Blast furnace ironmaking: analysis, control, and optimization ian cameron - The latest updated ebook

Page 1


https://ebookmass.com/product/blast-furnace-ironmaking-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Tidal Energy Systems: Design, Optimization and Control 1st Edition

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-1st-edition/

ebookmass.com

Tidal Energy Systems: Design, Optimization and Control Vikas Khare

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-vikas-khare/

ebookmass.com

Connected Vehicular Systems: Communication, Control, and Optimization Ge Guo

https://ebookmass.com/product/connected-vehicular-systemscommunication-control-and-optimization-ge-guo/

ebookmass.com

The Good Poem According to Philodemus Michael Mcosker

https://ebookmass.com/product/the-good-poem-according-to-philodemusmichael-mcosker/

ebookmass.com

Vector Mechanics for Engineers 12th Edition Ferdinand Pierre Beer

https://ebookmass.com/product/vector-mechanics-for-engineers-12thedition-ferdinand-pierre-beer/

ebookmass.com

Principles of Econometrics, 5th Ed. R. Carter Hill

https://ebookmass.com/product/principles-of-econometrics-5th-ed-rcarter-hill/

ebookmass.com

Age as Disease: Anti-Aging Technologies, Sites and Practices 1st Edition David-Jack Fletcher

https://ebookmass.com/product/age-as-disease-anti-aging-technologiessites-and-practices-1st-edition-david-jack-fletcher/

ebookmass.com

The Things We Make: The Unknown History of Invention From Cathedrals to Soda Cans Bill Hammack

https://ebookmass.com/product/the-things-we-make-the-unknown-historyof-invention-from-cathedrals-to-soda-cans-bill-hammack-2/

ebookmass.com

Funny Business: The Legendary Life and Political Satire of Art Buchwald Michael Hill

https://ebookmass.com/product/funny-business-the-legendary-life-andpolitical-satire-of-art-buchwald-michael-hill/

ebookmass.com

Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends Claudia Gutiérrez-Antonio

https://ebookmass.com/product/production-processes-of-renewableaviation-fuel-present-technologies-and-future-trends-claudiagutierrez-antonio/

ebookmass.com

BLASTFURNACEIRONMAKING

BLASTFURNACE IRONMAKING Analysis,Control,and Optimization

IanCameron

HatchLtd.,SheridanScienceandTechnologyPark,Mississauga,ON,Canada

MitrenSukhram

HatchLtd.,SheridanScienceandTechnologyPark,Mississauga,ON,Canada

KyleLefebvre

HatchLtd.,SheridanScienceandTechnologyPark,Mississauga,ON,Canada

WilliamDavenport DepartmentofMaterialsScienceandEngineering,UniversityofArizona,Tucson,AZ,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Details onhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirown safetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-814227-1

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: KostasMarinakis

EditorialProjectManager: MichelleFisher

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

AuthorBiography

IanCameron istheprincipalmetallurgist,ferrousinthePyrometallurgysectorpracticeat HatchLtd.,Ontario,Canada.Hedevelopsclient-focusedsolutionstoproduceironandsteel startingfromthebasicrawmaterials.Ianhas extensiveinternationalexperienceinprocess technology,plantoperations,technologytransfer,commissioningandtrainingwithironand steelclientsandresourcecompanies.Hisexperienceincludescokeplant,pelletplantand blastfurnacedesignandoperations,assessing steelworksenergybalances,andtheimplementation/impactoffutureironandcokemakingtechnologies.Ianholdsbachelorand master’sdegreesinmetallurgicalengineering fromMcGillUniversity,Montre ´ al,Quebec, Canadaandisalicensedprofessionalengineer inOntario,Canada.Hehas38+yearsofexperienceincluding23+yearsasaconsulting engineerforHatchandpreviouslyCorus ConsultingandHoogovensTechnicalServices. CameronisalifememberoftheAssociation forIronandSteelTechnology(AIST)andtwo timewinnerofAIST’sJosephS.Kapitanaward forbesttechnicalpaperintheironmaking division.

MitrenSukhram isaseniorprocessengineer inthePyrometallurgysectorpracticeatHatch Ltd.,Ontario,Canada.Heworksonallaspects ofblastfurnaceironmakingincludingreline planning,techno-economicassessments,campaignlifeassessment/extension,andoperationalsupportforblastfurnaceslocated aroundtheworld.

Morerecently,Mitrenhasfocusedondevelopinginnovativetechnologiestoimproveblast furnaceproductivityandreducegreenhousegas emissions.Mitrenisagraduateofthe UniversityofToronto,Toronto,Canadawhere hecompletedbachelor,master’s,andPhD degreesinmaterialsscienceandengineering. Hisareasofexpertiseincludethermodynamics, heat,mass,andmomentumtransferinpyrometallurgicalprocesses.MitrenisalicensedprofessionalengineerinOntario,Canadawith5+ yearsexperienceasaconsultingprocess metallurgist.

KyleLefebvre isaprocessengineerinthe PyrometallurgysectorpracticeatHatchLtd., Ontario,Canada.Hehasworkedextensively onmass,energy,andlogisticsmodelsto designandimprovetheperformanceof numerousironandsteelproductionfacilities. Kylehasworkedacrosstheglobeintheiron andsteelindustrywithexperienceinthe designandoptimizationofbothintegrated andelectricarcfurnacebasedsteelplants. Kyleholdsabachelor’sdegreeinchemical engineeringandbiosciences,andamaster’s degreeinappliedsciencefromMcMaster UniversityinHamilton,Ontario,Canada.Kyle isalicensedprofessionalengineerinOntario, Canadawith4+yearsofexperienceinthefield ofprocessengineering.

EmeritusProfessorWilliamGeorge Davenport isagraduateoftheUniversityof BritishColumbia,CanadaandImperial College,UniversityofLondon,UK.Priortohis

academiccareer,heworkedoniron-andsteelmakingtechnologieswiththeLindeDivisionof UnionCarbideinTonawanda,NewYork,USA. Hespentacombined43yearsofteachingat McGillUniversity,Montre ´ al,Quebec,Canada andtheUniversityofArizona,USA.Hewas alsoavisitingprofessoratTohokuUniversity, Sendai,JapanandvisitoratCambridge University,UK.

ProfessorDavenportspentmuchofhis careervisitingindustrialplantsaroundthe world.Thishasresultedinhisco-authoringof thefollowingbooks:

ExtractiveMetallurgyofCopper

IronBlastFurnace

FlashSmelting

ExtractiveMetallurgyofNickel,Cobaltand PlatinumGroupMetals SulfuricAcidManufacture and: RareEarths,Science,Technology, ProductionandUse.

ProfessorDavenportisafellowandlife memberoftheCanadianInstituteofMining, MetallurgyandPetroleumanda25-yearmemberofthe(U.S.)SocietyofMining,Metallurgy, andExploration.HeisarecipientoftheCIM AlcanAward,theTMSExtractiveMetallurgy LectureAward,theAus.IMMSirGeorge FisherAward,theAIMEMineralIndustry EducationAward,theAmericanMiningHall ofFameMedalofMerit,andtheSMEMiltonE. Wadsworthaward.

Preface

TheideaforthisbookarosefollowinganironmakinglecturebyIanCameronatthe2014 ConferenceofMetallurgists,Vancouver, Canada.Hislectureentitled, TheIronBlast Furnace;TheoryandPractice-35YearsLater,discussedhowthefundamentalapproachprovided inthe1979bookbyJohnPeaceyandBill Davenporthadappliedtoensuingindustry improvements.BillDavenportattendedthelectureandafterwardaskedIanifhewouldliketo writeanewbookontheironblastfurnace.In 1979,IanhadbeenastudentinBill’sironmaking/steelmakingclassatMcGillUniversity, Montre ´ al,Quebec,Canada.Later,IanwasfortunatetoworkwithJohnPeaceyaspartofthe NorandagroupandatHatch.

Ianagreed,andwritingbegan.Theseauthors weresoonjoinedbyMitrenSukhramandKyle Lefebvre,co-authors,whoworkwithIanat HatchLtd.,Mississauga,Canada.AnqiCai joinedin2018andmadeastrongcontribution duringthelast8monthswhenthebookwas finalized.

Wewereveryfortunatetoworkwithfive younguniversityinterns,allfromMcGill University,duringourwriting,namely;

• AnqiCai,

• SabrinaLao,

• DenzelGuye,

• Max(Shuhong)Shen,and

• WilliamDixon.

Theyproofreadourmanuscripts,didthe end-of-chapterexercises,andshowedusolder folkswhatengineeringstudentsin2015 18 alreadyknewanddidn’tknow.Theywereall

proficientinmatrixalgebra,ExcelGoalSeek, ExcelSolver,andOptimization.Wethankthem profuselyfortheirhelpandwishthemthebest ofluckwiththeirstudiesandfuturecareers.

Theobjectivesofourbookaretodescribe blastfurnaceironmakingasitistodayandto suggesthowitwillbeinthenearanddistant future.Toachievetheseobjectives,wevisited andworkedatmanyblastfurnacesaroundthe worldwhilewewerewriting.Theprinciple visitswereto:

• AKSteel,Dearborn,BlastFurnaceC,United States

• AlgomaSteel,BlastFurnace7,Canada

• ArcelorMittalDofascoBlastFurnaces2and 4,Canada

• ArcelorMittal,Fos-sur-Mer,BlastFurnaces1 and2,France

• ArcelorMittalMonlevadeBlastFurnaceA, Brazil

• ArcelorMittalIndianaHarbor,BlastFurnace 7,UnitedStates

• ArcelorMittal,TubaraoBlastFurnace1and 3,Brazil

• BlueScopeSteel,PortKembla,BlastFurnace 5,Australia

• EVRAZNTMKBlastFurnace5and6, RussianFederation

• JFEFukuyamaWorks,BlastFurnace5,Japan

• HebeiIron&Steel,HandanWorks,P.R. China

• NLMK,BlastFurnaces3 7,Russian Federation

• NipponSteel,NagoyaWorks,BlastFurnace 1,Japan

• NipponSteel,OitaWorks,BlastFurnace2, Japan

• Gerdau,Acominas,BlastFurnaces1and2, Brazil

• StelcoLakeErieWorks,BlastFurnace1, Canada

• TataSteelEurope,BlastFurnaces6and7, TheNetherlands

• TerniumCSA,BlastFurnaces1and2,Brazil

• TerniumSiderar,BlastFurnace2,Argentina

• U.S.SteelGreatLakesWorks,Blast FurnacesB2andD4,UnitedStates

• U.S.SteelGaryWorks,BlastFurnaces4 and14,UnitedStates

Wethankthepersonnelatthesefacilitiesfor theirkindnessinshowingusaroundtheir plantsandforansweringallourquestions.

Ourbookconsistsofthreemainsections:

1. Threeintroductorychaptersdescribingthe blastfurnacefromtheoutsideandthenthe inside.Thisisfollowedbyabriefdescription ofhowtheblastfurnace’smolteniron productisusedformakingsteel.

2. Anarithmeticalsectionthatdevelopsa thermochemicalmodeloftheblastfurnace processfromfirstprinciplesand culminatingwithseveralchapterson controlandoptimization.

3. Athoroughexaminationofmodern industrialblastfurnacepracticearoundthe worldbasedonpriorknowledgeandour plantvisits.

Abriefnoteaboutunits.WehaveusedSI unitsthroughoutexcept Cfortemperature andpascalsandbar(1 3 105 Pa)forpressure. Wealsousetheunitnormalcubicmeter(Nm3) whichisam3 ofgasat0 Cand1barpressure. ANm3 contains0.0440kgmolofidealgas.

Oneoftheauthorswouldliketothankhis wifeMargaretDavenportforreadingportions ofthemanuscriptandhissonGeorge Davenportforhisassistancewithmanycalculations.TheauthorsthankHatchLtd.,especiallyMr.TedLyon,ManagingDirector,Bulk Metals,forthecontinuingsupportwereceived aswecompletedthebookovera5-yearperiod.

Preparingthebookprovidedagreateducationaswediscussedanddebatedthebestway topresentblastfurnacepracticetoyou,thatis, ourreaders.Ourapproachwillhelpyoubuild knowledge/toolstounderstandandcontrol thecomplexblastfurnaceoperation-oneof mankind’smostimportantindustrialfurnaces.

IanCameron,MitrenSukhram, KyleLefebvreandWilliamDavenport September2019.

Acknowledgments

ANQICAI,McGILLUNIVERSITY

Ms.AnqiCaiplayedakeyroleinwriting thisbook.Shewasespeciallyhelpfulto ProfessorDavenport.Theyspokeeveryday forabout3monthseventhoughshewasin Mississauga,OntarioandhewasinTucson, Arizona.Shewasespeciallyhelpfulinthethermodynamicaspectsofthebook,writingequations,challengingothersandproviding documentationtoproveeverypoint.Vigorous argumentsoftenensued.

Anqialsomadecriticalcontributionstothe book’smatrices,makingsurethatthevariables wereproperlyidentifiedandunchanged throughoutthebook,thattheequationswere properlynumberedandthateverycellhadits propervalue.Herconsistentequationnumberingwasespeciallycritical.

Finally,Anqicompletedallthebook’safterchapterexercisesandmadesurethattheexerciseswereappropriateandclearlyworded. Studentscompletingtheexerciseswillhave hertothankfortheirclarity.

TEDLYON,MANAGING DIRECTOR—BULKMETALS, HATCHLTD.

Mr.TedLyonprovidedimportantsponsorshipoftheHatchteamduringtheauthoringof thebook.Hewasalwaysencouragingand supportedthecompletionofthebook,understandingitsimportancetotheironmaking

communityandasatooltotrainprocess engineers.

CONTRIBUTINGAUTHORS

Dr.AfshinSadri,Mr.ManuelHuerta,andMr. LukeBoivinallofHatchLtd. tookonthechallengeofprovidingimportantcontenttoseveralchaptersinthebook.Theirdedicationto providehigh-qualitymaterialsisappreciated bytheauthors.

SUSANNECRAGO,CHAMELEON GRAPHICS

Susannecreatedtheexcellentgraphicsin thebook.Sheperseveredthroughthemany changesrequestedbytheauthors.Weappreciateherskillsasagraphicsartistandpatience togetthebestpossibleimages.

WILLIAMDIXON,DENZELGUYE, SABRINALAO,ANDMAX (SHUHONG)SHEN,ALLFROM McGILLUNIVERSITY

InadditiontoMs.AnqiCai,thesestudents reviewedpartsofthebookastheauthorswere preparingthemanuscript.Theirinputonthe contentandapproacharegreatlyappreciated bytheauthors.Knowingthatthebooks’ contentappealedtoeachofthesestudents reinforcedourapproachanddirection.

Thestudentsalsohelpedwithmoreroutine aspectsthateveryauthorappreciateswhen preparingamanuscript.

OTHERCONTRIBUTORS

Theauthorswouldliketothankand acknowledgemanyotherswhocontributedto thebook.Oursupportersarelistedbelowand reflecttheglobalnatureoftheironmaking community.

MichaelGrantAirLiquide,Germany

PeterHamerlinckArcelorMittalDofasco,Canada

AdelmoMonacoArcelorMittalDofasco,Canada

DouglasRuyArcelorMittalTubarao,Brazil

KenLandauAssociationofIronandSteel Technology(AIST),UnitedStates

DarryleLathleanBlueScopeSteel,Australia

FangYuanQing (Tracy)

LiZhiyou (William)

CISDIInternationalEngineering& Consulting,P.R.China

CISDIInternationalEngineering& Consulting,P.R.China

PeterMcCallumCRH,Canada

JohnBusserHatchLtd.,Canada

Anneliese Dalmoro HatchLtd.,Canada

BarryHydeHatchLtd.,Canada

AnneKirkpatrickHatchLtd.,Canada

KiyoshiFukudaJFE,Fukushima,Japan

Hedetoshi Matsuno JFE,Fukushima,Japan

KentaroNozawaKobeSteel,Kakogawa,Japan

ProfessorHiro Fukunaka KyotoUniversity,Japan

ChrisRavenscroftMidrexCorporation,UnitedStates

KCWoodyMidrexCorporation,UnitedStates

ProfessorIvan Kurunov NLMKLipetsk,Russia

TadashiImaiNipponSteel,Nagoya,Japan

TakayukiNishiNipponSteel,Nagoya,Japan

JumpeiKonishiNipponSteel,Oita,Japan

LaurenceKaylPaulWurthS.A.,Luxembourg

RobertNeuholdPrimetalsTechnologies,Austria

ProfessorChenn QuiZhou PurdueUniversity,UnitedStates

Dr.Jens Kempken SMSGroup,Germany

JohnD’AlessioStelcoHoldingsInc.,Canada

ScottDedrickStelcoHoldingsInc.,Canada

Dr.JohnQuanciSunCokeEnergy,UnitedStates

GerardTijhuisTataSteelEurope,TheNetherlands GeraldToopTeckResources,Trail,Canada

Frederico GodinhoCunha TerniumCSA,Brazil

OscarLingiardiTerniumSiderar,Argentina MattKraeuterThyssenkruppIndustrialSolutions, UnitedStates

Claude, Bodeving TMT TappingMeasuring Technology,Luxembourg

ProfessorToru Okabe TokyoUniversity,Japan

RalphAlbaneseUnitedStatesSteelCorporation, UnitedStates

DevbratDuttaUnitedStatesSteelCorporation, UnitedStates

JasonEntwistleUnitedStatesSteelCorporation, UnitedStates

MichaelJ.McCoyUnitedStatesSteelCorporation, UnitedStates

Professor EvgueniJak UniversityofQueensland,Australia

TheIronBlastFurnaceProcess

OUTLINE

1.1IntroductiontotheBlastFurnace Process1

1.2BlastFurnaceRawMaterials2

1.2.1Top-ChargedMaterials4

1.2.2ChargingMethods6

1.2.3Tuyere-InjectedMaterials7

1.3ProductsFromtheBlastFurnace7

1.3.1MoltenIron7

1.3.2MoltenSlag8

1.3.3TopGas9

1.4BlastFurnaceOperations10

1.4.1Pressure10

1.4.2PrincipleChemicalReactions11

1.4.3MainThermalProcesses11

1.4.4BlastFurnaceInformation11

1.1INTRODUCTIONTOTHE BLASTFURNACEPROCESS

Theironblastfurnaceisatallverticalshaft furnace, Fig.1.1.Itsprincipleobjectiveisto producemoltenironfromironoresforsubsequentandimmediateproductionofmolten/

1.4.5ProductionStatistics11 1.4.6CampaignLife11 1.5Costs15 1.5.1Investment(Capital)Costs15 1.5.2OperatingCosts15 1.5.3MaintenanceandReliningCosts16 1.6Safety16 1.7Environment16 1.8Summary17 Exercises18 References18 SuggestedReading18

liquidsteel.Aphotographofablastfurnace plantisshownin Fig.1.2.

SolidFeoxideore(hematite,Fe2O3),coke (87 91%carbon),andfluxesarechargedto thetopoftheblastfurnace.Amolteniron alloy,1500 C,94.5%Fe,4.5%C,and1%[Si 1 Mn], iscastfromthehearthalongwithmoltenand

FIGURE1.1 Cutawaydrawingofanironblastfurnace. Itisatallcylindricalfurnace B40mhighand10 15min diameter.

impurity-richoxideslag.Hot,highpressure airisblownintotheblastfurnacethroughthe tuyeres,burningcoke,andinjectedfueltocreatetheheatneededtosmelttheironoresand fluxes.Theresultinggasrisesquicklyup throughthefurnacechargematerialsalso knownasburden.Theburdenisheated,Fe oxidesarereducedtoFe,andsolidmaterials aremeltedandcollectedinthehearth.Molten ironproductionistypically4,000 12,000tonne perblastfurnaceperday.Theprocessiscontinuousandoperateswithveryhighavailability, typicallyover95%oftheavailabletime.

In2016,94%oftheworld’sironorereductionwasdoneinblastfurnaces.Theremainder wasdonebysolidstatereductionknownas DirectReductionIronmaking.TheblastfurnaceemployscarbonincoketoreduceFe oxidepellets,sinter,andcrushedoreto

metalliciron. Inthisbook,reductionmeans removalofoxygen(O)fromironoxides. Theblast furnaceproducesamoltenironalloyat1500 C:

• 94.5mass%Fe;

• 4.5mass%C;

• 0.6mass%Si;

• 0.4mass%Mn;and

• minoramountsofS,P,andTi.

Virtuallyallthemoltenironalloy,commonlyreferredtoashotmetalorrawiron,is immediatelyrefinedintolowercarbonmolten steelatotherfurnaceswithinthesteelplant.

TheFeoxidesandcokearechargedtothe topoftheblastfurnaceatfurnacepressure andinseparatelayers.Themoltenironis tappedfromthebottomofthefurnaceinto ladlesknownastorpedoladles.Itisimmediatelysentmoltentothesteelmakingshop.Byproductmoltenandimpurity-richoxideslagis tappedwiththemolteniron,separatedimmediatelyoutsideoftheblastfurnace,solidified, andsoldasroadaggregateorforusein cementproduction.Theslagismadeupof;

1. impurityoxides,mostlySiO2 andAl2O3 presentinoregangueandcokeash,plus 2. fluxoxides,mostlyCaOandMgO.

Ironorepelletsandmetallurgicalcokecan beseenin Figs.1.3and1.4.

Heatfortheprocessiscreatedbyburning thecokewithhot B1200 Chighpressureair injectedthroughtuyereslocatednearthebottomofthefurnace.Theairisblownthroughas fewas15toasmanyas45water-cooledcopper tuyereslocatedaroundthefurnacecircumferenceatthetopofthehearth, Figs.1.1and1.5

1.2BLASTFURNACERAW MATERIALS

Theblastfurnace’sprinciplerawmaterials are:

FIGURE1.2 TwoironblastfurnacesandsupportingequipmentatFormosaHaTinhinVietnamsuppliedbyChina’s CISDI.Conveyorbelts(fromrighttoleftintheupperpicture)transportironoxideores/sinter/pellets,coke,andfluxup tothetopofeachfurnace.Fourverticalblastheatersorstoves(lowerpicture)heattheblastairto B1200 C.Alargeflue, knownasthedowncomer,descendsfromthefurnacetopandremovestopgasfromtheblastfurnace.Theblastfurnace gasiscleanedandthestovesusethisasafuel. Source:PhotographscourtesyofCISDIInternationalEngineering&ConsultingCo.

FIGURE1.3 Firedhematite(Fe2O3)pelletsreadyfor chargingtoanironblastfurnace.Theyare8 16mmin diameterandcontain B64mass%Feascomparedto70 mass%FeinpureFe2O3. Source:Photographcourtesyof MidrexTechnologiesInc.

FIGURE1.4 Metallurgicalcoke,about70 100mm long.Cokeismadebyhigh-temperaturevaporizationof volatiles,(e.g.,CH4)fromcoalheatedintheabsenceofair, Chapter55,MetallurgicalCoke—AKeytoBlastFurnace Operations.“Met”cokecontains87 91%carbonand 9 13%oxideash;mostlysilicaandaluminafromtheoriginalcoal.Thecokeburnswithblastairnearthebottomof theblastfurnaceandinfrontofthetuyeresto(1)provide heatfortheironmakingprocess,and(2)carbonmonoxide forironoxidereduction. Source:Photographcourtesyof SunCokeEnergyInc.

1. top-chargesolids(Feoxide,coke,andflux), and

2. hotblastair B1200 C,whichisforcefully blownintothefurnacethroughtuyeresnear thebottomofthefurnace, Figs.1.1and1.5.

FIGURE1.5 Newtuyeresinarebuiltblastfurnace. Theyarewater-cooledcopperwithaprotectivemetalcoatingnearthetip.Tuyeresareabout0.15minsidediameter andpenetrateabout0.4mintothefurnace.Theyaresituatedabout3mabovetheblastfurnacetapholeandare about1.2mapartaroundtheblastfurnacecircumference. 1200 Cblastairentersthetuyeresat180 240m/sanda pressureof3.5 4.5bar(gauge). Source:Photographcourtesy ofStelcoHoldingsInc.

Pulverizedcoal,naturalgas,andother hydrocarbonsareinjectedinthroughthe tuyerestoreplacecoke.Oxygenandsteamare alsoaddedtotheblastair.

1.2.1Top-ChargedMaterials

Thetop-chargedrawmaterialsaretypically:

1. ironoxides:Overwhelminglyhematite, Fe2O3.Thisoxideisaddedas;

a. 8 16mmdiameterpellets(B64mass% Fe)producedbyheatingfinelyground andbeneficiatedore, Fig.1.6;

b. 10 45mmsinterpieces(57mass% Fe)producedbyheating nonbeneficiatedorefinesandother solids;and

c. naturalore,crushedto50mmpieces (62 67mass%Fe).

Allironoxidescontainsilica(SiO2)and otheroxideimpurities.

FIGURE1.6 Blastfurnaceinputandoutputmaterialflows.All%aremass%.Threeironoxidefeeds;pellets,sinter,andcrushedorearechargedwithcoke.Productsare moltenironandslag.Themoltenirongoesdirectlytosteelmaking,andmoltenslagissolidifiedandusedforroad aggregateorincementproduction.Reductantsforironmaking are(1)chargedtothetopofthefurnaceasmetallurgicalcoke,and(2)injectedwithhotblastairaspulverizedcoalandotherhydrocarbonfuels.Thetop-chargedcokeandiron oxidesareaddedinlayers;a B0.7mthickFeoxideorelayerthena0.4mthickcokelayer,thena0.7mthickorelayer,andsoon.Notshownistopgasleavingthefurnace;it leavesat100 200 Candissenttodedustinganddemistingbeforeitisusedasfuelforheatingblastairandforotherin-plantduties.

2. coke:87 91mass%C,9% 13%ash,bothon adrybasis,and1 5mass%H2O—addedas 50 60mmdiameterpieces.Thismaterial mustbe:

a. reactiveenoughtocombustrapidlyat elevatedtemperature,and b. strongenoughtoavoidbeingcrushedin theblastfurnace.

Cokeashconsistsofalumina(Al2O3)and silica(SiO2)andoftenalkaliimpurities(K2O andNa2O).Largeandstrongcokeis essentialintheblastfurnaceto:

a. preventthechargefromcollapsinginto thebottomofthefurnace;

b. permitupwardgasflowbetweenthe cokepieceswhereoreandfluxare reducedandmelted;and

c. allowdownwarddrippingofnewly formedmoltenironandslag.

3. fluxes:MostlyCaOandMgO.Theseoxides fluxthesilicaandaluminaimpuritiesinore andcoketomakeafluidmoltenslagwhich iscastortappedfromthefurnacetogether withtheproductmolteniron.Fluxesare addedas50mmdiameterlimestone (CaCO3)anddolomite(CaCO3:MgCO3) piecesorasCaOandMgOcontainedin pelletsandsinter.Thesefluxescausesulfur, andalkaliimpuritiestobeabsorbedin moltenslagratherthaninthemolteniron.

1.2.2ChargingMethods

Continuousblastfurnaceoperation demandsthattopchargingdoesnotinterfere withgasflowoutofthefurnace,whilethe chargeburdenmustbeaddedat1 3barfurnacepressure(gauge).Thisisachievedusing:

1. gasuptakeflueslocated awayfromthe centralsolidschargingequipment,and

2. twocentralsealedchargehoppers,one loadingatambientpressure,whiletheother

isdischargingintothefurnaceatfurnace pressure, Fig.1.7.

Thissystemallowstopgastoflowcontinuouslyoutofthefurnacewhilethefurnaceis beingchargedwithsolids.

FIGURE1.7 Bell-lesschargingsystemdevelopedby PaulWurthforchargingablastfurnaceunderpressure. Thetwoholdinghoppersarenotable.Theyarefilledcyclicallywhereonehopperisfillingatambientpressure, whiletheotherisemptyingatfurnacepressure.The chargeisdistributedacrosstheblastfurnacethroatareaby arotatingdistributionchute.Thefurnace’stopgasleaves theblastfurnacecontinuouslythroughfourgasuptakes locatedbelowthechargingsysteminthefurnacetopcone (betweenstocklineandfeederspout)—see Fig.1.8

FIGURE1.8 Threeoffourgasuptakesandthedowncomerpipeusedtocaptureandremovetopgasfromablastfurnace. Source:PhotographcourtesyofCISDIInternationalEngineering&ConsultingCo.

1.2.3Tuyere-InjectedMaterials

Rawmaterialsintroducedthroughthe tuyeres(Fig.1.5)are:

1. hotblastair:Heatedto B1200 Candoften enrichedwithpureoxygen.Theblastair burnsdescendingincandescentcoke . 1500 Cinfrontofthetuyerestoprovidea 2000 2200 Cflamethatishotenoughto:

a. heatandreduceironoxidesthroughout theblastfurnace,and

b. meltironandslag.

2. injectants:Mostoftenpulverizedcoalbut alsootherhydrocarbons(e.g.naturalgas) areinjectedandcombustedinfrontofthe tuyerestoprovideheatplusextraCO(g) andH2(g)reducinggases.

Pulverizedcoalischeaperthancokeperkg ofcontainedC.Pulverizedcoalinjectionlowerstheblastfurnacecokerequirementand totaloperatingcost.

1.3PRODUCTSFROM THEBLASTFURNACE

Theironblastfurnacemakesthree products:

1. moltenblastfurnaceiron,alsoknownashot metalorrawiron;

2. moltenoxideslag,knownasblastfurnace slag;and

3. blastfurnacetopgas,knownasBFG.

1.3.1MoltenIron

Themainproductoftheblastfurnaceis molteniron,castat1500 C.Itiscastthrougha pluggabletapholeinthefurnacehearthwall nearthebottomofthefurnace.Asmallblast furnaceisequippedwithonetaphole;alarge furnacewillneedthreeorfourtapholestocontinuouslydrainthefurnace.Largerfurnaces

alternatelyusetwotapholeswiththeothers beingrefurbishedoronstandby.

Themoltenironexitstheblastfurnacesaturatedwithcarbon.Theirontypicallycontains thefollowing:

1.3.2MoltenSlag

Asshownin Fig.1.9,moltenblastfurnace slagistappedfromtheblastfurnacetogether withthemolteniron.Slagisseparatedfrom ironbygravitythensolidifiedandsold.

Blastfurnaceslagisamoltenoxidesolution at1500 Cmadeupofthefollowing:

Thehotmetalisimmediatelysentmolten B1500 Ctothesteelmakingplantwhereitis sequentially:

1. desulfurizedinalargeladlebyinjectinga [CaO,CaC2,and/orMg] basedpowder intotheiron,therebyremovingthesulfur containedasamoltenCaO-,MgO-,S-rich slag1;

2. oxidizedwithvirtuallypureoxygenand fluxedwithCaOandMgOinabasic oxygenfurnacetoremovemostofthe impurities,thatis,Si,C,S,andP;

3. alloyedwithothermetals;forexample,Mn, Cr,Ni,V,andMo;

4. degassedtoremoveH2(g),N2(g)andlower carbontoverylowlevels[removingCas CO(g)];

5. continuouslycastintosteelslabs,billets, and/orblooms;and

6. finishedbyhotandcoldrolling, occasionallycoated,andthensold asdescribedinChapter3,MakingSteelFrom MoltenBlastFurnaceIron.

Fe(totalindropletsandions)0.2

Chemically,theslagisahightemperature solutionofcations(suchasCa11 andMg11) andanions(suchasO2 andSiO44 ).2 SlagcontainsverylittleFe-anindicationoftheblast furnace’sexcellentreductionefficiency.

Blastfurnaceslagcompositionischosento:

1. guaranteethattheslagismoltenandfluid; 2. removetheore’sganguemineralsandthe coke’sashfromthefurnaceburdenasa fluidslag;

3. absorbK2OandNa2O(alkalis),whichwill otherwisebuildupinthefurnace;and 4. absorbsulfurthatwillotherwiseenterthe productmolteniron.

Aslag“basicity”ratio,B4isdefinedas:

B4 5 Mass%CaO 1 Mass%MgO Mass%SiO2 1 Mass%Al2 O3

AB4valuebetween0.9and1.1bestmeets thesefourslagcompositionobjectives.

FIGURE1.9 Moltenironandslagbeingtappedfromablastfurnace.Theyareseparatedinthemaintroughbyallowingdensemolteniron(6.8t/m3)toflowunderarefractoryskimmingblockwhileforcingthelessdensemoltenslag (2.7t/m3)tocollectabovetheironandflowintoaslagrunner.Themoltenironflowscontinuouslyintoatorpedo-shaped railcarladleusedtotransportthehotmetaltosteelmaking.Themoltenslagflowstoagranulationmachineorissolidifiedinpits-thensold.Noticethehugebustlepipethatdistributesblastairtoindividualtuyeres. Source:Photographcourtesy ofTMT—TappingMeasuringTechnologyS.a`.r.l&G.m.b.H.

1.3.2.1SlagUses

Solidifiedblastfurnaceslagisusedforroad aggregateandincementproduction.Forroad aggregate,slagisaircooledinlargepitsthen crushed.Forcement,moltenslagiswater quenchedthenfinelyground.Thisfinelyground slagisaddedtoPortlandcement(30 70%blast furnaceslag,remainderPortlandcement).This mixtureisstrongerthanPortlandcementalone andmoreresistanttosulfateandchlorideattack. Slagcementisalsofireresistant.3

Successfulslaggranulationrequiresthat themoltenslagmustalwaysbehot,

1450 1500 C,sothatitflowssmoothlyinto thegranulator.

1.3.3TopGas

BFGleavesthefurnacethroughfourwidely spaceduptakeflueslocatedinthefurnacetop cone, Figs.1.1and1.8.Thegasisdedusted, demisted,andburntfor:

1. heatingblastairinregenerativestoves, Fig.1.2, 2. heatingotherfurnacesaroundthesteelplant,

3. producinglow-pressuresteamforthesteel plant,and

4. makingelectricity.

BFGistypicallycomposedofthefollowing:

BFG’sfuelvalueisabout10%thatofnaturalgas,thatis,BFGisa“weak”fuel.Despite beingaweakfuel,BFGhasmanyvaluableinplantuses;itisbyfarthelargeststreamof wasteenergyinanysteelworks.Themoist dustfromdedusting/demistingisagglomeratedbysinteringorbriquettingthenrecycled totheblastfurnacetorecoveritsFeandC.It accountsforabout5%oftheblastfurnace charge.

1.4BLASTFURNACEOPERATIONS

Theblastfurnaceoperationentails:

1. nearlycontinuouschargingofore,coke, andfluxthroughthetopofthefurnace;

2. continuousblowingofhotblastairand hydrocarboninjectantsthroughtheblast furnacetuyeres;and

3. continuous(onsmallerfurnaces intermittently)castingofmoltenironand slagthroughatapholenearthebottomof thehearth.

Mostoftheseoperationsarecontrolledby skilledoperatorsusingmultiplesensors aroundthefurnace.Continuouslymonitored processvariablesincludethefollowing:

Pt Rhthermocoupleinflowing-tapped moltenironstream.Itisinsidetheverticalrefractoryprobe (bottomendclosed)togiveacontinuousmeasureofhot metaltemperature. Source:PhotocourtesyofAlgomaInc.

temperatures: Hotblast,coolingwater, furnacewall,topgas; pressures: Blast,furnaceinterioratseveral points,top; flowrates: Blastair,tuyereinjectants,cooling water;and moisture: Ofchargematerialsaddedtothe furnace.

Inaddition,productironandslagtemperaturesaremeasuredcontinuouslyorintermittentlywithspecializedhigh-temperature Pt Rhthermocouples, Fig.1.10.4

Powerfuldrillingmachinesareusedto openthetaphole.Attheendofacast,amud gunisusedtoblockthetapholeandstopmoltenironandslagflow.

1.4.1Pressure

Mostblastfurnacesarepressurizedto 1 3bar(gauge)atthetopgasofftakesand 2.5 4.5bar(gauge)atthetuyeretips.These pressuresdensifythegas(n/V 5 P/RT),giving itanextendedresidence/reactiontimein thefurnace.

FIGURE1.10

1.4.2PrincipleChemicalReactions

Themainchemicalreactionsthatoccur insidetheblastfurnaceare:

1. stronglyexothermicoxidationofcarbonby air/oxygeninfrontofthetuyerestogive CO2(g)plusheat: CsðÞ 1 O2 g -CO2 g ΔH D 395MJ=kgmolofCsðÞ

2. endothermicreactionoftheCO2(g)with carbontoproduceCO(g),theprinciple reducinggasoftheblastfurnaceprocess:

CO2 g 1 CsðÞ-2COg ΔH D 1 165MJ=kgmolofCsðÞ (1.2)

3. slightlyexothermicreductionofhematiteto solidFe:

0 5Fe2 O3 s ðÞ 1 1 5COg -FesðÞ 1 1 5CO2 g ΔH D 20MJ=kgmolofFesðÞ (1.3) and

4. formationofmoltenironfromitssolid components: solidFe 1 solidC-moltenFe 1 Calloy(1.4) whichisslightlyexothermic.

1.4.3MainThermalProcesses

Theblastfurnaceisacountercurrentheat exchanger-tuyerestofurnacetop-inwhich:

1. hotgas(B2100 C)isproducedinfrontof thetuyeresbyburninghotcokewithhot blastairandaddedoxygen; 2. thesehotgasesascendthroughthefurnace, andsequentially:

a. heatandmeltironandslag, b. provideheattoreduceironoxidesto iron,

c. heatthedescendingsolidcharge,and

d. nearthetopoftheblastfurnace,remove moisturefromthechargeburden;

3. theascendinggasleavesthefurnaceat 100 200 C,abovethegasH2O(g)dew point.

Thiscountercurrentflowaspectisdiscussed throughoutthisbook.Itiskeytotheblastfurnace’soutstandingchemicalandthermal efficiency.

1.4.4BlastFurnaceInformation

Withitsdeephistoryandglobalfootprint, blastfurnacedesignandoperationvariesfrom regiontoregionandcompanytocompany. Blastfurnaceoperatorsworktoobtainthelowestoperatingcostandlongestcampaignlifeto maximizethevaluethatblastfurnaceironmakingprovides.Specificbasicdesignand importantinputandoutputinformationfor selectedindustrialblastfurnacesareprovided in Table1.1.

1.4.5ProductionStatistics

In2016,about1.2billiontonnesofmolten ironwereproducedfromblastfurnaces ranginginoutputfrom0.2to5.0Mt/year.5 Theexactnumberofblastfurnacesoperating ischallengingtoidentify;annualproduction wouldsuggestthat700 900blastfurnacesare inoperationglobally.Blastfurnacesoperateon everycontinentbutAntarctica, Table1.2.

Theglobaldistributionofblastfurnace capacityisillustratedfurtherin Fig.1.11.

1.4.6CampaignLife

Optimally,blastfurnaceironmakingnever stopsexceptforsafetyconcernsortoreplace thefurnacerefractoriesandcoolingsystem, knownasafurnacereline.Theblastfurnace operatescontinuouslyfor12 15years(occasionally20 1 years)beforethefurnace

TABLE1.2 BlastFurnaceMoltenIronProductionby Country,2016

Country

2016BlastFurnaceIron Production,Megatonnes(Mt)

Argentina2.1

Australia3.6

Austria5.6

Belgium4.9

Brazil26.0

Canada6.2

Chile0.7

China701

CzechRepublic4.2

Finland2.7

France9.7

Germany27.3

Hungary0.9

India63.0

Iran2.3

Italy6.0

Japan80.2

Kazakhstan3.3

Mexico4.5

Morocco0.8

TheNetherlands6.1

Poland4.7

Romania1.6

Russia51.8

Slovakia4.0

SouthKorea46.3

Spain4.1

SouthAfrica4.3

Sweden3.1

Taiwan,China14.9

TABLE1.2 (Continued)

Country

(Continued)

2016BlastFurnaceIron Production,Megatonnes(Mt)

Turkey10.3

Ukraine23.7

UnitedKingdom6.1

UnitedStates22.3

Othercountries4.6

Total1160

ChinaDominatesWithIndia,Japan,Russia,andSouthKoreaata Second,MarkedlyLowerLevels5.worldsteelAssociation.

becomesunsafeandirreparable—whereupon itisrelinedorrebuilt.Thisisreferredtoas theblastfurnacecampaignlife.Thecurrent recordholderisArcelorMittal,BlastFurnace #1,Tubara ˜ o,ES,Brazil.Thisblastfurnace operatedforover28yearsandproduced morethan90milliontonnesofhotmetal. DetailsoftheBlastFurnace#1campaignare providedin Fig.1.12.

Longcampaignsareobtainedbygoodblast furnacedesign,stableoperations,andquality burdenmaterialstoavoidrefractorythermal shock,abrasion,andslag/chemicalattack. Rebuildinghaltsironproduction,whichis expensive,solongcampaignsareeconomically veryadvantageous.

Majorimprovementscanbemadeoutside theblastfurnacewhilethefurnaceisoperating.Forexample,theblastfurnace’sentire controlsystemisoftenmodernizedduringa longcampaign.Itisunlikelythatthecontrol systemwouldhavesparepartsfor30years! Otherancillaryequipmentmayneedtobe replacedorupgraded.

Blastfurnaceutilizationcanbeashighas97% or98%overextendedperiods,withonlyshort 1-to2-daylongshutdownsformaintenance. World-classblastfurnaceswillonlyhavefour,

Capacityoftheworld’sironblastfurnaceplants. Mt/y,Megatonnesperyear.

ArcelorMittalTubaraoBlastFurnace#1-LongestCampaignc.2012. Source:PhotocourtesyofArcelorMittal Brazil.

FIGURE1.11
FIGURE1.12

1 2daymaintenancestopsperyear.Longer stoppages(i.e.,greaterthan1week)maybeneed forinterimrefractoryandcoolingsystemrepairs.

1.5COSTS

Blastfurnaceironmakingisthesinglemost expensiveoperationinanintegratedsteelworksfromanoperating,maintenance,and capitalcostperspective.Thecostofproducing moltenpigironisabout75%ofthecaststeel cost.Relinesandrebuildsareamongthemost expensivemaintenanceactivitiesthatasteelworksmustplanfor.Theinitialinvestmentfor anewblastfurnaceisoneofthecornerstone investmentsforanewsteelworks.

1.5.1Investment(Capital)Costs

Atthetimeofwriting,thecosttobuilda newblastfurnacecomplexwasestimatedto

be150USDperannualtonneofproduct molteniron.Thus,theinvestmentcostfora complexproducing4milliontonnesofmolten ironperyeariscalculatedbytheequation:

Blastfurnacecomplexcost

5

½Investmentcostperannualtonneofmolteniron

5

½Plantcapacity; tonnesofmoltenironperyear

½150USDperannualtonneofmolteniron

½Plantcapacity; 4 3 106 tonnesofmoltenironperyear

5 600millionUSD

Tothis,wemustaddabout10%forworkingcapitaltocovertheplant’sstart-upcosts.

1.5.2OperatingCosts

Table1.3 estimatesthecashcostsfor producingmoltenblastfurnaceiron.Thetotal 2017costis B274USD/t.About95%ofthiscost isforironoreandfuelinputs,sothattotalcostis controlledalmostcompletelybythepricesofiron

TABLE1.3 EstimatedCashCost(2017)ofProducingMoltenIronFroma70%Sinter,30%PelletBlastFurnace Charge

ItemUnitCostConsumption

CostofProducing1t ofMoltenIron,USD

Feoxidesinter$71/t1.1t78.1

Feoxidepellets$123/t0.5t61.5

Coke$250/t0.3t75.0

Injectedpulverizedcoal$115/t0.2t23.0

Flux:(CaCO3 MgCO3)$10/t0.03t0.3

Electricalenergy$0.1/kWh150kWh15.0

Labor$25perlabor-hour0.23labor-hour5.8

Repairs/Maintenance$6/tofproductmolteniron6.0

Refractories$1/kg1kg1.0

Total 274

TheLargestCostisFeSinter 1 PelletsFollowedbyCoke 1 CoalandElectricalEnergy.TogetherTheseAccountfor95%ofMoltenIron ProductionCost.

ore,metallurgicalcoal,andinjectedfuels,suchas pulverizedcoalandnaturalgas.

1.5.3MaintenanceandReliningCosts

Blastfurnacesmustbecompletelyrelined andrebuiltattheendofthecampaignlifewhich isusuallydeterminedbythehearthlife.Relines takeabout2yearstoplanandareanimportant opportunitytorenewnotonlytheblastfurnace properbutmanysupportingsystemsthatareat theendoftheirservicelife.Arelinewilllast 60 90days,andthecostwillbebetween150 and300MUSDdependingonthescopeofthe repairandsizeoftheblastfurnace.

Duetothesehighreliningcostsandrelated productionlosses,blastfurnaceoperatorswork tirelesslytoextendthecampaign.Thismay includeshorterstopsfrom5to20daystoreplace worncoolingstaves,sprayrefractorymaterials ontheshaftwalls,orrebuildthehearthwall andtapholes.Inaverylongcampaign,twoto threeshorterrepairsmaybecompletedduring thecampaign.Verycarefulinspectionand dataanalysisiscompletedinadvanceofthese repairstoidentifypartsoftheblastfurnace thatneedtobereplacedorremediated.

1.6SAFETY

Ofparamountconcernaroundtheblastfurnaceisworkersafety.Asafeworkingenvironmentisfosteredby:

1. settingsafetyasaprimarygoal;

2. closeattentiontosafetybymanagement;

3. thoroughworkersafetytraining;

4. thoroughmaintenanceandhazard identification/elimination;and

5. specialattentiontouniqueblastfurnace hazards:6

a. carbonmonoxidepoisoning,

b. molteniron/slagburns,

c. gaseoussulfurcompoundpoisoning,

d. water-molteniron/slagexplosions, e. hydrogenornaturalgasexplosions, f. waterleakageintothefurnace,and g. workerheatstress.

COpoisoningisbyfarthegreatestconcern because:

1. enormousamountsofCOarepresent aroundthefurnace,and

2. COhasarapid,potentiallyfataleffecton thehumanbodyduetoitsrapidabsorption intothebloodstreamandabilitytoblock oxygenuptakebythehumanbody.

PersonalCOmonitorsmustbeworninall areas,andasign-in,sign-outsystemisrigorouslyenforced.

1.7ENVIRONMENT

Blastfurnace basedsteelplantsarevery large,upto3 10km2 ofgroundarea.They typicallyhave:

• ocean-goingshipunloadingfacilities;

• marshalingyardsforfreighttrains;

• oreandcoalstockyards;

• cokeplantandrelatedfacilities;

• sinterand/orpelletplants;

• blastfurnaces;and

• slagsolidificationandcrushingplants whichimpactland,sea,andair.

Itisimperativethatcloseattentionbepaid tominimizingtheenvironmentalimpactofthe facility.Thisisbeingdoneinmodernblastfurnaceplantsby:

1. installingfilters,precipitationtanks,and watertreatmentonalldischargewater streams;

2. reusingwaterincriticalsystems;

3. biologicaltreatmentofcokeplantwaste watercontainingphenolsandthiocyanates;

4. installingcustomfittedhoodsinthe casthousetocollectfumes.Usingbagfilters

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Blast furnace ironmaking: analysis, control, and optimization ian cameron - The latest updated ebook by Education Libraries - Issuu