeseenthat

FIGURE1.9

Variationofstress-reductionfactorwith(a)aspectratioforanellipticalpatchofsemiaxes A and B underuniaxialtension,biaxialtension,andpureshear.(b)Stiffnessratio S for acircularpatch(DuongandWang,2007).

thereislittlevariationforaspectratiosrangingfrom B/A ¼ 0(horizontalstrip)to B/A ¼ 1(circularpatch),sothatforpreliminarydesigncalculations,onecanconvenientlyassumethepatchtobecircular,toreducethenumberofindependentparameters.ItisalsonotedfromEquation (1.1) thatfor νs ¼ 1/3andacircularpatch (A/B ¼ 1),thestress-reductionfactor ϕ becomesindependentofthebiaxialityratio Σ .Asillustratedin Figure1.9a,thecurvesfor Σ ¼ 0and Σ ¼ 1crossoverfor B/A ¼ 1,indicatingthat,foracircularpatch,thetransversestress σ 1x ¼ Σσ 1 does notcontributetotheprospectivestress,sothatthisparametercanalsobeignored inpreliminarydesignestimates.Inthisparticularcase,thestress-reductionfactor ϕ dependsonthestiffnessratio S only,asdepictedin Figure1.9b.Forarectangular patchspanningacrossawidthoftheskin, ϕ canbeobtainedfromaone-dimensional analysisas ϕ ¼ σ 1/(1+ S).Thisone-dimensionalresultisalsoplottedin Figure1.9a and b forreference.Theone-dimensionalsolutionignorestheloadattractioneffect ofapatchandoverestimatesthereductioninskinstress.ForthespecialcaseofcircularpatchandPoisson’sratiobeingequalto1/3,solution (1.1) canbesimplifiedto become,

Ontheotherhand,thepeaktressintheskinoutsidethepatchatlocation B canbe expressedintermsoftheappliedstress σ 1 as:

Hence,thestiffnessincreasebythedoublerelevatestheskinstressat B,yieldinga localstressconcentrationfactorequalto

However,thepresenceofadoublerreducestheskinstressatlocation A tobelowthe appliedstress.Theratiobetweentheskinstressandtheappliedstressat A is

1.6 EFFECTOFTAPERANDSCARFRATIOSONJOINTDESIGN

Thedesignofabondedrepairtypicallyinvolvesanalyzingastructuraljointthatrepresentsthemosthighlyloadedsectionsofarepair(WangandGunnion,2008a,b).To minimizethepeakadhesivestressinastructurejoint,thepatchedgeisnormally taperedasinadoublerrepairorscarfedasinaninternalrepairintoasmoothsurface orintomultiplediscretesteps.Taperandscarfratiosarefoundtosignificantlyaffect thepeakadhesivestresses,andthus,theperformanceofstructuraljoints.Theeffect

oftaperandscarfratiosonthejointdesignisthereforeconsideredinthissection. However,againforanintroductorypurpose,thiseffectwillbedemonstratedonly forinternalrepairs(i.e.,scarfandsteppedrepairs).

Twodifferentapproachesaretypicallyemployedtodeterminethegeometryof steppedandscarfrepairs,mainlythetaperanglethatmayvarywiththelaminate orientationrelativetotheloadingdirections,tomeetstrengthrequirements.The mostwidelyusedapproachconsidersthatthebondedrepairsdonotcontainany preexistingflawsorin-servicedamage,similartothesafe-lifemethodologyfor designingmetallicaircraftcomponents.Thesecondapproachconsidersthepresenceofpreexistingflawsandservice-induceddamageindeterminingthetaper angleofscarf,similartothedamagetolerancemethodologyfordesignofmetallic aircraftstructures.Abriefreviewofthesetwoapproachesispresentedbelow.

1.6.1 SAFE-LIFEAPPROACH

Dependingonthebehavioroftheadhesiveandtheoperatingtemperature,thecohesivefailureofabondedjointingeneralcanbecharacterizedasanadhesiveplastic collapse,abrittlecohesivefailure,oraductilecohesivefailure.Foreachcase,the adhesivestressesofascarfjointwithoutanyflawandthemaximumallowable taperangletoavoidajointfailurewillbedeterminedbyadifferentmethodusing differentapproximations.Forajointfailurebyaplasticcollapselimit,thetaper angleofthescarfcanbeexpressedintermsoftheadhesiveshearstrengthand therequireddesignultimateload(Baker,1996;Oplinger,1998;Wangand Gunnion,2008a,b),

wherethesubscript p denotesthetaperanglecorrespondingtotheplasticcollapse limit.Inderivingtheabovesolutionforthescarftaperangle,thebondlineshear stressisassumedtobeconstant.Thisapproachhasevolvedhistoricallyfromwood joiningprocesses.Forfiber-reinforcedcompositesconsistingofplieswithdifferent orientations,thebondlinestresshasbeenfoundtovarywidelyalongthescarf(Wang andGunnion,2008a,b).Duetothehighstiffnessofpliesalongthemainloading direction,stressconcentrationsoccurattheterminationoftheseplies.Conversely, pliesorientedatlargeanglesfromthemainloadingdirectioncarrymuchlowerload, leadingtolowstressregionsalongthescarf.Underveryhighoperatingtemperatures whentheadhesivecanundergosignificantlevelofplasticdeformationpriortofailure,Equation (1.8) isapplicabletocompositejoints.Inthiscasetheadhesiveshear stressreachesanearuniformdistribution,withthejointfailureasaresultofshear plasticcollapseoftheadhesivelayer.

Incontrast,whenthejointfailureisdominatedbybrittlefailureoftheadhesives, whichmayarisefromtheuseofverybrittleadhesivesorductileadhesivesoperating atverylowtemperatures,itisimportanttoaccountforthehighstressconcentrations inadhesiveshearstressinscarfjointsbetweencompositeadherends.Adoptingthe

maximumshearstresscriterion,themaximumscarfangleis,withthesubscriptb denotingbrittlefailuremodeofadhesiveundersheardeformation,

where Kt denotesthestressconcentrationfactorofadhesiveshearstressinscarfjoint (WangandGunnion,2008a,b).Anapproximatesolutionofthestressconcentration factorisgivenbythefollowingexpression:

where n and E denote,respectively,thenumberofpliesofagivenorientationwith respecttothemainloadingdirection,andthepertinentelasticmodulus.Thesubscripts0, 45,and90denotetheorientationangleofplies,with ntotal ¼

0 + n 45 + n90.DetailedfiniteelementanalyzeshaveshownthatEquation (1.8) providesanupperbound,henceaconservativedesignsolutionofthe maximumstressconcentrationfactor(WangandGunnion,2008a,b).Becausethe shear-lageffectfromtheadhesivelayerisignored,theactualstressconcentration factorforjointswithhighlyflexiblebond,suchasthickbondlinesorlow-stiffness adhesives,maybelessthanthatgivenbyEquation (1.8)

Moststructuraladhesivesundergoacertainlevelofplasticdeformationpriorto failure,especiallyatelevatedtemperatureclosetotheirglasstransitiontemperatures. Inthiscase,theirfailureisbestcharacterizedbyacohesiveductilefailure.Aductile failurerequiresafirst-orderestimateofthetotaladhesiveshearstrain,accountingfor plasticdeformationoftheadhesive,whichcanbeobtainedbytheNeuber’srule.The Neuber’srulehasbeenextensivelyusedtoanalyzeplasticdeformationatnotchroot (Wangetal.,1999;Knopetal.,2000).ExpressingtheNeuber’sruleintermsofthe shearstressandshearstrainintheadhesivebondgives

wheretheaverageshearstress

σ 1 isthefarfieldappliedstress, α isthetaperangle,and τ f isagaintheadhesiveshear strength.Hence,themaximumshearstrainis

Ifthebondstrengthistakentobewhenthemaximumshearstrainreachesacritical value(WangandGunnion,2008a,b)atthedesignultimateloadof σ DUL,i.e., γ max ¼ γ f,where γ f denotesthefailurestrainoftheadhesive,themaximumscarf angletoavoidductilecohesivefailureis

Insummary,thesolutionsgivenbyEquations (1.8),(1.9),and (1.14) furnishacompletesetofrapiddesigntoolsfordeterminingtheappropriatescarfangleforadhesivesundergoingfull-plastic,brittle,andductilefailures,respectively.

1.6.2 DAMAGETOLERANCEAPPROACH

Forprimaryorsafety-criticalstructures,airworthinessregulations(FAA,2005, 2010)prescribethatthe(a)scarfedstructures,withoutrepair,mustmeetthedesign limitload;and(b)repairedstructurescansustainthedesignultimateloadinthe presenceofdamagelargerthanthedetectionlimit(Wangetal.,2011a).Inother words,bondedscarfrepairsofsafety-criticalstructuresmustbedemonstrated,by experimentsandanalysis,toexceedthedesignultimateloadinthepresenceofdisbonds.Recentinvestigationshaverevealedthatimpactdamage(HarmanandWang, 2007;Kimetal.,2012)andpreexistingflaws(Wangetal.,2011b;Gohetal.,2013) haveasignificanteffectonascarfjoint’sload-carryingcapacityandfatigueendurance(Cheuketal.,2002).

Consideringascarfjointcontainingadisbondoflength a,asillustratedin Figure1.6b,theultimatetensilestrengthofthisjointdependsonthelengthofthe initialflawanditspositionalongthejoint.Usingthefracturemechanicsapproach, thecriticalconditionforthedisbondgrowthcanbeexpressedas:

Theparameters YI and YII arethecrackgeometryfactorthatvarywithcracksizeand scarfangle,foragivenlaminate.Definitionsofparameters η, β ,and Eeff,together withthevaluesofthegeometryfactors YI and YII foraquasi-isotropiclaminate arepresentedin Gohetal.(2013).Thenecessaryscarfanglerequiredtosustain thedesignultimateloadcanbedeterminedbysolvingEquation (1.15) usinganiterativetechnique,asdiscussedin Gohetal.(2013).

1.6.3 STEPPEDREPAIRS

Forasteppedrepair,asillustratedin Figure1.5b,bondlinestressesmayexhibita higherlevelofstressconcentrationduetothesharpcorners.Additionalconsiderationisthereforepresentedinthissubsection.Theadhesiveshearandpeelstresses

canbedeterminedusingthemultistepjointanalysismethod(ESDU,1998).Similar toscarfrepairs,ultimatestrengthofsteppedrepairsdependontheductilityofthe adhesive.Inthecaseofplasticcollapse,thetotallengthofthestepsneededtosustain thedesignultimateloadofasteppedjointwithatotalthickness t is

whichgivesanequivalenttaperanglesimilartothatdescribedbyEquation (1.8) when τ f ismuchlessthan σ DUL.

1.7 SUMMARY

Arapidriseintheuseofadvancedfiber-reinforcedpolymercompositesonaerospace,automotive,andcivilstructuresdemandsnewdevelopmentsindesignand analysismethodologies,applicationprocesses,andnondestructiveinspectiontechniquesforbondedjointsandbondedrepairs.However,themainfocusofthisbook isdevotedtodoublerandscarfrepairsofcompositeairframestructuresalongwith theirrepresentativejoints.First,theairworthinessrequirementsfortheserepairsand thecriticalityofairframestructureanddamagearebrieflysummarized.Itisfollowed byabriefoverviewoftherepairanalysisprocess.Rapiddesigntoolsfordetermining repairedpatchparameterssuchasshapeaspectratio,stiffnessratio,andtaperangle arefinallyintroduced.Furtherdevelopmentsalongandbeyondthesetopicswillbe describedindetailintheremainingchaptersofthebook.

REFERENCES

Adams,R.,2011.Nondestructivetesting.In:daSilva,L.M., Ochsner,A.,Adams,R.(Eds.), HandbookofAdhesionTechnology.Springer,Berlin,Heidelberg,pp.1049–1069. Baker,A.A.,1996.Joiningandrepairofaircraftcompositestructures.Mech.Eng.Trans. ME21(No.1&2),1–59.

Baker,A.A.,Rose,L.R.F.,Jones,R.,2002.AdvancesintheBondedCompositeRepairof MetallicAircraftStructure.Elsevier,Amsterdam.

Cheuk,P.T.,Tong,L.,Wang,C.H.,Baker,A.,Chalkley,P.,2002.Fatiguecrackgrowthin adhesivelybondedcomposite-metaldouble-lapjoints.Compos.Struct.57(1-4),109–115. Duong,C.N.,Wang,C.H.,2007.CompositeRepair:TheoryandDesign.Elsevier,Oxford. ESDU,1998.Inelasticshearstressesandstrainsintheadhesivesbondinglapjointsloadedin tensionorshear.IHSESDU,London.

FAA,2005.FAAFederalAviationRegulations(FAR)Part23,Section573-DamageToleranceandFatigueEvaluationofStructure.

FAA,2010.CompositeAircraftStructure:AdvisoryCircular(AC)20-107B,Change1,FAA. Goh,J.Y.,Georgiadis,S.,Orifici,A.C.,Wang,C.H.,2013.Effectsofbondlineflawsonthe damagetoleranceofcompositescarfjoints.Compos.PartAAppl.Sci.Manuf. 55,110–119.

Harman,A.B.,Wang,C.H.,2007.Damagetoleranceandimpactresistanceofcompositescarf joints.In:ICCM-16,Kyoto,Japan.

Kim,M.K.,Elder,D.J.,Wang,C.H.,Feih,S.,2012.Interactionoflaminatedamageand adhesivedisbondingincompositescarfjointssubjectedtocombinedin-planeloading andimpact.Compos.Struct.94,945–953.

Knop,M.,Jones,R.,Molent,L.,Wang,C.,2000.OntheGlinkaandNeubermethodsfor calculatingnotchtipstrainsundercyclicloadspectra.Int.J.Fatigue22(9),743–755.

Oplinger,D.W.,1998.Mechanicalfasteningandadhesivebonding.In:Peters,S.T.(Ed.), HandbookofComposites.Chapman&Hall,London,pp.610–666.

Ridha,M.,Wang,C.H.,Chen,B.Y.,Tay,T.E.,2014.Modellingcomplexprogressivefailure innotchedcompositelaminateswithvaryingsizesandstackingsequences.Compos.Part AAppl.Sci.Manuf.58,16–23.

Wang,C.H.,Gunnion,A.J.,2008a.Onthedesignmethodologyofscarfrepairstocomposite laminates.Compos.Sci.Technol.68(1),35–46.

Wang,C.H.,Gunnion,A.J.,2008b.Optimumshapesforminimisingbondstressinscarf repairs.Aust.J.Mech.Eng.6(2),153–158.

Wang,C.H.,Gunnion,A.J.,2009.Optimumshapesofscarfrepairs.Compos.A:Appl.Sci. Manuf.40(9),1407–1418.

Wang,C.H.,Guo,W.,Rose,L.R.F.,1999.Amethodfordeterminingtheelastic-plastic responseaheadofanotchtip.J.Eng.Mater.Technol.Trans.ASME121(3),313–320.

Wang,C.H.,Goh,J.Y.,Ahamed,J.,Glynn,A.,Georgiadis,S.,2011a.Damagetoleranceanalysisofadhesivelybondedrepairstocompositestructures.In:18thInternationalConferenceonCompositeMaterials.Jeju,SouthKorea.

Wang,C.H.,Gunnion,A.J.,Orifici,A.C.,Rider,A.,2011b.Residualstrengthofcomposite laminatescontainingscarfedandstraight-sidedholes.Compos.A:Appl.Sci.Manuf. 42(12),1951–1961.

Wang,C.H.,Venugopal,V.,Peng,L.,2015.Steppedflushrepairsforprimarycompositestructures.J.Adhes.91(1-2),95–112.

Failurecriteria 2

2.1 INTRODUCTION

Acompositebondedrepairgenerallycomprisesthreebasicstructuralelements:a damagedskinlaminate,arepairedpatchlaminate,andalayerofbondingadhesive. Furthermore,theskindamageisnormallycleanedupbeforetherepairtobecomea throughorapart-throughholewithastraightorscarfedge.Thus,arepairanalysis processwillrequireamarginsafetycheckforeachofthesethreebasicelements basedontheappropriatefailurecriteria.Duetothelocalincreaseinoverallstiffness oftherepair,thelocaljointofdissimilarmaterialsatanangleorrightcorner,andthe presenceofvariousformsofgeometricdiscontinuitysuchasholesandcrack-like damages,highlocalstressconcentrations,orevenstresssingularitiesappearin theadhesive,skin,andpatchlaminate.Variousfailurecriteriaforassessingstrengths ofadhesiveandcompositesinthosecasesarethereforereviewedinthischapter.

2.2 ADHESIVEFAILURECRITERIA

Failureinthebondlineofacompositejointorrepairisnormallycharacterizedby oneofthefollowingthreemodesortheirmixedcombination:

(a) Cohesivefailure

(b) Adhesivefailure

(c) Interlaminarfailure

Acohesivefailureischaracterizedbyfailureoftheadhesiveitself.Tracesofadhesivematerialcanbefoundonbothsidesofthefracturesurfacesofspecimensthatfail cohesively.Incontrast,anadhesivefailureischaracterizedbyafailureofthejointat theinterfacebetweentheadhesiveandthecompositeadherent.Thislatterfailure modeisusuallyaresultofpoorsurfacepreparationandunsuitablesurfacequalities oftheadherent.Tracesofadhesivematerialcanonlybefoundononesideofthe fracturesurfacesofspecimenswithanadhesivefailuremode.Finally,aninterlaminarfailureischaracterizedbyafailureofthematrixoftheadherentplyadjacentto thebondline.Theinterlaminarfailureindicatesthattheadhesiveisstrongerthanthe adherentinthejoint,adesirablesituationinpracticaldesign.Becausefailurecriteria fortheadhesiveandinterlaminarfailuremodesareusuallybasedontheinterfacial fracturemechanicstheorythatwillbedelineatedin Section2.3.2 aswellasin BondedJointsandRepairstoCompositeAirframeStructures. http://dx.doi.org/10.1016/B978-0-12-417153-4.00002-5 Copyright # 2016ElsevierInc.Allrightsreserved.

Chapter5,onlyfailurecriteriaforthecohesivefailurewillbepresentedinthissection.Furthermore,becauseadhesivematerialsaregenerallydividedintotwobroad categoriessuchasbrittleandductileadhesive,appropriatefailurecriteriaforeach categorywillbediscussedinthetwosubsectionsbelow.

2.2.1 FAILURECRITERIAFORBRITTLEADHESIVES

Brittleadhesivesarecharacterizedbytheirmechanicalbehaviorthatislinearelastic uptothefinalfailure.Asaresult,theseadhesivesdonotfailinastablyprogressive manner.Rather,theyfailbyasuddenmaterialrupturewithoutanypriorplastic deformation.Eventhoughmostepoxyadhesivesareductile,however,theirmechanicalbehaviorsatlowoperatingtemperature(e.g.,acold,drycondition)arestillreasonablyassumedtobebrittle.

Thereisalargevarietyoffailurecriteriaintheliteratureforcohesivefailureof brittleadhesives,andtheyaresummarizedbelow(TongandSteven,1999;Tongand Soutis,2003):

(a) Maximumstressorstraincriterion

(b) Fracturemechanicscriterion

(c) Cornersingularitycriterion

Accordingtothemaximumstressorstraincriterion,theadhesivewillfailwhenits maximumstressorstrainreachesthelimitingorallowablevalue.Asitiswellknown thatstressandstrainintheadhesivearesingularattheendsoftheoverlap,applicationofthesecriteriatostressorstraintheredeservesspecialattention.Fortunately, becausemostclosed-formmethodsaredevelopedbasedonabeamorplatetheory withtheadhesivelayerbeingmodeledascontinuoussprings,stressandstrainsolutionsfromthesemethodsdonotexhibitstressorstrainsingularityattheoverlap ends.Itisthereforestraightforwardtoapplythemaximumstressorstraincriterion topredictacohesivefailureoftheadhesiveinthiscase.However,afiniteelementor continuum-basedsolutionwillpredictstressandstrainsingularityattheendsofthe overlap.Asaconsequence,stressesandstrainsintheendregionincreaseindefinitely asthemeshtherecontinuestoberefined.Peakvaluesofstressorstrainattheoverlap endsthereforecannotbeusedinthemaximumstressorstraincriterionbecausethey dependstronglyontheelementsizes.Toovercomethismesh-dependentproblem, theso-calledzone-basedcriteriahavebeenproposed,thatcoupletheabovemaximumstressorstraincriteriawithacharacteristiclengthorfinitezone.Thezonebasedcriteriaassumethatthecohesivefailurewilloccurwhentheadhesivestress orstrainexceedsitslimitingvalueatacharacteristiclengthoroverafinitezone, thatis,

–Stresscriterion:

–Straincriterion:

where σ 1 and E1 canbeeitherthemaximumprincipalstressandstrain,peelstressand strain,orshearstressandstrainoftheadhesive, σ crit and Ecrit arethecorresponding critical(allowable)stressandstrain,and l isthelengthofthecriticalzoneoracharacteristiclength(TongandSteven,1999).Thecriteriongivenbythefirstequationof Equation (2.1) isalsoreferredtoasapointstresscriterionwhilethecriteriongiven bythefirstequationofEquation (2.2) iscalledapointstraincriterion.Unlikethe originalcriteria,thezone-basedcriteriaintroducesanewparameter,thesizeof thecriticalzoneoracharacteristiclength,whichisdeterminedbycorrelationofanalyticalpredictionswithtestdata.Alloftheabovecriteriaarebroadlycategorizedas thestrengthofmaterial-basedapproachbecauseeithertheadhesivelayerisassumed tobeflawlessortheeffectofstressorstrainsingularityattheendofoverlapis completelyignored.Furthermore,thesecriteriaalsopredictthatstrengthofanadhesivebondisproportionaltothesquarerootoftheadhesivethickness.However, experimentaldataseemstoshowtheoppositetrend:Abondstrengthingeneral decreaseswiththeincreasingadhesivethickness(TongandSoutis,2003).Asimple remedytothisdiscrepancyistouseadifferentallowableforadifferentadhesive thickness,thatis,alowerstressorstrainallowableforathickeradhesive,ortorecalibratethecharacteristiclengthfordifferentadhesivethicknesses. Figure2.1

data point is an average of 3-4 specimens.

FIGURE2.1

Apparentshearstrengthofcommercialadhesivesasafunctionofbondlinethickness (Tomblinetal.,2001).

illustratestheeffectofadhesivethicknessontheadhesiveshearstrengthforsome commonlyusedadhesives(Tomblinetal.,2001).

Ontheotherhand,thefracturemechanicsandcornersingularitycriteriausea strainenergyreleaserateorasingularityparameterlikethestress-intensityfactor tocharacterizefailure.Inthefracturemechanicscriteria,anarbitrarycrackofafinite sizemustbeintroducedintoamidplaneoftheadhesivelayer.However,thecrack sizeisnormallychosentobeequaltothesmallestbondlinedefectthatcanbe detectedbythenondestructiveinspectiontechniques.Thestress-intensityfactor orstrainenergyreleaseratethencanbecomputedbyusingaclosed-formorafinite elementmethod.Thelattermethod,however,requiresthatarefinedmeshmustbe employedatthecracktipvicinityintheanalysis.Toaccountfortheinteraction betweenthepeelandshearstressofadhesiveonitsfailure,alinearinteractionfracturemechanicsfailurecriterioniscommonlyemployedinthepredictionofcohesive failure.Thiscriterionisgivenbythefollowingequation:

where GI and GII arethemodeIandIIstrainenergyreleaserate,respectively,while GIc and GIIc aremodeIandIIfracturetoughness.Asstrainenergyreleaseratesare proportionaltothesquareoftheadhesivestressesandpeakadhesivestressesareproportionaltothesquarerootofadhesivestress,fracturemechanics-basedfailurecriteriawillpredictjointstrengthtobeindependentofbondlinethickness.Thus,to accountforthedecreasingeffectofbondstrengthontheincreasingadhesivethicknessasobservedfromexperimentaldata, GIc and GIIc inEquation (2.3) areapparent (insitumeasured)fracturetoughnessthatmaydependontheadhesivethickness.

Itiswellknownthatstressesandstrainsintheadhesivearesingularattheendof theoverlapwithasquareedgeevenintheabsenceofacrack-likedamagethere. Thesestressandstrainsingularitiesarereferredtointheliteratureasthecornersingularity,andtheywereconfirmedbybothexperimentandfiniteelementanalysis.As thecornerstress-intensityfactoruniquelycharacterizesthedeformationataninterfacecorner,itwouldserveasafailurecriterionfordisbondfreebondedjointsprovidedthatthesizeoftheprocesszoneiscomparabletothecornersingularityzone. Foranelasticadhesive,throughasymptoticanalysisusingfiniteelementmethod, andbyassumingthattheadherentisseveralordersofmagnitudestifferthanthe adhesivesothatitcanbemodeledasarigidmaterialintheasymptoticanalysis, WangandRose(2000) foundthatthesingularstressfieldattheendoftheoverlap canberepresentedbythefollowingrelations:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.