Biopharmaceutical processing: development, design, and implementation of manufacturing processes 1st

Page 1


BiopharmaceuticalProcessing:Development,Design, andImplementationofManufacturingProcesses1st EditionGunterJagschies

https://ebookmass.com/product/biopharmaceutical-processingdevelopment-design-and-implementation-of-manufacturingprocesses-1st-edition-gunter-jagschies/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Design for Advanced Manufacturing Technologies, and Processes Laroux Gillespie

https://ebookmass.com/product/design-for-advanced-manufacturingtechnologies-and-processes-laroux-gillespie/

ebookmass.com

Database Processing: Fundamentals, Design, and Implementation 16th Edition David M. Kroenke

https://ebookmass.com/product/database-processing-fundamentals-designand-implementation-16th-edition-david-m-kroenke/

ebookmass.com

Design for Advanced Manufacturing Technologies and Processes Laroux K. Gillespie

https://ebookmass.com/product/design-for-advanced-manufacturingtechnologies-and-processes-laroux-k-gillespie/

ebookmass.com

https://ebookmass.com/product/kaiju-preservationsociety-9780765389138-scalzi/

ebookmass.com

Biopharmaceutical Processing

10.2.3 General Reviews on Classic and Alternative Separation Methods 212

10.3 General Comparison of Alternative Separation Methods 213

10.3.1 Preliminary Comparison of Alternative Separation Methods 213

10.4 Alternative Separation Operations 215

10.4.1 Separation Factors and Partition K Values 215

10.4.2 Process and Cost-of-Goods Modeling of Standard and AS Methods 215

10.4.3 Comparisons Related to mAb Processing 216

10.5 Acknowledgements, Notices, and Disclaimers

11. Alternative Separation Methods: Flocculation and Precipitation

James M. Van Alstine, Günter Jagschies, Karol M. Łącki

11.1 Introduction 221

11.2 Clarification and Primary Recovery Challenges 221

11.2.1 Self-Associating and Nonassociating Flocculation/ Precipitation Agents 225

11.3 Cell Debris Reduction and Clarification 226

11.3.1 PEI, Chitosan, or CaCl2 Plus K2PO4-Based Cell Flocculation 226

11.3.2 Cell Flocculation Using Poly (Diallyldimethylammonium Chloride) (pDADMAC) 226

11.3.3 Cell Flocculation Using Benzylated Poly(Allylamine) Phosphate Responsive Polymer 227

11.3.4 Cell Flocculation Using EOPO Temperature-Responsive Polymer 227

11.4 Precipitation and Flocculation of Target 229

11.4.1 Ammonium Sulfate Precipitation of Clarified NS0 Cell mAb Feed 229

11.4.2 Protein A Chromatography Versus Polyacid Target Precipitation in an mAb Process 229

11.4.3 Selective Precipitation of Polyclonal Ig by Polyacrylic Acid and Kosmotropic Salts 230

11.4.4 Sequential Precipitation of Protein Mixture Components With NaPAA 231

11.5 Examples of Contaminant Precipitation 233

11.5.1 Contaminant Precipitation With Polyelectrolytes 233

11.5.2 Impurity Precipitation With Caprylic Acid 233

11.6 Sequential and Continuous Precipitation 234

11.6.1 Sequential Precipitation 234

11.6.2 Batch Versus Continuous Precipitation 234

11.7 Process Economics Notes 235

11.7.1 Introduction 235

11.7.2 Simple Cost of Goods Comparison of Caprylic Acid and Protein A 235

11.7.3 Precipitation Versus Protein A—Hammerschmidt, Jungbauer 235 11.8 Conclusions

Acknowledgments, Notices, and Disclaimers

12. Alternative Separation Methods: Crystallization and Aqueous Polymer Two-Phase Extraction

James M. Van Alstine, Günter Jagschies, Karol M. Łącki

12.1 Introduction 241

12.1.1 Two Classic Separation Methods Based on Phase Transfer 241

12.1.2 Related Notes From Previous Chapters in This Book 241

12.2 Crystallization 242

12.2.1 Introduction 242

12.2.2 Preparative Small Protein Crystallization 246

12.2.3 Monoclonal Antibody Fragment and Antibody Crystallization 246

12.2.4 Monoclonal Antibody Crystallization Phase Diagrams 246

12.2.5 Crystallization From Mixtures of Proteins 248

12.2.6 Crystallization of mAb From Clarified Feed 249

12.2.7 Scale-Up of Protein Crystallization 249

12.2.8 Discussion and Conclusions 249

12.3 Aqueous Polymer Two-Phase Extraction 249

12.3.1 Introduction 250

12.3.2 Phase Systems, Phase Diagrams and Partition Coefficients 251

12.3.3 Recent Trends in ATPE 256

12.3.4 Key References on the Partitioning of Monoclonal Antibodies 256

20.3

20.4

20.2.2 Process Development for Capture of Recombinant ProInsulin From E. coli

20.2.3 Purification of Influenza A/H1N1 Using Capto Core 700

20.5 CIP/SIP

20.6

20.7

20.8

20.9

21. Size Exclusion Chromatography (SEC)

Martin

21.1

21.2

21.3

21.5

21.6

21.7

21.8

21.9

21.4.1

21.4.2 Group Separation—Large Proteins

21.4.3 Group Separation—Virus

21.4.4 Fractionation—Monoclonal

23. Filtration Methods for Use in Purification Processes (Concentration and Buffer Exchange)

Jakob Liderfelt, Jonathan Royce 23.1

23.4.3

Section V

Bioprocessing Equipment

24. Upstream Processing Equipment

Kenneth P. Clapp, Andreas Castan, Eva K. Lindskog

24.1 Introduction

24.2 Common Design Aspects in Bioprocessing Equipment

24.2.1 Process-Contacting Components

24.2.2 Nonprocess Contacting

22. Reversed Phase Chromatography

Kjell O. Eriksson

22.1

24.3.1 General Design Principles

24.3.2 Gas and Liquid Management

24.3.3 Mechanical Design

24.4.1 Stainless-Steel Bioreactors 468

24.4.2 Autoclavable Glass Bioreactors 468

24.4.3 Single-Use Stirred Tank Reactors 469

24.4.4 Rocking Bioreactors 470

24.5 Vessels for Adherent Processes 471

24.5.1

24.5.2 Packed-Bed Reactors

24.5.3 Bioreactors for Microcarrier Culture 473

24.6 High-Throughput Process Development Bioreactors 474

24.7 Modeling and Simulation 475 References 476

25. Downstream Processing Equipment

Mikael I. Johansson, Martin Östling, Günter Jagschies

25.1 Introduction 477

25.2 Critical Aspects of the User Requirement Specification 478

25.2.1 Chemical Compatibility and Hygienic Aspects 478

25.2.2 Hygienic Design and Cleaning 480

25.3 Common Components in Equipment for Bioprocessing 481

25.3.1 Monitors, Meters, and Sensors 481

25.3.2 UV Monitoring 481

25.3.3 Conductivity Monitoring 481

25.3.4 pH Monitoring 482

25.3.5 Temperature 482

25.3.6 Flow Meters 482

25.3.7 Air Sensors and Air Traps 482

25.3.8 Pressure Sensor 483

25.4 System Flow Path 483

25.4.1 General Design Criteria for Flow Paths 484

25.4.2 Sloped Pipes 484

25.5 Pumps 484

25.5.1 Pulsations 485

25.5.2 Suction Lines to the Pump 485

25.5.3 Cavitation 485

25.5.4 Pump Types 486

25.6 Valves 487

25.6.1 Valve Characteristics 488

25.6.2 Valve Details 488

25.7 In-Line Filtration (Sterile Filtration and Particle Filtration) 489

25.8 Engineering Documents 490

25.8.1 Process Flow Diagrams and P&I Diagrams 490 References 492

26. Chromatography Columns

26.1 Introduction 493

26.1.1 Application Requirements 493

26.2 Column Design 493

26.2.1 Column Types 493

26.2.2 Mechanical Design 496

26.2.3 Design for Chromatographic Performance 497

26.3 Column Packing 502

26.3.1 General Considerations for Column Packing 503

26.3.2 Packing Methods 505

26.3.3 Preparation of Column and System for Packing 507

26.4 Assessing Column Performance: Efficiency Testing 508

26.4.1 Pulse Method 509

26.4.2 Step Method 510

26.5 Conclusions and Outlook 510 References 511

27. Simplification of Buffer Formulation and Improvement of Buffer Control with In-Line Conditioning (IC)

Enrique N. Carredano, Roger Nordberg, Susanne Westin, Karolina Busson, Tomas M. Karlsson, Torbjörn S. Blank, Henrik Sandegren, Günter Jagschies

27.1 Introduction 513

27.2 Buffers for Downstream Processing 513

27.2.1 Basic Buffer Specifications 514

27.2.2 Buffer Calculations 514

27.3 In-Line Dilution (ILD)—Addressing the Footprint Issue 517

27.4 In-Line Conditioning—Controlled Production of Any Buffer 518

27.4.1 IC System Layout 519

27.4.2 IC Control Modes 519

27.5 Testing and Verifying the IC Buffer Preparation Capabilities 520

27.5.1 Variable Input and Reproducibility 520

27.5.2 Gradient Delivery 521

27.5.3 Model Albumin Process 522

27.5.4 Model Monoclonal Antibody Process 523

27.6 Straight-Through Processing (STP), an Extension of IC Use 524 Acknowledgments 525 References 525 Further Reading 525

28. Continuous Capture of mAbs— Points to Consider and Case Studies

Günter Jagschies

28.1 Introduction 527

28.2 The Rationale for Continuous Processing in Biopharma 528

28.2.1 Upstream Process 528

28.2.2 Purification Process 529

28.3 Technical Options for Continuous Purification 530

28.3.1 Utilization of Resin Capacity 530

28.3.2 Parallel Execution of Load and Turnaround Cycles 532

28.4 Systems for Continuous Purification 534

28.4.1 Overview of the Commercial Offering for SMB/PCC Systems in Biopharma 534

28.4.2 Aspects of Column Selection for PCC or SMB Systems 536

28.4.3 PAT Approach to Process Control in Periodic CounterCurrent Chromatography 537

28.5 Process Development Guidance 540

28.5.1 Manufacturing Scenario and Objective 540

28.5.2 Key Information to be Developed for PCC 540

28.6 Case Studies—Capture and Polishing 544

28.6.1 Capture—PCC to Increase Chromatography Media Capacity Utilization 544

28.6.2 Polishing Steps Using StraightThrough Processing 546

28.7 Selected Economic Considerations 548

28.7.1 Management Review 548

28.7.2 Points to Consider in Financial Comparisons 549

28.7.3 Example Calculations 550

28.7.4 Summary—Putting Things in Perspective 553

28.8 Acknowledgments 554 References 555

29. Single Use Technology and Equipment

29.1 Introduction 557

29.1.1 History of Bioprocessing— 1970–80s 557

29.1.2 Industry Drivers and Developing Trends—1990–2010 557

29.1.3 Perfect Storm: Industry Pressures, Changing Markets, and New Technologies 558

29.1.4 Cost, Quality, Speed, Flexibility—Agile and Flexible Single-Use Manufacturing 558

29.1.5 Single Use Technologies Evolving From Support Systems to Production Systems 559

29.1.6 Increasing Need for Flexibility, Agility and Economy— Increased Drug Diversity and Emerging Markets 559

29.1.7 Maturation From Development to GMP Clinical and Commercial Manufacturing 560

29.2 Overview of Single Use Technologies 561

29.2.1 Long History of Use of Plastics in the Medical Field and Stainless Steel Biomanufacturing Facilities 561

29.2.2 Potential Toxicity and Effects of Leachables From Polymeric Materials on Cells and Product 561

29.2.3 Best Practices for Qualification and Use of Single-Use Technologies 562

29.2.4 Regulatory Agency Guidelines for Validation of Extractables and Leachables From SingleUse Technologies 562

29.2.5 Leachables in Manufacturing—Risk Assessment of Potential Product Exposure 563

29.2.6 Leachables in the Upstream Process—Risk Assessment and Mitigation 563

29.2.7 Leachables in the Downstream Process—Risk Assessment and Mitigation 563

29.2.8 Mitigation of Overall Risk—Produce the Toxicological Batches in Small Scale Single Use Systems 564

29.2.9 Commercial Licensure Viability of Single Use Technologies 564

29.2.10 Broad Impact on Operations, Flexibility, Agility, Process Economics, Product Quality and the Environment 565

29.3 Single Use Material of Construction, Componentry, Assembly, Sterilization, Integrity and Use 566

29.3.1 Materials of Construction and Assembly 566

29.3.2 Sterilization of Single-use Films and Components 566

29.3.3 Assurance of Single-Use Bag and Assembly Integrity 566

35.2.2 Economic Cost Analysis of Single-Use Technology 722

35.3 Designing and Implementing a SingleUse Technology Process 725

35.3.1 Creating a Single-Use Technology Based Process 725

35.3.2 Basis of Process Design and Equipment Selection 726

35.3.3 Regulatory Requirements for SUT Implementation 726

35.3.4 Process Architecture and the Control Strategy for Maintaining Product Quality 726

35.3.5 End User Expectations of SUT Suppliers 728

35.3.6 Extractable & Leachables of SUT 729

35.3.7 Particulate Matter With SUT 730

35.3.8 Standards for Single-Use Technology 730

35.3.9 Securing the Single-Use Technology Supply Chain and Change Control 731

35.3.10 Single-Use Technology Reliability and Improvement 731

35.3.11 Biosafety Applications 733

35.4 Case Studies of Next Generation Processes Enabled by SUT 733

35.4.1 Vaccine Manufacturing 733

35.4.2 Monoclonal Antibody Production 736

35.5 Future State Summary 738 Acknowledgments 738 References 738

36. Points to Consider for Design and Control of Continuous Bioprocessing

36.1 Introduction 741

36.2 Development and Implementation 742

36.3 Design of Unit Operations 743

36.3.1 Production Cell Culture 743

36.3.2 Continuous Cycling Capture Chromatography 744

36.3.3 Virus Inactivation 746

36.3.4 Continuous Polishing Chromatography 747

36.3.5 Virus Filtration 747

36.3.6 Continuous Concentration and Formulation 748

36.4 Integration of Unit Operations 749

36.4.1 Bioburden Control 749

36.4.2 Equipment and Plant Utilization 749

36.4.3 Fault Recovery 750

36.4.4 Disposable Equipment and Devices 751

36.4.5 Right-Sizing Batch Size and Lot Size 751

36.5 Summary 752 References 752

37. Perfusion N-1 Culture— Opportunities for Process Intensification

John M. Woodgate

37.1 Introduction 755

37.2 N-1 Perfusion Seed Culture 756

37.3 Available Technology 757

37.4 Bioreactor Types 757

37.4.1 Rocking Bioreactors 757

37.4.2 Stirred Bioreactors 758

37.5 Perfusion Filtration Systems 759

37.5.1 Floating Filter 759

37.5.2 Alternating Flow Filtration (ATF) 759

37.5.3 Tangential Flow Filtration (TFF) 761

37.5.4 Equipment Conclusions 761

37.6 Process

37.6.1

37.6.2

37.7

37.8

38. Process Development and Intensification for a Recombinant Protein Expressed in E.coli

Shuang Chen, William B. Wellborn, John T. Cundy, Ratish Mangalath-Illam, Scott A. Cook, Matthew J. Stork, Joseph P. Martin, Maire H. Caparon, Stephen E. Sobacke, Sriram Srinivasan, Joost P. Quaadgras

38.1 Introduction

38.2 Microbial (E. coli) Expression System and Culture Process Overview

38.3 Cell Line Development

38.4 Culture Process Development and Optimization

38.5 Microbial (E. coli) Downstream Process Overview

38.6 The Baseline Downstream Process and Process Intensification Goals

38.7 Downstream Process Intensification and Improvement 776

38.7.1 IB Wash and Recovery 776

38.7.2 High Concentration High Efficiency Refolding 777

38.7.3 Clarification by Acid Precipitation 780

38.7.4 Chromatography Development: Increasing Throughput, Yield, and Improving HCP Removal 781

38.8 Summary 785

38.9 Materials and Methods 786

38.9.1 Materials 786

38.9.2 Methods 786 Acknowledgments 790 References 790

39. Next-Generation Process Design for Monoclonal Antibody Purification

39.1 Introduction 793

39.2 Current Practices and Emerging Process Alternatives for Downstream Unit Operations 794

39.2.1 Harvest Recovery 795

39.2.2 Capture Step 799

39.2.3 Viral Inactivation and Depth Filtration 801

39.2.4 Polishing Step 802

39.3 Enabling Technologies for NextGeneration Manufacturing Facilities 805

39.3.1 Single-Use Technology 805

39.3.2 Continuous Processing 805

39.3.3 Process Analytical Technology (PAT) 806

39.4 Concluding Remarks 807 Acknowledgments 808 References 808

40. Process Development and Manufacturing of Antibody-Drug Conjugates

Matt H. Hutchinson, Rachel S. Hendricks, Xin Xin Lin, Dana A. Olsson

40.1 Introduction 813

40.1.1 Design of an ADC 814

40.2 Process Development and Manufacturing Considerations 816

40.2.1 ADC Quality Attributes 816

40.2.2 ADC Process Overview 816

40.2.3 ADC Conjugation Process 819

40.3 ADC Conjugation Equipment 832

40.3.1 Conjugation Scale-Down Model 832

40.3.2 GMP Manufacturing 834 40.4 Conclusions 834 References 834

41. Process Design for Bispecific Antibodies

Ambrose J. Williams, Glen S. Giese, Andreas Schaubmar, Thomas von Hirschheydt

41.1 Introduction 837

41.1.1 Evolution of Next-Generation Formats 837

41.1.2 Clinical Applications for Bispecifics 837

41.1.3 Bispecific Formats 838

41.1.4 Knob-Hole Assembly Approach 839

41.1.5 CrossMab Bispecific Approach 840

41.2 Process Designs for Bispecific Antibodies 841

41.2.1 In Vitro Assembly of Individually Expressed Knob and Hole Half-Antibodies 841

41.2.2 Process Development for Knob and Hole Bispecifics 846

41.2.3 Process Development for CrossMabs 848

41.3 Conclusion 854 References 854

42. Current Manufacturing of Human Plasma Immunoglobulin G

Andrea Buchacher, John M. Curling

42.1 Introduction 857

42.2 Plasma Fractionation Technologies 858

42.2.1 Ethanol Fractionation 858

42.2.2 Caprylate Fractionation 862

42.2.3 Polyethylene Glycol Fractionation 862

42.2.4 Chromatographic Fractionation 862

42.2.5 Current Hybrid Methods of Plasma Fractionation 863

42.3 Processing Technologies to Assure Viral Safety 864

42.3.1 Solvent/Detergent Treatment 864

42.3.2 Caprylate Treatment 864

42.3.3 Pasteurization 864

42.3.4 Nanofiltration (Viral Filtration) 864

42.3.5 Chromatography 865

47.5 Analytical Support of Process Development 1034

47.5.1 Introduction 1034

47.5.2 Improving Developability During Sequence Selection 1034

47.5.3 Analytical Support of Cell Line Development 1035

47.5.4 Analytical Support of Upstream Processing 1039

47.5.5 Analytical Support of Downstream Processing 1041

47.5.6 Feasibility of In-Line/At-Line Monitoring and Real Time Control 1042

47.6 Cost of Operating a Modern, HighThroughput Analytical Laboratory 1043

47.6.1 Typical Cost of Automated/ High Resolution Analytical Instrumentation 1043

47.6.2 Typical Cost of Analytical Full Time Employees (FTE) 1045

47.6.3 Estimated Cost of Performing Analytics for Drug Substance/ Drug Product Manufacturing Support 1045 References 1047

48. Implementation of QbD for Manufacturing of Biologics—Has It Met the Expectations?

Anurag S. Rathore, Sumit K. Singh, Jashwant Kumar, Gautam Kapoor

48.1 Introduction 1052

48.2 What is QbD? 1052

48.3 Framework for Assessing the Benefits of QbD Application in Manufacturing of Biologics 1053

48.4 Impact of QbD on Biopharmaceutical Life Cycle 1054

48.4.1 Molecule Selection 1054

48.4.2 Process Development and Characterization 1056

48.4.3 Evaluation of Safety and Efficacy of a Biologic 1062

48.4.4 Technology Transfer 1066

48.4.5 Marketing Application and Commercial Production 1067

48.4.6 Role of Knowledge Management in QbD Implementation 1067

48.5 Summary 1068 Acknowledgments 1069 References 1069 Further Reading 1073

49. Pathogen Safety

Albrecht Gröner

49.1 Introduction 1075

49.2 Raw Material 1077

49.2.1 Selection and Testing of Raw Material 1078

49.3 Starting Material 1078

49.3.1 Testing and Release of Starting Material 1078

49.3.2 Human Derived Starting Material 1079

49.3.3 Cell Culture 1080

49.3.4 Animal Derived Material 1084

49.4 Capacity of the Manufacturing Process to Inactivate and Remove Pathogens 1084

49.4.1 Principle of Virus Validation 1085

49.4.2 Product Specific Requirements Regarding Virus Validation 1088

49.4.3 Advanced Therapy Medicinal Products 1092

49.5 Transmissible Spongiform Encephalopathy 1093

49.5.1 TSE and Starting/Raw Materials 1093

49.5.2 Removal and Inactivation of TSE Agent by the Manufacturing Process of Biologicals 1094

49.6 Cleaning and Sanitization of Equipment and Material 1094

49.7 Assessment of Risk of Virus Transmission 1095

49.8 Conclusion 1097 Glossary 1100 References 1101

50. Chemistry, Manufacture and Control

Kim R. Hejnaes, Tom C. Ransohoff

50.1 Introduction 1105

50.2 Part A: Planning 1106

50.2.1 Introduction 1106

50.2.2 Target Product Profile 1107

50.2.3 Drug Product Profile 1107

50.2.4 Drug Substance Profile 1107

50.2.5 Target Protein Profile 1107

50.2.6 Expression Systems 1108

50.2.7 Process Design 1110

50.2.8 Quality 1111

50.2.9 Safety 1115

50.2.10 Freedom to Operate 1115

50.2.11 Timelines 1115

50.2.12 Project Plan 1116

50.2.13 Master Validation Plan 1116

50.2.14 Cost of Goods Sold 1116

50.3 Part B: Tech Transfer 1116

50.3.1 Description 1116

50.3.2 GAP Analysis 1117

50.3.3 Risk Profile for Project Execution 1117

50.4 Part C: Execution 1118

50.4.1 Introduction 1118

50.4.2 Specifications 1119

50.4.3 Analytical Support and Validation 1120

50.4.4 Reference Standards 1120

50.4.5 Cell Line Development 1122

50.4.6 Cell Banks 1122

50.4.7 Process Development 1123

50.4.8 Formulation Development 1124

50.4.9 Scale-Up 1125

50.4.10 GMP Manufacture 1127

50.4.11 Quality Control 1128

50.4.12 Stability Studies 1129

50.4.13 Virus Reduction 1129

50.4.14 Validation 1130

50.4.15 Documentation 1131

50.5 Part D: Common Technical Document 1133 Glossary 1134 References 1135

51. Post-Licensure Purification Process Improvements for Therapeutic Antibodies: Current and Future States

Brian D. Kelley, Annika Kleinjans, Philip Lester

51.1 Introduction 1137

51.2 History and Current Status of Therapeutic mAb Production and Purification 1137

51.2.1 Cohn Fractionation for IgIV 1137

51.2.2 First Generation Processes for mAbs 1138

51.2.3 Platform Processing Evolution and Current Status 1138

51.3 Strategies of Post-Licensure Changes 1138

51.3.1 Examples of Drivers for PostLicensure Changes 1138

51.3.2 Regulatory Considerations 1139

51.3.3 Platform Evolution 1140

51.3.4 Virus Removal and Inactivation 1140

51.3.5 Costs 1141

51.4 Case Studies 1142

51.4.1 Genentech mAbs (Licensed Before 2005): Rituxan, Herceptin, Xolair, Raptiva, Avastin 1142

51.4.2 Remicade 1144

51.4.3 Enbrel 1144

51.4.4 Humira 1144

51.4.5 Gazyva 1145

51.5 Future Embodiments and Options 1145

51.5.1 New Platforms: Evolution or Revolution? 1145

51.5.2 Detergent Inactivation 1146

51.5.3 Dual-Sourced Resins & Membranes 1146

51.5.4 Unrealized Potential: Precipitation, Crystallization, Membrane Adsorbers 1146

51.5.5 Factories of the Future 1147

51.5.6 Continuous Processing 1147

51.6 Conclusions 1148 Acknowledgments 1148 References 1148

52. Navigating the Regulatory Maze Upon Process Changes

E. Morrey Atkinson, Michael A. Rubacha

52.1 Introduction: What is Fragmentation? 1151

52.2 Why Changes Happen: The Business Case for Changes to Approved Processes 1151

52.3 Lack of Common Practice: Impact of Divergent Regulations 1153

52.4 A Call to Action: Against Future Fragmentation 1155 References 1156 Further Reading 1157

53. Security of Bioprocess Consumables Supply

Jeffrey R. Carter, Daniel Nelson, David G. Westman

53.1 Introduction 1159

53.2 Material and Product Selection 1160

53.3 Supplier Selection 1160

53.4 Risk Management 1163

53.4.1 Supplier Auditing 1163

53.4.2 Multi-Sourcing 1163

53.4.3 Manufacturing Facility Risk 1165

53.4.4 Supplier Agreements 1167

53.5 Communication 1167

53.6 Conclusion 1168 References 1168

Section IX

Financial Management and Process Economics

54. Basics of Financial Management

Brian Montgomery

54.1 Finance Management Principles & Terminology 1171

54.2 Financial Goals and Objectives of Business Enterprises 1171

Rolf A. Hjorth  (269,675), CERVUS Biotech Consulting, Uppsala, Sweden; rolf@cervusbiotech.se

Geoff Hodge  (987), Unum Therapeutics, Cambridge, MA, United States; geoff.hodge@unumrx.com

Matt H. Hutchinson  (813), Genentech Inc., South San Francisco, CA, United States; hutchinson.matthew@ gene.com

Günter Jagschies (3,33,59,73,207,221,241,477,513,527,1191, 1227,1233,1237), GE Healthcare Life Sciences, Freiburg im Breisgau, Germany; jagschies@gmail.com

Michael J. Jenkins  (899), University College London, London, United Kingdom; michael.jenkins@ucl.ac.uk

Mikael I. Johansson  (477), GE Healthcare Life Sciences, Uppsala, Sweden; mikael.i.johansson@ge.com

John Joseph  (637,933), GE Healthcare Lifesciences, Amersham; GE Healthcare, Little Chalfond, United Kingdom; johnjoseph@ge.com

Oliver Kaltenbrunner (741), Amgen, Thousand Oaks, CA, United States; oliverk@amgen.com

Gautam Kapoor  (1051), Indian Institute of Technology, New Delhi, India

Tomas M. Karlsson  (513), GE Healthcare Life Sciences, Uppsala, Sweden; tomas.m.karlsson@ge.com

Brian D. Kelley  (1137), Genentech, South San Francisco, CA, United States; bkelley@vir.bio

Annika Kleinjans  (1137), Roche, Penzberg, Germany; annika.kleinjans@roche.com

Jashwant Kumar  (1051), Indian Institute of Technology, New Delhi, India

Karol M. Łącki (73,207,221,241,319,637), VP Technology Development, Avitide, Inc., United States (formerly at Karol Lacki Consulting AB, Höllviken, Sweden); k.lacki@icloud.com

Philip Lester (1137), Genentech, South San Francisco, CA, United States; lester.phillip@gene.com

Jakob Liderfelt  (279,295,441), GE Healthcare Life Sciences, Uppsala, Sweden; jakob.liderfelt@ge.com

Xin Xin Lin  (813), Genentech Inc., South San Francisco, CA, United States; lin.xin-xin@gene.com

Eva K. Lindskog  (97,111,457,625), Lonza Pharma & Biotech, Basel, Switzerland; eva.lindskog@lonza.com

Mats Lundgren  (147,877), GE Healthcare, Life Sciences, Uppsala, Sweden; MatsLundgren@ge.com

Ratish Mangalath-Illam  (769), Pfizer Inc., Chesterfield, MO, United States; ratish.krishnan@pfizer.com

Trevor J. Marshall  (579), Zenith Technologies, Dublin, Ireland; Trevor.Marshall@zenithtechnologies.com

Joseph P. Martin  (769), Pfizer Inc., Chesterfield, MO, United States; joseph.p.martin@pfizer.com

Krunal K. Mehta  (793), Bioprocess Sciences and Technology, Amgen, Cambridge, MA, United States; kmehta@amgen.com

Brian Montgomery  (1171), GE Healthcare, Chicago, IL, United States; brian.c.montgomery@ge.com

Daniel Nelson  (1159), GE Healthcare Life Sciences, Marlborough, MA, United States; daniel.nelson@ge.com

Roger Nordberg  (513), GE Healthcare Life Sciences, Uppsala, Sweden; roger.nordberg@ge.com

Dana A. Olsson (813), Genentech Inc., South San Francisco, CA, United States; olson.dana@gene.com

Martin Östling (477), Martin Östling Konsult AB, Uppsala, Sweden; jagschies@gmail.com

John P. Pieracci  (165), Biogen Inc., Cambridge; Visterra Inc., Cambridge, MA, United States; john.pierracci@ biogen.com

David J. Pollard (721), Merck & Co., Inc., Kenilworth, NJ, United States; david_pollard@merck.com

Alain Pralong (721), Pharma-Consulting ENABLE GmbH, Solothurn, Switzerland; alain.pralong@yahoo.com

Hari Pujar (877), Moderna Therapeutics, Cambridge, MA, United States; hari.pujar@modernatx.com

Joost P. Quaadgras  (769), Pfizer Inc., Chesterfield, MO, United States; joost.p.quaadgras@pfizer.com

Tom C. Ransohoff  (1105), BioProcess Technology Consultants, Inc., Woburn, MA, United States; transohoff@bptc.com

Anurag S. Rathore (1051), Indian Institute of Technology, New Delhi, India; asrathore@biotechcmz.com

Craig Robinson  (295), GE Healthcare Life Sciences, Westborough MA, United States; jagschies@gmail.com

Jonathan Royce  (279,295,441), GE Healthcare Life Sciences, Uppsala, Sweden; jonathan.royce@ge.com

Michael A. Rubacha  (1151), Bristol-Myers Squibb, East Syracuse, NY, United States; michael.rubacha@bms.com

Henrik Sandegren  (513), GE Healthcare Life Sciences, Uppsala, Sweden; henrik.sandegren@ge.com

Andreas Schaubmar  (837), Large Molecule Research, Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany; andreas.schaubmar@roche.com

Patrick Schulz  (111,131), Boehringer Ingelheim, Biberach, Germany; patrick_1.schulz@boehringeringelheim.com

Sumit K. Singh  (1051), Indian Institute of Technology, New Delhi, India

Stephen E. Sobacke  (769), Pfizer Inc., Chesterfield, MO, United States; stephen.e.sobacke@pfizer.com

Sriram Srinivasan  (769), Pfizer Inc., Chesterfield, MO, United States; sriram.srinivasan@pfizer.com

Matthew J. Stork  (769), Pfizer Inc., Chesterfield, MO, United States; Matthew.Stork@pfizer.com

Bruce S. Tangarone (1001), Shire, Lexington, MA, United States; btangarone@shire.com

Jorg Thommes  (165), Biogen Inc., Cambridge; Visterra Inc., Cambridge, MA, United States; jthommes@ VISTERRAINC.COM

Matthew J. Traylor  (1001), Shire, Lexington, MA, United States; mtraylor@shire.com

Johan Tschöp  (493), GE Healthcare Life Sciences, Uppsala, Sweden; johan.tschop@ge.com

James M. Van Alstine  (207,221,241), JMVA Biotech AB; Royal Institute of Technology, Stockholm, Sweden; jim. vanalstine@telia.com

Johnson Varghese (1001), Shire, Lexington, MA; Celgene, Summit, NJ, United States; jsvarg@gmail.com

Ganesh Vedantham  (793), Drug Substance Process Development, Amgen Manufacturing Ltd., Juncos, Puerto Rico; vedanthg@amgen.com

Thomas von Hirschheydt (837), Large Molecule Research, Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany

William B. Wellborn  (769), Pfizer Inc., Chesterfield, MO, United States; william.wellborn@pfizer.com

Till Wenger  (111,131), Boehringer Ingelheim, Biberach, Germany; till.wenger@boehringer-ingelheim.com

Susanne Westin  (513), GE Healthcare Life Sciences, Uppsala, Sweden; susanne.westin@ge.com

David G. Westman  (1159), GE Healthcare Life Sciences, Uppsala, Sweden; David.Westman@ge.com

Matthew Westoby  (165), Biogen Inc., Cambridge; Visterra Inc., Cambridge, MA, United States; matthew. westoby@biogen.com

William G. Whitford  (147), GE Healthcare, Bioprocess, Logan, UT, United States; Bill.Whitford@ge.com

Ambrose J. Williams  (837), Purification Development, Pharma Technical Development, Genentech (Roche), South San Francisco, CA, United States; williams. ambrose@gene.com

John M. Woodgate  (755), GE Healthcare Life Sciences, Marlborough, MA, USA; john.woodgate@ge.com

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Biopharmaceutical processing: development, design, and implementation of manufacturing processes 1st by Education Libraries - Issuu