https://ebookmass.com/product/bioprocess-engineering-
The Night We Burned S. F. Kosa
https://ebookmass.com/product/the-night-we-burned-s-f-kosa/
ebookmass.com
Tissues, Cultures, Art Ionat Zurr
https://ebookmass.com/product/tissues-cultures-art-ionat-zurr/
ebookmass.com
The Economics of the Super Bowl: Players, Performers, and Cities 1st ed. Edition Yvan J. Kelly
https://ebookmass.com/product/the-economics-of-the-super-bowl-playersperformers-and-cities-1st-ed-edition-yvan-j-kelly/
ebookmass.com
How Documentaries Work Jacob Bricca
https://ebookmass.com/product/how-documentaries-work-jacob-bricca/
ebookmass.com
Dangerous Strokes (The Sanctum Syndicate Book 1) Lilith
Roman
https://ebookmass.com/product/dangerous-strokes-the-sanctum-syndicatebook-1-lilith-roman/
ebookmass.com
communication today 14 ed. (global
https://ebookmass.com/product/business-communication-today-14-edglobal-ed-edition-bovee/
ebookmass.com
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
# 2017,2013ElsevierB.V.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions, orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN: 978-0-444-63783-3
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/
Publisher: JohnFedor
AcquisitionEditor: KostasMarinakis
EditorialProjectManager: ChristineMcElvenny
ProductionProjectManager: AnithaSivaraj
CoverDesigner: MarkRogers
TypesetbySPiGlobal,India
PrefacetotheSecondEdition
Thesuccessofthefirsteditionasanundergraduateandgraduatetextonbioprocess engineeringhasledtothefurtherdevelopmentintreatiesonreactoranalysisandenzymekinetics.
Withthegoalofmakingthistextassuitableasthefirsttextonbioprocessengineering,thereweremanyaspectsofchemical kinetics,microbiologyorbiochemistry,reactionengineering,andbioreactionengineeringthatneededtobeintegrated.The secondeditionfurthersthisgoal,andwe nowhaveanintegratedtextonbioprocess engineering.Wedonotmakeaparticular distinctioninthetreatmentofchemical transformationsorbio-transformations.An attemptismadetounifytheterminologies inthedifferentfieldsandbringtheminto bioprocessengineering.
Aswiththefirstedition,thestraight-line plotsforreactionrates,orelaborateways torenderreactionratestostraightlines,are missingfromthistext.Thekineticparametricestimation(formerly Chapter7 inthefirst edition)isnowcombinedinto Chapter6 on chemicalkinetics.Itismyhopethatthefuturegenerationsofbioprocessengineerswill notrelyonstraight-lineinterpretations.This textpromotesamechanisticunderstanding ofthebio-transformationsandregulations overtheartificial,straight-lineexplanations.
Speakingofstraightlinesandgraphicsolutions,the“pinchline”methodisnowintroducedstartingin Chapter4 onbatch reactoranalysis.Itprovidesameansforsolvingabatchreactorproblemwhenthekineticsisnotfullyunderstood.
Anothermergeisseenin Chapter12 on cellcultivation.Thischapternowreplaces thechapteroncontinuouscultivationinthe firsteditionanddiscussesallofthecultivationmethods:batch,continuous,andfed batch.ThisrearrangementleadstotheeliminationoftheChapteronfed-batchcultivationfromthefirstedition.
Themajorchangestothissecondedition includemorethoroughdiscussionsonthe validationoftheMonodequationin Chapters9 and 11,andenzymeswithcomplex structuresorwithmultipleactivecentersin Chapters7 and 10.WhiletheMonodequationisempirical,itstheoreticalfoundations havenowbeenprovidedinthetext.Enzymeswithmultipleactivecenterscanbeinteractive,asligandbindingcanalterthe enzymestructure,affectingfurtherbinding and/orreactivity,andtherefore,producing desiredregulations.Becauseofthedevelopmentsonthetreatiseontheseinteractiveenzymes, Chapter7 (whichwas Chapter8 in thefirstedition)onenzymeshasbeenrewritten;andanewchapteroninteractiveenzymesandregulations(Chapter10)has alsobeenwritten.Anotheradditiontothe secondeditionis Chapter18:Combustion, ReactiveHazard,andBioprocessSafety.Reactivehazardandprocesssafetyisbecoming arequiredcomponentinourundergraduate education.Thischapterprovidesameansto includethetopicintheundergraduate curriculum.
Ihopeyouwillenjoythissecondedition.
ShijieLiu
thesustainabilityofbiomasseconomyand atmosphericCO2. Chapter16 discussesthe stabilityofcatalystsincludingtheactivity ofachemicalcatalyst,thegeneticstability ofcellsandmixedcultures,aswellasthestabilityofreactorsystems.Sustainabilityand thestabilityofbioprocessoperationsare discussed.Astableprocessissustainable. Multiplesteadystates,theapproachtoward asteadystate,theconditionsforstableoperations,andpredator-preyinteractionsarealso discussed.Continuouscultureischallenged bystabilityofcellbiomass.Inecologicalapplications,sustainabilityofabioprocessisdesirable.Forindustrialapplications,theability ofthebioprocesssystemtoreturntothe
previousset-pointafteraminordisturbance isanexpectation.In Chapter17,theeffectof themasstransferonthereactorperformance, inparticularwithbiocatalysis,isdiscussed. Bothexternalmasstransfers,egsuspended media;andinternalmasstransfers,eg immobilizedsystems;aswellastemperature effectsarediscussed.Detailednumerical solutionscanbeavoided,orgreatlysimplified,bydirectlyfollowingtheexamples. Chapter18 discussesreactordesignand operation.Reactorselection,mixingschemes, scale-up,andsterilizationandasepticoperationsarealsodiscussed.
ShijieLiu
Acronyms,Abbreviations, andSymbols
a catalystactivity
a specificsurfaceorinterfacialarea,m2/m3
a thermodynamicactivity
a cumulativeaffinitychangefactor
ad dimensionlessdispersioncoefficient
a constant
A chemicalspecies
A adenine
A constant
A heattransferarea,m2
Ac acetyl
ADP adenosinediphosphate
AMP adenosinemonophosphate
ATP adenosinetriphosphate
B chemicalspecies
B constant
BOD biologicaloxygendemand
BOD5 biologicaloxygendemandmeasuredfor5days
BnS boundspeciesSon n-sitedenzyme
c constant
C chemicalspecies
C concentration,mol/Lorkg/m3
C constant
C cytosine
CD dimerformedbyswappingcarboxylicacidtermini
CP heatcapacity,J/(molK),orkJ/(kgK)
CoA coenzymeA
CHO ChineseHamsterOvarycell
COD chemicaloxygendemand
CSTR continuouslystirredtankreactor
d diameter,m
D diameter,m
D diffusivity,m2/s
D dilutionrate,s 1
D dimer
D- chiralityoropticalisomers:right-handruleapplies
DNA deoxyribonucleicacid
DO concentrationofdissolvedoxygen,g/L
U internalenergy
U overallheattransfercoefficient,kJ/m2
U uracil
CoQn co-enzymeubiquinone
v molarvolume,m3/kmol
V volume,m3
W rateofworkinputtothesystem
W s rateofshaftworkdonebythesystem
x variable
x axialdirection
X cellorbiomass
X cellbiomassconcentration,L 1,org/L
XSU biomassstorageformanagedforest
XSU biomassstorageforundisturbedunmanagedforest
y molefraction
y variable
Y yields
YF yieldfactor,orratioofstoichiometriccoefficients
z verticaldirection
z variable
Z collisionfrequency
Z valenceofionicspecies
GreekSymbols
α affinitychangefactorduetothebindingofaligand
α constant
α chiralityoropticalisomers:twochiralcenterswithdifferenthandgestures
α metabolitetransferorequilibriumcoefficient
β heatofreactionparameter
β constant
β chiralityoropticalisomers:twochiralcenterswiththesamehandgestures
β reactivitychangefactorduetothebindingofaligand(s)
χ fraction
γ thermodynamicactivitycoefficient
γ activationenergyparameter
γ DR degreeofreduction
δ thicknessordistance
Δ difference
ε voidratio
ϕ Thielemodulus
η effectivenessfactor
θ fractionalcoverage(onavailableactivesites)
θ bindingsaturationratioonenzyme
μ specificrateofformation,orrateofreactionnormalizedbythecatalystorcellbiomassconcentration,s 1 org/g/s
μ specificbiomassgrowthrate,s 1 org/g/s
μf dynamicviscosityoffluid,Pas
ν stoichiometriccoefficient
νf kinematicviscosityoffluidormedium,m2/s
ρ density,kg/m3
σ activesite
σ variance
τ spacetime,s
ω massfraction
ω rotationalspeed
ω weightingfactor
Subscript
ads adsorption
app apparent
A speciesA
b reversereaction
B batch
c combustion
c catalytic
c cyclic
cat catalyst
C speciesC
C coldstream
C concentrationbased
C calculationbasedonmodel
C carboxylicacidterminusorpertainingtocarboxylicacidterminus
d death
d doubling
des desorption
D diffusioncoefficientrelated
e endogenous(growthneeds)
e external(masstransfer)
e ineffluentstream
eq equilibrium
eff effective
f finaloratend
f fluidormedium
f formation
f forwardreaction
F infeedstream
G growth
H heatofreaction
H hotstream
i reactioni
i initial
i impeller in inlet
I inhibition
valuableonesthathumansneed.Assuch,bioprocessesarechemicalprocessesthatusebiologicalsubstratesand/orcatalysts.Whilenotlimitedtosuch,wetendtorefertobioprocesses as(1)biologicallyconvertinginexpensive“chemicals”ormaterialsintovaluablechemicalsor materials;and(2)manipulatingbiologicalorganismstoserveas“catalyst”forconversionor productionofproductsthathumanneed.Bioprocessengineersaretheonlypeopletechnicallytrainedtounderstand,design,andefficientlyhandlebioreactors.Bioprocessengineeringensuresthatafavorablesustainablestateorpredictableoutcomeofabioprocessis achieved.Thisisequivalenttosayingthatbioprocessengineersareengineerswith,differentiatingfromotherengineers,traininginbiologicalsciences,especiallyquantitativeandanalyticalbiologicalsciences,andgreenchemistry.
Ifonethinksofscienceasadream,engineeringismakingthedreamareality.Thematuring ofChemicalEngineeringtoamajordisciplineandasoneoftheveryfewwell-defineddisciplinesinthe1950shasledtotheeaseinthemassproductionofcommoditychemicalsand completelychangedtheeconomicsorvaluestructureofmaterialsandchemicals,thanks tothevastlyavailablewhatwerethen“waste”and“toxic”materials:fossilresources.Food andmaterialscanbemanufacturedfromthecheapfossilmaterials.Ourlivingstandardsimprovedsignificantly.Today,chemicalreactorsandchemicalprocessesarenotbuiltby trialand-error,butbydesign.Theperformanceofachemicalreactorcanbepredicted,notjust foundtohappenthatway;thedifferencesbetweenlargeandsmallreactorsarelargelysolved. Onceadreamforthevisionalpioneers,itcannowbeachievedatease.Fossilchemicaland energysourceshaveprovidedmuchofourneedsforadvancingandmaintainingtheliving standardsoftoday.Withthedwindlingoffossilresources,wearefacingyetanothervalue structurechange.Thedreamhasbeenshiftedtorealizingasocietythatisbuiltuponrenewableandsustainableresources.Fossilsourceswillnolongerbeabundantforhumanuse.Sustainabilitybecomestheprimaryconcern.Whoisgoingtomakethisdreamcometrue?
Onasomewhatdifferentscale,wecannowmanipulatelifeatitsmostbasiclevel:thegenetic.Forthousandsofyearspeoplehavepracticedgeneticengineeringatthelevelofselectionandbreeding,ordirectedevolution.Butnowitcanbedoneinapurposeful, predeterminedmannerwiththemolecular-levelmanipulationofDNA,ataquantumleap level(ascomparedwithdirectedevolution)orbydesign.Wenowhavetoolstoprobethe mysteriesoflifeinawayunimaginablepriortothe1970s.Withthisintellectualrevolution
Animals O2
H2O Plants O2
Microorganisms Fossils
FIG.1.1 Thenaturalbiologicalprocesses.
emergesnewvisionsandnewhopes:newmedicines,semisyntheticorgans,abundantand nutritiousfoods,computersbasedonbiologicalmoleculesratherthansiliconchips,organismstodegradepollutantsandcleanupdecadesofunintentionaldamagetotheenvironment,zeroharmfulchemicalleakagetotheenvironmentwhileproducingawidearrayof consumerproducts,andrevolutionizedindustrialprocesses.Ouraimofcomfortableliving standardsiseverhigher.
Withouthardwork,thesedreamswillremainmerelydreams.Engineerswillplayanessentialroleinconvertingthesevisionsintoreality.Biosystemsareverycomplexandbeautifullyconstructed,buttheymustobeytherulesofchemistryandphysicsandtheyare susceptibletoengineeringanalysis.Livingcellsarepredictable,andprocessestousethem canbemethodicallyconstructedoncommercialscales.Thereliesagreattask:analysis,design,andcontrolofbiosystemstothegreaterbenefitofasustainablehumanity.Thisisthe jobofthebioprocessengineer.
Thistextisorganizedsuchthatyoucanlearnbioprocessengineeringwithoutrequiring aprofoundbackgroundinreactionengineeringandbiotechnology.Tolimitthescope ofthetext,wehaveleftouttheproductpurificationtechnologies,whilefocusingontheproductiongeneration.Weattempttobridgemolecular-levelunderstandingstoindustrialapplications.Itisourhopethatthiswillhelpyoutostrengthenyourdesireandabilitytoparticipate intheintellectualrevolutionandtomakeanimportantcontributiontothehumansociety.
1.2GREENCHEMISTRY
Greenchemistry,alsocalledsustainablechemistry,isaphilosophyofchemicalresearch andengineeringthatencouragesthedesignofproductsandprocessesthatminimizethe useandgenerationofhazardoussubstanceswhilemaximizingtheefficiencyofthedesired productgeneration.Whereasenvironmentalchemistryisthechemistryofthenaturalenvironment,andofpollutantchemicalsinnature,greenchemistryseekstoreduceandprevent pollutionatitssource.In1990,thePollutionPreventionActwaspassedintheUnitedStates. Thisacthelpedcreatea modusoperandi fordealingwithpollutioninanoriginalandinnovativeway.Itaimstoavoidproblemsbeforetheyhappen.
Examplesofgreenchemistrystartswiththechoiceofsolventforaprocess:water,carbon dioxide,drymedia,andnonvolatile(ionic)liquids,whicharesomeoftheexcellentchoices. Thesesolventsarenotharmfultotheenvironmentaseitheremissioncaneasilybeavoidedor theyareubiquousinnature.
PaulAnastas,thenoftheUnitedStatesEnvironmentalProtectionAgency,andJohnC. Warnerdeveloped12principlesofgreenchemistry,whichhelptoexplainwhatthedefinition meansinpractice.Theprinciplescoversuchconceptsas:(a)thedesignofprocessestomaximizetheamountof(all)rawmaterialthatendsupintheproduct;(b)theuseofsafe, environment-benignsubstances,includingsolvents,wheneverpossible;(c)thedesignofenergyefficientprocesses;and(d)thebestformofwastedisposal:nottocreateitinthefirst place.The12principlesare:
(1) Itisbettertopreventwastethantotreatorcleanupwasteafteritisformed.
(2) Syntheticmethodsshouldbedesignedtomaximize“atomefficiency.”
leapinthehumancivilization.Massproductionofgoodsbymachinesdominatesourdaily life.Theindustrialrevolutionwasbroughttomaturebythedevelopmentofcombustionenginesandsubsequentdevelopmentoffossilenergyandchemicalindustry.Besidesthemore thandoublingofusefulbiomassproduction/harvest,mankindhasincreasinglytappedinto thelargefossilenergyreserves.Atfirstthefossilchemicalswereregardedaswasteandthus anyusewaswelcomed.Itsoonbecamethecheapestchemicalandenergysourcesfortheindustrialrevolution.Asaresult,ourlivingstandardshaveseenaleap.Thereisnoturningback totheprimitivewayoflifeinthepast.However,fossilenergyandchemicalsourcesaredepletingdespitethecyclicpricechangeofenergyandcommoditymaterials.Thereisacritical needtochangethecurrentindustryandhumancivilizationtoasustainablemanner,assuring thatourwayoflifetodaycontinuesonthepathofimprovementafterthedepletionoffossil sources.Ourwayoflifeexistsonlyifsustainabilityismaintainedonatimescalenolonger thanourlifespan.
Biorefinery isconceptinanalogoustoapetroleumrefinery,wherebyarawmaterialfeed(in thiscaseplantligocellulosicbiomassinsteadofpetroleum)isrefinedtoapotpourriofproducts(ondemand).Inabiorefinery,lignocellulosicbiomassisconvertedtochemicals,materials,andenergythatrunsonthehumancivilization,replacingtheneedsofpetroleum,coal, naturalgas,andothernonrenewableenergyandchemicalsources.Lignocellulosicbiomassis renewableasshownin Fig.1.1,inthatplantsynthesizeschemicalsbydrawingenergyfrom thesunand,carbondioxideandwaterfromtheenvironment,whilereleasingoxygen.Combustionofbiomassreleasesenergy,carbondioxide,andwater.Therefore,biorefineryplaysa keyroleinensuringthecycleofbiomassproductionandconsumptionincludedsatisfying humanneedsforenergyandchemicals.
Abiorefineryintegratesavarietyofconversionprocessestoproducemultipleproduct streamssuchastransportationliquidfuels,steam/heat,electricity,andchemicalsfromlignocellulosicbiomass.Biorefineryhasbeenidentifiedasthemostpromisingroutetothecreationofasustainablebiobasedeconomy.Biorefineryisacollectionoftheessential technologiestotransformbiologicalrawmaterialsintoarangeofindustriallyusefulintermediates.Byproducingmultipleproducts,abiorefinerymaximizesthevaluederivedfroma
Undisturbed state
Human interruption
FIG.1.2 Changeofsustainablestateowingtohumaninterruption.
lignocellulosicbiomassfeedstock.Abiorefinerycouldproduceoneormorelow-volume, high-valuechemicalproductstogetherwithalow-value,high-volumeliquidtransportation fuel,whilegeneratingelectricityandprocessheatforitsownuseand/orexport.
Fig.1.3 showsaschematicofvariousbiorefineryprocesses.Thereareatleastthreestepsin convertingwoodybiomass:pretreatment,crackingorrenderingbiomasstointermediate molecules,andconversion(oftheintermediatemoleculestodesiredproducts).Thereare threemajorcategoriesorapproachesinpretreatment:systematicaldisassemblingprocesses, pyrolysis,andgasificationprocesses.Insystematicaldisassemblingprocesses,thelignocellulosicbiomassiscommonlydisassembledtoindividualcomponentssystematicallyforoptimalconversionsthatfollowed.Thebasicapproachisbasedonasystematicaldisassembling andconversiontodesiredchemicals.Thispretreatmentmethodandtheroutofconversion followeddependheavilyonseparationand/orphysicalfractionationoftheintermediates aswellasthefinaldesiredproducts.PyrolysisappliesheatandsomeOxygen(ornone)to renderthebiomasstoliquid,whilegasificationrendersthebiomasstosyngas.Biologicalconversionsarepreferredoverchemicalconversionsduetotheirselectivityorgreenchemistry concepts.However,owingtothecomplexityofthelignocellulosicbiomass,amultitudeof biologicalprocessesisrequiredforoptimaloperations.Thebiologicalreactionsarealsovery slowandthusrequirelargerfacilityfootprints.Especiallyfollowingthegasification,bioconversionisinthe“primitive”stageofdevelopment.
bioploymers, solvents, liquid fuel,
FIG.1.3 Aschematicofvariousbiorefineryprocesses. (Withpermission:Liu.,S.,2015.Asynergeticpretreatmenttechnologyforwoodybiomassconversion,Appl.Energy144,114–
boundarybetweenthetwoisincreasinglyvague,particularlyintheareasofcellsurfacereceptorsandanimalcellculture.Anotherrelevanttermis biomolecularengineering,whichhas beendefinedbytheNationalInstitutesofHealthas“ researchattheinterfaceofbiologyand chemicalengineeringandisfocusedatthemolecularlevel.”Inall,astrongbackgroundin quantitativeanalysis,kinetic/dynamicbehaviors,andequilibriumbehaviorsarestronglydesirable.Increasingly,thesebiorelatedengineeringfieldshavebecomeinterrelated,although thenamesarerestricting.
Bioprocessengineering isabroaderandatthesametimeanarrowerfieldthanthecommonlyusedtermsreferredabove:biologic alengineering,biochemicalengineering, biomedicalengineering,andbiomolecularengineering.Bioprocessengineeringisaprofessionthatspansallthebiorelatedengineering fieldsasmentionedearlier.Itisaprofession thathasemergedtostandalone,ascomparedtotheinterdisciplinaryprofessiononceit was.Unlikethetermbioengineering,thetermbioprocessengineeringisspecificandwell defined. Bioprocessengineering emphasizestheengineeringandsciencesofindustrialprocessesthatarebiobased:(1)biomassfeedstockconversionforasustainablesocietyor biorefinery;(2)biocatalysisbasedprocessing;and(3)manipulationofmicroorganisms forasustainableandsociallydesirablegoal.Bioprocessengineeringneitherisproduct basednorissubstratebased.Therefore,bioprocessengineeringdealswithbiological andchemicalprocessesinvolvedinallareas,notjustforaparticularsubstrateorspecies (offeedstockorintermediate),outcomeorproduct.Thus, bioprocessengineering intercepts chemical,mechanical,electrical,environmental,medical,andindustrialengineering fields,applyingtheprinciplestodesigningandanalysisofprocessesbasedonusingliving cellsorsubcomponentsofsuchcells,aswellasn onlivingmatters.Bioprocessengineering dealswithbothmicroscale(cellular/molecula r)andlarge-scale(systemwide/industrial) designsandanalyses.Scienceandengineeringofprocessesconvertingbiomassmaterials tochemicals,materials,andenergyarethereforepartofbioprocessengineeringbyextension.Predictingandmodelingsystembehaviors,detailedequipmentandprocessdesign, sensordevelopment,controlalgorithms,andmanufacturingoroperatingstrategiesare justsomeofthechallengesfacingbioprocessengineers.Attheheartofbioprocessengineeringlaytheprocesskinetics,reactordesign,andanalysisforbiosystems,whichforms thebasisforthistext.
Wewillfocusprimarilyonthekinetics,dynamics,andreactionengineeringinvolvedinthe bioprocessengineering.Akeycomponentistheapplicationofengineeringprinciplestosystemscontainingbiologicalcatalystsand/orbiomassasfeedstock,butwithanemphasison thosesystemsmakinguseofbiotechnologyandgreenchemistry.Therapidlyincreasingabilitytodeterminethecompletesequenceofgenesinanorganismoffersnewopportunitiesfor bioprocessengineersinthedesignandmonitoringofbioprocesses.Thecell,itself,isnowa designablecomponentoftheoverallprocess.
Forpractitionersworkinginthebioprocessengineering,someofjournalsandperiodicals providethelatestdevelopmentsinthefield.Herewenameafew:
BiochemicalEngineeringJournal
JournalofBiologicalEngineering
JournalofBiomassConversionandBiorefinery
JournalofBioprocessEngineeringandBiorefinery
JournalofBioprocessandBiosystemsEngineering
JournalofBiotechnology
JournalofBiotechnologyAdvances
JournalofBiotechnologyandBioprocessEngineering
1.6MATHEMATICS,BIOLOGY,ANDENGINEERING
Mathematicalmodelingholdsthekeyforengineers.Physicsatitsfundamentallevel examinesforcesandmotion;onecanviewitasappliedmathematics.Inturn,chemistry examinesmoleculesandtheirinteractions.Sincephysicsexaminesthemotionsofatoms, nuclei,andelectrons,atthebasisofmolecules,onecanviewchemistryasappliedphysics. Thisdirectlyconnectschemistrytomathematicsatafundamentallevel.Indeed,most physicistsandchemistsrelyextensivelyonmathematicalmodeling.Whileonecanviewbiologyasappliedchemistrythroughtheconnectionofchemicalsandmolecules,thefundamentaltrainingsofbiologiststodayandengineersaredistinctlydifferent.Inthe developmentofknowledgeinthelifesciences,unlikechemistryandphysics,mathematical theoriesandquantitativemethods(exceptstatistics)haveplayedasecondaryrole.Most progresshasbeenduetoimprovementsinexperimentaltools.Resultsarequalitative anddescriptivemodelsareformulatedandtested.Consequently,biologistsoftenhaveincompletebackgroundsinmathematicsbutareverystrongwithrespecttolaboratorytools and,moreimportantly,withrespecttotheinterpretationoflaboratorydatafromcomplex systems.
Engineersusuallypossessaverygoodbackgroundinthephysicalandmathematicalsciences.Oftenatheoryleadstomathematicalformulations,andthevalidityofthetheoryis testedbycomparingpredictedresponsestothoseinexperiments.Quantitativemodels andapproaches,eventocomplexsystems,arestrengths.Biologistsareusuallybetterat theformationoftestablehypotheses,experimentaldesign,anddatainterpretationfromcomplexsystems.Atthedawnofthebiotechnologyera,engineersweretypicallyunfamiliarwith theexperimentaltechniquesandstrategiesusedbylifescientists.However,todaybioprocess engineershaveenteredevenmoresophisticatedexperimentaltechniquesandstrategiesin lifesciences(thanbiologists)duetotheunderstandingandprogressinthepredictionand modelingoflivingcells.
Thewell-groundednessinmathematicalmodelinggivesbioprocessengineersanedge andresponsibilityinenforcingsustainabilitydemands.Inpractice,thesustainable(orsteady) statecanbedifferentfromwhatweknowtodayorwhennohumaninterruptionisimposed. Thesustainablestatecouldevenbefluctuatingwithanoticeabledegree.Engineershold greatresponsibilitytoconvincingenvironmentalistsandthepublicwhattoexpectbyaccuratelypredictingthedynamicoutcomeswithoutspeculatingonthepotentialdramatic changesahead.
Theskillsoftheengineerandofthelifescientistarecomplementary.Toconvertthepromisesofmolecularbiologyintonewprocessestomakenewproductsrequirestheintegrationof theseskills.Tofunctionatthislevel,theengineerneedsasolidunderstandingofbiologyand itsexperimentaltools.Inthisbook,weprovidesufficientbiologicalbackgroundforyouto