https://ebookmass.com/product/biomimetic-nanoengineeredmaterials-for-advanced-drug-delivery-afeesh-rajan-unnithan/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Nanoengineered Biomaterials for Advanced Drug Delivery (Woodhead Publishing Series in Biomaterials) 1st Edition
Masoud Mozafari (Editor)
https://ebookmass.com/product/nanoengineered-biomaterials-foradvanced-drug-delivery-woodhead-publishing-series-in-biomaterials-1stedition-masoud-mozafari-editor/ ebookmass.com
Emerging nanotechnologies for diagnostics, drug delivery and medical devices Cholkar
https://ebookmass.com/product/emerging-nanotechnologies-fordiagnostics-drug-delivery-and-medical-devices-cholkar/
ebookmass.com
Drug Delivery Aspects: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 4: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)
https://ebookmass.com/product/drug-delivery-aspects-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-4-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar/ ebookmass.com
Russia's Invasion of Ukraine: Economic Challenges, Embargo Issues and a New Global Economic Order Paul J. J. Welfens
https://ebookmass.com/product/russias-invasion-of-ukraine-economicchallenges-embargo-issues-and-a-new-global-economic-order-paul-j-jwelfens/
ebookmass.com
Statistics for The Behavioral Sciences 10th Edition, (Ebook PDF)
https://ebookmass.com/product/statistics-for-the-behavioralsciences-10th-edition-ebook-pdf/
ebookmass.com
Let the Rubble Fall: A Coming of Age Romance (Road Trip Snapshot Series Book 2) Mandi Lynn
https://ebookmass.com/product/let-the-rubble-fall-a-coming-of-ageromance-road-trip-snapshot-series-book-2-mandi-lynn/
ebookmass.com
Ben Ali's Tunisia: Power and Contention in an Authoritarian Regime Anne Wolf
https://ebookmass.com/product/ben-alis-tunisia-power-and-contentionin-an-authoritarian-regime-anne-wolf/
ebookmass.com
Indian Business Case Studies Volume III Lalit Kanore
https://ebookmass.com/product/indian-business-case-studies-volume-iiilalit-kanore/
ebookmass.com
Inclusive Banking In India: Re-imagining The Bank Business Model 1st ed. 2021 Edition Lalitagauri Kulkarni
https://ebookmass.com/product/inclusive-banking-in-india-re-imaginingthe-bank-business-model-1st-ed-2021-edition-lalitagauri-kulkarni/
ebookmass.com
https://ebookmass.com/product/the-narrative-shape-of-emotion-in-thepreaching-of-john-chrysostom-blake-leyerle/
ebookmass.com
BIOMIMETIC NANOENGINEERED MATERIALSFOR DELIVERY BIOMIMETIC NANOENGINEERED MATERIALSFOR Editedby:
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates ©2019ElsevierInc.Allrightsreserved
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-814944-7
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionEditor: SabrinaWebber
EditorialProjectManager: AliAfzal-Khan
ProductionProjectManager: SojanP.Pazhayattil
CoverDesigner: MarkRogers
TypesetbySPiGlobal,India
Abouttheeditorsxi
1.Introductiontosmartdrugdeliverysystems1 PramodDarvin,AneeshChandrasekharan,T.R.SanthoshKumar
1.1 Overview1
1.2 Stimuli-responsiveSDDS2
1.3 Conclusion8 References8
2.Nanofiber-basedanticancerdrugdeliveryplatform11
ArathyramRamachandraKurupSasikala,AfeeshRajanUnnithan, ChanHeePark,CheolSangKim
2.1 Introduction11
2.2 State-of-the-artnanofiberfabrication13
2.3 Implantableelectrospunnanofibersaslocaltherapysystems forcancertherapy15
2.4 Conclusionandchallenges28 References30
3.Transdermaldrugdeliveryviamicroneedlepatches37
AminGhavamiNejad,BrianLu,XiaoYuWu
3.1 Introduction37
3.2 DrugdeliveryviaMNpatchesfordiabetestreatment38
3.3 DrugdeliveryviaMNpatchesforcancertreatment44
3.4 Conclusion49 Acknowledgments49 References49
4.Nanohybridscaffoldstructuresforsmartdrugdelivery applications53
S.Sowmya
4.1 Introduction53
4.2 Drugdeliveryunderelectricalstimulation54
4.3 Drugdeliveryundermagneticstimulation55
4.4 pH-sensitivescaffoldsfordrugdelivery57 References58
5.3Dbioprintingforactivedrugdelivery61
JoshuaLee,AfeeshRajanUnnithan,ChanHeePark,CheolSangKim
5.1 Theadventofthree-dimensionalbioprinting61
5.2 Currentbioprintingresearch63
5.3 3Dbioprintingforactivedrugdelivery66 References70 Furtherreading72
6.Nanotechnologyinimprovingmedicaldevicesforsmart drugdelivery73
LudwigErikAguilar
6.1 Introduction73
6.2 Stents75
6.3 Boneimplants79
6.4 Nanomodificationtechniquesusedfordrugdeliveryinmedicaldevices80
6.5 Stimuli-responsivepolymersforbiomedicaldevicedrugdelivery84
6.6 Conclusion86 References88
7.Radiofrequency-sensitivenanocarriersforcancer drugdelivery91
N.SanojRejinold,YeuChunKim
7.1 Introduction91
7.2 RF-sensitivetherapeuticnanocarriersforcancernanotherapy92
7.3 Gold-basedRF-sensitivenanocarriers93
7.4 MNPsasRF-sensitivenanocarriers94
7.5 QD-basedRF-sensitivenanocarriers97
7.6 Carbon-basedRF-sensitivenanocarriers98
7.7 Cobalt-basedNPsforRFcancertherapy98
7.8 Tin-basedNPsasRF-sensitivenanocarriers99
7.9 Liposomes99
7.10 Summaryandfutureoutlooks101 Acknowledgment101 References101
8.Targetingpeptide-modifiedpolymericnanoparticlesfor cardiac-specificdrugdeliveryapplications107
MuthunarayananMuthiah,JasonMcCarthy
8.1 Introduction107
8.2 Cardiovasculardisease108
8.3 CTPpeptide-mediatedtargetingtocardiomyocytes108
8.4 IdentificationandapplicationofPCMpeptideforcardiactargeting110
8.5 AT1peptide-mediatedtargetingofthecardiovascularsystem111
8.6 Vascularsmoothmuscle-targetingligands111
8.7 Targetedmacrophageablationininflammatoryatherosclerosis112
8.8 Conclusion113
References114
9.Nanogel-basedactivedrugdelivery115
JohnsonV.John
9.1 Introduction115
9.2 SynthesisofNGs116
9.3 AdvantagesofNGsasadrugcarrier116
9.4 MechanismofactivedrugdeliveryfromNGs117
9.5 Conclusionandfutureperspective123
References123
10.Stimuli-responsivenanodrugdeliverysystemsforanticancer therapy125
RejuGeorgeThomas,YongYeonJeong
10.1 Introduction125
10.2 Internalstimuli-responsivesystem127
10.3 Externalstimuli-responsivesystem135
10.4 Summaryandfuturedirection142 Acknowledgment144 References144 Furtherreading148
11.Graphene-baseddrugdeliverysystems149
RenuGeethaBai,GhalebA.Husseini
11.1 Introduction149
11.2 Grapheneandderivatives characteristics,properties,andapplications150
11.3 Graphenenanomaterialsinnanomedicine152
11.4 Nanodrugdeliveryconcept153
11.5 Graphenematerialsindrugdelivery154
11.6 Challenges164
11.7 Conclusionandfutureperspectives164 References164
12.Targetednanoparticlesfortreatinginfectiousdiseases169
ViswanathanA.Aparna,RajaBiswas,R.Jayakumar 12.1 Introduction169
12.2 Infectiousdiseases170
12.3 Effectiveantimicrobialactivityofnanomaterials172
12.4 Targetednanoparticlesforinfectiousdiseases174
12.5 Liposomesasdrugcarriers174
12.6 Polymericnanoparticlesasdrugcarriers175
12.7 Currentscenario176
12.8 Outlook180
12.9 Conclusions180 References180
Index 187
Contributors
LudwigErikAguilar
BionanosystemEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea
ViswanathanA.Aparna
AmritaCentreforNanosciencesandMolecularMedicine,AmritaInstituteofMedical SciencesandResearchCentre,AmritaVishwaVidyapeetham,Kochi,India
RenuGeethaBai
DepartmentofChemicalEngineering,AmericanUniversityofSharjah,Sharjah,United ArabEmirates
RajaBiswas
AmritaCentreforNanosciencesandMolecularMedicine,AmritaInstituteofMedical SciencesandResearchCentre,AmritaVishwaVidyapeetham,Kochi,India
AneeshChandrasekharan
CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram, India
PramodDarvin
CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram, India
AminGhavamiNejad
AdvancedPharmaceuticsandDrugDeliveryLaboratory,LeslieL.DanFacultyofPharmacy, UniversityofToronto,Toronto,ON,Canada
GhalebA.Husseini
DepartmentofChemicalEngineering,AmericanUniversityofSharjah,Sharjah,United ArabEmirates
R.Jayakumar
AmritaCentreforNanosciencesandMolecularMedicine,AmritaInstituteofMedical SciencesandResearchCentre,AmritaVishwaVidyapeetham,Kochi,India
YongYeonJeong
DepartmentofRadiology,ChonnamNationalUniversityHwasunHospital,Hwasun,South Korea
JohnsonV.John
DepartmentofChemicalandMaterialsEngineering,UniversityofAlberta,Edmonton, AB,Canada
CheolSangKim
DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea
YeuChunKim
DepartmentofChemicalandBiomolecularEngineering,KoreaAdvancedInstituteof ScienceandTechnology(KAIST),Daejeon,RepublicofKorea
JoshuaLee
DepartmentofBionanosystemEngineering,GraduateSchool,ChonbukNational University,Jeonju,RepublicofKorea
BrianLu
AdvancedPharmaceuticsandDrugDeliveryLaboratory,LeslieL.DanFacultyofPharmacy, UniversityofToronto,Toronto,ON,Canada
JasonMcCarthy
MasonicMedicalResearchLaboratory,Utica,NY,UnitedStates
MuthunarayananMuthiah
MasonicMedicalResearchLaboratory,Utica,NY,UnitedStates
ChanHeePark
DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea
N.SanojRejinold
DepartmentofChemicalandBiomolecularEngineering,KoreaAdvancedInstituteof ScienceandTechnology(KAIST),Daejeon,RepublicofKorea
T.R.SanthoshKumar
CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram, India
ArathyramRamachandraKurupSasikala
DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea;Collegeof MedicalandDentalSciences,UniversityofBirmingham,Birmingham,UnitedKingdom
S.Sowmya
ResearchScientist,AmritaSchoolofDentistry,AmritaVishwaVidyapeetham,Kochi,India
RejuGeorgeThomas
DepartmentofRadiology,ChonnamNationalUniversityHwasunHospital,Hwasun, SouthKorea
AfeeshRajanUnnithan
DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea;Instituteof TranslationalMedicine,ChemicalEngineeringDepartment,UniversityofBirmingham, Birmingham,UnitedKingdom
XiaoYuWu
AdvancedPharmaceuticsandDrugDeliveryLaboratory,LeslieL.DanFacultyofPharmacy, UniversityofToronto,Toronto,ON,Canada
Abouttheeditors Dr.AfeeshRajanUnnithan iscurrentlyworkingasaresearchfellowin ProfessorAliciaElHajgroupatUniversityofBirmingham,UK.Priortothis hewasworkingasKRF(KoreanResearchFellow)atChonbukNational University,SouthKorea.Dr.AfeeshalsoworkedasanassistantresearchprofessoratChonbukNationalUniversityfrom2013to2016.Hecompleted hisPhDinbionanosystemengineeringfromChonbukNationalUniversity in2013.Dr.AfeeshearnedhisMTechinnanomedicinefromAmritaCenter forNanosciencesandMolecularMedicineandBTechinbiotechnology fromAnnaUniversity,India.Dr.Afeesh’sprincipalresearchinterestsare intheareasrelatedtothepreparationofnanobiomaterials,smartdrug deliverysystems,hyperthermicchemotherapy,bioactivenanostructured scaffolds,electrospinning,3Dbioprinting,etc.Hehaspublishedaround 49peer-reviewedresearcharticlesinhighimpactfactorjournalswith 1523citations.
Dr.ArathyramRamachandraKurupSasikala iscurrentlyworkingasa researchfellowinDr.HaneneAli-BoucettagroupatUniversityofBirmingham,UK.BeforecomingtoUK,shewasworkingasanassistantresearch professoratChonbukNationalUniversity,SouthKorea.Sheearnedher PhDinbionanosystemengineeringfromChonbukNationalUniversity inAugust2016.Dr.ArathycompletedherMScandBScinphysicsfrom UniversityofKerala,India.Dr.ArathyalsoworkedasajuniorresearchfellowinNationalRemoteSensingCentre,ISRO(IndianSpaceResearch Organization),India.Herprincipalresearchinterestliesinthedevelopment ofmultifunctionaltherapeuticnanosystemsincorporatingbothmagnetic nanomaterialsanddrugsforthesynergisticcancertheranosticsbycombining hyperthermia,chemotherapy,andMRI(magneticresonanceimaging). Dr.Arathypublishedherresearchworksinhighimpactjournalssuchas AdvancedFunctionalMaterials,Nanoscale,ActaBiomaterialia,Scientific Reports,JournalofMaterialsChemistryB,ACSappliedmaterialsand interfaces,ChemicalEngineeringJournal,etc.Shehaspublishedaround 15peer-reviewedresearcharticlesinhighimpactfactorjournalswith443 citations.
ChanHeePark iscurrentlyworkingasanassociateprofessorintheDepartmentofBionanosystemEngineeringatChonbukNationalUniversity,
SouthKorea.HeearnedhisPhDinbionanosystemengineeringfromChonbukNationalUniversityin2012.HeworkedforNationalInstruments (USA)from2002to2009.Followingthatheworkedastheteamleader seniorresearcheratR&DDivision,ChonbukNationalUniversityAutomobileParts&moldTechnologyInnovationCenter,Jeonju.Professor Park’sresearchinterestsarerelatedtoelectrospunnanocompositematerials fordrugdelivery,microfluidics/electroanalyticalbiosensors,biodegradable metals,regenerativemedicine,nanomedicine,etc.Hepublishedhisresearch achievementsinvariouspeer-reviewedjournalswith2124citations.
Cheol-SangKim receivedhisBSandMSdegreesinmechanicalengineeringfromChonbukNationalUniversityinKoreain1980and1982,respectively.HethenearnedhisPhDinmaterialsciencefromUniversitedeLouis PasteurinStrasbourg,Francein1988.Dr.Kimiscurrentlyaprofessoratthe DivisionofMechanicalEngineeringandDeanofCollegeofEngineeringat ChonbukNationalUniversityinKorea.PriortojoiningChonbukNational University,hehasspent2yearsattheDepartmentofBioengineeringat UniversityofPennsylvania(USA)asapostdoctoralfellow.Heworked for5yearsfrom1997asaHeadofInstituteofBiomedicalEngineering, SolcoSurgicalInstrumentsCo.,Ltd.andInstituteofInterventional Medicine,M.I.TechCo.,Ltd.,Korea.Dr.Kim’sresearchinterestsarein theareaofbiomaterialsforhardtissuereplacements,drugdelivery,design andanalysisofimplantsandartificialorgans,andanti-biofoulingtechnology. Dr.Kimownsnumerouspublicationsinhighimpactfactorjournalswith 2426citations.
CHAPTER1 Introductiontosmartdrug deliverysystems PramodDarvin,AneeshChandrasekharan,T.R.SanthoshKumar CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram,India
Contents
1.1Overview Theuseofnanotechnologyandtheirapplicationshaverevolutionizedinthis century.Thedemandsrangefromtheneedsofdailylifetotheunmet demandformanagingchronicdiseasesinmedicalfield.Inthemedicalfield, tremendousapplicationsarebeingutilizedindifferentaspectsofclinical management.Theuseofnanotechnologyinpharmacologyanddrugdeliverysystemenabledthereductionofnonspecificbiodistributionanduncontrolleddrugrelease.Focustoaddressthisissueandachievedrugreleaseata preciselocationwithmorecontrolresultedinthedevelopmentofsmart drugdeliverysystems(SDDSs).TheseSMARTsystemscanreachthe precisedsitewherethedrugisintendedtorelease,andcanalsorelease thedruginresponsetospecificstimulations.Thisabilitymakesthemintelligentsystems,capableofself-regulation,integratedsensing,monitoring, andactivationbytheenvironmentaswellasstimuli.
1.2Stimuli-responsiveSDDS SDDSweredesignedtoreleasethepayloadstothespecificsiteinamore controlledmannersoastoincreasethetherapeuticefficiencyandreduce theadverseeffects.Stimuli-responsivesystemsrespondtobothexternal andinternalstimuli.Theexternalstimuliincludethemagnetic,electric, thermal,andultrasonicformofenergy.Theinternalstimuliaretheredox status,pH,andtemperatureofthesystem,biochemicalfactorslikespecific enzymes,urea,glucose,morphineresponsivesystem,andspecificbodyconditionssuchascancerandinflammationresponsivesystem.
1.2.1Temperature-responsiveSDDS Thermosensitivepolymersaredesignedtoretaintheirpayloadsaroundthe physiologicaltemperature(37oC)andthedrugswillbereleasedrapidly whenthetemperaturerisesmorethan40–45oC.Thesesystemsaresuitable forthecontrolleddeliveryofdrugsandgenes.Thermosensitivepolymers undergosol-geltransitionsinresponsetotemperatureandminutechanges inphysiologicaltemperaturereflectthesolubilitychanges.Intheclinical conditionslikeinflammationandmalignancies,thetemperatureofpathologictissuesrisescomparedtothenormaltissues.Thetemperature-responsive SDDScanrecognizethischangeintemperatureandareactivated.The advantageofusingtemperature-responsiveSDDSisthatthestimulican beappliedeitherasinternalstimuliorasexternalstimuli.Inducedtemperaturegenerationatthemalignantsitehelpsalsotoreleasethedrugintothe tumormicroenvironment.Forexample,thepoly(N-isopropylacrylamide) (PNIPAAm)isathermosensitivepolymerwithalowercriticalsolution temperatureof32oCwhichisadjustedtophysiologicaltemperatureusing additivesorsurfactants.Whenthetemperaturerisesabove27oC,thesolutionbecomescloudyandformsagel.Multiplethermo-responsivenanocarrierstructureslikehydrogels,microbeads,polymericnanotubes,micelles, core-shellthermo-responsivenanoparticles,andlayer-by-layerassembled nanocapsulehavebeendevelopedusingthermosensitivepolymersand arebeingusedasSDDS.Thermosensitivepolymerscommonlyinuse arePNIPAAm,poly(N,N-diethylacrylamide),poly(N-vinylalkylamide), poly(N-vinylcaprolactam),tetronics,pluronics,phosphazenederivative, polysaccharidederivatives,etc. [1–3].
Hydrogelsduetotheirhigh-watercontentundergoavarietyofchanges uponexternalstimulation.Theycanundergoswelling,shrinking,andsol-gel phasetransition.Cellulosederivatives,PNIPAAm,poly(lactic-co-glycolic
acid)(PLGA),polycaprolactone,andpolyurethaneamidearesomeofthe widelyusedhydrogels.PNIPAAmisoneofthehighlystudiedhydrogels fordrugdeliverypurposes.Theyhavehighthermalreversibilityandgood swellingratio.CopolymerizationandgraftingofPNIPAAmwithpolyethyleneglycol(PEG)andpolyethyleneoxide(PEO)haveestablishedarouteto obtainnewhydrogels.PNIPAAm-derivedhydrogelsfacepotentialdrawbackslikeincreasedcytotoxicityandlowbiodegradability.Becauseofthe applicabilityofthehydrogels,themodificationismadetothebackboneof PNIPAAmcopolymerstoincreasethebiodegradability.Theincorporation ofbiodegradablesegmentsusingcleavablebondshasimprovedbiodegradationandbiocompatibility.
Hydrogelshavingtransitiontemperaturenearphysiologicaltemperature areusedasnonsurgicaldrugdepotsandforsustaineddeliveryofdrugsand proteinstosusceptiblelivingcells.Transitiontemperaturecanbereadily tunedbycopolymerizationconditionsandbyvaryingthecontentofrepeatingunitsinthecopolymer,forexample,copolymerizationofacrylicacid (AAc)andNIPAAm.
Burstdrug-releasekineticsmaybesometimesobservedinthecaseof hydrogelsandporouscapsuleswithlowstrengththatiseasilyeroded.Additionally,hydrogelscansufferfrompoorencapsulationofhydrophobicdrugs duetothehydrophilicnatureofthehydrogel.Poloxamer-basedhydrogels andPLGA-PED-PLGAhydrogelsareexamplesofencapsulatedhydrogels withthesustaineddrug-releaseprofile.
Polymericmicelleswithspecificcore/shellarchitectureentraphydrophobicdrugsintheinnercoresurroundedbyanoutershellofhydrophilic polymers.Micelle-baseddrugdeliverysystemisusedforanticancerdrug deliveryduetoitseaseofadministration,reducedsystemtoxicity,highpayload,andtherapeuticefficiency.Thermostabilitydependsonthecloud pointofthethermosensitiveblockofthecopolymerformingthemicelle. Thereversiblephasetransitionisamechanismgenerallyemployedbythe thermosensitivemicelles.
Basedontheapplication,thetemperature-responsivedeliverysystems aredesigned.Multifunctionalanddualstimuli-responsivesystemshavebeen developedtoreleasethecargoinresponsetomorethanonestimulus.For example,temperature-pH-sensitivesystems,temperature-pHreductionsensitivepolymericmicelle,andmacromolecule-sensitivenanogelslike glucose-pH-thermo-responsivenanogelshavebeendeveloped.Thermoresponsivenanostructureshaveadvantageslikelowtoxicityandtarget specificity.
1.2.2Redox-responsivedrugdeliverysystem Redox-sensitivedrugdeliverysystemhasreceivedgreatattentionforits closeconnectionwithmanydiseasesandisextensivelystudied.Moreover, theredox-sensitivedeliverysystemhastheadvantageofintracellulardrug release.Thevariationintheredoxstatusoftissuesisexploitedinthedesigningofthissystem.Intracellularglutathione-dependentsystemsarethemajor redox-responsiveSDDS.TheconcentrationofGSH(glutathione)varies betweennormalandmalignantcells.Itrangesfrom2to20 μMinblood andnormalextracellularmatricesandfrom2to10 μMincancercells [4]. Otherdiseaseconditionslikeinflammation,theROS(reactiveoxygenspecies)levelincreases10-to100-foldcomparedwithnormalcounterparts.
Drugdeliverysystemswithdisulfidelinkageanddiselenidelinkagearethe twomajorreduction-basednano-drugdeliverysystems [4,5].Thedisulfide linkagescanbebrokenwithhighconcentrationsofGSH,resultinginaquick releaseofthecargoes.Thesedisulfidebondsaremainlyusedaslinkersand cross-linkingagents [4,6].Asalinker,thedisulfidelinkageconnects thepolymerbackbonewithdrugsorothercargoes.Inthebackbone, thedisulfidelinkagebreaksrapidlywithhighconcentrationsofGSHinthe surroundingenvironment.Thismakesthepolymerunstableundercertain situations.Inthebackbone,cystamine [7],cystine [8], N-succinimidyl-3(2-pyridyldithiol)propionate(SPDP) [9],disulfide-baseddimethacrylate (DSDMA) [10],etc.,areusedasdisulfide-containingfragments.Thedisulfide linkagespresentinthesidechainsareintendedtosupportthebackbone.The polymerswithdisulfidelinkagesinthesidechainsareeasytomodifyandcan havehighcargo-carryingcapacityandwouldbemorestablethanthedrug deliverysystemswithdisulfidelinkagesinthebackbone.Thislinkerdisulfide bondscanenrichthenanocarrierbyattachingmultiplegenes,drugs,and targetingmoleculestotheirsurface.Thesebondscanlinktwodifferent moietieswithdifferentfunctionsandcanactascross-linkingagents.
Redox-sensitivedeliverysystemcontainingdiselenidebondsarealso sensitivetothereductionandshowsimilarpropertieslikedisulfidelinkages. Theselenidebondshowsbondenergy(diselenidebond,172kJmol 1 and carbon-seleniumbond,244kJmol 1)lowerthandisulfidebonds,making themsuitablefordevelopingmoresensitivedeliverysystems.Themajor challengeusingdiselenidebondcontainingpolymeristhedifficultyin theincorporationofselenidebond.
Oxidation-responsivedrugdeliverysystemsisanothermajorgroupof drugdeliverysystemsinredox-sensitivesystemsandmainlyrelyonthe
ROS,mainlyH2O2 and –OHradicals.ROSareomnipresentintissuesand areassociatedwithpathologicalconditionslikearteriosclerosis,heartand nerveinjuriesandinflammations.Thesegroupsofdrugdeliverysystems includethesulfide-containingsystemssuchaspoly(propylenesulfide), selenium-containingsystems,ferrocene-containingsystems,boronicester groups,etc. [11–14].
1.2.3pH-responsivesystems Inmostoftheapplicationsrelatedtodiseases,thedrugsneedtobedelivered tospecificsitesinordertodeciphermaximumefficacywithminimumtoxicity.pH-responsivesystemsareabetterchoiceforthisandarecommonly usedSDDSduetothechangeinpHamongtheorgans,organelles,andtissues.Thissystemalsoconfersprecisedeliveryoptionsandpredetermined releaserates.AllpH-responsivepolymersusedcontainapendantacidic (carbonicandsulfonicacids)orbasic(ammoniumsalt)groupsasaproton acceptorordonor.ThesecarrierscantracedelicatechangesinthepHof inflammatoryorothermalignantsites.Generally,thetumormicroenvironmenthaslesspH(7.0)comparedtotheirnormalcounterparts(pH7.4).The changeinenvironmentalpHcausestheionizationofpendantacidicorbasic groupsresultinginthecross-linkingandchangesintheswellingproperties ofthepolymer.TheprecisionandaccuracyofpH-responsivesystemsare increasedbycombiningthemwithotherstimulisuchastemperatureor redoxstimuliasmultifactor-responsivedrug-releasesystem [2].
ThenatureofthedrugreleaseisdesignedbythepHofthesolutionto whichthepolymerisexposed.ThealterationinpHcausesthepolymerto shrinkorswell.Forexample,polyacidicpolymerswillshrinkatlowpHand swellathighpHbecauseoftheprotonationofacidicgroups.Inthecaseof polybasicpolymers,ionizationofbasicgroupsincreaseswithincreaseinpH.
AAcandcellulosederivativesarethemostwidelyusedpH-sensitivepolymers.Morethantwophasescanoccurincopolymerswithrandomlydistributedpositiveandnegativechargedgroups.Inthesecopolymers,the interactionofsegmentswitheachotheroccursthroughelectrostaticinteractionsandhydrogenbonding.Theexistenceoftheseinteractionshelpsthe polymertoshrinkandswellaccordingtothechangesintheenvironmental conditionsandadoptastableconformation.
Polyacrylicacid(PAAc)andpolymethacrylicacid(PMAAc)aretheexamplesofthepolyacidicpH-responsivesystem.PMAAcgraftedwithPEGshow uniquepHsensitivity.HydrogelsmadefromPAAcorPMAAccanbe
employedfortargetedreleaseofdrugsatneutralpH.Forcolon-specificdrug delivery,polyanionscross-linkedwithazoaromaticcross-linkerswereused. SulfonamidecontainspolyacidpolymerswithpKa intherange3–11andthe hydrogenatomoftheamidenitrogenisreadilyionizedtoformpolyacids. TheaminogroupisprotonatedathighpHandpositivelyneutralizedand ionizedatlowpHcontrollingtheswellingandshrinkingnatureofhydrogels. Polybaseswiththeaminogrouparethemostrepresentativepolybasicgroup.
Poly(N,N-dimethylaminoethylmethacrylate)(PDEAEMA)hasbeenthemost frequentlyusedpH-responsivepolymericbase.Polycationichydrogelsshow minimumswellingintheneutralpH,minimizingthereleaseofdrugcargo. Thispropertyofpolycationichydrogelshasbeenusedtodevelopcarriers forfoul-tastingdrugs,topreventthemfromreleasingintotheneutralpHenvironmentofthemouth.
ThepHresponsivenessofpolyelectrolytehydrogelscanbemodulatedby usingneutralcomonomers.VariouscomonomersshowdifferenthydrophobicityandhencedifferentpHresponsiveness.2-Hydroxyethylmethacrylate, methylmethacrylatemaleicanhydride,etc.,aretheexamplesofcomonomersusedinpolyelectrolytehydrogels.
pH-sensitivebioerodiblepolymersuseenzyme-substratereaction.An enzyme-substratereactionproducesachangeinpHandthischangein pHisutilizedfortheerosionofapH-sensitivepolymercontainingadrug cargo.Inadditiontothebioerodiblepolymers,rDNAmethodsandprotein engineeringwereemployedtodevelopsyntheticproteinsthatcanundergo reversiblegelationinresponsetopHchanges.pH-sensitivenanoparticles enhancedrugavailabilitythroughefficientabsorptionmechanisms.Polymerssuchashydroxypropylmethylcellulosephthalateandcelluloseacetate phthalatewereusedtoencapsulatethedrugload.Ionicgelation,solvent evaporation,solventdiffusion,supercriticalfluidtechnology,saltingout, polymerization,etc.,canbeemployedtoproducepH-sensitivepolymeric nanoparticles.
1.2.4Enzyme-responsivedrugdeliverysystems Enzymeactivateddrugdeliverysystemisanewclassofdeliverysystem wherethedrugreleaseiscontrolledbyenzymereactions.Severalnanomaterialsandpolymersarebeingusedforthedevelopmentofenzymeresponsivedrugdeliverysystems.Thissystemhastheadvantageofahigh degreeofspecificity.Mostofthephysiologicalandmetabolicprocesses arerelatedwithenzymessuchasglycosidase,lipase,phospholipase,and
protease.Theseenzymesareexploitedtoachieveenzyme-mediateddrug cargoreleasethroughbiocatalyticactionatinflammatoryormalignantsites. Thenanocarrierscarryingpayloadattachedwiththemthroughencapsulationorcovalentbondingwillreleasethedrugsatthetargetsitesthrough site-specificenzymaticcleavage.Multipleenzymesareusedtotriggerthe drug-releasesystem [15].Differentclassesofproteaseareinvolvedinvarious physiologicalandpathophysiologicalconditionslikewoundhealing,tumor invasion,andtissueremodeling.ProteinkinaseC-alpha,uPA(urokinasetypeplasminogenactivator),andMMPs(matrixmetalloproteinases)are thecommonlyusedproteaseenzymesinthecontrolleddrugrelease [16–18].Themajorchallengeinenzyme-responsivedrugdeliverysystem istopreciselycontroltheinitialresponsetimeofthesystem.Phospholipases areanotherimportantgroupofenzymesinvolvedininfections,neurodegenerations,malignancies,andinflammations.PhospholipaseA2(PLA2) enzymeisutilizedtoreleasedrugsorexposetargetligandsfromliposome orsmallunilamellarvesicle(SUV)-mediateddrugdeliverysystems [19,20].Glucoseoxidaseofoxidoreductasefamily,involvedinglucose metabolism,hasitsapplicationinthediagnosisanddrugdeliveryinresponse toglucoselevels [21].
1.2.5Magnetic-responsivedrugdeliverysystems Magnetic-responsivedrugdeliverysystemsprovideanoninvasiveapproach tospatiotemporalcontrolofthecarrierstothetargets.Thishelpsthesystem toreleasethepayloadsunderprogrammableexposureofexternalmagnetic fields.Themostcommonlyusedcore/shellmagneticnanoparticleexhibitsa varietyofuniquemagneticproperties.Thecomplexconsistsofthedrugand pharmaceuticallystableferromagneticcarrier.Basedonthefabrication methodthesurface-to-volumeratioofMNPs(magneticnanoparticles) canbeadjusted.Increasedsurface-to-volumeratioprovidesnumerous activesitesfortheconjugationofbiomolecules.Thisallowsprecisionin designandengineeringtoachievetheirsmartfunctionslikeelevatedblood half-life,releasesitespecificity,andincreaseddeliverybyapplyingalocalized externalmagneticfield [22]
Furthermore,whenthesenano-scaledMNPswereencapsulatedincolloidalcarriers,suchasmicelles,liposomes(Magnetoliposomes),andsolid nanoparticles,theybecomemoresensitivetoanexternalmagneticfield. Thesemagneticnanoparticlesalsoenabletheengineeringofmultistimuli-responsivedrugdeliverysystemswhichcanactonpH,redox,
andenzymes [23,24].Forexample,cystamine-modifiedgelatinencapsulatednanocarriercontainingdoxorubicinasthepayloadshowedincreased drugtargetspecificity,EPR,andgoodbiocompatibility [25].
1.3Conclusion Thedevelopmentofsmartdrugdeliverysystemoffersgreatpotentialto engineerpathologyspecificdrugdesignanddeliveryapproachessuiting totheclinicalrequirement.However,thefieldfurtherrequiresincreased attentiontoaddressthechallengesofclinicalacceptabilityandclinicaltranslations.Thedevelopmentofmorenano-drugcarriersisunderwaytoeven increasethesmallerphysicochemicalchangesinpathologicandnormaltissues.Morecombinationsandmultifactorialreleasesystemsareattractive becauseoftheiradvanceinselectivityandspecificitytherebyincreasing theoverallefficacyofthedrugs.
References [1] H.PriyaJames,etal.,Smartpolymersforthecontrolleddeliveryofdrugs—aconcise overview,ActaPharm.Sin.B4(2)(2014)120–127.
[2] Y.Qiu,K.Park,Environment-sensitivehydrogelsfordrugdelivery,Adv.DrugDeliv. Rev.53(3)(2001)321–339.
[3] S.Choi,M.Baudys,S.W.Kim,ControlofbloodglucosebynovelGLP-1delivery usingbiodegradabletriblockcopolymerofPLGA-PEG-PLGAintype2diabeticrats, Pharm.Res.21(5)(2004)827–831.
[4] M.Huo,etal.,Redox-responsivepolymersfordrugdelivery:frommoleculardesignto applications,Polym.Chem.5(5)(2014)1519–1528.
[5] T.Thambi,etal.,Bioreduciblepolymersomesforintracellulardual-drugdelivery, J.Mater.Chem.22(41)(2012)22028–22036.
[6] X.Guo,etal.,Advancesinredox-responsivedrugdeliverysystemsoftumormicroenvironment,J.Nanobiotechnol.16(1)(2018)74.
[7] Y.Li,etal.,Synthesisofreversibleshellcross-linkedmicellesforcontrolledreleaseof bioactiveagents,Macromolecules39(8)(2006)2726–2728.
[8] J.Wu,etal.,Hydrophobiccysteinepoly(disulfide)-basedredox-hypersensitivenanoparticleplatformforcancertheranostics,Angew.Chem.Int.Ed.Eng.54(32) (2015)9218–9223.
[9] Y.Vachutinsky,etal.,Antiangiogenicgenetherapyofexperimentalpancreatictumor bysFlt-1plasmidDNAcarriedbyRGD-modifiedcrosslinkedpolyplexmicelles, J.Control.Release149(1)(2011)51–57.
[10] L.Zhang,etal.,Degradabledisulfidecore-cross-linkedmicellesasadrugdeliverysystempreparedfromvinylfunctionalizednucleosidesviatheRAFTprocess, Biomacromolecules9(11)(2008)3321–3331.
[11] A.Napoli,etal.,Oxidation-responsivepolymericvesicles,Nat.Mater.3(2004)183.
[12] N.Ma,etal.,Selenium-containingblockcopolymersandtheiroxidation-responsive aggregates,Polym.Chem.1(10)(2010)1609–1614.
[13] X.Sui,etal.,Redoxactivegels:synthesis,structuresandapplications,J.Mater.Chem. B1(12)(2013)1658–1672.
[14] C.-C.Song,etal.,Oxidation-acceleratedhydrolysisoftheorthoester-containingacidlabilepolymers,ACSMacroLett.2(3)(2013)273–277.
[15] Q.Hu,P.S.Katti,Z.Gu,Enzyme-responsivenanomaterialsforcontrolleddrugdelivery,Nanoscale6(21)(2014)12273–12286.
[16] B.Law,R.Weissleder,C.-H.Tung,Peptide-basedbiomaterialsforprotease-enhanced drugdelivery,Biomacromolecules7(4)(2006)1261–1265.
[17] T.Jiang,etal.,Tumorimagingbymeansofproteolyticactivationofcell-penetrating peptides,Proc.Natl.Acad.Sci.U.S.A.101(51)(2004)17867.
[18] E.S.Olson,etal.,Activatablecellpenetratingpeptideslinkedtonanoparticlesasdual probesforinvivofluorescenceandMRimagingofproteases,Proc.Natl.Acad.Sci. 107(9)(2010)4311.
[19] L.Linderoth,etal.,Drugdeliverybyanenzyme-mediatedcyclizationofalipidprodrug withuniquebilayer-formationproperties,Angew.Chem.Int.Ed.48(10)(2009) 1823–1826.
[20] T.L.Andresen,etal.,EnzymaticreleaseofantitumoretherlipidsbyspecificphospholipaseA2activationofliposome-formingprodrugs,J.Med.Chem.47(7)(2004) 1694–1703.
[21] Z.Gu,etal.,Glucose-responsivemicrogelsintegratedwithenzymenanocapsulesfor closed-loopinsulindelivery,ACSNano7(8)(2013)6758–6766.
[22] S.Nappini,etal.,Magneticfieldresponsivedrugreleasefrommagnetoliposomesinbiologicalfluids,J.Mater.Chem.B4(4)(2016)716–725.
[23] Z.Qi,etal.,Amulti-controlleddrugdeliverysystembasedonmagneticmesoporous Fe3O4nanopaticlesandaphasechangematerialforcancerthermo-chemotherapy, Nanotechnology28(40)(2017)405101.
[24] B.Mu,etal.,Magnetic-targetedpH-responsivedrugdeliverysystemvialayer-by-layer self-assemblyofpolyelectrolytesontodrug-containingemulsiondropletsanditscontrolledrelease,J.Polym.Sci.APolym.Chem.49(9)(2011)1969–1976.
[25] A.Qi,etal.,Gelatin-encapsulatedmagneticnanoparticlesforpH,redox,andenzyme multiplestimuli-responsivedrugdeliveryandmagneticresonanceimaging,J.Biomed. Nanotechnol.13(11)(2017)1386–1397.
Nanofiber-basedanticancer drugdeliveryplatform ArathyramRamachandraKurupSasikalaa,b,c,AfeeshRajan Unnithana,b,d,ChanHeeParka,b,CheolSangKima,b
aDepartmentofBionanosystemEngineering,GraduateSchool,ChonbukNationalUniversity,Jeonju, RepublicofKorea
bDivisionofMechanicalDesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea cCollegeofMedicalandDentalSciences,UniversityofBirmingham,Birmingham,UnitedKingdom dInstituteofTranslationalMedicine,ChemicalEngineeringDepartment,UniversityofBirmingham, Birmingham,UnitedKingdom
2.1
Canceristhesecondforemostcausesofdeathongloballyjustbehindthe cardiovasculardiseasedemandingvitalattentiontosignificantlyreduce theglobalcancerburden. [1] Cancerisahighlyheterogeneousandmultifaceteddisease.Incancer,thecellsundergomutationintheirgeneticmaterialandresultinuncontrolledgrowth.Thereforethesystemicdeliveryof antineoplasticagentssuchaschemotherapyorantiangiogenicdrugs,radiotherapy,andsurgeryhavebeenthetraditionalmethodsoftreatingcancerfor alongtime.Thoughitissuccessfulforsometypesofcancer,themainproblemassociatedwithsuchtreatmentisthepoortargetabilityandhighlyinvasivenature [2].Henceanextensiveresearchisgoingoninsearchofan improvedornoveltreatmenttocombatthisdeadlydiseasebydeveloping newdrugdeliveryplatformsthathaveextremetumortargetabilityandminimaltoxicitytowardnormalcells.
Withthedevelopmentofnanotechnology,cancernanomedicine,the applicationofnanomedicineforthetreatmentofcancer,hasseenenormous progressinrecentyears [3,4].Todateseveraltypesoforganicandinorganic nanomaterialsintheformofnanoparticles,microparticles,liposomes,dendrimers,nanotubes,etc.,wereengineeredtofunctionaseffectivecancer theranosticagents [5–9].Themainadvantagesofthenanoengineeredmaterialsincludethecapabilitytoincreasethesolubilityofwater-insolubledrugs, long-termbloodcirculation,andtheeaseoffunctionalization [10–12] However,evenwiththesetechnologies,therestillremainmanyshortcomingsassociatedwiththesenanocarriers.Thenanocarrierscouldtideover numerousbarriersstartingfromtheinjectionsitetothetargetcell,such asmucosalbarriersandnonspecificuptake [13,14].Theintravenouslydeliverednanosystemsdisplayoverrelianceontheenhancedpermeationand retention(EPR)effecttodeliverthenanocarriersintothetumor [15] aswell astheysufferrapidclearancefromthebloodstreamwithsubsequentoveraccumulationinnontargetorgans [16,17].
Thelimitedsuccessandtoxicityassociatedwithcurrentsystemicadministrationofdrugshasmotivatedresearcherstosearchfor“localtherapysystems(LTSs),”adirectapproachtodeliveragentsforcancertherapy.LTScan beconsideredasapromisingalternativetosystemicdeliverybysupplying thedrugsdirectlytothetargetedsiteofinterestviaanimplantablesystem [18] whichresultsnotonlyinhighertherapeuticefficacyandlowertoxicity [19,20] butalsoreducestheneedforrepeatedchemotherapyapplication [21].TheLTSsaretypicallydesignedtobeimplantedimmediatelyaftera tumorresectingsurgery,whichsparetherequirementforanadditionalsurgerytoplacethetherapeuticmaterialinthepatient [18] andenablethe on-sitedeliveryofdrugbysidesteppingtheharshenvironmentandlonger journeythatthedrughastotaketoreachthesiteofinterestwhendelivered systematically.ThusLTScanberegardedasanintelligentstrategyto improvethequalityoflifeandtoenhancethepatientcompliancebyrepurposingpromisingdrugsforcancertreatment.
Recently,electrospunpolymerfibershavegainedagreatattentionas implantableanticancerdrugdeliverydevicesduetotheiruniquearchitecturalfeaturesandrobustdrugloadingcapabilitywithveryencouraging preliminaryresults [22–27].Nanofiberscanberegardedasaversatileonedimensionalnanomaterialforawiderangeofapplicationsnotonlyinthe fieldofresearchbutalsoincommercialarenas [28].Amongthebroadspectrumofintriguingnanomaterialswithgreatpotentialapplications,nanofibersstandpreeminentduetotheiroutstandingphysicalandchemical
properties [29].Themainadvantagesofthenanofibersaretheirexceptionallyhighsurfacearea-to-volumeratio,uniqueporositywithinterconnected pore,andbiomimeticextracellularmaterial(ECM)-likestructuremake themanattractivecandidateformanyadvancedapplicationssuchasmusculoskeletaltissueengineering(includingbone,cartilage,ligament,andskeletalmuscle),skinengineering,vasculartissueengineering,neuraltissue engineering,andascarriersforcontrolleddeliveryofdrugs,proteins,and DNA [28,29].Thischapteraimsatsummarizinganddiscussingthestateof-the-artnanofiber-basedanticancerdrugdeliveryplatformstoprovidea comprehensiveandsignificantscientificbasesupportingfuturestrategic directionincancertherapies.
2.2State-of-the-artnanofiberfabrication Electrospinningisconsideredasoneofthesimplesttop-downapproaches usedtogeneratenanofibers [30].Electrospinningcanbeperformedusing awidevarietyofmaterialssuchaspolymers,sol-gel,suspension,andmelts [31].Theaccessibilityofawiderangeofnaturalandsyntheticbiomaterials hasextendedthescopeofdevelopingnanofibrousscaffolds [29].Byvarying thematerialselectionandchemicalcompositions,thenanofibersobtaintunablematerialpropertiessuchasmechanicalstrength,biodegradability, wettability,andsoon [28,32]
Theconventionalelectrospinningsetupisshownin Fig.2.1.Ingeneral, theelectrospinningsetupconsistsofthreebasicparts:(1)high-voltagesupply,(2)aneedleconnectedtosyringeandpump,and(3)thecollector,which isusuallygroundedornegativelybiased.Duringelectrospinningprocess highvoltageisappliedtocreateanelectricallychargedjetofpolymersolution.Whenthischargedpolymersolutionispumpedoutthroughthespinneret,itformsasphericaldropletduetotheinternmentofsurfacetension. Mutualchargerepulsionandthecontractionofthesurfacechargestothe counterelectrodecauseaforcedirectlyoppositetothesurfacetension.If theintensityoftheelectricfieldescalates,thesphericalsurfaceofthepolymeratthetipofthecapillarytubeextendstoformaconicalshapetermedas theTaylercone [33].Astheelectrostaticforceactingonthesurfaceofthe liquidovercomesthesurfacetension,thechargeliquidjetispulledfromthe Taylorconeandejecteddirectlytowardthetargetcollector.Thechargedjet undergoesinstabilityandelongationprocesswhichcausethepolymerfiber tobecomelongandthin.Asthesolventevaporatesthepolymerfiberswere formedonthecollector.Therequiredmodificationstotheconventional