Biotechnological Productionof BioactiveCompounds
Editedby MadanL.Verma
DepartmentofBiotechnology,DrY.S.ParmarUniversityof HorticultureandForestry,HimachalPradesh,India;Centrefor ChemistryandBiotechnology,DeakinUniversity,VIC,Australia
AnujK.Chandel
DepartmentofBiotechnology,EngineeringSchoolofLorena(EEL), UniversityofSa˜oPaulo,EstradaMunicipaldoCampinho,Lorena, Sa˜oPaulo,Brazil
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright © 2020ElsevierB.V.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-444-64323-0
ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionEditor: KostasKIMarinakis
EditorialProjectManager: DevlinPerson
ProductionProjectManager: VigneshTamil
CoverDesigner: MarkRogers
TypesetbyTNQTechnologies
Contributors
AjayBansal
DepartmentofChemicalEngineering,DrBRAmbedkarNationalInstituteof Technology,Jalandhar,India
AnujK.Chandel
DepartmentofBiotechnology,EngineeringSchoolofLorena(EEL),Universityof SaoPaulo,EstradaMunicipaldoCampinho,Lorena,SaoPaulo,Brazil
VivekChauhan
DepartmentofBiotechnology,HimachalPradeshUniversity,SummerHill, Shimla,India
SilvioS.daSilva
DepartmentofBiotechnology,EngineeringSchoolofLorena UniversityofSa ˜ o Paulo,Lorena,Sa ˜ oPaulo,Brazil
SarahdeSouzaQueiroz
DepartamentodeBiotecnologia,EscoladeEngenhariadeLorena,Universidade deSa ˜ oPaulo,Lorena,SP,Brasil
MariadasGrac¸asdeAlmeidaFelipe
DepartamentodeBiotecnologia,EscoladeEngenhariadeLorena,Universidade deSa ˜ oPaulo,Lorena,SP,Brasil
BalrajSinghGill
DepartmentofHigherEducation,Shimla,HimachalPradesh,India
PraveenGuleria
DepartmentofBiotechnology,FacultyofLifeSciences,DAVUniversity, Jalandhar,Punjab,India
IndarchandGupta
DepartmentofBiotechnology,InstituteofScience,Aurangabad,Maharashtra, India
Andre ´ sFelipeHerna ´ ndez-Pe ´ rez
DepartamentodeBiotecnologia,EscoladeEngenhariadeLorena,Universidade deSaoPaulo,Lorena,SP,Brasil
AvinashP.Ingle
DepartmentofBiotechnology,EngineeringSchoolofLorena,UniversityofSao Paulo,Lorena,SP,Brazil
FannyMachadoJofre
DepartamentodeBiotecnologia,EscoladeEngenhariadeLorena,Universidade deSaoPaulo,Lorena,SP,Brasil
ShamsherSinghKanwar
DepartmentofBiotechnology,HimachalPradeshUniversity,SummerHill, Shimla,India
SumanKapur
BirlaInstituteofTechnology&Science,Pilani,HyderabadCampus,Telangana, India
RupaliKaur
CentreofBiotechnology,UniversityofAllahabad,Prayagraj,India
KaushalKishor
TechnologyResearchandAdvisory,ArancaPvtLtd,Mumbai,India
PankajKumar
DepartmentofBiotechnology,DrY.S.ParmarUniversityofHorticultureand Forestry,NeriCampus,HimachalPradesh,India
RakeshKumar
DepartmentofBiotechnology,HimachalPradeshUniversity,SummerHill, Shimla,India
SantoshKumar
DepartmentofBiochemistry,UniversityofMissouri,Columbia,MO,USA
VineetKumar
DepartmentofBiotechnology,FacultyofTechnologyandSciences,Lovely ProfessionalUniversity(LPU),Phagwara,Punjab,India
SanjeevKumar
DepartmentofBasicSciences,DrY.S.ParmarUniversityofHorticultureand Forestry,Hamirpur,HimachalPradesh,India
RekhaKushwaha
DepartmentofBiochemistry,UniversityofMissouri,Columbia,MO,USA
MarcelaO.Leite
DepartmentofBiotechnology,EngineeringSchoolofLorena UniversityofSa ˜ o Paulo,Lorena,Sa ˜ oPaulo,Brazil
MoumitaMajumdar
DepartmentofChemistry,NationalInstituteofTechnology,Agartala,Tripura, India
GildaMariano-Silva
DepartmentofBiotechnology,EngineeringSchoolofLorena UniversityofSa ˜ o Paulo,Lorena,Sa ˜ oPaulo,Brazil
FabianaB.Mura
DepartmentofBiotechnology,EngineeringSchoolofLorena UniversityofSa ˜ o Paulo,Lorena,Sa ˜ oPaulo,Brazil
Navgeet
DepartmentofBiotechnology,KMVCollege,Jalandhar,Punjab,India
AyantikaPal
DepartmentofHumanPhysiology,TripuraUniversity,Agartala,Tripura,India
FengQiu
UniversityofMissouri,ChristopherS.BondLifeSciencesCenter,Columbia,MO, USA
MahendraRai
DepartmentofBiotechnology,SantGadgeBabaAmravatiUniversity,Amravati, Maharashtra,India
VarshaRani
DepartmentofBiotechnology,ShooliniUniversitySolan,HimachalPradesh,India
DijendraNathRoy
DepartmentofBioEngineering,NationalInstituteofTechnology,Agartala, Tripura,India
AmareshKumarSahoo
DepartmentofAppliedSciences,IndianInstituteofInformationTechnology, Allahabad,Allahabad,India
RajSaini
DepartmentofBasicSciences,DrY.S.ParmarUniversityofHorticultureand Forestry,HimachalPradesh,India
PriyaSharma
DepartmentofBiotechnology,FacultyofLifeSciences,DAVUniversity, Jalandhar,Punjab,India
SnehSharma
DepartmentofBiotechnology,DrY.S.ParmarUniversityofHorticultureand Forestry,NeriCampus,HimachalPradesh,India
DeepkaSharma
DepartmentofBiotechnology,DrY.S.ParmarUniversityofHorticultureand Forestry,HimachalPradesh,India
KrishanD.Sharma
DepartmentofFoodScienceandTechnology,DrY.S.ParmarUniversityof HorticultureandForestry,Solan,HimachalPradesh,India
IshaniShaunak
DepartmentofBiotechnology,DrY.S.ParmarUniversityofHorticultureand Forestry,Solan,HimachalPradesh,India
SudhirShende
DepartmentofBiotechnology,SantGadgeBabaAmravatiUniversity,Amravati, Maharashtra,India
SaurabhShivalkar
DepartmentofAppliedSciences,IndianInstituteofInformationTechnology, Allahabad,Allahabad,India
ShailendraKumarSingh
CentreofBiotechnology,UniversityofAllahabad,Prayagraj,India
SalvadorSa ´ nchez-Mun ˜ oz
DepartmentofBiotechnology,EngineeringSchoolofLorena UniversityofSao Paulo,Lorena,Sa ˜ oPaulo,Brazil
ShanthySundaram
CentreofBiotechnology,UniversityofAllahabad,Prayagraj,India
MeenuThakur
DepartmentofBiotechnology,ShooliniInstituteofLifeSciencesandBusiness Management,Solan,HimachalPradesh,India
PriscilaVazdeArruda
UniversidadeTecnolo ´ gicaFederaldoParana ´ ,Ca ˆ mpusToledo,PR,Brasil
MadanL.Verma
DepartmentofBiotechnology,DrY.S.ParmarUniversityofHorticultureand Forestry,NeriCampus,HimachalPradesh,India;CentreforChemistryand Biotechnology,DeakinUniversity,GeelongCampus,VIC,Australia
ArunaVerma
DepartmentofBiosciences,HimachalPradeshUniversityShimla,India
Technologiesforextraction andproductionof bioactivecompounds
BalrajSinghGilla, 1,Navgeetb, 1,FengQiuc
DepartmentofHigherEducation,Shimla,HimachalPradesh,Indiaa;Departmentof Biotechnology,KMVCollege,Jalandhar,Punjab,Indiab;UniversityofMissouri,ChristopherS. BondLifeSciencesCenter,Columbia,MO,USAc
Chapteroutline
1.Introduction...........................................................................................................
4.5Metabolicengineering(ME).....................................................................5
5.Methodsforextractingbioactivecompounds...........................................................
5.1Solventextraction...................................................................................6
5.2Nonconventionalmethods........................................................................6 5.3Greenextractiontechniques.....................................................................7
5.4Supercriticalfluidextraction(SFE)...........................................................8
5.5Microwave-assistedextraction(MAE)........................................................9
5.6Ultrasound-assistedextraction(UAE)......................................................23
5.7Pressurizedliquidextraction(PLE).........................................................23
5.8Pulsed-electricfieldextraction(PEF)......................................................24
6.Bioactivecompoundsasasourceoffunctionalfoods.............................................
1. Introduction
Continuousalterationinthebehaviorofnumerousgenesconsequencesinthemodificationofgeneticmaterial.Thesegeneticchangesmaybebeneficialorharmful dependinguponmodificationoftheparticulargenetargetingsignalingpathway (Gilletal.,2016a,b).Positiveorbeneficialchangesresultinprogressiveevolution, whereasharmfulalterationmaycausesomedreadfuldiseasesandevencausesdeath. Thesediseasesaretreatedwithsurgery,chemotherapy,radiotherapy,andothermoderntechniquesusingnaturalorsyntheticdrugs(Joshietal.,2015).Syntheticdrugs potentiallycurbthesedreadfuldiseasesbutcausesomesideeffects.Thesesideeffectscanbeminimizedbyintroducingnewandbetterbioactivecompoundswhichfit besttothemoiety.Thefoodcrisisisanothercommonprobleminunderdeveloping anddevelopingcountries.Naturalbioactivecompoundscannotonlyprovideaplatformfordrugdiscoverybutalsoremediatethefoodcrisis.Naturalbioactivecompoundsinteractwithbiologicalmoleculessuchasproteins,DNAandothersto yieldthedesiredoutcome.Therefore,bothfoodandpharmaceuticalindustryhave stronginteresttocharacterizenewbioactivecompoundsfordevelopingnutraceuticals,functionalfoods,andtherapeuticagents.Naturalcompoundsarebiosynthesizedinconjugationorincombinationwithanotherforminsmallquantity (Altemimietal.,2017).Therefore,concentrationandpurificationoftheseconjugatedproductsrequiresrepeatedseparationofcomplexextractsintoindividual bioactivecompoundsandthisprocessistime-consumingandtediouswhichmakes itunprofitableforindustries.Variousmoderntechniqueshavebeendevelopedfor extractionandproductionofbioactivecompoundsfromnaturalsourcessuchas plantsandmarinealgae.Forexample,naturalcompoundscanbeefficientlypurified withmuchlowercostusingmetabolicengineeringandothermolecularbiological techniques(Sweetloveetal.,2017).
2. Historyofbioactivecompounds
Plantshavebeenusedsincetheancienttimefornutritionalvalue,andwiththepassageoftimetheirmedicinalvaluehasbeenglorified.Naturalproductshavebeen usedtopreventandtreatvariousdiseasesforalonghistory(Gilletal.,2017).In theGreekandRomanera,renownedscholarsdescribedtheuseofvariousherbal plantsinroutine(Paulsen,2010).Thehistoriansdiscoveredtheuseofcoriander andcastoroilinvariousrecipes,medicinalapplications,andremediesbyEgyptian (Vinatoru,2001).Plantsproducetwotypesofmetabolitesnamelyprimaryandsecondarymetabolites.Primarymetabolitesmainlyincludesugars,aminoacids,fatty acids,andnucleicacidsprimarilyusedforgrowthanddevelopment.Ontheother hand,secondarymetabolitesaresynthesizedinaparticularphaseofdevelopment ataparticulartime.Secondarymetabolitesareimportantfortheinteractionbetween plantsandenvironmentandenhancetheoverallpotentialofplantsforbetter
FIG.1.1
Thebiosyntheticpathwaysofsecondarymetabolites.
survivability.Forexample,plantssynthesizearomatoattractinsectsandother pollinatorsduringpollination(Gilletal.,2016a,b).Inallelopathy,plantssecrete chemicalstoinhibitthegrowthofsurroundingplants.Secondarymetabolitesare classifiedintothreemainclassesrepresentedin (Fig.1.1).Manysecondarymetabolitesarebioactivecompoundsexhibitingpharmaceuticaleffects.
3. Synthesisofbioactivecompounds
Secondarymetabolitesareclassifiedintothreemainclassesnamely(a)terpenes/terpenoids,(b)alkaloidsand(c)phenoliccompounds.Thefourmajorpathwaysforthe biosynthesisofsecondarymetabolitesareshikimicacidpathway,malonicacid pathway,mevalonicacidpathway,andnon-mevalonate(MEP)pathway (Fig.1.1)
Themajorityofbioactivecompoundsbelongtooneoftheabovementionedfamilies,eachofwhichhasparticularstructuralcharacteristicsarisingfromthewayin whichtheyarebuiltupinnature(biosynthesis).Therearefourmajorbiosynthetic pathwaysforthesecondarymetabolites:(1)shikimicacidpathway,(2)malonic acidpathway,(3)mevalonicacidpathwayand(4)non-mevalonate(MEP)pathway (TaizandZeiger,2006).TerpenesaresynthesizedthroughmevalonicacidandMEP pathways,whereasphenolicsaresynthesizedthroughmalonicacidorshikimicacid pathway.Aromaticaminoandalkaloidsaresynthesizedthroughtheshikimic acidpathway.
4. Sourceofbioactivecompounds
Bioactivecompoundhavebeenextractedfromvarioussourcesincludingplanttissues,marineorganisms,algae,andmicroorganisms.Theisolatedcompounds includeterpenes,phenolics,alkaloids,lipids,carbohydrates,peptides,andproteins.
4.1 Planttissues
Plantspossessvariousmedicinalpropertiessuchasantimicrobial,antioxidative, antifungal,anti-inflammatory,andantiparasiticeffects.Thesemedicinalproperties areduetoplantsecondarymetaboliteswhicharethoughttoenhanceplantadaptabilitytoprevailingconditions.Specificcompoundsaresynthesizedinplantsata particulartimeforbettergrowthanddevelopment(Gill,2013).Variouscompounds suchascarotenoids,terpenoids,alkaloids,phenylpropanoids,vinblastines,andvincristinesplayimportantrolesinplantgrowthanddefensesystem(Nobilietal., 2009).Phenolicsareanotherimportantclassofnaturalproductsandwidelydistributedinplantsparticularlyinleavesandstems.Thepivotalroleofphenolicsranges fromnaturaldefensetobetteradaptationandsurvivability.Thesefunctionsresult fromphysiologicalandgeneticvariationswhicharecriticalfortheevolution (Figueiredoetal.,2008).Secondarymetabolitespossessawiderangeoftherapeutic effectsandformalargecandidatepoolfordrugdiscovery.Inthelast25years, around60 70%ofapproveddrugswerederivedfromthescaffoldofplantsecondarymetabolites(NewmanandCragg,2012).
4.2 Marinesystem
Themarinesystemcomprisesofuniquebioactivecompoundswhichareimportant forpharmaceuticalandfoodindustry.Themarineinhabitantsserveasexcellent modelstostudytheprocessofnervetransmission.Theextractionandcharacterizationofmarinebioactivecompoundsiscriticaltounderstandthemarinelifeadaptationandpredator-preyrelationship.Marineorganismsandtheirbyproductsare importantsourcesforfertilizer,fishoil,fishmeat,petfood,andfishsilage (Agatonovic-Kustrinetal.,2018).Inaddition,othermarineproductssuchasfish muscleproteins,collagen,andgelatin,fishbone,shellfishandcrustaceanshells arevaluablesourcesofbioactivecompounds.Forexample,peptidesfromfishproteinhydrolysateshaveshownimmunomodulation,antioxidative,andantihypertensiveproperties.Thebioactivityandseparationofbiomoleculesdependuponthe molecularmassofpeptidefragments(Rajapakseetal.,2005).Fishskinwaste actsasagoodsourceofcollagenandgelatinandusedextensivelyinfoodandpharmaceuticalindustry.Theproductsderivedfrombovineandgelatin(bovine-derived) areusefultotreatmadcowdiseaseandbovinespongiformencephalopathy. Collagenisusuallyextractedwithacidtreatmentandcommonlyusedinpharmaceuticalindustry,especiallymicrofibrouscollagenincancertreatment(Leeetal., 2001).Inaddition,fishoilisrichinomega-3fattyacidswhichcanpotentially
enhanceimmunityandcardiovascularhealth.Theseacidsarefoundtoreducethe riskofthrombosis(VonSchacky,2000),decreaseserumtriglyceridelevels,improve thefunctioningofvascularendothelial,anddecreasethelevelofbloodpressure (Kris-Ethertonetal.,2003).Rajaganapathietal.isolatedananti-HIVproteincalled Bursatellanin-Pfromthepurplefluidofseaharewhichexhibitedthepropertyof resistancetodigestionundertheinfluenceofproteinaseKandmercaptoethanol (Rajaganapathietal.,2002).Furthermore,highphenoliccontentinalga Corallina pilulifera waseffectivetoinhibitfreeradicalsbyreducingtheexpressionof UV-inducedMMP-2and-9inhumandermalfibroblast(Ryuetal.,2009).
4.3 Microorganisms
Morethan2300bioactivecompoundshavebeenisolatedfrommicroorganisms (Olanoetal.,2008).Thesecompoundsexhibitvariousbiologicalfunctions.For example,bioactivecompoundsfoundinfungisuchas Penicillium,Aspergillus and Streptomyces provideprotectionagainstlethalphotooxidationinenvironmental stressandactascofactorsinmanyenzymereactions(Maparietal.,2005).These compoundshavebeenusedfordevelopingantibiotics,enzymes,andorganicacids (Liu,2013).Bioactivecompoundsfrommicroorganismshavebeenalsousedasflavorenhancers,preservatives,emulsifiers,andfoodsupplement.Theextractionof bioactivecompoundsfrommicroorganismsoftenhashighyieldsandmicrobial genesaremorereadilymanipulated.However,only1%ofmicroorganismshave beenexploitedforsearchingbioactivecompounds(Demain,2000).
4.4 Algaeandmicroalgae
Algaeareaheterogeneousgroupofphotosyntheticorganismswithsimplereproductiveorgans.Therearemorethan30000microalgaspeciesonearth,fromwhichmore than15000bioactivecompoundsunderextremeenvironmentalconditionshavebeen characterized(Mehraetal.,2018).Theseenvironmentalvariationssuchaslight, salinity,andtemperatureincreasethesurvivabilityofthemicroalgaresultinginthe productionofnewsecondarymetabolitesfordefensesystem(Rodrı´guez-Meizoso etal.,2010).Mostofthealgaeareeasytocultivateonlargescaleforindustrial usepurposes.Thecompoundbioactivitiesaredependentofvariousparameters suchasmolecularweight,solubility,heatresistanceandtheprocessofextraction andidentification.Importantly,greenchemistrytechnologiesallowtheextraction oftargetcompoundswithoutusingorganictoxicsolvents(Iban ˜ ezetal.,2012).
4.5 Metabolicengineering(ME)
Metabolicengineeringistheprocessofalterationofmetabolicpathwaystoproduce themetabolitesofinterestfortheuseinchemical,energy,food,andpharmaceutical industry.Geneticmaterialscontrolandmodulatetheproductionofbioactivecompounds(Negietal.,2014).Themodulationresultsinoverexpressionor
downregulationofgeneswhichareresponsibleforthesynthesisoftargetmetabolites.Theapproachesforgeneticengineeringmainlyincludegeneinsertionordeletion,heterogonousexpressionofgeneclusters,andalterationingeneexpression (Weberetal.,2015).Metabolicengineeringhasbeenusedtomodulatethesynthesis ofvolatileorganiccompoundsinplantswhichprotectplantsfromherbivoreand enhancestheirdefensesystem.Metabolicengineeringalsoassistsinpollinationsystemandseeddispersalstoenhancetheproductionofvolatileproductsinplants (Dudarevaetal.,2013).Forexample,metabolicengineeringhasbeenusedtomodulateseveralgeneswhichareresponsibleforthesynthesisphenylalanine-derived volatilecompounds(Peled-Zehavietal.,2015).
5. Methodsforextractingbioactivecompounds
Theextractionandbioactivityscreeningofnaturalcompoundscomprisesofseveral steps.First,rawmaterialsareselectedbasedontheirnutritionalormedicinaleffects. Theselectedmaterialsarecheckedfortoxicitywithstandardprotocols.Then, elementalanalysisiscarriedouttodeterminethechemicalcompositionandpotentialbioactivitiesofthematerials(Gilletal.,2016).Thecompoundsareisolatedfrom thecrudeextractsandtheirpotentialactivitiesaretested invitro and invivo (Gill etal.,2017).Finally,thebioactivecompoundsarecommercializedintomedicinal productsandprovedtobefruitfulincurbingvariousdiseases (Fig.1.2)
5.1 Solventextraction
Solventsextractionisoneofconventionalmethodsforextractingcompoundsfrom bacteria,algae,fungi,andplants.Rawmaterialisoftengroundintopowderformto increasetheextractionefficiency.Bothpolarandnonpolarsolventshavebeenused fortheextraction,suchasethanol,ether,chloroform,hexane,benzene,andwateras wellastheircombinationsindifferentratios(NegiandGill,2013).Thistechnique hasbeenwidelyusedduetoitseasyavailabilityandlowcost.However,someof organicsolventsarehighlytoxicand/orflammableandalargeamountofsolvents areoftenusedduringprocessingandextraction.Thus,usersshouldfollowappropriatehandlingprocedurestoensuresafetyandenvironmentalcompliance.Itis importanttonotethattheorganicsolventsmaycausethermaldegradationofbioactivecompounds(TeoandIdris,2014).Furthermore,theextractionprocessistimeconsumingandlabor-intensive.Toovercometheseissues,otheradvancedmethods havebeendevelopedsuchassoxhlet,ultrasound,andmicrowaveextractionwhich arementionedbelow.
5.2 Nonconventionalmethods
Theconventionalextractionmethodshavecertainlimitationswhichhaveprompted researcherstodevelopmoreadvancedmethodssuchassupercriticalfluidextraction,
Selectionofrawmaterial
Preliminarystudiesregardingtoxicity
Elementalanalysisofsample
Biologicalactivityofcrudeextract
Isolationofbioactivecompounds
Invitroanalysis
Invivoanalysis
Commercialization
FIG.1.2
Schematicrepresentationofextractionandcommercializationofbioactivecompounds.
microwave-assistedextraction,ultrasound-assistedextraction,pressurizedliquid extraction,andpulsed-electricfieldextraction(Gill & Kumar,2015).Thesenew methodshavereducedtheextractiontimeandpreventedthermaldecomposition ofcompounds(DeCastroandGarcıa-Ayuso,1998).
5.3 Greenextractiontechniques
Conventionalextractionmethodsoftenuselargeamountoforganicsolventswhich posetheriskofchemicalexposuretotheenvironment(Gilletal.,2016).The conceptofgreenchemistryhasbeenintroducedtoreducethechemicalhazard andlimittheiruseandexposuretotheenvironment.Greenchemistryalsopromotes thesustainabilityandallowsustoexploitthenaturewithoutdepletingtheenvironment.Thisconcepthasbeenincorporatedinvariouschemicalprocessesincluding synthesis,catalysis,separation,andmonitoring.Themainaspectsbehindgreen chemistryarewaste,energy,andhazardwhichdominateamongthetwelveprincipleslaidbyAnastasandWarner(AnastasandWarner,1998).
5.4 Supercriticalfluidextraction(SFE)
HannayandHogarthfirstintroducedsupercriticalfluid(SFE)in1879,asanalternativeextractionmethod,whereasdetailedstudywasconducteduntil1960s(Hosikian etal.,2010)ElaborativestudywasdonebyZoselinwhichheusedSFEtodecaffeinatecoffeebeans(Zosel,1964).Supercriticalstateofasolventisachievedwhen temperatureandpressureisbeyonditscriticalpointatwhichthesolventpossess bothgasandliquid-likepropertiessuchasdiffusion,surfacetension,viscosity,densityandsalvation(Sihvonenetal.,1999).Thisprincipleofextractionisbasedon variousparameterssuchasfluid,density,theviscosityofthesolventabovetheircriticalpoints.SFEisaneco-friendlyandhighlyselectivemethod.Carbondioxide (CO2)isthemostcommonsolventforSFEandothersolventsarealsoused,such asethylene,methane,nitrogen,xenon,orfluorocarbons(Daintreeetal.,2008). TheCO2 iscost-effectiveand“GenerallyRecognizedAsSafe”(GRAS)infood industry.ThesupercriticalCO2 exhibitshighdiffusivityandeasewithrespectto temperatureandpressure.DuringSFE,rawmaterialsarekeptinanextractorunder controlledtemperatureandpressure.Thedissolvedmaterialistransferredtoaseparator.Theextractsarethencollectedfromtheseparatorandtheregeneratedfluidis releasedtotheouterenvironment(Sihvonenetal.,1999).Aftertheextraction,the systemisdepressurizedtoconvertCO2 fromliquidintogasform.Thistechnique hasbeenusedtoextractbioactivecompoundsfrommacroalgae,microalgae,cyanobacteriaandmarineinvertebrates(suchascrustacean,crawfish,crab,orshrimp, squid,urchin,orstarfish)(WangandWeller,2006).Asmentionedearlier,plants releasevolatileandsemivolatilecompoundstoassisttheirsurvivalandfoodgathering.Manyofthesechemicalsareterpeneswhichareusedbyplantstoattack herbivoreschemically(QuinteroandBowers,2018).Forexample, Dictyopteris membranacea,whichisabrownalgae,releasesterpenoidsandsulfur-containing compounds(ElHattabetal.,2007).Volatilecompoundsreleasedbymicroalgae assistindefenseandhaveantifungal,antibacterial,andantiprotozoalproperties (Mehraetal.,2018).Forexample,abioactivecompoundisolatedfrom Dunaliella salina throughSFEexhibitsantimicrobialactivityagainst Escherichiacoli, Staphylococcusaureus,Candidaalbicans, and Aspergillusniger (Macı´as-Sa ´ nchez etal.,2009).Inaddition,saponifiable(essentialfattyacids)andunsaponifiablecompoundswerealsoextractedfrom D.salina usingSFE.ThesupercriticalCO2 is commonlyusedtoextractnonpolarcomponentsinSFEduetoitslowpolarity. Forexample,omega-3(w-3)fattyacidswasefficientlyextractedfromanalgae, Hypneacharoide,usingSFEandCO2 assolvent(Xuetal.,2015).Nonpolarcompoundswerealsoisolatedfrom Botrycoccusbraunii,suchaslong-chainhydrocarbonswhichcanbeusedasasubstituteofparaffinandnaturalwaxes(Uquiche etal.,2016).However,SFEwaslessfrequentlyusedfortheextractionofother secondarymetabolitessuchasphenolicsandisoflavones.ToexpandtheapplicabilityofSFE,Klejdusetal.developedanewhyphenatedtechniquefortheextraction ofisoflavonesfrommacroalgaebysupercriticalCO2 extractionfollowedbyfast chromatographyusing3%(v/v)ofMeOH/H2Oassolvent(Klejdusetal.,2010).
Thewasteproductsfromamarineorganismsuchasfishhead,tail,blood,skin,and otherpartscontainusefulcomponentssuchasfishoilorPUFAfrommicroalgae. Thesewasteorby-productshavebeenusedfortheextractionofomega-3fattyacids usingSFEatpressure300barandtemperature75 C.Theextractscontained 10.95%EPAand13.01%DHA(Rubio-Rodrı´guezetal.,2012).Therearemany otherapplicationsofSFEsuchascoffeedecaffeination,phenolandflavonoidextraction,fattyacidrefining,nutraceuticalandfunctionalfoodpreparation.Theyieldof SFEdependsuponvariousoperationalconditionsandparameters,suchasrawmaterials,solvents,pressure,andtemperature,whichneedbeoptimizedforthecomponentstobeextracted(Tables1.1 1.4).
5.5 Microwave-assistedextraction(MAE)
Microwave-assistedextraction(MAE)wasfirstexplainedbyGanzlerandhisteam in1986(Ganzleretal.,1986).MAEisamethodforextractingproductsinsolvents usingmicrowaveenergy.MAEuseselectromagneticradiationswithawavelength from0.001mto1m.Itiscomposedoftwooscillatingfieldwhichisperpendicular tothemagneticandelectricfield.Microwaveisconvertedintothermalenergywhich causesdirectimpactsonpolarmaterialsbyexertingpressureoncellwall(Letellier andBudzinski,1999).Thisconversionistheresultofionicconductionanddipole rotationcausingresistancetoflow.Thepressuredevelopedinsidethecells modulatestheexpressionofgenesresponsibleforthephysicalandbiologicalpropertiesofcells.Theextractionprocesscomprisesofdifferentphasessuchasseparationofsoluteunderhightemperatureandhighpressurefromrawmaterials, diffusionofsolventacrossmatrixanddischargeofsoluteintosolventfrommatrix (Alupuluietal.,2012).MAEheatsthematrixbothexternallyandinternallyand thus,reducesthermalgradient.MAEismoreadvantageousthantheconventional SoxhletmethodbecauseMAEreducesequipmentsize,useslesssolvent,andincreasestheproductivity.Comparedtoothermethods,theproductyieldwasmuch higherwhileextractingcaffeineandpolyphenolsatroomtemperature(Belwal etal.,2017).Manybioactivecompoundswereisolatedfromdifferentpantspecies usingMAE.Forexample,thephenolicssuchaskaempferol,quercetin,andtheirglycosidesderivativeswereefficientlyextractedfromtheleavesof Moringaolerifera (Rodrı´guez-Pe ´ rezetal.,2016).MAEalsoenabledrapidextractionofpigments suchascarotenoidsfrom Dunaliella speciesduetonon-availabilityoffrustulesin cellsofmicroalgae(Akyiletal.,2018).Twelvephenolicswereextractedfrom Berberisasiatica usingMAEfortheexplorationoftheirpotentialtopreventthe damageoferythrocytesanddeoxyribonucleicacid.Thisstudyalsodiscoveredthe higherconcentrationofchlorogenicandcatechinthanotherphenolicspresentin theplant(Belwaletal.,2017).Inaddition,MAEincreasedtheyieldofanantiinflammatoryagentacetyl-11-keto-b-boswellicacid(AKBA)from Boswellia serrata whilereducingtheextractiontimeandsolventuse(NiphadkarandRathod, 2018). 5. Methodsforextractingbioactivecompounds
Table1.1 Examplesofsupercriticalextractionofbioactivecompounds. S.NoRawmaterialExtractionmethodBioactivecompoundUseReferences
1OliveleavesSubcriticalwater3 11MPa, 323 423K0 3.3m3/s
2Blacktea,celery, ginsengleaf
Subcritical(110 200 C), extractiontime(5 15min),and pressure(about10MPa)
3 Kaempferia galangal L. 120 C,extractiontime20min, extractionpressure10Mpa, ultrasonicpowerdensity250W/L
MannitolPharmaceutical industry,Diabetic foodproducts. Ghoreishiand Shahrestani (2009)
Myricetin,quercetin, andkaempferol
Antioxidantand foodindustry Cheighetal. (2015)
EssentialoilsAntioxidants,food andpharmaceutical industry Maetal.(2015)
4BasilandoreganoSubcriticalwater100,150,200, and250 C30and300min a-pinene,limonene, camphor,citronellol, carvacrol
5OnionskinSubcriticalwater100 190 C 5 30min90 131bar
6RosemarySubcriticalwater 25 200 C
7 Coffeaarabica L.(160 180 C),time(35 55min) andthesolid-to-liquidratio (14.1 26.3g/L)
Anti-inflammatory, antioxidant activities. Yangetal. (2007)
QuercetinAnticancer, antivirus,andantiinflammatory
Carnosol,rosmanol, methylcarnosate, carnosicacid, cirsimaritin,genkwanin
3-O-caffeoylquinic acid,4-Ocaffeoylquinicacid,and 5-O-caffeoylquinicacid
8Wetalgae220 CandmicrowaveheatingProteins,omega-3fatty acids,sugars
Koetal.(2011)
Antioxidant Ibanezetal. (2003)
Antioxidant, anticancerand foodindustry
Xuetal.(2015)
Biodiesel production Reddyetal. (2014)
9Sunflowerseeds130 C,30minofextractionOilAntioxidantsand foodindustry Ravberetal. (2015)
10 Salviaofficinalis L.201.5 C,extractiontimeof 15.8min
11WinerygrapeseedsSubcriticalwater50,100,and 150 C1500psi
Totalphenolsandtotal flavonoids
Catechinsand Proanthocyanidins
12 Zingiberofficinale 130 C/25min,and190 C/ 15min 6-gingeroland 6-shogaol
Foodindustryand anticancerproperty Pavlicetal. (2016)
Pharmaceutical andfoodindustry
Duba & Fiori (2015)
Antioxidantand foodindustry Koetal.(2019)
13Appleandpeach pomaces(Plant fruit)
Subcriticalcarbon dioxide þ ethanol20 60MPa, 40 60 C 14 20%EtOHand10 40min
14BerberisAristata roots 110 170 C,theparticlesizeof 0.65mm,timeof70min,using Microwaveassistedsubcritical waterextraction
15Sorghumbran144.5 Coftemperature,21min oftime,and35mL/gofthesolidliquidratio
16 Pistaciavera L.6.9MPaPressure,110and 190 C,andaflowrateof4 mL/min
17 Lycium ruthenicum Murr. 170 C,55min,theflowratewas 3mL/min
18 Panaxginseng C.A. meyer (150 200 C)andextraction time(5 30min)
19 Saccharina japonica (100 C-150 C),pressure (10 50bar),watercontent (50% 70%),andliquid/solid (L/S)ratio(30 50mL/g)
20ChamomileIsothermalconditions(100 C)at fivedifferentpressures(10,30, 45,60and90bar)
PolyphenolsHealthpromoting effects Adiletal.(2007)
IsoquinolineBerberineFoodand Pharmaceuticals industry Manikyametal. (2017)
Taxifolin,taxifolin hexoside,oligomeric procyanidins, epicatechin
Gallotannin,gallicacid, penta-O-galloyl-b-Dglucose,anacardic acid,
Antioxidantand medicinaluse Luoetal.(2018)
Antioxidants Er ¸ sanetal. (2018)
AnthocyaninAntioxidants,food industry,the pharmaceutical industry Wangetal. (2018)
Totalphenolic content,maltolcontent, ginsenoside
Antioxidantand medicinal properties Leeetal.(2018)
Alginate,fucoidanAntioxidant Saravanaetal. (2018)
Polyphenols,apigeninAntioxidant,food industry,medicinal use Cvetanovic etal.(2018)
21 Citrusgrandis (L.) Osbeck 120 Cand30barPectinFoodindustryand antioxidant properties Liewetal. (2018)
22 Teucrium montanum 160 Candpressureof10bar.NaringinandgallicacidPharmaceutical industry Nasticetal. (2018)
23Mangosteen pericarps
120 160 Cand1 10MPaXanthoneandphenolic compounds Antioxidantsand medicinaluse Machmudah etal.(2018)
Table1.1 Examplesofsupercriticalextractionofbioactivecompounds. Continued
24OrangepeelTemperature(110 150 C)and waterflowrate(10 30mL/min)
25 Sinopodophyllum hexandrum 180 C,4MPa,flowrate2.5 mL/min
26 Saturejamontana
Temperatureof200 Cand extractiontimeof20.8min.
27 Quercusilex (130 170 C)andreactiontime (5 220min)
28 Alliumursinum (120 200 C),extractiontime (10 30min)andacidifier,HCl (0 1.5%)
Hesperidin,narirutinAntioxidantsand foodindustry Lachos-Perez etal.(2018)
PodophyllotoxinPharmaceutical industry Wangetal. (2018)
Totalphenols, flavonoids, thymoquinone
Antioxidants, Vladicetal. (2017)
HemicellulosesMedicinaluse Yedroetal. (2017)
5hydroximethylfurfural (5-HMF)andfurfural(F), kaempferol
Antioxidants Tomsiketal. (2017)
29 Morusnigra L.120 C,60min,2mL/minPhenolics,flavonoids, andanthocyanins Pharmaceutical industry,medical use Koyuetal. (2017)
30 Phlomis umbrosa Turcz
100 C 200 C,time(from5to 25min)
31 Camellia oleifera Abel. Temperature(110 150 C), extractiontime(20 40min) andsolventtomaterialratios (5:1 15:1mL/g).
32Carrotleaves(110 230 C),time(0 114min), andsolid-liquidratio(15and 35g/L)
Polyphenols,flavonoidsAntioxidants, industrialuse Koetal.(2017)
Oil,teasaponinFoodindustrialand pharmaceutical industry Wuetal.(2018)
Phenolics,luteolinAgriculturepurpose andfoodindustry Songetal. (2018)
Table1.2 Examplesofmicrowaveandultrasonic-assistedextractionofbioactivecompounds.
S.No
Methodand conditionsMaterials Bioactive compoundsUseReferences
1UAE,MetOH20%, 60 C,60min
2UAE,EtOH(30% 70%), 80 C (40 80)min
3UAE,EtOH41%, 79 C,30.5min
Forsythiasuspense PhillyrinAnti-inflammatory, antioxidant,antiviral andvasorelaxant activities. Shengetal. (2012)
Alliumursinum L.Phenols,flavonoids,Antioxidants,Antiinflammatory Tomsiketal. (2016)
Prunellavulgaris L.FlavonoidsReducessorethroat, feverandwound healing. Zhangetal. (2011)
4UAE,MAE,25%WaterGrapesPhenolicsAntioxidant Bubaloetal. (2016)
5MAE,EtOH,water, 7minincyclesof 30sat250W
6MAE,EtOH42%, 500Wmicrowave power,62s
7UAE,Water,45min, 222W
8MAE,Acetone,56 C, 5minat50W
RosemaryleavesPhenolics,rosmarinic carnosic Acids
Myrtuscommunis
Antioxidantsandin foodindustry Rodrı´guez-Rojo etal.(2012)
PhenolicsAntioxidants Dahmoune etal.(2015)
LitchiseedsPolysaccharidesAntitumoral, antioxidant, hypoglycemic properties Chenetal. (2011)
Dunaliellatertiolecta, Cylindrothecaclosterium
Chlorophyll a, b carotene
9UAE,20min,50 C, 20W Nepheliumlappaceum L.Anthocyanin, phenolics,flavonoid
10MAE,EtOH80%, 65 C,300W
PigeonpealeavesCajaninstilbeneacid, pinostrobin
Healthandfood industry Pasquetetal. (2011)
Antioxidants,healing power Maranetal. (2017)
Postmenopausal, osteoporosis Kongetal. (2010) Continued
Table1.2 Examplesofmicrowaveandultrasonic-assistedextractionofbioactivecompounds. Continued
S.No
11MAE,EtOH96%, 6min,450W
12MAE,MetOH60%, 500W
Citrusaurantifolia PectinFoodindustry Megawatietal. (2017)
Berberisasiatica Phenolics,Chlorogenic acid,catechin Antioxidantandfood industry Belwaletal. (2017)
13MAE120Wfor25min, UAE200Wfor80min Momordica cochinchinensis Spreng. Carotenoidand antioxidant Antioxidant,food industry Chuyenetal. (2018)
14MAE,272W,4min, EtOH90%
Boswelliaserrata(gum) Acetyl11keto b boswellicacid Anti-inflammatory agent Niphadkar & Rathod(2018)
15MAE,90 C,10min, Solieriachordalis CarrageenanAntiviralactivity Boulhoetal. (2017)
16MAE,250 350W, 2 3min
17MAE,60 C,Hexaneas asolvent,15min
Oleaeuropaea Totalphenoliccontent, oleuropein Antibacterialactivity ¸ Sahinetal. (2017)
CoconutcopraresidueOil,fattyacids,freefatty acids Oilandfoodindustry, Medicinaluse Hakimietal. (2018)
18MAE,517W,2.15min Opuntiaficusindica Galacturonicacid, Pectin-relatedproteins
Foodindustryand medicinalpurpose Lefsihetal. (2017)
19MAE,360 720W EtOH60 100%,10s Momordica cochinchinensis Spreng SaponinsNutraceuticalsand pharmaceutical industries Leetal.(2018)
20MAE,70 C,4min, 1.3mLEtOH, chlorobenzeneas solvent
21Naturaldeepeutectic solvents(NADESs), MAE63.68 C, 17.08min,water 32.19%
LitchifruitPyrethroidsPesticidesandfood industry Wangetal. (2018)
Lippiacitriodora Iridoids, phenylpropanoids, flavonoids
Antioxidantsandfood industry Ivanovicetal. (2018)
21MAE,4min,EtOH 75%,160W Steviarebaudiana SteviosideFoodindustryand antidiabetic. Ameeretal. (2017)
22MAE,40 C,5min, EtOH Corydalisdecumbens AlkaloidsMedicinaluseand researchwork Maoetal. (2017)
23MAE,(50 150 C), (15 75%EtOH), extractiontime (5 20min)
24UAE,37.11 C,vessel diameter6cm,solvent ratio1:28.42g/mL
25UAE,56 C,3min, 0.6s,solventratio3.6%
26UAE,5min,90 Cand 80%ofethanol
Hibiscussabdariffa Glycosideflavonoids, phenolics Antioxidants,industrial use Pimentel-Moral etal.(2018)
Rheummoorcroftianum PolyphenolicIndustrialuse Pandeyetal. (2018)
OlivecakeProtocatechuicacid, cinnamicacid Foodindustry Mojerlou & Elhamirad (2018)
Arbutusunedo L.Cyanidin-3-glucosideIndustrialapplication Lo ´ pezetal. (2018)
27UAE,76 C,10min, amplitude100% Laminariadigitata Fucose,GlucansFoodandindustrialuse GarciaVaqueroetal. (2018)
28UAE,60 C,15(v/w), Oleaeuropaea L.Oleuropein, verbascoside,luteolin40 -O-glucoside
Industrialuse Giacometti etal.(2018)
Table1.3 Examplesofpressurizedliquidextractionofbioactivecompounds.
S.No
Methodand conditionsMaterials
1PLE,water,ethanol andtemperature60, 80and100 C
Rubusfruticosus L.Totalphenolics, monomeric anthocyanins, antioxidantactivity
2SE,methanol, acetone,andwater Bungakantan inflorescence
3PLE,hexane, acetonitrile
UAEacetonitrile, hexane
Phenols,tannins, flavonoids,and anthocyanins
Liver,muscle,kidney samples
Antioxidantsandfood industry Machadoetal. (2015)
Antioxidant/natural antioxidantsforfoodand nutraceuticals Wijekoonetal. (2011)
SulfonamidesMedicinaluse Hoffetal.(2015)
4PLE,EtOAcinMeOH Oryzasativa Guaiacol,ellagicacid, vanillicacidand protocatechuicacid
5MAE,60 Cfor3min of0.3g PLE75 Cfor 26.7min
Foodindustry Setyaningsih etal.(2016)
Cynarascolymus L.InositolsandinulinIndustrialuse Ruiz-Aceituno etal.(2016)
6PLE,Ethanol Schinus terebinthifolius Raddi
7PLE,190 Cfor3 consecutivecycles
8PLEwitheffectof nitrogen,light intensityorcarbon supplied
Anthocyanins, biflavonoids
OliveleavesOleuropeincontent, antioxidantactivity
Neochloris oleoabundans
Antioxidantsandfood industry Feuereisenetal. (2017)
Antioxidant,medicinal andpharmaceutical industry Xynosetal. (2014)
Carotenoids,luteinFoodindustry, anticancerous Castro-Puyana etal.(2017)