Bioprocess engineering. kinetics, sustainability, and reactor design 2nd edition shijie liu - The sp

Page 1


https://ebookmass.com/product/bioprocess-engineering-

The Night We Burned S. F. Kosa

https://ebookmass.com/product/the-night-we-burned-s-f-kosa/

ebookmass.com

Tissues, Cultures, Art Ionat Zurr

https://ebookmass.com/product/tissues-cultures-art-ionat-zurr/

ebookmass.com

The Economics of the Super Bowl: Players, Performers, and Cities 1st ed. Edition Yvan J. Kelly

https://ebookmass.com/product/the-economics-of-the-super-bowl-playersperformers-and-cities-1st-ed-edition-yvan-j-kelly/

ebookmass.com

How Documentaries Work Jacob Bricca

https://ebookmass.com/product/how-documentaries-work-jacob-bricca/

ebookmass.com

Dangerous Strokes (The Sanctum Syndicate Book 1) Lilith

Roman

https://ebookmass.com/product/dangerous-strokes-the-sanctum-syndicatebook-1-lilith-roman/

ebookmass.com

communication today 14 ed. (global

https://ebookmass.com/product/business-communication-today-14-edglobal-ed-edition-bovee/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

# 2017,2013ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions, orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN: 978-0-444-63783-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/

Publisher: JohnFedor

AcquisitionEditor: KostasMarinakis

EditorialProjectManager: ChristineMcElvenny

ProductionProjectManager: AnithaSivaraj

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

PrefacetotheSecondEdition

Thesuccessofthefirsteditionasanundergraduateandgraduatetextonbioprocess engineeringhasledtothefurtherdevelopmentintreatiesonreactoranalysisandenzymekinetics.

Withthegoalofmakingthistextassuitableasthefirsttextonbioprocessengineering,thereweremanyaspectsofchemical kinetics,microbiologyorbiochemistry,reactionengineering,andbioreactionengineeringthatneededtobeintegrated.The secondeditionfurthersthisgoal,andwe nowhaveanintegratedtextonbioprocess engineering.Wedonotmakeaparticular distinctioninthetreatmentofchemical transformationsorbio-transformations.An attemptismadetounifytheterminologies inthedifferentfieldsandbringtheminto bioprocessengineering.

Aswiththefirstedition,thestraight-line plotsforreactionrates,orelaborateways torenderreactionratestostraightlines,are missingfromthistext.Thekineticparametricestimation(formerly Chapter7 inthefirst edition)isnowcombinedinto Chapter6 on chemicalkinetics.Itismyhopethatthefuturegenerationsofbioprocessengineerswill notrelyonstraight-lineinterpretations.This textpromotesamechanisticunderstanding ofthebio-transformationsandregulations overtheartificial,straight-lineexplanations.

Speakingofstraightlinesandgraphicsolutions,the“pinchline”methodisnowintroducedstartingin Chapter4 onbatch reactoranalysis.Itprovidesameansforsolvingabatchreactorproblemwhenthekineticsisnotfullyunderstood.

Anothermergeisseenin Chapter12 on cellcultivation.Thischapternowreplaces thechapteroncontinuouscultivationinthe firsteditionanddiscussesallofthecultivationmethods:batch,continuous,andfed batch.ThisrearrangementleadstotheeliminationoftheChapteronfed-batchcultivationfromthefirstedition.

Themajorchangestothissecondedition includemorethoroughdiscussionsonthe validationoftheMonodequationin Chapters9 and 11,andenzymeswithcomplex structuresorwithmultipleactivecentersin Chapters7 and 10.WhiletheMonodequationisempirical,itstheoreticalfoundations havenowbeenprovidedinthetext.Enzymeswithmultipleactivecenterscanbeinteractive,asligandbindingcanalterthe enzymestructure,affectingfurtherbinding and/orreactivity,andtherefore,producing desiredregulations.Becauseofthedevelopmentsonthetreatiseontheseinteractiveenzymes, Chapter7 (whichwas Chapter8 in thefirstedition)onenzymeshasbeenrewritten;andanewchapteroninteractiveenzymesandregulations(Chapter10)has alsobeenwritten.Anotheradditiontothe secondeditionis Chapter18:Combustion, ReactiveHazard,andBioprocessSafety.Reactivehazardandprocesssafetyisbecoming arequiredcomponentinourundergraduate education.Thischapterprovidesameansto includethetopicintheundergraduate curriculum.

Ihopeyouwillenjoythissecondedition.

thesustainabilityofbiomasseconomyand atmosphericCO2. Chapter16 discussesthe stabilityofcatalystsincludingtheactivity ofachemicalcatalyst,thegeneticstability ofcellsandmixedcultures,aswellasthestabilityofreactorsystems.Sustainabilityand thestabilityofbioprocessoperationsare discussed.Astableprocessissustainable. Multiplesteadystates,theapproachtoward asteadystate,theconditionsforstableoperations,andpredator-preyinteractionsarealso discussed.Continuouscultureischallenged bystabilityofcellbiomass.Inecologicalapplications,sustainabilityofabioprocessisdesirable.Forindustrialapplications,theability ofthebioprocesssystemtoreturntothe

previousset-pointafteraminordisturbance isanexpectation.In Chapter17,theeffectof themasstransferonthereactorperformance, inparticularwithbiocatalysis,isdiscussed. Bothexternalmasstransfers,egsuspended media;andinternalmasstransfers,eg immobilizedsystems;aswellastemperature effectsarediscussed.Detailednumerical solutionscanbeavoided,orgreatlysimplified,bydirectlyfollowingtheexamples. Chapter18 discussesreactordesignand operation.Reactorselection,mixingschemes, scale-up,andsterilizationandasepticoperationsarealsodiscussed.

ShijieLiu

Acronyms,Abbreviations, andSymbols

a catalystactivity

a specificsurfaceorinterfacialarea,m2/m3

a thermodynamicactivity

a cumulativeaffinitychangefactor

ad dimensionlessdispersioncoefficient

a constant

A chemicalspecies

A adenine

A constant

A heattransferarea,m2

Ac acetyl

ADP adenosinediphosphate

AMP adenosinemonophosphate

ATP adenosinetriphosphate

B chemicalspecies

B constant

BOD biologicaloxygendemand

BOD5 biologicaloxygendemandmeasuredfor5days

BnS boundspeciesSon n-sitedenzyme

c constant

C chemicalspecies

C concentration,mol/Lorkg/m3

C constant

C cytosine

CD dimerformedbyswappingcarboxylicacidtermini

CP heatcapacity,J/(molK),orkJ/(kgK)

CoA coenzymeA

CHO ChineseHamsterOvarycell

COD chemicaloxygendemand

CSTR continuouslystirredtankreactor

d diameter,m

D diameter,m

D diffusivity,m2/s

D dilutionrate,s 1

D dimer

D- chiralityoropticalisomers:right-handruleapplies

DNA deoxyribonucleicacid

DO concentrationofdissolvedoxygen,g/L

U internalenergy

U overallheattransfercoefficient,kJ/m2

U uracil

CoQn co-enzymeubiquinone

v molarvolume,m3/kmol

V volume,m3

W rateofworkinputtothesystem

W s rateofshaftworkdonebythesystem

x variable

x axialdirection

X cellorbiomass

X cellbiomassconcentration,L 1,org/L

XSU biomassstorageformanagedforest

XSU biomassstorageforundisturbedunmanagedforest

y molefraction

y variable

Y yields

YF yieldfactor,orratioofstoichiometriccoefficients

z verticaldirection

z variable

Z collisionfrequency

Z valenceofionicspecies

GreekSymbols

α affinitychangefactorduetothebindingofaligand

α constant

α chiralityoropticalisomers:twochiralcenterswithdifferenthandgestures

α metabolitetransferorequilibriumcoefficient

β heatofreactionparameter

β constant

β chiralityoropticalisomers:twochiralcenterswiththesamehandgestures

β reactivitychangefactorduetothebindingofaligand(s)

χ fraction

γ thermodynamicactivitycoefficient

γ activationenergyparameter

γ DR degreeofreduction

δ thicknessordistance

Δ difference

ε voidratio

ϕ Thielemodulus

η effectivenessfactor

θ fractionalcoverage(onavailableactivesites)

θ bindingsaturationratioonenzyme

μ specificrateofformation,orrateofreactionnormalizedbythecatalystorcellbiomassconcentration,s 1 org/g/s

μ specificbiomassgrowthrate,s 1 org/g/s

μf dynamicviscosityoffluid,Pas

ν stoichiometriccoefficient

νf kinematicviscosityoffluidormedium,m2/s

ρ density,kg/m3

σ activesite

σ variance

τ spacetime,s

ω massfraction

ω rotationalspeed

ω weightingfactor

Subscript

ads adsorption

app apparent

A speciesA

b reversereaction

B batch

c combustion

c catalytic

c cyclic

cat catalyst

C speciesC

C coldstream

C concentrationbased

C calculationbasedonmodel

C carboxylicacidterminusorpertainingtocarboxylicacidterminus

d death

d doubling

des desorption

D diffusioncoefficientrelated

e endogenous(growthneeds)

e external(masstransfer)

e ineffluentstream

eq equilibrium

eff effective

f finaloratend

f fluidormedium

f formation

f forwardreaction

F infeedstream

G growth

H heatofreaction

H hotstream

i reactioni

i initial

i impeller in inlet

I inhibition

valuableonesthathumansneed.Assuch,bioprocessesarechemicalprocessesthatusebiologicalsubstratesand/orcatalysts.Whilenotlimitedtosuch,wetendtorefertobioprocesses as(1)biologicallyconvertinginexpensive“chemicals”ormaterialsintovaluablechemicalsor materials;and(2)manipulatingbiologicalorganismstoserveas“catalyst”forconversionor productionofproductsthathumanneed.Bioprocessengineersaretheonlypeopletechnicallytrainedtounderstand,design,andefficientlyhandlebioreactors.Bioprocessengineeringensuresthatafavorablesustainablestateorpredictableoutcomeofabioprocessis achieved.Thisisequivalenttosayingthatbioprocessengineersareengineerswith,differentiatingfromotherengineers,traininginbiologicalsciences,especiallyquantitativeandanalyticalbiologicalsciences,andgreenchemistry.

Ifonethinksofscienceasadream,engineeringismakingthedreamareality.Thematuring ofChemicalEngineeringtoamajordisciplineandasoneoftheveryfewwell-defineddisciplinesinthe1950shasledtotheeaseinthemassproductionofcommoditychemicalsand completelychangedtheeconomicsorvaluestructureofmaterialsandchemicals,thanks tothevastlyavailablewhatwerethen“waste”and“toxic”materials:fossilresources.Food andmaterialscanbemanufacturedfromthecheapfossilmaterials.Ourlivingstandardsimprovedsignificantly.Today,chemicalreactorsandchemicalprocessesarenotbuiltby trialand-error,butbydesign.Theperformanceofachemicalreactorcanbepredicted,notjust foundtohappenthatway;thedifferencesbetweenlargeandsmallreactorsarelargelysolved. Onceadreamforthevisionalpioneers,itcannowbeachievedatease.Fossilchemicaland energysourceshaveprovidedmuchofourneedsforadvancingandmaintainingtheliving standardsoftoday.Withthedwindlingoffossilresources,wearefacingyetanothervalue structurechange.Thedreamhasbeenshiftedtorealizingasocietythatisbuiltuponrenewableandsustainableresources.Fossilsourceswillnolongerbeabundantforhumanuse.Sustainabilitybecomestheprimaryconcern.Whoisgoingtomakethisdreamcometrue?

Onasomewhatdifferentscale,wecannowmanipulatelifeatitsmostbasiclevel:thegenetic.Forthousandsofyearspeoplehavepracticedgeneticengineeringatthelevelofselectionandbreeding,ordirectedevolution.Butnowitcanbedoneinapurposeful, predeterminedmannerwiththemolecular-levelmanipulationofDNA,ataquantumleap level(ascomparedwithdirectedevolution)orbydesign.Wenowhavetoolstoprobethe mysteriesoflifeinawayunimaginablepriortothe1970s.Withthisintellectualrevolution

Animals O2
H2O Plants O2
Microorganisms Fossils
FIG.1.1 Thenaturalbiologicalprocesses.

emergesnewvisionsandnewhopes:newmedicines,semisyntheticorgans,abundantand nutritiousfoods,computersbasedonbiologicalmoleculesratherthansiliconchips,organismstodegradepollutantsandcleanupdecadesofunintentionaldamagetotheenvironment,zeroharmfulchemicalleakagetotheenvironmentwhileproducingawidearrayof consumerproducts,andrevolutionizedindustrialprocesses.Ouraimofcomfortableliving standardsiseverhigher.

Withouthardwork,thesedreamswillremainmerelydreams.Engineerswillplayanessentialroleinconvertingthesevisionsintoreality.Biosystemsareverycomplexandbeautifullyconstructed,buttheymustobeytherulesofchemistryandphysicsandtheyare susceptibletoengineeringanalysis.Livingcellsarepredictable,andprocessestousethem canbemethodicallyconstructedoncommercialscales.Thereliesagreattask:analysis,design,andcontrolofbiosystemstothegreaterbenefitofasustainablehumanity.Thisisthe jobofthebioprocessengineer.

Thistextisorganizedsuchthatyoucanlearnbioprocessengineeringwithoutrequiring aprofoundbackgroundinreactionengineeringandbiotechnology.Tolimitthescope ofthetext,wehaveleftouttheproductpurificationtechnologies,whilefocusingontheproductiongeneration.Weattempttobridgemolecular-levelunderstandingstoindustrialapplications.Itisourhopethatthiswillhelpyoutostrengthenyourdesireandabilitytoparticipate intheintellectualrevolutionandtomakeanimportantcontributiontothehumansociety.

1.2GREENCHEMISTRY

Greenchemistry,alsocalledsustainablechemistry,isaphilosophyofchemicalresearch andengineeringthatencouragesthedesignofproductsandprocessesthatminimizethe useandgenerationofhazardoussubstanceswhilemaximizingtheefficiencyofthedesired productgeneration.Whereasenvironmentalchemistryisthechemistryofthenaturalenvironment,andofpollutantchemicalsinnature,greenchemistryseekstoreduceandprevent pollutionatitssource.In1990,thePollutionPreventionActwaspassedintheUnitedStates. Thisacthelpedcreatea modusoperandi fordealingwithpollutioninanoriginalandinnovativeway.Itaimstoavoidproblemsbeforetheyhappen.

Examplesofgreenchemistrystartswiththechoiceofsolventforaprocess:water,carbon dioxide,drymedia,andnonvolatile(ionic)liquids,whicharesomeoftheexcellentchoices. Thesesolventsarenotharmfultotheenvironmentaseitheremissioncaneasilybeavoidedor theyareubiquousinnature.

PaulAnastas,thenoftheUnitedStatesEnvironmentalProtectionAgency,andJohnC. Warnerdeveloped12principlesofgreenchemistry,whichhelptoexplainwhatthedefinition meansinpractice.Theprinciplescoversuchconceptsas:(a)thedesignofprocessestomaximizetheamountof(all)rawmaterialthatendsupintheproduct;(b)theuseofsafe, environment-benignsubstances,includingsolvents,wheneverpossible;(c)thedesignofenergyefficientprocesses;and(d)thebestformofwastedisposal:nottocreateitinthefirst place.The12principlesare:

(1) Itisbettertopreventwastethantotreatorcleanupwasteafteritisformed.

(2) Syntheticmethodsshouldbedesignedtomaximize“atomefficiency.”

leapinthehumancivilization.Massproductionofgoodsbymachinesdominatesourdaily life.Theindustrialrevolutionwasbroughttomaturebythedevelopmentofcombustionenginesandsubsequentdevelopmentoffossilenergyandchemicalindustry.Besidesthemore thandoublingofusefulbiomassproduction/harvest,mankindhasincreasinglytappedinto thelargefossilenergyreserves.Atfirstthefossilchemicalswereregardedaswasteandthus anyusewaswelcomed.Itsoonbecamethecheapestchemicalandenergysourcesfortheindustrialrevolution.Asaresult,ourlivingstandardshaveseenaleap.Thereisnoturningback totheprimitivewayoflifeinthepast.However,fossilenergyandchemicalsourcesaredepletingdespitethecyclicpricechangeofenergyandcommoditymaterials.Thereisacritical needtochangethecurrentindustryandhumancivilizationtoasustainablemanner,assuring thatourwayoflifetodaycontinuesonthepathofimprovementafterthedepletionoffossil sources.Ourwayoflifeexistsonlyifsustainabilityismaintainedonatimescalenolonger thanourlifespan.

Biorefinery isconceptinanalogoustoapetroleumrefinery,wherebyarawmaterialfeed(in thiscaseplantligocellulosicbiomassinsteadofpetroleum)isrefinedtoapotpourriofproducts(ondemand).Inabiorefinery,lignocellulosicbiomassisconvertedtochemicals,materials,andenergythatrunsonthehumancivilization,replacingtheneedsofpetroleum,coal, naturalgas,andothernonrenewableenergyandchemicalsources.Lignocellulosicbiomassis renewableasshownin Fig.1.1,inthatplantsynthesizeschemicalsbydrawingenergyfrom thesunand,carbondioxideandwaterfromtheenvironment,whilereleasingoxygen.Combustionofbiomassreleasesenergy,carbondioxide,andwater.Therefore,biorefineryplaysa keyroleinensuringthecycleofbiomassproductionandconsumptionincludedsatisfying humanneedsforenergyandchemicals.

Abiorefineryintegratesavarietyofconversionprocessestoproducemultipleproduct streamssuchastransportationliquidfuels,steam/heat,electricity,andchemicalsfromlignocellulosicbiomass.Biorefineryhasbeenidentifiedasthemostpromisingroutetothecreationofasustainablebiobasedeconomy.Biorefineryisacollectionoftheessential technologiestotransformbiologicalrawmaterialsintoarangeofindustriallyusefulintermediates.Byproducingmultipleproducts,abiorefinerymaximizesthevaluederivedfroma

Undisturbed state
Human interruption
FIG.1.2 Changeofsustainablestateowingtohumaninterruption.

lignocellulosicbiomassfeedstock.Abiorefinerycouldproduceoneormorelow-volume, high-valuechemicalproductstogetherwithalow-value,high-volumeliquidtransportation fuel,whilegeneratingelectricityandprocessheatforitsownuseand/orexport.

Fig.1.3 showsaschematicofvariousbiorefineryprocesses.Thereareatleastthreestepsin convertingwoodybiomass:pretreatment,crackingorrenderingbiomasstointermediate molecules,andconversion(oftheintermediatemoleculestodesiredproducts).Thereare threemajorcategoriesorapproachesinpretreatment:systematicaldisassemblingprocesses, pyrolysis,andgasificationprocesses.Insystematicaldisassemblingprocesses,thelignocellulosicbiomassiscommonlydisassembledtoindividualcomponentssystematicallyforoptimalconversionsthatfollowed.Thebasicapproachisbasedonasystematicaldisassembling andconversiontodesiredchemicals.Thispretreatmentmethodandtheroutofconversion followeddependheavilyonseparationand/orphysicalfractionationoftheintermediates aswellasthefinaldesiredproducts.PyrolysisappliesheatandsomeOxygen(ornone)to renderthebiomasstoliquid,whilegasificationrendersthebiomasstosyngas.Biologicalconversionsarepreferredoverchemicalconversionsduetotheirselectivityorgreenchemistry concepts.However,owingtothecomplexityofthelignocellulosicbiomass,amultitudeof biologicalprocessesisrequiredforoptimaloperations.Thebiologicalreactionsarealsovery slowandthusrequirelargerfacilityfootprints.Especiallyfollowingthegasification,bioconversionisinthe“primitive”stageofdevelopment.

bioploymers, solvents, liquid fuel,

FIG.1.3 Aschematicofvariousbiorefineryprocesses. (Withpermission:Liu.,S.,2015.Asynergeticpretreatmenttechnologyforwoodybiomassconversion,Appl.Energy144,114–

boundarybetweenthetwoisincreasinglyvague,particularlyintheareasofcellsurfacereceptorsandanimalcellculture.Anotherrelevanttermis biomolecularengineering,whichhas beendefinedbytheNationalInstitutesofHealthas“ researchattheinterfaceofbiologyand chemicalengineeringandisfocusedatthemolecularlevel.”Inall,astrongbackgroundin quantitativeanalysis,kinetic/dynamicbehaviors,andequilibriumbehaviorsarestronglydesirable.Increasingly,thesebiorelatedengineeringfieldshavebecomeinterrelated,although thenamesarerestricting.

Bioprocessengineering isabroaderandatthesametimeanarrowerfieldthanthecommonlyusedtermsreferredabove:biologic alengineering,biochemicalengineering, biomedicalengineering,andbiomolecularengineering.Bioprocessengineeringisaprofessionthatspansallthebiorelatedengineering fieldsasmentionedearlier.Itisaprofession thathasemergedtostandalone,ascomparedtotheinterdisciplinaryprofessiononceit was.Unlikethetermbioengineering,thetermbioprocessengineeringisspecificandwell defined. Bioprocessengineering emphasizestheengineeringandsciencesofindustrialprocessesthatarebiobased:(1)biomassfeedstockconversionforasustainablesocietyor biorefinery;(2)biocatalysisbasedprocessing;and(3)manipulationofmicroorganisms forasustainableandsociallydesirablegoal.Bioprocessengineeringneitherisproduct basednorissubstratebased.Therefore,bioprocessengineeringdealswithbiological andchemicalprocessesinvolvedinallareas,notjustforaparticularsubstrateorspecies (offeedstockorintermediate),outcomeorproduct.Thus, bioprocessengineering intercepts chemical,mechanical,electrical,environmental,medical,andindustrialengineering fields,applyingtheprinciplestodesigningandanalysisofprocessesbasedonusingliving cellsorsubcomponentsofsuchcells,aswellasn onlivingmatters.Bioprocessengineering dealswithbothmicroscale(cellular/molecula r)andlarge-scale(systemwide/industrial) designsandanalyses.Scienceandengineeringofprocessesconvertingbiomassmaterials tochemicals,materials,andenergyarethereforepartofbioprocessengineeringbyextension.Predictingandmodelingsystembehaviors,detailedequipmentandprocessdesign, sensordevelopment,controlalgorithms,andmanufacturingoroperatingstrategiesare justsomeofthechallengesfacingbioprocessengineers.Attheheartofbioprocessengineeringlaytheprocesskinetics,reactordesign,andanalysisforbiosystems,whichforms thebasisforthistext.

Wewillfocusprimarilyonthekinetics,dynamics,andreactionengineeringinvolvedinthe bioprocessengineering.Akeycomponentistheapplicationofengineeringprinciplestosystemscontainingbiologicalcatalystsand/orbiomassasfeedstock,butwithanemphasison thosesystemsmakinguseofbiotechnologyandgreenchemistry.Therapidlyincreasingabilitytodeterminethecompletesequenceofgenesinanorganismoffersnewopportunitiesfor bioprocessengineersinthedesignandmonitoringofbioprocesses.Thecell,itself,isnowa designablecomponentoftheoverallprocess.

Forpractitionersworkinginthebioprocessengineering,someofjournalsandperiodicals providethelatestdevelopmentsinthefield.Herewenameafew:

BiochemicalEngineeringJournal

JournalofBiologicalEngineering

JournalofBiomassConversionandBiorefinery

JournalofBioprocessEngineeringandBiorefinery

JournalofBioprocessandBiosystemsEngineering

JournalofBiotechnology

JournalofBiotechnologyAdvances

JournalofBiotechnologyandBioprocessEngineering

1.6MATHEMATICS,BIOLOGY,ANDENGINEERING

Mathematicalmodelingholdsthekeyforengineers.Physicsatitsfundamentallevel examinesforcesandmotion;onecanviewitasappliedmathematics.Inturn,chemistry examinesmoleculesandtheirinteractions.Sincephysicsexaminesthemotionsofatoms, nuclei,andelectrons,atthebasisofmolecules,onecanviewchemistryasappliedphysics. Thisdirectlyconnectschemistrytomathematicsatafundamentallevel.Indeed,most physicistsandchemistsrelyextensivelyonmathematicalmodeling.Whileonecanviewbiologyasappliedchemistrythroughtheconnectionofchemicalsandmolecules,thefundamentaltrainingsofbiologiststodayandengineersaredistinctlydifferent.Inthe developmentofknowledgeinthelifesciences,unlikechemistryandphysics,mathematical theoriesandquantitativemethods(exceptstatistics)haveplayedasecondaryrole.Most progresshasbeenduetoimprovementsinexperimentaltools.Resultsarequalitative anddescriptivemodelsareformulatedandtested.Consequently,biologistsoftenhaveincompletebackgroundsinmathematicsbutareverystrongwithrespecttolaboratorytools and,moreimportantly,withrespecttotheinterpretationoflaboratorydatafromcomplex systems.

Engineersusuallypossessaverygoodbackgroundinthephysicalandmathematicalsciences.Oftenatheoryleadstomathematicalformulations,andthevalidityofthetheoryis testedbycomparingpredictedresponsestothoseinexperiments.Quantitativemodels andapproaches,eventocomplexsystems,arestrengths.Biologistsareusuallybetterat theformationoftestablehypotheses,experimentaldesign,anddatainterpretationfromcomplexsystems.Atthedawnofthebiotechnologyera,engineersweretypicallyunfamiliarwith theexperimentaltechniquesandstrategiesusedbylifescientists.However,todaybioprocess engineershaveenteredevenmoresophisticatedexperimentaltechniquesandstrategiesin lifesciences(thanbiologists)duetotheunderstandingandprogressinthepredictionand modelingoflivingcells.

Thewell-groundednessinmathematicalmodelinggivesbioprocessengineersanedge andresponsibilityinenforcingsustainabilitydemands.Inpractice,thesustainable(orsteady) statecanbedifferentfromwhatweknowtodayorwhennohumaninterruptionisimposed. Thesustainablestatecouldevenbefluctuatingwithanoticeabledegree.Engineershold greatresponsibilitytoconvincingenvironmentalistsandthepublicwhattoexpectbyaccuratelypredictingthedynamicoutcomeswithoutspeculatingonthepotentialdramatic changesahead.

Theskillsoftheengineerandofthelifescientistarecomplementary.Toconvertthepromisesofmolecularbiologyintonewprocessestomakenewproductsrequirestheintegrationof theseskills.Tofunctionatthislevel,theengineerneedsasolidunderstandingofbiologyand itsexperimentaltools.Inthisbook,weprovidesufficientbiologicalbackgroundforyouto

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.