Biomimetic nanoengineered materials for advanced drug delivery afeesh rajan unnithan - The full eboo

Page 1


https://ebookmass.com/product/biomimetic-nanoengineeredmaterials-for-advanced-drug-delivery-afeesh-rajan-unnithan/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanoengineered Biomaterials for Advanced Drug Delivery (Woodhead Publishing Series in Biomaterials) 1st Edition

Masoud Mozafari (Editor)

https://ebookmass.com/product/nanoengineered-biomaterials-foradvanced-drug-delivery-woodhead-publishing-series-in-biomaterials-1stedition-masoud-mozafari-editor/ ebookmass.com

Emerging nanotechnologies for diagnostics, drug delivery and medical devices Cholkar

https://ebookmass.com/product/emerging-nanotechnologies-fordiagnostics-drug-delivery-and-medical-devices-cholkar/

ebookmass.com

Drug Delivery Aspects: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 4: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/drug-delivery-aspects-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-4-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar/ ebookmass.com

Russia's Invasion of Ukraine: Economic Challenges, Embargo Issues and a New Global Economic Order Paul J. J. Welfens

https://ebookmass.com/product/russias-invasion-of-ukraine-economicchallenges-embargo-issues-and-a-new-global-economic-order-paul-j-jwelfens/

ebookmass.com

Statistics for The Behavioral Sciences 10th Edition, (Ebook PDF)

https://ebookmass.com/product/statistics-for-the-behavioralsciences-10th-edition-ebook-pdf/

ebookmass.com

Let the Rubble Fall: A Coming of Age Romance (Road Trip Snapshot Series Book 2) Mandi Lynn

https://ebookmass.com/product/let-the-rubble-fall-a-coming-of-ageromance-road-trip-snapshot-series-book-2-mandi-lynn/

ebookmass.com

Ben Ali's Tunisia: Power and Contention in an Authoritarian Regime Anne Wolf

https://ebookmass.com/product/ben-alis-tunisia-power-and-contentionin-an-authoritarian-regime-anne-wolf/

ebookmass.com

Indian Business Case Studies Volume III Lalit Kanore

https://ebookmass.com/product/indian-business-case-studies-volume-iiilalit-kanore/

ebookmass.com

Inclusive Banking In India: Re-imagining The Bank Business Model 1st ed. 2021 Edition Lalitagauri Kulkarni

https://ebookmass.com/product/inclusive-banking-in-india-re-imaginingthe-bank-business-model-1st-ed-2021-edition-lalitagauri-kulkarni/

ebookmass.com

https://ebookmass.com/product/the-narrative-shape-of-emotion-in-thepreaching-of-john-chrysostom-blake-leyerle/

ebookmass.com

BIOMIMETIC NANOENGINEERED MATERIALSFOR

DELIVERY

BIOMIMETIC NANOENGINEERED MATERIALSFOR

Editedby:

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates ©2019ElsevierInc.Allrightsreserved

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-814944-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: SabrinaWebber

EditorialProjectManager: AliAfzal-Khan

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

Abouttheeditorsxi

1.Introductiontosmartdrugdeliverysystems1 PramodDarvin,AneeshChandrasekharan,T.R.SanthoshKumar

1.1 Overview1

1.2 Stimuli-responsiveSDDS2

1.3 Conclusion8 References8

2.Nanofiber-basedanticancerdrugdeliveryplatform11

ArathyramRamachandraKurupSasikala,AfeeshRajanUnnithan, ChanHeePark,CheolSangKim

2.1 Introduction11

2.2 State-of-the-artnanofiberfabrication13

2.3 Implantableelectrospunnanofibersaslocaltherapysystems forcancertherapy15

2.4 Conclusionandchallenges28 References30

3.Transdermaldrugdeliveryviamicroneedlepatches37

AminGhavamiNejad,BrianLu,XiaoYuWu

3.1 Introduction37

3.2 DrugdeliveryviaMNpatchesfordiabetestreatment38

3.3 DrugdeliveryviaMNpatchesforcancertreatment44

3.4 Conclusion49 Acknowledgments49 References49

4.Nanohybridscaffoldstructuresforsmartdrugdelivery applications53

S.Sowmya

4.1 Introduction53

4.2 Drugdeliveryunderelectricalstimulation54

4.3 Drugdeliveryundermagneticstimulation55

4.4 pH-sensitivescaffoldsfordrugdelivery57 References58

5.3Dbioprintingforactivedrugdelivery61

JoshuaLee,AfeeshRajanUnnithan,ChanHeePark,CheolSangKim

5.1 Theadventofthree-dimensionalbioprinting61

5.2 Currentbioprintingresearch63

5.3 3Dbioprintingforactivedrugdelivery66 References70 Furtherreading72

6.Nanotechnologyinimprovingmedicaldevicesforsmart drugdelivery73

LudwigErikAguilar

6.1 Introduction73

6.2 Stents75

6.3 Boneimplants79

6.4 Nanomodificationtechniquesusedfordrugdeliveryinmedicaldevices80

6.5 Stimuli-responsivepolymersforbiomedicaldevicedrugdelivery84

6.6 Conclusion86 References88

7.Radiofrequency-sensitivenanocarriersforcancer drugdelivery91

N.SanojRejinold,YeuChunKim

7.1 Introduction91

7.2 RF-sensitivetherapeuticnanocarriersforcancernanotherapy92

7.3 Gold-basedRF-sensitivenanocarriers93

7.4 MNPsasRF-sensitivenanocarriers94

7.5 QD-basedRF-sensitivenanocarriers97

7.6 Carbon-basedRF-sensitivenanocarriers98

7.7 Cobalt-basedNPsforRFcancertherapy98

7.8 Tin-basedNPsasRF-sensitivenanocarriers99

7.9 Liposomes99

7.10 Summaryandfutureoutlooks101 Acknowledgment101 References101

8.Targetingpeptide-modifiedpolymericnanoparticlesfor cardiac-specificdrugdeliveryapplications107

8.1 Introduction107

8.2 Cardiovasculardisease108

8.3 CTPpeptide-mediatedtargetingtocardiomyocytes108

8.4 IdentificationandapplicationofPCMpeptideforcardiactargeting110

8.5 AT1peptide-mediatedtargetingofthecardiovascularsystem111

8.6 Vascularsmoothmuscle-targetingligands111

8.7 Targetedmacrophageablationininflammatoryatherosclerosis112

8.8 Conclusion113

References114

9.Nanogel-basedactivedrugdelivery115

9.1 Introduction115

9.2 SynthesisofNGs116

9.3 AdvantagesofNGsasadrugcarrier116

9.4 MechanismofactivedrugdeliveryfromNGs117

9.5 Conclusionandfutureperspective123

References123

10.Stimuli-responsivenanodrugdeliverysystemsforanticancer therapy125

RejuGeorgeThomas,YongYeonJeong

10.1 Introduction125

10.2 Internalstimuli-responsivesystem127

10.3 Externalstimuli-responsivesystem135

10.4 Summaryandfuturedirection142 Acknowledgment144 References144 Furtherreading148

11.Graphene-baseddrugdeliverysystems149

RenuGeethaBai,GhalebA.Husseini

11.1 Introduction149

11.2 Grapheneandderivatives characteristics,properties,andapplications150

11.3 Graphenenanomaterialsinnanomedicine152

11.4 Nanodrugdeliveryconcept153

11.5 Graphenematerialsindrugdelivery154

11.6 Challenges164

11.7 Conclusionandfutureperspectives164 References164

12.Targetednanoparticlesfortreatinginfectiousdiseases169

ViswanathanA.Aparna,RajaBiswas,R.Jayakumar

12.1 Introduction169

12.2 Infectiousdiseases170

12.3 Effectiveantimicrobialactivityofnanomaterials172

12.4 Targetednanoparticlesforinfectiousdiseases174

12.5 Liposomesasdrugcarriers174

12.6 Polymericnanoparticlesasdrugcarriers175

12.7 Currentscenario176

12.8 Outlook180

12.9 Conclusions180 References180

Index 187

Contributors

LudwigErikAguilar

BionanosystemEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea

ViswanathanA.Aparna

AmritaCentreforNanosciencesandMolecularMedicine,AmritaInstituteofMedical SciencesandResearchCentre,AmritaVishwaVidyapeetham,Kochi,India

RenuGeethaBai

DepartmentofChemicalEngineering,AmericanUniversityofSharjah,Sharjah,United ArabEmirates

RajaBiswas

AmritaCentreforNanosciencesandMolecularMedicine,AmritaInstituteofMedical SciencesandResearchCentre,AmritaVishwaVidyapeetham,Kochi,India

AneeshChandrasekharan

CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram, India

PramodDarvin

CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram, India

AminGhavamiNejad

AdvancedPharmaceuticsandDrugDeliveryLaboratory,LeslieL.DanFacultyofPharmacy, UniversityofToronto,Toronto,ON,Canada

GhalebA.Husseini

DepartmentofChemicalEngineering,AmericanUniversityofSharjah,Sharjah,United ArabEmirates

R.Jayakumar

AmritaCentreforNanosciencesandMolecularMedicine,AmritaInstituteofMedical SciencesandResearchCentre,AmritaVishwaVidyapeetham,Kochi,India

YongYeonJeong

DepartmentofRadiology,ChonnamNationalUniversityHwasunHospital,Hwasun,South Korea

JohnsonV.John

DepartmentofChemicalandMaterialsEngineering,UniversityofAlberta,Edmonton, AB,Canada

CheolSangKim

DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea

YeuChunKim

DepartmentofChemicalandBiomolecularEngineering,KoreaAdvancedInstituteof ScienceandTechnology(KAIST),Daejeon,RepublicofKorea

JoshuaLee

DepartmentofBionanosystemEngineering,GraduateSchool,ChonbukNational University,Jeonju,RepublicofKorea

BrianLu

AdvancedPharmaceuticsandDrugDeliveryLaboratory,LeslieL.DanFacultyofPharmacy, UniversityofToronto,Toronto,ON,Canada

JasonMcCarthy

MasonicMedicalResearchLaboratory,Utica,NY,UnitedStates

MuthunarayananMuthiah

MasonicMedicalResearchLaboratory,Utica,NY,UnitedStates

ChanHeePark

DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea

N.SanojRejinold

DepartmentofChemicalandBiomolecularEngineering,KoreaAdvancedInstituteof ScienceandTechnology(KAIST),Daejeon,RepublicofKorea

T.R.SanthoshKumar

CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram, India

ArathyramRamachandraKurupSasikala

DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea;Collegeof MedicalandDentalSciences,UniversityofBirmingham,Birmingham,UnitedKingdom

S.Sowmya

ResearchScientist,AmritaSchoolofDentistry,AmritaVishwaVidyapeetham,Kochi,India

RejuGeorgeThomas

DepartmentofRadiology,ChonnamNationalUniversityHwasunHospital,Hwasun, SouthKorea

AfeeshRajanUnnithan

DepartmentofBionanosystemEngineering,GraduateSchool;DivisionofMechanical DesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea;Instituteof TranslationalMedicine,ChemicalEngineeringDepartment,UniversityofBirmingham, Birmingham,UnitedKingdom

XiaoYuWu

AdvancedPharmaceuticsandDrugDeliveryLaboratory,LeslieL.DanFacultyofPharmacy, UniversityofToronto,Toronto,ON,Canada

Abouttheeditors

Dr.AfeeshRajanUnnithan iscurrentlyworkingasaresearchfellowin ProfessorAliciaElHajgroupatUniversityofBirmingham,UK.Priortothis hewasworkingasKRF(KoreanResearchFellow)atChonbukNational University,SouthKorea.Dr.AfeeshalsoworkedasanassistantresearchprofessoratChonbukNationalUniversityfrom2013to2016.Hecompleted hisPhDinbionanosystemengineeringfromChonbukNationalUniversity in2013.Dr.AfeeshearnedhisMTechinnanomedicinefromAmritaCenter forNanosciencesandMolecularMedicineandBTechinbiotechnology fromAnnaUniversity,India.Dr.Afeesh’sprincipalresearchinterestsare intheareasrelatedtothepreparationofnanobiomaterials,smartdrug deliverysystems,hyperthermicchemotherapy,bioactivenanostructured scaffolds,electrospinning,3Dbioprinting,etc.Hehaspublishedaround 49peer-reviewedresearcharticlesinhighimpactfactorjournalswith 1523citations.

Dr.ArathyramRamachandraKurupSasikala iscurrentlyworkingasa researchfellowinDr.HaneneAli-BoucettagroupatUniversityofBirmingham,UK.BeforecomingtoUK,shewasworkingasanassistantresearch professoratChonbukNationalUniversity,SouthKorea.Sheearnedher PhDinbionanosystemengineeringfromChonbukNationalUniversity inAugust2016.Dr.ArathycompletedherMScandBScinphysicsfrom UniversityofKerala,India.Dr.ArathyalsoworkedasajuniorresearchfellowinNationalRemoteSensingCentre,ISRO(IndianSpaceResearch Organization),India.Herprincipalresearchinterestliesinthedevelopment ofmultifunctionaltherapeuticnanosystemsincorporatingbothmagnetic nanomaterialsanddrugsforthesynergisticcancertheranosticsbycombining hyperthermia,chemotherapy,andMRI(magneticresonanceimaging). Dr.Arathypublishedherresearchworksinhighimpactjournalssuchas AdvancedFunctionalMaterials,Nanoscale,ActaBiomaterialia,Scientific Reports,JournalofMaterialsChemistryB,ACSappliedmaterialsand interfaces,ChemicalEngineeringJournal,etc.Shehaspublishedaround 15peer-reviewedresearcharticlesinhighimpactfactorjournalswith443 citations.

ChanHeePark iscurrentlyworkingasanassociateprofessorintheDepartmentofBionanosystemEngineeringatChonbukNationalUniversity,

SouthKorea.HeearnedhisPhDinbionanosystemengineeringfromChonbukNationalUniversityin2012.HeworkedforNationalInstruments (USA)from2002to2009.Followingthatheworkedastheteamleader seniorresearcheratR&DDivision,ChonbukNationalUniversityAutomobileParts&moldTechnologyInnovationCenter,Jeonju.Professor Park’sresearchinterestsarerelatedtoelectrospunnanocompositematerials fordrugdelivery,microfluidics/electroanalyticalbiosensors,biodegradable metals,regenerativemedicine,nanomedicine,etc.Hepublishedhisresearch achievementsinvariouspeer-reviewedjournalswith2124citations.

Cheol-SangKim receivedhisBSandMSdegreesinmechanicalengineeringfromChonbukNationalUniversityinKoreain1980and1982,respectively.HethenearnedhisPhDinmaterialsciencefromUniversitedeLouis PasteurinStrasbourg,Francein1988.Dr.Kimiscurrentlyaprofessoratthe DivisionofMechanicalEngineeringandDeanofCollegeofEngineeringat ChonbukNationalUniversityinKorea.PriortojoiningChonbukNational University,hehasspent2yearsattheDepartmentofBioengineeringat UniversityofPennsylvania(USA)asapostdoctoralfellow.Heworked for5yearsfrom1997asaHeadofInstituteofBiomedicalEngineering, SolcoSurgicalInstrumentsCo.,Ltd.andInstituteofInterventional Medicine,M.I.TechCo.,Ltd.,Korea.Dr.Kim’sresearchinterestsarein theareaofbiomaterialsforhardtissuereplacements,drugdelivery,design andanalysisofimplantsandartificialorgans,andanti-biofoulingtechnology. Dr.Kimownsnumerouspublicationsinhighimpactfactorjournalswith 2426citations.

CHAPTER1

Introductiontosmartdrug deliverysystems

PramodDarvin,AneeshChandrasekharan,T.R.SanthoshKumar CancerResearchProgram,RajivGandhiCentreforBiotechnology,Thiruvananthapuram,India

Contents

1.1Overview

Theuseofnanotechnologyandtheirapplicationshaverevolutionizedinthis century.Thedemandsrangefromtheneedsofdailylifetotheunmet demandformanagingchronicdiseasesinmedicalfield.Inthemedicalfield, tremendousapplicationsarebeingutilizedindifferentaspectsofclinical management.Theuseofnanotechnologyinpharmacologyanddrugdeliverysystemenabledthereductionofnonspecificbiodistributionanduncontrolleddrugrelease.Focustoaddressthisissueandachievedrugreleaseata preciselocationwithmorecontrolresultedinthedevelopmentofsmart drugdeliverysystems(SDDSs).TheseSMARTsystemscanreachthe precisedsitewherethedrugisintendedtorelease,andcanalsorelease thedruginresponsetospecificstimulations.Thisabilitymakesthemintelligentsystems,capableofself-regulation,integratedsensing,monitoring, andactivationbytheenvironmentaswellasstimuli.

1.2Stimuli-responsiveSDDS

SDDSweredesignedtoreleasethepayloadstothespecificsiteinamore controlledmannersoastoincreasethetherapeuticefficiencyandreduce theadverseeffects.Stimuli-responsivesystemsrespondtobothexternal andinternalstimuli.Theexternalstimuliincludethemagnetic,electric, thermal,andultrasonicformofenergy.Theinternalstimuliaretheredox status,pH,andtemperatureofthesystem,biochemicalfactorslikespecific enzymes,urea,glucose,morphineresponsivesystem,andspecificbodyconditionssuchascancerandinflammationresponsivesystem.

1.2.1Temperature-responsiveSDDS

Thermosensitivepolymersaredesignedtoretaintheirpayloadsaroundthe physiologicaltemperature(37oC)andthedrugswillbereleasedrapidly whenthetemperaturerisesmorethan40–45oC.Thesesystemsaresuitable forthecontrolleddeliveryofdrugsandgenes.Thermosensitivepolymers undergosol-geltransitionsinresponsetotemperatureandminutechanges inphysiologicaltemperaturereflectthesolubilitychanges.Intheclinical conditionslikeinflammationandmalignancies,thetemperatureofpathologictissuesrisescomparedtothenormaltissues.Thetemperature-responsive SDDScanrecognizethischangeintemperatureandareactivated.The advantageofusingtemperature-responsiveSDDSisthatthestimulican beappliedeitherasinternalstimuliorasexternalstimuli.Inducedtemperaturegenerationatthemalignantsitehelpsalsotoreleasethedrugintothe tumormicroenvironment.Forexample,thepoly(N-isopropylacrylamide) (PNIPAAm)isathermosensitivepolymerwithalowercriticalsolution temperatureof32oCwhichisadjustedtophysiologicaltemperatureusing additivesorsurfactants.Whenthetemperaturerisesabove27oC,thesolutionbecomescloudyandformsagel.Multiplethermo-responsivenanocarrierstructureslikehydrogels,microbeads,polymericnanotubes,micelles, core-shellthermo-responsivenanoparticles,andlayer-by-layerassembled nanocapsulehavebeendevelopedusingthermosensitivepolymersand arebeingusedasSDDS.Thermosensitivepolymerscommonlyinuse arePNIPAAm,poly(N,N-diethylacrylamide),poly(N-vinylalkylamide), poly(N-vinylcaprolactam),tetronics,pluronics,phosphazenederivative, polysaccharidederivatives,etc. [1–3].

Hydrogelsduetotheirhigh-watercontentundergoavarietyofchanges uponexternalstimulation.Theycanundergoswelling,shrinking,andsol-gel phasetransition.Cellulosederivatives,PNIPAAm,poly(lactic-co-glycolic

acid)(PLGA),polycaprolactone,andpolyurethaneamidearesomeofthe widelyusedhydrogels.PNIPAAmisoneofthehighlystudiedhydrogels fordrugdeliverypurposes.Theyhavehighthermalreversibilityandgood swellingratio.CopolymerizationandgraftingofPNIPAAmwithpolyethyleneglycol(PEG)andpolyethyleneoxide(PEO)haveestablishedarouteto obtainnewhydrogels.PNIPAAm-derivedhydrogelsfacepotentialdrawbackslikeincreasedcytotoxicityandlowbiodegradability.Becauseofthe applicabilityofthehydrogels,themodificationismadetothebackboneof PNIPAAmcopolymerstoincreasethebiodegradability.Theincorporation ofbiodegradablesegmentsusingcleavablebondshasimprovedbiodegradationandbiocompatibility.

Hydrogelshavingtransitiontemperaturenearphysiologicaltemperature areusedasnonsurgicaldrugdepotsandforsustaineddeliveryofdrugsand proteinstosusceptiblelivingcells.Transitiontemperaturecanbereadily tunedbycopolymerizationconditionsandbyvaryingthecontentofrepeatingunitsinthecopolymer,forexample,copolymerizationofacrylicacid (AAc)andNIPAAm.

Burstdrug-releasekineticsmaybesometimesobservedinthecaseof hydrogelsandporouscapsuleswithlowstrengththatiseasilyeroded.Additionally,hydrogelscansufferfrompoorencapsulationofhydrophobicdrugs duetothehydrophilicnatureofthehydrogel.Poloxamer-basedhydrogels andPLGA-PED-PLGAhydrogelsareexamplesofencapsulatedhydrogels withthesustaineddrug-releaseprofile.

Polymericmicelleswithspecificcore/shellarchitectureentraphydrophobicdrugsintheinnercoresurroundedbyanoutershellofhydrophilic polymers.Micelle-baseddrugdeliverysystemisusedforanticancerdrug deliveryduetoitseaseofadministration,reducedsystemtoxicity,highpayload,andtherapeuticefficiency.Thermostabilitydependsonthecloud pointofthethermosensitiveblockofthecopolymerformingthemicelle. Thereversiblephasetransitionisamechanismgenerallyemployedbythe thermosensitivemicelles.

Basedontheapplication,thetemperature-responsivedeliverysystems aredesigned.Multifunctionalanddualstimuli-responsivesystemshavebeen developedtoreleasethecargoinresponsetomorethanonestimulus.For example,temperature-pH-sensitivesystems,temperature-pHreductionsensitivepolymericmicelle,andmacromolecule-sensitivenanogelslike glucose-pH-thermo-responsivenanogelshavebeendeveloped.Thermoresponsivenanostructureshaveadvantageslikelowtoxicityandtarget specificity.

1.2.2Redox-responsivedrugdeliverysystem

Redox-sensitivedrugdeliverysystemhasreceivedgreatattentionforits closeconnectionwithmanydiseasesandisextensivelystudied.Moreover, theredox-sensitivedeliverysystemhastheadvantageofintracellulardrug release.Thevariationintheredoxstatusoftissuesisexploitedinthedesigningofthissystem.Intracellularglutathione-dependentsystemsarethemajor redox-responsiveSDDS.TheconcentrationofGSH(glutathione)varies betweennormalandmalignantcells.Itrangesfrom2to20 μMinblood andnormalextracellularmatricesandfrom2to10 μMincancercells [4]. Otherdiseaseconditionslikeinflammation,theROS(reactiveoxygenspecies)levelincreases10-to100-foldcomparedwithnormalcounterparts.

Drugdeliverysystemswithdisulfidelinkageanddiselenidelinkagearethe twomajorreduction-basednano-drugdeliverysystems [4,5].Thedisulfide linkagescanbebrokenwithhighconcentrationsofGSH,resultinginaquick releaseofthecargoes.Thesedisulfidebondsaremainlyusedaslinkersand cross-linkingagents [4,6].Asalinker,thedisulfidelinkageconnects thepolymerbackbonewithdrugsorothercargoes.Inthebackbone, thedisulfidelinkagebreaksrapidlywithhighconcentrationsofGSHinthe surroundingenvironment.Thismakesthepolymerunstableundercertain situations.Inthebackbone,cystamine [7],cystine [8], N-succinimidyl-3(2-pyridyldithiol)propionate(SPDP) [9],disulfide-baseddimethacrylate (DSDMA) [10],etc.,areusedasdisulfide-containingfragments.Thedisulfide linkagespresentinthesidechainsareintendedtosupportthebackbone.The polymerswithdisulfidelinkagesinthesidechainsareeasytomodifyandcan havehighcargo-carryingcapacityandwouldbemorestablethanthedrug deliverysystemswithdisulfidelinkagesinthebackbone.Thislinkerdisulfide bondscanenrichthenanocarrierbyattachingmultiplegenes,drugs,and targetingmoleculestotheirsurface.Thesebondscanlinktwodifferent moietieswithdifferentfunctionsandcanactascross-linkingagents.

Redox-sensitivedeliverysystemcontainingdiselenidebondsarealso sensitivetothereductionandshowsimilarpropertieslikedisulfidelinkages. Theselenidebondshowsbondenergy(diselenidebond,172kJmol 1 and carbon-seleniumbond,244kJmol 1)lowerthandisulfidebonds,making themsuitablefordevelopingmoresensitivedeliverysystems.Themajor challengeusingdiselenidebondcontainingpolymeristhedifficultyin theincorporationofselenidebond.

Oxidation-responsivedrugdeliverysystemsisanothermajorgroupof drugdeliverysystemsinredox-sensitivesystemsandmainlyrelyonthe

ROS,mainlyH2O2 and –OHradicals.ROSareomnipresentintissuesand areassociatedwithpathologicalconditionslikearteriosclerosis,heartand nerveinjuriesandinflammations.Thesegroupsofdrugdeliverysystems includethesulfide-containingsystemssuchaspoly(propylenesulfide), selenium-containingsystems,ferrocene-containingsystems,boronicester groups,etc. [11–14].

1.2.3pH-responsivesystems

Inmostoftheapplicationsrelatedtodiseases,thedrugsneedtobedelivered tospecificsitesinordertodeciphermaximumefficacywithminimumtoxicity.pH-responsivesystemsareabetterchoiceforthisandarecommonly usedSDDSduetothechangeinpHamongtheorgans,organelles,andtissues.Thissystemalsoconfersprecisedeliveryoptionsandpredetermined releaserates.AllpH-responsivepolymersusedcontainapendantacidic (carbonicandsulfonicacids)orbasic(ammoniumsalt)groupsasaproton acceptorordonor.ThesecarrierscantracedelicatechangesinthepHof inflammatoryorothermalignantsites.Generally,thetumormicroenvironmenthaslesspH(7.0)comparedtotheirnormalcounterparts(pH7.4).The changeinenvironmentalpHcausestheionizationofpendantacidicorbasic groupsresultinginthecross-linkingandchangesintheswellingproperties ofthepolymer.TheprecisionandaccuracyofpH-responsivesystemsare increasedbycombiningthemwithotherstimulisuchastemperatureor redoxstimuliasmultifactor-responsivedrug-releasesystem [2].

ThenatureofthedrugreleaseisdesignedbythepHofthesolutionto whichthepolymerisexposed.ThealterationinpHcausesthepolymerto shrinkorswell.Forexample,polyacidicpolymerswillshrinkatlowpHand swellathighpHbecauseoftheprotonationofacidicgroups.Inthecaseof polybasicpolymers,ionizationofbasicgroupsincreaseswithincreaseinpH.

AAcandcellulosederivativesarethemostwidelyusedpH-sensitivepolymers.Morethantwophasescanoccurincopolymerswithrandomlydistributedpositiveandnegativechargedgroups.Inthesecopolymers,the interactionofsegmentswitheachotheroccursthroughelectrostaticinteractionsandhydrogenbonding.Theexistenceoftheseinteractionshelpsthe polymertoshrinkandswellaccordingtothechangesintheenvironmental conditionsandadoptastableconformation.

Polyacrylicacid(PAAc)andpolymethacrylicacid(PMAAc)aretheexamplesofthepolyacidicpH-responsivesystem.PMAAcgraftedwithPEGshow uniquepHsensitivity.HydrogelsmadefromPAAcorPMAAccanbe

employedfortargetedreleaseofdrugsatneutralpH.Forcolon-specificdrug delivery,polyanionscross-linkedwithazoaromaticcross-linkerswereused. SulfonamidecontainspolyacidpolymerswithpKa intherange3–11andthe hydrogenatomoftheamidenitrogenisreadilyionizedtoformpolyacids. TheaminogroupisprotonatedathighpHandpositivelyneutralizedand ionizedatlowpHcontrollingtheswellingandshrinkingnatureofhydrogels. Polybaseswiththeaminogrouparethemostrepresentativepolybasicgroup.

Poly(N,N-dimethylaminoethylmethacrylate)(PDEAEMA)hasbeenthemost frequentlyusedpH-responsivepolymericbase.Polycationichydrogelsshow minimumswellingintheneutralpH,minimizingthereleaseofdrugcargo. Thispropertyofpolycationichydrogelshasbeenusedtodevelopcarriers forfoul-tastingdrugs,topreventthemfromreleasingintotheneutralpHenvironmentofthemouth.

ThepHresponsivenessofpolyelectrolytehydrogelscanbemodulatedby usingneutralcomonomers.VariouscomonomersshowdifferenthydrophobicityandhencedifferentpHresponsiveness.2-Hydroxyethylmethacrylate, methylmethacrylatemaleicanhydride,etc.,aretheexamplesofcomonomersusedinpolyelectrolytehydrogels.

pH-sensitivebioerodiblepolymersuseenzyme-substratereaction.An enzyme-substratereactionproducesachangeinpHandthischangein pHisutilizedfortheerosionofapH-sensitivepolymercontainingadrug cargo.Inadditiontothebioerodiblepolymers,rDNAmethodsandprotein engineeringwereemployedtodevelopsyntheticproteinsthatcanundergo reversiblegelationinresponsetopHchanges.pH-sensitivenanoparticles enhancedrugavailabilitythroughefficientabsorptionmechanisms.Polymerssuchashydroxypropylmethylcellulosephthalateandcelluloseacetate phthalatewereusedtoencapsulatethedrugload.Ionicgelation,solvent evaporation,solventdiffusion,supercriticalfluidtechnology,saltingout, polymerization,etc.,canbeemployedtoproducepH-sensitivepolymeric nanoparticles.

1.2.4Enzyme-responsivedrugdeliverysystems

Enzymeactivateddrugdeliverysystemisanewclassofdeliverysystem wherethedrugreleaseiscontrolledbyenzymereactions.Severalnanomaterialsandpolymersarebeingusedforthedevelopmentofenzymeresponsivedrugdeliverysystems.Thissystemhastheadvantageofahigh degreeofspecificity.Mostofthephysiologicalandmetabolicprocesses arerelatedwithenzymessuchasglycosidase,lipase,phospholipase,and

protease.Theseenzymesareexploitedtoachieveenzyme-mediateddrug cargoreleasethroughbiocatalyticactionatinflammatoryormalignantsites. Thenanocarrierscarryingpayloadattachedwiththemthroughencapsulationorcovalentbondingwillreleasethedrugsatthetargetsitesthrough site-specificenzymaticcleavage.Multipleenzymesareusedtotriggerthe drug-releasesystem [15].Differentclassesofproteaseareinvolvedinvarious physiologicalandpathophysiologicalconditionslikewoundhealing,tumor invasion,andtissueremodeling.ProteinkinaseC-alpha,uPA(urokinasetypeplasminogenactivator),andMMPs(matrixmetalloproteinases)are thecommonlyusedproteaseenzymesinthecontrolleddrugrelease [16–18].Themajorchallengeinenzyme-responsivedrugdeliverysystem istopreciselycontroltheinitialresponsetimeofthesystem.Phospholipases areanotherimportantgroupofenzymesinvolvedininfections,neurodegenerations,malignancies,andinflammations.PhospholipaseA2(PLA2) enzymeisutilizedtoreleasedrugsorexposetargetligandsfromliposome orsmallunilamellarvesicle(SUV)-mediateddrugdeliverysystems [19,20].Glucoseoxidaseofoxidoreductasefamily,involvedinglucose metabolism,hasitsapplicationinthediagnosisanddrugdeliveryinresponse toglucoselevels [21].

1.2.5Magnetic-responsivedrugdeliverysystems

Magnetic-responsivedrugdeliverysystemsprovideanoninvasiveapproach tospatiotemporalcontrolofthecarrierstothetargets.Thishelpsthesystem toreleasethepayloadsunderprogrammableexposureofexternalmagnetic fields.Themostcommonlyusedcore/shellmagneticnanoparticleexhibitsa varietyofuniquemagneticproperties.Thecomplexconsistsofthedrugand pharmaceuticallystableferromagneticcarrier.Basedonthefabrication methodthesurface-to-volumeratioofMNPs(magneticnanoparticles) canbeadjusted.Increasedsurface-to-volumeratioprovidesnumerous activesitesfortheconjugationofbiomolecules.Thisallowsprecisionin designandengineeringtoachievetheirsmartfunctionslikeelevatedblood half-life,releasesitespecificity,andincreaseddeliverybyapplyingalocalized externalmagneticfield [22]

Furthermore,whenthesenano-scaledMNPswereencapsulatedincolloidalcarriers,suchasmicelles,liposomes(Magnetoliposomes),andsolid nanoparticles,theybecomemoresensitivetoanexternalmagneticfield. Thesemagneticnanoparticlesalsoenabletheengineeringofmultistimuli-responsivedrugdeliverysystemswhichcanactonpH,redox,

andenzymes [23,24].Forexample,cystamine-modifiedgelatinencapsulatednanocarriercontainingdoxorubicinasthepayloadshowedincreased drugtargetspecificity,EPR,andgoodbiocompatibility [25].

1.3Conclusion

Thedevelopmentofsmartdrugdeliverysystemoffersgreatpotentialto engineerpathologyspecificdrugdesignanddeliveryapproachessuiting totheclinicalrequirement.However,thefieldfurtherrequiresincreased attentiontoaddressthechallengesofclinicalacceptabilityandclinicaltranslations.Thedevelopmentofmorenano-drugcarriersisunderwaytoeven increasethesmallerphysicochemicalchangesinpathologicandnormaltissues.Morecombinationsandmultifactorialreleasesystemsareattractive becauseoftheiradvanceinselectivityandspecificitytherebyincreasing theoverallefficacyofthedrugs.

References

[1] H.PriyaJames,etal.,Smartpolymersforthecontrolleddeliveryofdrugs—aconcise overview,ActaPharm.Sin.B4(2)(2014)120–127.

[2] Y.Qiu,K.Park,Environment-sensitivehydrogelsfordrugdelivery,Adv.DrugDeliv. Rev.53(3)(2001)321–339.

[3] S.Choi,M.Baudys,S.W.Kim,ControlofbloodglucosebynovelGLP-1delivery usingbiodegradabletriblockcopolymerofPLGA-PEG-PLGAintype2diabeticrats, Pharm.Res.21(5)(2004)827–831.

[4] M.Huo,etal.,Redox-responsivepolymersfordrugdelivery:frommoleculardesignto applications,Polym.Chem.5(5)(2014)1519–1528.

[5] T.Thambi,etal.,Bioreduciblepolymersomesforintracellulardual-drugdelivery, J.Mater.Chem.22(41)(2012)22028–22036.

[6] X.Guo,etal.,Advancesinredox-responsivedrugdeliverysystemsoftumormicroenvironment,J.Nanobiotechnol.16(1)(2018)74.

[7] Y.Li,etal.,Synthesisofreversibleshellcross-linkedmicellesforcontrolledreleaseof bioactiveagents,Macromolecules39(8)(2006)2726–2728.

[8] J.Wu,etal.,Hydrophobiccysteinepoly(disulfide)-basedredox-hypersensitivenanoparticleplatformforcancertheranostics,Angew.Chem.Int.Ed.Eng.54(32) (2015)9218–9223.

[9] Y.Vachutinsky,etal.,Antiangiogenicgenetherapyofexperimentalpancreatictumor bysFlt-1plasmidDNAcarriedbyRGD-modifiedcrosslinkedpolyplexmicelles, J.Control.Release149(1)(2011)51–57.

[10] L.Zhang,etal.,Degradabledisulfidecore-cross-linkedmicellesasadrugdeliverysystempreparedfromvinylfunctionalizednucleosidesviatheRAFTprocess, Biomacromolecules9(11)(2008)3321–3331.

[11] A.Napoli,etal.,Oxidation-responsivepolymericvesicles,Nat.Mater.3(2004)183.

[12] N.Ma,etal.,Selenium-containingblockcopolymersandtheiroxidation-responsive aggregates,Polym.Chem.1(10)(2010)1609–1614.

[13] X.Sui,etal.,Redoxactivegels:synthesis,structuresandapplications,J.Mater.Chem. B1(12)(2013)1658–1672.

[14] C.-C.Song,etal.,Oxidation-acceleratedhydrolysisoftheorthoester-containingacidlabilepolymers,ACSMacroLett.2(3)(2013)273–277.

[15] Q.Hu,P.S.Katti,Z.Gu,Enzyme-responsivenanomaterialsforcontrolleddrugdelivery,Nanoscale6(21)(2014)12273–12286.

[16] B.Law,R.Weissleder,C.-H.Tung,Peptide-basedbiomaterialsforprotease-enhanced drugdelivery,Biomacromolecules7(4)(2006)1261–1265.

[17] T.Jiang,etal.,Tumorimagingbymeansofproteolyticactivationofcell-penetrating peptides,Proc.Natl.Acad.Sci.U.S.A.101(51)(2004)17867.

[18] E.S.Olson,etal.,Activatablecellpenetratingpeptideslinkedtonanoparticlesasdual probesforinvivofluorescenceandMRimagingofproteases,Proc.Natl.Acad.Sci. 107(9)(2010)4311.

[19] L.Linderoth,etal.,Drugdeliverybyanenzyme-mediatedcyclizationofalipidprodrug withuniquebilayer-formationproperties,Angew.Chem.Int.Ed.48(10)(2009) 1823–1826.

[20] T.L.Andresen,etal.,EnzymaticreleaseofantitumoretherlipidsbyspecificphospholipaseA2activationofliposome-formingprodrugs,J.Med.Chem.47(7)(2004) 1694–1703.

[21] Z.Gu,etal.,Glucose-responsivemicrogelsintegratedwithenzymenanocapsulesfor closed-loopinsulindelivery,ACSNano7(8)(2013)6758–6766.

[22] S.Nappini,etal.,Magneticfieldresponsivedrugreleasefrommagnetoliposomesinbiologicalfluids,J.Mater.Chem.B4(4)(2016)716–725.

[23] Z.Qi,etal.,Amulti-controlleddrugdeliverysystembasedonmagneticmesoporous Fe3O4nanopaticlesandaphasechangematerialforcancerthermo-chemotherapy, Nanotechnology28(40)(2017)405101.

[24] B.Mu,etal.,Magnetic-targetedpH-responsivedrugdeliverysystemvialayer-by-layer self-assemblyofpolyelectrolytesontodrug-containingemulsiondropletsanditscontrolledrelease,J.Polym.Sci.APolym.Chem.49(9)(2011)1969–1976.

[25] A.Qi,etal.,Gelatin-encapsulatedmagneticnanoparticlesforpH,redox,andenzyme multiplestimuli-responsivedrugdeliveryandmagneticresonanceimaging,J.Biomed. Nanotechnol.13(11)(2017)1386–1397.

Nanofiber-basedanticancer drugdeliveryplatform

ArathyramRamachandraKurupSasikalaa,b,c,AfeeshRajan Unnithana,b,d,ChanHeeParka,b,CheolSangKima,b

aDepartmentofBionanosystemEngineering,GraduateSchool,ChonbukNationalUniversity,Jeonju, RepublicofKorea

bDivisionofMechanicalDesignEngineering,ChonbukNationalUniversity,Jeonju,RepublicofKorea cCollegeofMedicalandDentalSciences,UniversityofBirmingham,Birmingham,UnitedKingdom dInstituteofTranslationalMedicine,ChemicalEngineeringDepartment,UniversityofBirmingham, Birmingham,UnitedKingdom

2.1

Canceristhesecondforemostcausesofdeathongloballyjustbehindthe cardiovasculardiseasedemandingvitalattentiontosignificantlyreduce theglobalcancerburden. [1] Cancerisahighlyheterogeneousandmultifaceteddisease.Incancer,thecellsundergomutationintheirgeneticmaterialandresultinuncontrolledgrowth.Thereforethesystemicdeliveryof antineoplasticagentssuchaschemotherapyorantiangiogenicdrugs,radiotherapy,andsurgeryhavebeenthetraditionalmethodsoftreatingcancerfor alongtime.Thoughitissuccessfulforsometypesofcancer,themainproblemassociatedwithsuchtreatmentisthepoortargetabilityandhighlyinvasivenature [2].Henceanextensiveresearchisgoingoninsearchofan improvedornoveltreatmenttocombatthisdeadlydiseasebydeveloping newdrugdeliveryplatformsthathaveextremetumortargetabilityandminimaltoxicitytowardnormalcells.

Withthedevelopmentofnanotechnology,cancernanomedicine,the applicationofnanomedicineforthetreatmentofcancer,hasseenenormous progressinrecentyears [3,4].Todateseveraltypesoforganicandinorganic nanomaterialsintheformofnanoparticles,microparticles,liposomes,dendrimers,nanotubes,etc.,wereengineeredtofunctionaseffectivecancer theranosticagents [5–9].Themainadvantagesofthenanoengineeredmaterialsincludethecapabilitytoincreasethesolubilityofwater-insolubledrugs, long-termbloodcirculation,andtheeaseoffunctionalization [10–12] However,evenwiththesetechnologies,therestillremainmanyshortcomingsassociatedwiththesenanocarriers.Thenanocarrierscouldtideover numerousbarriersstartingfromtheinjectionsitetothetargetcell,such asmucosalbarriersandnonspecificuptake [13,14].Theintravenouslydeliverednanosystemsdisplayoverrelianceontheenhancedpermeationand retention(EPR)effecttodeliverthenanocarriersintothetumor [15] aswell astheysufferrapidclearancefromthebloodstreamwithsubsequentoveraccumulationinnontargetorgans [16,17].

Thelimitedsuccessandtoxicityassociatedwithcurrentsystemicadministrationofdrugshasmotivatedresearcherstosearchfor“localtherapysystems(LTSs),”adirectapproachtodeliveragentsforcancertherapy.LTScan beconsideredasapromisingalternativetosystemicdeliverybysupplying thedrugsdirectlytothetargetedsiteofinterestviaanimplantablesystem [18] whichresultsnotonlyinhighertherapeuticefficacyandlowertoxicity [19,20] butalsoreducestheneedforrepeatedchemotherapyapplication [21].TheLTSsaretypicallydesignedtobeimplantedimmediatelyaftera tumorresectingsurgery,whichsparetherequirementforanadditionalsurgerytoplacethetherapeuticmaterialinthepatient [18] andenablethe on-sitedeliveryofdrugbysidesteppingtheharshenvironmentandlonger journeythatthedrughastotaketoreachthesiteofinterestwhendelivered systematically.ThusLTScanberegardedasanintelligentstrategyto improvethequalityoflifeandtoenhancethepatientcompliancebyrepurposingpromisingdrugsforcancertreatment.

Recently,electrospunpolymerfibershavegainedagreatattentionas implantableanticancerdrugdeliverydevicesduetotheiruniquearchitecturalfeaturesandrobustdrugloadingcapabilitywithveryencouraging preliminaryresults [22–27].Nanofiberscanberegardedasaversatileonedimensionalnanomaterialforawiderangeofapplicationsnotonlyinthe fieldofresearchbutalsoincommercialarenas [28].Amongthebroadspectrumofintriguingnanomaterialswithgreatpotentialapplications,nanofibersstandpreeminentduetotheiroutstandingphysicalandchemical

properties [29].Themainadvantagesofthenanofibersaretheirexceptionallyhighsurfacearea-to-volumeratio,uniqueporositywithinterconnected pore,andbiomimeticextracellularmaterial(ECM)-likestructuremake themanattractivecandidateformanyadvancedapplicationssuchasmusculoskeletaltissueengineering(includingbone,cartilage,ligament,andskeletalmuscle),skinengineering,vasculartissueengineering,neuraltissue engineering,andascarriersforcontrolleddeliveryofdrugs,proteins,and DNA [28,29].Thischapteraimsatsummarizinganddiscussingthestateof-the-artnanofiber-basedanticancerdrugdeliveryplatformstoprovidea comprehensiveandsignificantscientificbasesupportingfuturestrategic directionincancertherapies.

2.2State-of-the-artnanofiberfabrication

Electrospinningisconsideredasoneofthesimplesttop-downapproaches usedtogeneratenanofibers [30].Electrospinningcanbeperformedusing awidevarietyofmaterialssuchaspolymers,sol-gel,suspension,andmelts [31].Theaccessibilityofawiderangeofnaturalandsyntheticbiomaterials hasextendedthescopeofdevelopingnanofibrousscaffolds [29].Byvarying thematerialselectionandchemicalcompositions,thenanofibersobtaintunablematerialpropertiessuchasmechanicalstrength,biodegradability, wettability,andsoon [28,32]

Theconventionalelectrospinningsetupisshownin Fig.2.1.Ingeneral, theelectrospinningsetupconsistsofthreebasicparts:(1)high-voltagesupply,(2)aneedleconnectedtosyringeandpump,and(3)thecollector,which isusuallygroundedornegativelybiased.Duringelectrospinningprocess highvoltageisappliedtocreateanelectricallychargedjetofpolymersolution.Whenthischargedpolymersolutionispumpedoutthroughthespinneret,itformsasphericaldropletduetotheinternmentofsurfacetension. Mutualchargerepulsionandthecontractionofthesurfacechargestothe counterelectrodecauseaforcedirectlyoppositetothesurfacetension.If theintensityoftheelectricfieldescalates,thesphericalsurfaceofthepolymeratthetipofthecapillarytubeextendstoformaconicalshapetermedas theTaylercone [33].Astheelectrostaticforceactingonthesurfaceofthe liquidovercomesthesurfacetension,thechargeliquidjetispulledfromthe Taylorconeandejecteddirectlytowardthetargetcollector.Thechargedjet undergoesinstabilityandelongationprocesswhichcausethepolymerfiber tobecomelongandthin.Asthesolventevaporatesthepolymerfiberswere formedonthecollector.Therequiredmodificationstotheconventional

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.