Biomaterials for 3d tumor modeling (materials today) 1st edition subhas kundu (editor) - Download th

Page 1


Biomaterialsfor3DTumorModeling(Materials Today)1stEditionSubhasKundu(Editor)

https://ebookmass.com/product/biomaterials-for-3d-tumormodeling-materials-today-1st-edition-subhas-kundu-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Neuroscience for Neurosurgeons (Feb 29, 2024)_(110883146X)_(Cambridge University Press) 1st Edition Farhana Akter

https://ebookmass.com/product/neuroscience-for-neurosurgeonsfeb-29-2024_110883146x_cambridge-university-press-1st-edition-farhanaakter/ ebookmass.com

Trapped: Brides of the Kindred Book 29 Faith Anderson

https://ebookmass.com/product/trapped-brides-of-the-kindredbook-29-faith-anderson/

ebookmass.com

Definitions of Biomaterials for the Twenty-First Century (Materials Today) Xingdong Zhang (Editor)

https://ebookmass.com/product/definitions-of-biomaterials-for-thetwenty-first-century-materials-today-xingdong-zhang-editor/ ebookmass.com

eTextbook 978-1111826925 Business Research Methods

https://ebookmass.com/product/etextbook-978-1111826925-businessresearch-methods/

ebookmass.com

Lex (FBI Protectors Book 4)

Elizabeth Lennox

https://ebookmass.com/product/lex-fbi-protectors-book-4-elizabethlennox/

ebookmass.com

Psychology Applied to Modern Life: Adjustment in the 21st Century Wayne Weiten

https://ebookmass.com/product/psychology-applied-to-modern-lifeadjustment-in-the-21st-century-wayne-weiten/

ebookmass.com

Brief Applied Calculus 7th Edition, (Ebook PDF)

https://ebookmass.com/product/brief-applied-calculus-7th-editionebook-pdf/

ebookmass.com

The Crane Husband Kelly Barnhill

https://ebookmass.com/product/the-crane-husband-kelly-barnhill/

ebookmass.com

Sleisenger and Fordtran's Gastrointestinal and Liver Disease 11th Edition Mark Feldman

https://ebookmass.com/product/sleisenger-and-fordtransgastrointestinal-and-liver-disease-11th-edition-mark-feldman/

ebookmass.com

Seven

https://ebookmass.com/product/seven-seals-dark-savior-series-book-twojim-clougherty/

ebookmass.com

BIOMATERIALSFOR3DTUMOR MODELING

BIOMATERIALS FOR3DTUMOR MODELING

SUBHAS C.KUNDU

3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials,BiodegradablesandBiomimetics,Universityof Minho,HeadquartersoftheEuropeanInstituteofExcellenceonTissueEngineeringandRegenerativeMedicine, Guimara ˜ es,Portugal

ICVS/3B’s PTGovernmentAssociateLaboratory,Braga/Guimara ˜ es,Portugal

RUI L.REIS

3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials,BiodegradablesandBiomimetics,Universityof Minho,HeadquartersoftheEuropeanInstituteofExcellenceonTissueEngineeringandRegenerativeMedicine, Guimaraes,Portugal

ICVS/3B’s PTGovernmentAssociateLaboratory,Braga/Guimaraes,Portugal

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-818128-7

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: SabrinaWebber

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: AnithaSivaraj

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Contents

ListofContributorsxi Prefacexvii

I

Engineeringbiomaterialsfor3D cancermodelling

1.Trendsinbiomaterialsforthreedimensionalcancermodeling3

Abbreviations3

1.1Ahistoricalintroduction4

1.2Thethree-dimensionaltumor microenvironment6

1.3Engineeringthenativetumor microenvironmentusingcustom-designed three-dimensionalbiomaterials15

1.4Advancedmodelsofthethree-dimensional tumormicroenvironment22

1.5Applicationsofthree-dimensionaltumor modelsincancertherapeutics30

1.6Limitationsofbiomaterials-basedthreedimensionaltumormodels33

1.7Futureofthree-dimensionalbiomaterialsfor cancerresearch34

1.8Finalremarksandconclusions35 Acknowledgments36 References36

2.Bioinspiredbiomaterialstodevelop cell-richsphericalmicrotissuesfor3D invitrotumormodeling43

2.1Introduction43

2.2HumanTumormicroenvironment—key hallmarkstomimicinvitro44

2.33DInvitrotumormodels—bridgingthegap from2Dflatculturestoinvivo45

2.4Classesof3Dmulticellulartumormodels47

2.5Conclusions61

References62

3.Biofabricationof3Dtumormodelsin cancerresearch67

M.A.Grimaudo,A.Herreros-Pomares,M.Alonso,S.CalabuigFarinas,E.Jantus-LewintreandMariadelaFuente

3.1Currentchallengesinoncology67

3.2Thetumormicroenvironment69

3.3Developmentofthecancertherapeutics field71

3.43Dtumormodelsincancerresearch73

3.5Evaluationofanticancertherapeuticsin3D tumormodels78

3.6Implementationof3Dtumormodelsina clinicalsetting82

3.7Finalremarks86 Acknowledgments86 References86

4.Biomatricesthatmimicthe cancerextracellularenvironment91 SaraAmorim,RuiL.ReisandRicardoA.Pires

4.1Introduction91

4.2Thethree-dimensionalinvitromodels92

4.3Conclusionsandfutureremarks102

References102

5.3Dneuroblastomainvitromodelsusing engineeredcell-derivedmatrices107 EnricoAlmici,DavidCaballero,JoanMonteroandJosepSamitier

5.1Introduction107

5.2Neuroblastoma108

5.3Cell-derivedmatricesintumormodeling112

5.4Engineeringcell-derivedmatrix deposition115

5.5Cell-derivedmatricesandcellmorphodynamic characterization123

5.6Cell-derivedmatrixcapturerelevantprocesses involvedinneuroblastomamalignancy125

5.7Conclusions126

Acknowledgments126 References126

6.3Dculturesystemsasmodelsforsolid tumorsandcancermetabolism131

So ´ niaPiresCeleiro,Fa ´ timaBaltazarandMartaViana-Pereira

Abbreviations131

6.1Introduction132

6.2Solidtumors:tumormicroenvironmentand tumorigenesis133

6.3Cancermetabolism:influenceintumor microenvironment135

6.4Solidtumorsinvitromodels139

6.53Dcellculturesystemsincancerresearch143

6.63Dcellculturesystemsforstudycancer metabolism146

6.7Conclusions148 Acknowledgments149 Conflictofinterest149 References149

7.BiomaterialsasECM-likematricesfor 3Dinvitrotumormodels157

LaraPierantoni,JoanaSilva-Correia,AntonellaMotta,RuiL.Reis andJoaquimM.Oliveira

Abbreviations157

7.1Introduction158

7.2BiomaterialsasECM-likematricesforcancer 3Dinvitromodels158

7.3Conclusionandfuturetrends170 Acknowledgments170 References170

8.Three-dimensionalinvitromodelsof angiogenesis175

LauradiBlasio,MarianelaVara-MesslerandLucaPrimo

8.1Vesselsformationandtumorangiogenesis175

8.2Vascularextracellularmatrix176

8.3Endothelialcells-based3Dangiogenesis models178

8.4Vascularexplant-based3Dangiogenesis models182

8.5Microvesselsonachip184

8.6Futureperspectives186 Acknowledgments186 References187

9.Metastasisinthree-dimensional biomaterials191

BananiKundu,RuiL.ReisandSubhasC.Kundu

9.1Whybiomaterialisneededincancer modeling?191

9.2BiomaterialsemployedintumorECM modeling193

9.3Propertiesofcellsurroundingmatrix/niche contributetotumorcellmigration197

9.4Biomaterial-basedstepwisemodelingofcancer metastasis invitro 199

9.5Biomaterial-based invitro modelsofcancer dormancyandreactivation208

9.6Concludingremarks209

Acknowledgments210 References210

10.3Dcancerspheroidsand microtissues217

VirginiaBrancato,RuiL.ReisandSubhasC.Kundu

Abbreviations217

10.1Introduction217

10.2Biomaterialsadvancestumorcellcultureto thethirddimension219

10.3Recapitulatingthetumor stromacrosstalkin spheroidandmicrotissuemodels223

10.4Vascularizedmicrotumormodels224

10.5Thecontributionofimmunesystemcellsin microtumors226

10.6Spheroidsasscreeningplatformfordrug testing228

10.7Conclusionandfuturetrends230 Acknowledgments231 References231

11.Biomaterial-basedinvitromodelsfor pancreaticcancer235

EiriniVelliou,PriyankaGupta,ClaudioRicciandSerenaDanti

11.1Introduction235

11.2Invitro3Dmodelsforpancreatic cancer237

11.3Using3Dmodelsfordisease understanding241

11.4Using3Dmodelsfortherapeutic screening246

11.5Conclusionsandfuturetrends247 References247

12.Invitrothree-dimensionalmodeling forprostatecancer251

EleonoraDondossolaandClaudiaPaindelli

12.1Introduction251

12.2Modelingprimarytumors254

12.3Modelingearlystagesofprostatecancer progression267

12.4Modelingadvancedstagesofprostatecancer progression273

12.5Conclusion280 References281

13.3Dinvitrocutaneousmelanoma models287

AnaI.Soares,RuiL.ReisandAlexandraP.Marques

Abbreviations287

13.1Introduction288

13.2Typesofmelanoma289

13.3Riskfactorsformelanoma291

13.4Cutaneousmelanomadevelopment293

13.5Cutaneousmelanomatreatment293

13.6Invitromodels296 References300

14.3Dscaffoldmaterialsforskincancer modeling305

AmirZarebkohan,RoghayehSheervalilou,RoyaGhods,SubhasC. KunduandMazaherGholipourmalekabadi

14.1Introduction305

14.2Effectivefactorsincellculture;2Dand3D models308

14.3Skincancers313

14.4Modelingofskincancer315

14.5Conclusionandfutureprospective321 Acknowledgment322

Conflictofinterest322 References322

II

Advancedmodelsforcancer research

15.Microfluidicsystemsincancer research331

DavidCaballero,MariaAnge ´ licaLuque-Gonza ´ lez,RuiL.Reisand SubhasC.Kundu

15.1Introduction331

15.2Fundamentalsofmicrofluidics:fluidmechanics inminiaturizeddevices336

15.3Fabricationprinciplesofmicrofluidic devices339

15.4Mimickingthetumormicroenvironmentusing microfluidics343

15.5Microfluidicmodelsofcancer354

15.6Futureperspectives366

15.7Conclusions370 Acknowledgments370 Conflictsofinterest370 References370

16.Perfusion-based3Dtumor-on-chip devicesforanticancerdrugtesting379 NandiniDhimanandSubhaNarayanRath

Abbreviations379

16.1Introduction379

16.2Disadvantagesof2Dinvitro,3Dinvitro,and animalmodels380

16.3Microfluidicdevicesfortumormodeling382

16.4Tumorcomponentsandtheirinclusionin tumor-on-chip383

16.5Typesofperfusionmethods387

16.6Benefitsofperfusionandspecific applications388

16.7Specificdesignsforenhancingperfusion393

16.8Conclusion394 Acknowledgments394 References394

17.Engineeringbreastcancermodels invitrowith3Dbioprinting399 BradA.KrajinaandDanielaF.DuarteCampos

17.1Breastcancermicroenvironmentinvivo399

17.2Biomaterial-basedbreastcancerinvitro models401

17.3Biomaterialsdesignforinvitrobreastcancer models407

17.43Dbioprintingmethodsandtheirsuitability forbreastcancerinvitroengineering413

17.5Discussionandoutlook417

References419

18.Apredictiveoncologyframework— modelingtumorproliferationusingaFEM platform427

Chapterpoints427

18.1Introduction427

18.2Aperspectiveframeworkofpredictive oncology430

18.3Detailedmodelformulationusinglevel1 modeling436

18.4Asensitivityanalysisofhallmarkparameters: results439

18.5POEMasatooltoempowertheclinical decisions448

18.6Conclusions448

Acknowledgments449

Glossary449

References449

III

Tumormodelsfordrugdiscovery andtherapeutics

19.Tissue-engineered3Dcancer microenvironmentforscreening therapeutics453

NancyT.Li,IleanaL.Co,NatalieLandon-Brace,SimonLatour andAlisonP.McGuigan

19.1Introduction453

19.2Tumormicroenvironment454

19.3Currentstrategiesforcreatingcellandmatrix organizationtomimic microenvironment458

19.4Modelingimportantaspectsofthetumor microenvironment462

19.5Futureoutlook472

References473

20.Three-dimensionaltumormodeland theirimplicationindrugscreeningfor tacklingchemoresistance481

ManashiPriyadarshini,SibasishMohanty,TanushreeMahapatra, PallaviMohapatraandRupeshDash

Abbreviations481

20.1Chemoresistanceincancer482

20.23Dtumorculture:anadvancedmodel preferredover2Dculture483

20.33Dcultureandchemoresistance486

20.4Methodsofgenerating3Dculture system487

20.53Dcultureandbiomaterials490

20.6Drugscreeningin3Dculture494

20.7Futureaspectsofthe3Dtumororganoid model:biobanksfortumortissues497

20.8Limitationsof3Dculturetechnology498

20.9Conclusion498

Acknowledgment498 References498

21.Co-cultureand3Dtumormodelsfor drug/genetherapytesting505

LaraS.Costard,HarumiRamanayakeandCarolineM.Curtin

21.1Introduction505

21.2Lungcancer506

21.3Breastcancer515

21.4Prostatecancer523

21.5Futureoutlook527

References527

22.Newlyemergedengineeringofinvitro 3Dtumormodelsusingbiomaterialsfor chemotherapy533

BoCai,QiyingLv,ZhengWangandLinWang

22.1Introduction533

22.2Constitutionofartificiallyengineeredtumor models534

22.3Newlyemergedengineeringofinvitro3D tumorsforchemotherapy536

22.4Summary545 References546

23.Marine-derivedbiomaterialsforcancer treatment551

CatarinaOliveira,AnaC.Carvalho,RuiL.Reis,NunoN.Neves, AlbinoMartinsandTiagoH.Silva

23.1Introduction551

23.2Marinebiopolymersasbioactiveagents553

23.3Drug-deliverysystems556

23.4Three-dimensional invitro modelsof cancer562

23.5Conclusions569

23.6Acknowledgments570 References570

24.Mesoporoussilicananoparticlesfor cancertheranosticapplications577 MohammadEltohamy

24.1Introduction577

24.2MSNschemistry579

24.3BiologicaleffectsofMSNs580

24.43DmodelingofMSNforcancertherapy583

24.5MedicalapplicationsofMSNs584

24.6DiagnosticapplicationofMSNs594

24.7TheranosticsapplicationofMSNs596

24.8Conclusionsandoutlook597 References597

IV

Point-of-careapplications

25.Causesofcancer:physical,chemical, biologicalcarcinogens,andviruses607

SubhayanDas,MoumitaKundu,BikashChandraJenaand MahitoshMandal

Abbreviations607

25.1Introduction608

25.2Physicalcarcinogens611

25.3Chemicalcarcinogens617

25.4Biologicalcarcinogensandviruses621

25.5Conclusion629

Acknowledgments631 References631

26.Biodetectionandsensingforcancer diagnostics643

RitaRebelo,AnaI.Barbosa,SubhasC.Kundu,RuiL.Reisand VitorM.Correlo

26.1Introduction643

26.2Biomarkersforcancerdetection644

26.3Cancerbiosensors648

26.4Commercializationandclinicaltrialsofcancer biosensors654

26.5Conclusions656

Acknowledgments657

References657

27.Understandingtheimpactof controlledoxygendeliveryto3Dcancer cellculture661

DavidGrosh,WilliamJ.Wulftange,RobertW.Robey,ThomasJ. Pohida,NicoleY.MorganandMichaelM.Gottesman

27.1Introduction661

27.2Whatisknownaboutphysiologicaloxygen levels?662

27.3Importanceofoxygenlevelsinvariousstages ofcancerprogression664

27.4Techniquesformeasuringoxygenation668

27.5Traditional/currentstrategiesforcontrolling oxygenconcentrationinvitro674

27.6Characterizingtheeffectsofoxygenationon cellsandtissues684

27.7Conclusionsandfutureprospects688 Acknowledgments689 Disclaimer689 References689

28.Tissueengineeringstrategiesforthe treatmentofskeletalmaxillofacialdefects resultingfromneoplasmsresections697

J.P.Ribeiro,EstebanA.Astudillo-Ortiz,PedroS.Baboand ManuelaE.Gomes

28.1Background697

28.2Tissueengineeringforreconstructionof ablatedskeletalmaxillofacialtissues705

28.3Futureperspectivesandunmetchallenges720 References722

Index731

ListofContributors

EnricoAlmici NanobioengineeringGroup, InstituteforBioengineeringofCatalonia (IBEC),TheBarcelonaInstituteofScienceand Technology(BIST),Barcelona,Spain; DepartmentofElectronicsandBiomedical Engineering,UniversityofBarcelona, Barcelona,Spain;NetworkingBiomedical InvestigationCenterforBioengineering, BiomaterialsandNanomedicine(CIBERBBN),Madrid,Spain

M.Alonso Nano-OncologyandTranslational TherapeuticsUnit,HealthResearchInstitute ofSantiagodeCompostela(IDIS),SERGAS, SantiagodeCompostela,Spain;Cancer ResearchNetwork(CIBERONC),Spain

SaraAmorim 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s-PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

EstebanA.Astudillo-Ortiz 3B’sResearch Group,I3Bs ResearchInstituteon Biomaterials,Biodegradablesand Biomimetics,UniversityofMinho, Guimaraes,Portugal;ICVS/3B’s PT GovernmentAssociateLaboratory,Braga/ Guimaraes,Portugal;GIROResearchGroup inOralRehabilitation,UniversityofCuenca, Cuenca,Ecuado

PedroS.Babo 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,Universityof Minho,HeadquartersoftheEuropeanInstitute ofExcellenceonTissueEngineeringand RegenerativeMedicine,Guimara ˜ es,Portugal; ICVS/3B’s PTGovernmentAssociate Laboratory,Braga/Guimara ˜ es,Portugal

Fa ´ timaBaltazar LifeandHealthScience ResearchInstitute(ICVS),Schoolof Medicine,UniversityofMinho,Braga, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

AnaI.Barbosa 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,Universityof Minho,HeadquartersoftheEuropeanInstitute ofExcellenceonTissueEngineeringand RegenerativeMedicine,Guimaraes,Portugal; ICVS/3B’s PTGovernmentAssociate Laboratory,Braga/Guimaraes,Portugal

VirginiaBrancato 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,Universityof Minho,HeadquartersoftheEuropeanInstitute ofExcellenceonTissueEngineeringand RegenerativeMedicine,Guimaraes,Portugal; ICVS/3B’s PTGovernmentAssociate Laboratory,Braga/Guimaraes,Portugal

DavidCaballero 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

PaoloCaccavale UniversityofBasilicata, CollegeofEngineering,Modelingand PrototypingLaboratory—ModProLab, Potenza,Italy

BoCai ResearchCenterforTissueEngineering andRegenerativeMedicine,UnionHospital, TongjiMedicalCollege,Huazhong UniversityofScienceandTechnology, Wuhan,P.R.China

S.Calabuig-Farin˜as MolecularOncology Laboratory,GeneralUniversityHospitalof ValenciaResearchFoundation,Valencia, Spain;CancerResearchNetwork (CIBERONC),Spain;Departmentof Pathology,UniversitatdeVale ` ncia,Valencia, Spain

AnaC.Carvalho 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s,PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

So ´ niaPiresCeleiro LifeandHealthScience ResearchInstitute(ICVS),Schoolof Medicine,UniversityofMinho,Braga, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

IleanaL.Co DepartmentofChemical EngineeringandAppliedChemistry, InstituteforBiomaterialsandBiomedical Engineering,UniversityofToronto,Toronto, ON,Canada

VitorM.Correlo 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

LaraS.Costard TissueEngineeringResearch Group(TERG),DepartmentofAnatomyand RegenerativeMedicine,RoyalCollegeof SurgeonsinIreland(RCSI),Dublin,Ireland

CarolineM.Curtin TissueEngineering ResearchGroup(TERG),Departmentof AnatomyandRegenerativeMedicine,Royal CollegeofSurgeonsinIreland(RCSI), Dublin,Ireland;TrinityCentreof Bioengineering(TCBE),TrinityCollege Dublin(TCD),Dublin,Ireland;Advanced

MaterialsandBioengineeringResearch Centre(AMBER),RCSIandTCD,Dublin, Ireland.

SerenaDanti DepartmentofCiviland IndustrialEngineering,UniversityofPisa, Pisa,Italy

SubhayanDas SchoolofMedicalScienceand Technology,IndianInstituteofTechnology Kharagpur,Kharagpur,India

RupeshDash InstituteofLifeSciences, Bhubaneswar,India

MariaValeriaDeBonis Universityof Basilicata,CollegeofEngineering,Modeling andPrototypingLaboratory—ModProLab, Potenza,Italy

MariadelaFuente Nano-Oncologyand TranslationalTherapeuticsUnit,Health ResearchInstituteofSantiagodeCompostela (IDIS),SERGAS,SantiagodeCompostela, Spain;CancerResearchNetwork (CIBERONC),Spain

NandiniDhiman DepartmentofBiomedical Engineering,IndianInstituteofTechnology Hyderabad,Kandi,India;Departmentof ChemistryandBiotechnology,Facultyof Science,Engineering,andTechnology, SwinburneUniversityofTechnology, Hawthorn,VIC,Australia

LauradiBlasio DepartmentofOncology, UniversityofTorino,Turin,Italy;Candiolo CancerInstituteFPO-IRCCS,Candiolo,Italy

EleonoraDondossola DavidH.KochCenter forAppliedResearchofGenitourinary Cancers,TheUniversityofTexasMD AndersonCancerCenter,Houston,TX, UnitedStates

DanielaF.DuarteCampos Departmentof MaterialsScience&Engineering,Stanford University,CA,UnitedStates

MohammadEltohamy GlassResearch Department,NationalResearchCentre,Giza, Egypt

Vı´torM.Gaspar DepartmentofChemistry, CICECO—AveiroInstituteofMaterials, UniversityofAveiro,CampusUniversita ´ rio deSantiago,Aveiro,Portugal

RoyaGhods OncopathologyResearchCenter, IranUniversityofMedicalSciences,Tehran, Iran;DepartmentofMolecularMedicine, FacultyofAdvancedTechnologiesin Medicine,IranUniversityofMedicine Sciences,Tehran,Iran

MazaherGholipourmalekabadi Department ofMolecularMedicine,FacultyofAdvanced TechnologiesinMedicine,IranUniversityof MedicineSciences,Tehran,Iran;Cellularand MolecularResearchCenter,IranUniversity ofMedicalSciences,Tehran,Iran; DepartmentofTissueEngineering& RegenerativeMedicine,FacultyofAdvanced TechnologiesinMedicine,IranUniversityof MedicalSciences,Tehran,Iran

ManuelaE.Gomes 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

MichaelM.Gottesman LaboratoryofCell Biology(LCB),CenterforCancerResearch, NationalCancerInstitute(NCI),National InstitutesofHealth,Bethesda,MD,United States

M.A.Grimaudo Nano-Oncologyand TranslationalTherapeuticsUnit,Health ResearchInstituteofSantiagodeCompostela (IDIS),SERGAS,SantiagodeCompostela, Spain

DavidGrosh Trans-NIHSharedResourceon BiomedicalEngineeringandPhysicalScience (BEPS),NationalInstituteofBiomedical ImagingandBioengineering(NIBIB), NationalInstitutesofHealth,Bethesda,MD, UnitedStates

PriyankaGupta BioprocessandBiochemical EngineeringGroup(BioProChem), DepartmentofChemicalandProcess Engineering,UniversityofSurrey,Surrey, UnitedKingdom

A.Herreros-Pomares MolecularOncology Laboratory,GeneralUniversityHospitalof

ValenciaResearchFoundation,Valencia, Spain;CancerResearchNetwork (CIBERONC),Spain

E.Jantus-Lewintre MolecularOncology Laboratory,GeneralUniversityHospitalof ValenciaResearchFoundation,Valencia, Spain;CancerResearchNetwork (CIBERONC),Spain;Departmentof Biotechnology,UniversitatPolite ` cnicade Vale ` ncia,Valencia,Spain

BikashChandraJena SchoolofMedical ScienceandTechnology,IndianInstituteof TechnologyKharagpur,Kharagpur,India

BradA.Krajina DepartmentofMaterials Science&Engineering,StanfordUniversity, CA,UnitedStates

BananiKundu 3B’sResearchGroup,I3Bs— ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s—PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

MoumitaKundu SchoolofMedicalScience andTechnology,IndianInstituteof TechnologyKharagpur,Kharagpur,India

SubhasC.Kundu 3B’sResearchGroup, I3Bs—ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s—PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

NatalieLandon-Brace Departmentof ChemicalEngineeringandApplied Chemistry,InstituteforBiomaterialsand BiomedicalEngineering,Universityof Toronto,Toronto,ON,Canada

SimonLatour DepartmentofChemical EngineeringandAppliedChemistry, InstituteforBiomaterialsandBiomedical Engineering,UniversityofToronto,Toronto, ON,Canada

NancyT.Li DepartmentofChemical EngineeringandAppliedChemistry, InstituteforBiomaterialsandBiomedical Engineering,UniversityofToronto,Toronto, ON,Canada

MariaAnge ´ licaLuque-Gonza ´ lez 3B’s ResearchGroup,I3Bs ResearchInstituteon Biomaterials,Biodegradablesand Biomimetics,UniversityofMinho, HeadquartersoftheEuropeanInstituteof ExcellenceonTissueEngineeringand RegenerativeMedicine,Guimara ˜ es,Portugal; ICVS/3B’s PTGovernmentAssociate Laboratory,Braga/Guimara ˜ es,Portugal

QiyingLv ResearchCenterforTissue EngineeringandRegenerativeMedicine, UnionHospital,TongjiMedicalCollege, HuazhongUniversityofScienceand Technology,Wuhan,P.R.China

TanushreeMahapatra InstituteofLife Sciences,Bhubaneswar,India

MahitoshMandal SchoolofMedicalScience andTechnology,IndianInstituteof TechnologyKharagpur,Kharagpur,India

Joa˜oF.Mano DepartmentofChemistry, CICECO—AveiroInstituteofMaterials, UniversityofAveiro,CampusUniversita ´ rio deSantiago,Aveiro,Portugal

AlexandraP.Marques 3B’sResearchGroup, I3Bs—ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Braga/ Guimara ˜ es,Portugal;ICVS/3B’s—PT GovernmentAssociateLaboratory,Braga/ Guimara ˜ es,Portugal

AlbinoMartins 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s,PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

AlisonP.McGuigan DepartmentofChemical EngineeringandAppliedChemistry, InstituteforBiomaterialsandBiomedical Engineering,UniversityofToronto,Toronto, ON,Canada

SibasishMohanty InstituteofLifeSciences, Bhubaneswar,India;RegionalCenterfor Biotechnology,Faridabad,India

PallaviMohapatra InstituteofLifeSciences, Bhubaneswar,India;RegionalCenterfor Biotechnology,Faridabad,India

MariaV.Monteiro DepartmentofChemistry, CICECO—AveiroInstituteofMaterials, UniversityofAveiro,CampusUniversita ´ rio deSantiago,Aveiro,Portugal

JoanMontero NanobioengineeringGroup, InstituteforBioengineeringofCatalonia (IBEC),TheBarcelonaInstituteofScienceand Technology(BIST),Barcelona,Spain

NicoleY.Morgan Trans-NIHSharedResource onBiomedicalEngineeringandPhysical Science(BEPS),NationalInstituteof BiomedicalImagingandBioengineering (NIBIB),NationalInstitutesofHealth, Bethesda,MD,UnitedStates

AntonellaMotta BIOtechResearchCenter, DepartmentofIndustrialEngineeringand EuropeanInstituteofExcellenceonTissue EngineeringandRegenerativeMedicine, UniversityofTrento,Trento,Italy

NunoN.Neves 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,Universityof Minho,HeadquartersoftheEuropeanInstitute ofExcellenceonTissueEngineeringand RegenerativeMedicine,Guimara ˜ es,Portugal; ICVS/3B’s,PTGovernmentAssociate Laboratory,Braga/Guimara ˜ es,Portugal

CatarinaOliveira 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s,PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

JoaquimM.Oliveira 3B’sResearchGroup, I3Bs—ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s—PTGovernment AssociatedLaboratory,Braga/Guimara ˜ es, Portugal

ClaudiaPaindelli DavidH.KochCenterfor AppliedResearchofGenitourinaryCancers, TheUniversityofTexasMDAnderson CancerCenter,Houston,TX,UnitedStates; DepartmentofCellBiology,Radboud InstituteforMolecularLifeSciences, RadboudUniversityMedicalCenter, Nijmegen,TheNetherlands

LaraPierantoni 3B’sResearchGroup,I3Bs— ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s—PTGovernment AssociatedLaboratory,Braga/Guimaraes, Portugal

RicardoA.Pires 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimara ˜ es, Portugal;ICVS/3B’s-PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

ThomasJ.Pohida SignalProcessingand InstrumentationSection(SPIS), ComputationalBioscienceandEngineering Laboratory,CenterforInformation Technology,NationalInstitutesofHealth, Bethesda,MD,UnitedStates

LucaPrimo DepartmentofOncology, UniversityofTorino,Turin,Italy;Candiolo CancerInstituteFPO-IRCCS,Candiolo,Italy

ManashiPriyadarshini InstituteofLife Sciences,Bhubaneswar,India;KIITSchoolof Biotechnology,KIITUniversity, Bhubaneswar,India

HarumiRamanayake TissueEngineering ResearchGroup(TERG),Departmentof AnatomyandRegenerativeMedicine,Royal CollegeofSurgeonsinIreland(RCSI), Dublin,Ireland

SubhaNarayanRath Departmentof BiomedicalEngineering,IndianInstituteof TechnologyHyderabad,Kandi,India

RitaRebelo 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

RuiL.Reis 3B’sResearchGroup,I3Bs— ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s—PTGovernment AssociatedLaboratory,Braga/Guimaraes, Portugal

J.P.Ribeiro 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s PTGovernment AssociateLaboratory,Braga/Guimaraes, Portugal

ClaudioRicci NationalInteruniversity ConsortiumofMaterialsScienceand Technology(INSTM),Florence,Italy; DepartmentofCivilandIndustrial Engineering,UniversityofPisa,Pisa,Italy

RobertW.Robey LaboratoryofCellBiology (LCB),CenterforCancerResearch,National CancerInstitute(NCI),NationalInstitutesof Health,Bethesda,MD,UnitedStates

GianpaoloRuocco UniversityofBasilicata, CollegeofEngineering,Modelingand PrototypingLaboratory—ModProLab, Potenza,Italy

JosepSamitier NanobioengineeringGroup, InstituteforBioengineeringofCatalonia (IBEC),TheBarcelonaInstituteofScienceand Technology(BIST),Barcelona,Spain; DepartmentofElectronicsandBiomedical Engineering,UniversityofBarcelona, Barcelona,Spain;NetworkingBiomedical InvestigationCenterforBioengineering, BiomaterialsandNanomedicine(CIBERBBN),Madrid,Spain

RoghayehSheervalilou Cellularand MolecularResearchCenter,Resistant TuberculosisInstitute,ZahedanUniversityof MedicalSciences,Zahedan,Iran

TiagoH.Silva 3B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Guimaraes, Portugal;ICVS/3B’s,PTGovernment AssociateLaboratory,Braga/Guimara ˜ es, Portugal

JoanaSilva-Correia 3B’sResearchGroup, I3Bs—ResearchInstituteonBiomaterials, BiodegradablesandBiomimeticsof UniversityofMinho,Headquartersofthe EuropeanInstituteofExcellenceonTissue EngineeringandRegenerativeMedicine, Guimaraes,Portugal;ICVS/3B’s—PT GovernmentAssociatedLaboratory,Braga/ Guimara ˜ es,Portugal

AnaI.Soares 3B’sResearchGroup,I3Bs— ResearchInstituteonBiomaterials, BiodegradablesandBiomimetics,University ofMinho,HeadquartersoftheEuropean InstituteofExcellenceonTissueEngineering andRegenerativeMedicine,Braga/ Guimara ˜ es,Portugal;ICVS/3B’s—PT GovernmentAssociateLaboratory,Braga/ Guimaraes,Portugal

MarianelaVara-Messler Departmentof Oncology,UniversityofTorino,Turin,Italy; CandioloCancerInstituteFPO-IRCCS, Candiolo,Italy

EiriniVelliou BioprocessandBiochemical EngineeringGroup(BioProChem), DepartmentofChemicalandProcess Engineering,UniversityofSurrey,Surrey, UnitedKingdom

MartaViana-Pereira LifeandHealthScience ResearchInstitute(ICVS),SchoolofMedicine, UniversityofMinho,Braga,Portugal;ICVS/ 3B’s PTGovernmentAssociateLaboratory, Braga/Guimara ˜ es,Portugal

LinWang ResearchCenterforTissue EngineeringandRegenerativeMedicine, UnionHospital,TongjiMedicalCollege, HuazhongUniversityofScienceand Technology,Wuhan,P.R.China;Department ofClinicalLaboratory,UnionHospital, TongjiMedicalCollege,Huazhong UniversityofScienceandTechnology, Wuhan,P.R.China

ZhengWang ResearchCenterforTissue EngineeringandRegenerativeMedicine, UnionHospital,TongjiMedicalCollege, HuazhongUniversityofScienceand Technology,Wuhan,P.R.China;Department ofGastrointestinalSurgery,UnionHospital, TongjiMedicalCollege,Huazhong UniversityofScienceandTechnology, Wuhan,P.R.China.

WilliamJ.Wulftange Trans-NIHShared ResourceonBiomedicalEngineeringand PhysicalScience(BEPS),NationalInstituteof BiomedicalImagingandBioengineering (NIBIB),NationalInstitutesofHealth, Bethesda,MD,UnitedStates;Laboratoryof CellBiology(LCB),CenterforCancer Research,NationalCancerInstitute(NCI), NationalInstitutesofHealth,Bethesda,MD, UnitedStates

AmirZarebkohan DepartmentofMedical Nanotechnology,FacultyofAdvanced MedicalSciences,TabrizUniversityof MedicalSciences,Tabriz,Iran;DrugApplied ResearchCenter,TabrizUniversityof MedicalSciences,Tabriz,Iran

Preface

Traditionally,invitroapproaches employedtomodeltumorprogression involvetheuseoftissuecultureflasksand asinglecellpopulation.Thisoversimplified scenarioisincontrastwiththedynamic tumormicroenvironmentthatisobserved invivo,whichisthree-dimensional(3D) andcontainsmultiplecelltypes.During therecentyears,anewgenerationofpredictivetumormodelshasbeenemerging. Thisnewparadigmintumormodelscombinestheadvantagesof3Dbiomaterials withthemostrecentadvancementsinthe fieldsoftissueengineering,nanotechnology,cellbiology,biochemistry,3Dbioprinting,andcomputersimulation.Asaresult, morerealisticandpredictiveplatform(s) havebeencreated,definingtheroadmap fortheirfutureuseaspreclinicaldrug/ therapyscreeningplatformsincancer research.

Theeditorsfeelveryproudtohavecollectedadiversevarietyofrelevantchapters fromrecognizedinternationalleaders, whichincludetheirpersonalandforwardlookingvisioninthefields.Thechapters reportfurtheronthelatesttrendsof

biomaterialsfor3Dcancermodeling,and inparticular,abouttheirusesasphysiologicallyrelevantplatformsfordrugdiscovery andscreeningaswellasformechanistic investigations.Theeditorsbelievethatthis bookwillbeanadditionalsupportandstimulifordesigningnewexperimentsindifferentresearchareas,suchasbiomaterials, tissueengineering,regenerativemedicine, biomedicaldevices,pharmacology,and preclinicalexperimentations.Furthermore, thisbookwillbeingeneralhelpfultothe materialscience,biology,andmedicalscientificcommunitiesworkinginthefieldof cancer-relatedresearch.Overall,thisnew paradigmin3Dinvitrotumormodeling willunivocallyimprovethefieldofcancer diagnosisandtreatment.

Finally,wearegratefultoalltheauthors andco-authorsfortheircontributionsin thisbook.Wearealsothankfultotheentire Elsevierteamfortheircontinuoussupport andhelpduringtheeditionofthisbook. Wesincerelyacknowledgethefinancial supportfromtheprojectForefront Researchin3Ddiseasecancermodelsas invitroscreeningtechnologies(FoReCaST),

whichissupportedbytheEuropeanUnion FrameworkProgramforResearchand InnovationHorizon2020undergrant agreementno.668983.ThisERA-Chairs wideningspreadingofexcellenceproject aimstodevelopanewgenerationof3D invitrotumormodelsfordrugscreening applicationsandhas,therefore,motivated ustoeditthisuniquebook.WealsosincerelythankalltheFoReCaSTcollaborators andteam-members,namelyDrs.Joaquim M.Oliveira,VitorM.Correlo,David Caballero,BananiKundu,Virginia Brancato,andRicardoPiresfortheir encouragementduringtheentirecourseof actionforeditingthisbook.

TheEditors,

August1st

3B’sResearchGroup,I3Bs-Research InstituteforBiomaterials,Biodegradables, andBiomimetics,UniversityofMinho, Guimara ˜ es,Portugal

Trendsinbiomaterialsfor three-dimensionalcancermodeling

DavidCaballero1,2,RuiL.Reis1,2 andSubhasC.Kundu1,2

13B’sResearchGroup,I3Bs ResearchInstituteonBiomaterials,Biodegradablesand Biomimetics,UniversityofMinho,HeadquartersoftheEuropeanInstituteofExcellenceon TissueEngineeringandRegenerativeMedicine,Guimaraes,Portugal 2ICVS/3B’s PT GovernmentAssociateLaboratory,Braga/Guimara ˜ es,Portugal

Abbreviations

2D Two-dimensions

3D Three-dimensions

4D Four-dimensions

ADMET Adsorption,distribution,metabolism,excretion,andtoxicity

CAFs Cancer-associatedfibroblasts

CDMs Cell-derivedmatrices

CTCs Circulatingtumorcells

ECM Extracellularmatrix

EMEA EuropeanMedicinesAgency

EMT Epithelial-to-mesenchymaltransition

EPR Enhancedpermeabilityandretention

FDA Federaldrugagency

HA Hyaluronicacid

HUVEC Humanumbilicalveinendothelialcells

MMPs Matrixmetalloproteases

PDMS Polydimethylsiloxane

PEG Poly(ethyleneglycol)

TAMs Tumor-associatedmacrophages

TME Tumormicroenvironment

ToC Tumor-on-a-chip

VEGF Vascularendothelialgrowthfactor

Biomaterialsfor3DTumorModeling

DOI: https://doi.org/10.1016/B978-0-12-818128-7.00001-0

1.1.1Invitroandinvivomodels:anoverview

Duringthelastdecade,thetypeofbiologicalassaysthatareusedforextractinginformationabouttheefficiencyofdrugs(includingcancer-relatedcompounds)havedramatically changed.Thereasonisthatalargeamountofthesedrugsfailwhentheyaretestedinpreclinicalassays.Thisisbecausemostpre-clinicaldrugevaluationsrelyonsimplifiedinvitro assaysbasedonflattwo-dimensional(2D)surfaces.Thistypeofassaypoorlycorrelateswith thehumandiseasestate.Therein,thecellsdisplayartificialphenotypesandperturbedgene expressions.Ingeneral,thedrugsresponddifferentlythaninvivo.Exvivo(e.g.,biopsies) andinvivo(e.g.,animal)modelsarealsoemployedfordrugevaluation.Incancerresearch, thesemodelsdisplaycertainadvantagesover2Dsurfaces,suchasagreaterbiologicalcomplexity.Thismakesthedrugstoproducenative-likeresponses.However,exvivomodels typicallylackperfusionandarenotrepresentativeoftheheterogeneityofthetumor.Incontrast,invivo(animal)modelsarehighlydynamicsystems,buttheyareverycostly,lackthe humanimmunesystem,andareethicallycontroversial.Inaddition,regardlessofthetypeof animalmodel,itisextremelydifficulttoinvestigatecellularandphysiologicalinteractionson thistypeofmodels.Moreadvancedtumormodelsarepatient-derivedxenografts,wherea surgicallyresectedtumorsampleofapatientisengraftedintoanimmunodeficientmice. However,thesemodelsareextremelyexpensiveandtime-consuming,theyareassociated withethicalconcerns,andindividualparameterscannotbeisolated [1]

1.1.2Aparadigmshift

Toresolvetheabovementionedissues,aparadigmshifthasoccurredsincethelate 1990sabouthowthecellsarestudied [2,3].Indeed,thereisahugedifferencebetweencells culturedonflatsurfacesand/oronthree-dimensional(3D)environments.Indeed,seminal worksusing3Dinvitromodelshavedemonstratedtheimportantdifferencesinthe phenotypesandactivitiesbetweencellsgrownin2Dsurfacesand3Dcultures.Thelatter recapitulatetheimportantinteractionsbetween—healthyandmalignant—cellsandthe surrounding3Denvironment [4,5].Asaresult,thecancerresearchcommunity,including academicresearchers,pharma/biotechindustries,andclinicians,havestartedtomove towardthethirddimension.Inthisregard,2DassaysintheformoftraditionaltissuecultureflasksorPetridishes,arebeingreplacedbymoresophisticated3Dtissue-engineered cellculturemicroenvironments.Therein,thecellsdisplayseveralsimilaritieswiththe nativescenario,andtherefore,areconsideredasphysiologicallyrelevantenvironments thatbridgethegapbetweenobsoleteflatmaterialsandthenativescenario.Inparticular, theearlyeventsofcancerprogressioncancloselybereproducedin3Dcultureplatforms, wherethecellsdisplayphenotypes,morphodynamics,andgeneexpressionpatternsmuch closertotheinvivophysiologicalmicroenvironment.Inaddition,aspreviouslymentioned,thisisofupmostimportanceduringthedevelopmentofdrugs,wherethecells respondtocompoundsastheydoinvivo.

Finally,thecombinationofcutting-edgenanotechnologieswithadvancesinmaterialsscienceandtissueengineeringtools,havecreatedapowerfultoolboxinthefieldofbiomedical

andhealthsciencescapabletocreateanewgenerationof3Dbiomaterialswithunprecedentedpossibilitiesincancerresearch.Thesebiomaterialsarecapable(1)tocopycatthetremendouscomplexity(physical,biological,structural,biochemical,andrheological)ofthe naturaltumormicroenvironment(TME);(2)toinvestigateinaphysiologicallyrelevantenvironmentthepathogenesisoftumors;and(3)toscreentheefficiencyandpharmacokinetics/ pharmacodynamicsofdrugsinareliablemanner.Alltheseadvancedcapabilitiesmakethis newgenerationof3Dbiomaterialsidealcandidatesfor3Dtumormodeling.

1.1.3Three-dimensionalbiomaterialsforcancermodeling

ThepioneeringworkbytheBisselllabinthisfieldchangedcompletelythevisionand paradigmofhowcancercellsneedtobeculturedinvitro [6].Thethirddimensionreproducesthephysiologicalbehaviorofcellsinthehumanbody.Asanexample,theinhibition of β1integrininhumanbreastcancercellsseededina3Dmodelreversedthemalignant phenotypeofcellsresultingintonormalmorphologiesandfunctionalphenotypes;cells losttheirabnormalshapesandpatternsofgrowth.Thisworkshowsclearlythatthecontext(i.e.,environment)wherecellsareculturedinfluencesthephenotypeandresponseof cells,andinparticular,cancerouscells.Similarly,thewayhowtumorsarecultured invitroalsoinfluencesthemigrationcapacityofcellsandtheirmotilitymechanism [7].In thisregard,newmigrationmodes,whicharenotobservedin2D,arerevealedwhen tumorcellsareseededin3D.Inthiscase,thecellsswitchtoanamoeba-likeformofmigration.Thisnewtypeofmigrationmechanismenhancesthecapacityofcancercellsto squeezetophysicalconstrictionsoftheextracellularmatrix(ECM)andinvadethetumor stroma.

Cancerresearchershavefocusedindevelopingbiomimetic3Dplatformswithcontrolled composition,bioactivefunctionalgroups,architecture,mechanicalproperties,anddegradationrates,capabletoreproducethemechanochemicalandhydrodynamicpropertiesofthe TME,overcomingthelimitationsofstandardbiomaterials.Thesebiomaterialsmayalsodisplay“smart”characteristicsandrespondtothepresenceofanexternalstimulus,suchas pHvariationsortemperature,ortoself-assemblefollowingspecificconfigurations [8].

Typicalbiomaterialsfor3Dcancermodelingincludetheuseofnatural-basedhydrogels orscaffoldsthatarerichinproteinsoftheECM,suchascollagen,gelatin,MatrigelTM,or blendsofthem.Thesebiomaterialsdisplayinterestingmechanochemicalproperties,which canbemodulatedtoreproducethoseofthenativescenario.Thisisofupmostimportance becausesolidevidenceshaveshownthatbothmechanicaland(bio)chemicalcuesregulate multiplecellularfunctionsandfateinaprocessknownas mechanotransduction.However, thesebiomaterialsalsodisplaycertaindrawbacks,suchasthebatch-to-batchvariationthat impedesthedirectcomparisonoftheresultsobtainedbydifferentlaboratories.Othertype ofbiomaterialswithmorecontrolledcompositionandmorereproducibleforcancer modelingincludesilkfibroin,gellangumhydrogels/scaffolds,orblendsofthem [9 12]. Finally,moreadvancedbiomaterialsalsoinclude3Dtopographicalsubstrates,3Dbioprintedscaffolds,ormicrofluidicplatforms.

1.1.4Fromthelabtotheclinic

Three-dimensionalbiomaterial-basedcancermodelshaveattracttheinterestofpharmaceuticalandbiotechnologicalcompanieswhohaverealizedtheirpotentialindeveloping betterdrugsinacheaperway.PlentyofcompaniesaresellingthesetypesofFederalDrug Agency(FDA)-andEuropeanMedicinesAgency(EMEA)-approved3Dbiomaterialplatformsforcancerresearchapplications.However,anddespitethegenerousfundsthat havebeenprovidedbyseveralnationalfundingagenciestoboosttheirdevelopmentand theirinitialexpectations,mostofthecurrentresearchisstillbasedonflatsurfaces.This mayalsoexplainthedecreaseinthedevelopmentofinnovativeanticancerdrugsandtherapiesduringthelastdecade.Newapproachesandcharacteristicsareindeedneededto promotetheiradoptionbythemarket.Inparticular,theintegrationofmaterialsscience withnanotechnology,tissueengineering,andbiosensortechnologyisexpectedtoboost andsolidifythisemergingfieldofresearch.

Overall,3Dbiomaterialsprovideanimprovedinvitromodelforcancerresearch,which reproduceinabettermanner,whathappensinthelivingtissuesofthehumanbody. Theseadvancedmodelsprovidemultipleadvantageswhencomparedwithflat,laborintensive,andexpensiveanimalmodels.Therefore,theymaybridgethegapbetweenboth typeofmodels,eventhough3Dbiomaterialsandrelatedtechnologiesarenotexpectedto completelyreplaceanimalexperimentation.However,theywilldefinitelycontributeto improve(1)ourknowledgeintumorbiologybyprovidingnewinsightsabouttumorpathogenesis;(2)theefficacyofdrugdevelopmentandtesting,and(3)toreduceanimalexperimentation.Inthischapter,wedescribethecurrenttrendsinthefieldof3Dbiomaterials forcancermodeling,theirmainapplications,limitations,anddiscussabouttheirpresent andfuturechallenges.

1.2Thethree-dimensionaltumormicroenvironment

TheTMEisofextremebiochemical,structural(mechanicalandarchitectural),cellular, andrheologicalcomplexity.Asmentionedabove,itisrecognizedasakeyplayerinthe mechanochemicalmechanismoftumorprogressionandmetastasis.Duringthisprocess, thereisasynergisticinteractionbetweenthetumorcellsandthesurrounding3Dstroma thatguidestumorcellinvasion.Thismalignantinteractioncanbereproducedbyengineeringinvitrotumormodelsmadeofbiomimeticandbiodegradable3Dbiomaterials.Inthe following,webrieflydiscussaboutthissynergisticinteraction,aswellashow3DbiomaterialscanbeemployedasamodeltocopycatthecomplexityoftheTME.

1.2.1Thetumoranditsthree-dimensionalenvironment:asynergistic interaction

ThecompositionoftheTMEishighlycomplex [13].Itincludestheprimarytumormass madeofaheterogeneouspopulationofcancercells,stromacells[immunecells—Tlymphocytes,Blymphocytes,NK/NKTcells,tumor-associatedmacrophages(TAMs), myeloid-derivedsuppressorcellsdendriticcells,tumor-associatedneutrophils—,tumor

vasculatureandlymphaticcells,cancer-associatedfibroblasts(CAFs),pericytes,and/or stemcells],theECM,andadiversevarietyofsecretedfactors.Anexcellentsummaryof thefunctionofthesecellsintheTMEisprovidedinRef. [13].Thereisastronginterplay betweenthetumorandstromalcells,whichhaveadynamicandtumor-promotingfunctionduringallstagesoftumorigenesis.Indeed,thecontributionoftheTMEintumor progressioniswidelyrecognized [14 16].Thisisexemplifiedduringtheinitialstepsof tumorprogression,whencellsescapefromtheprimarytumorandmigratealongtheECM fibers(mainlymadeofcollagenandelastin)thathavebeenreorganizedandcross-linked intoparallelbundlesbyCAFs.Thesecellseventuallyintravasateintotheblood/lymphatic vessels,whichdisplayanenhancedpermeability.Afterintravasation,cancercellscirculate alongthevasculature.Thesecellsarecoinedas circulatingtumorcells (CTCs),whicheventuallyextravasateandinvadeatadistanttissueororgan.Finally,thesecellsproliferate andestablishasecondarytumorsite.

Asdescribedabove,theECMoftheTMEhasacriticalroleintumorprogression [17 19].Itnotonlyprovidesaphysicalenvironmentforthecellstoadherebutalsoisfundamentalforthedirectedmigrationofcancercells.Italsocontainskeycompoundsthat interactwithcellsandprovidesthetissuewithitsstiffness.TheTMEalsocontainsother typesofbiochemical,structural,andrheologicalcuesthatcontributetocarcinogenesis. Biochemicalcuesincludeadiversevarietyofcytokines,chemokines,growthfactors,and inflammatory/matrixremodelingenzymes.Thepresenceofmatrixmetalloproteases (MMPs)isofparticularinterest.Theyhavethefunctionofdegradingandremodelingthe ECM,andaresecretedbycancercells,TAMs,andCAFs.Becauseofthisdegradation,chemokines,growthfactors,andangiogenicfactors[e.g.,vascularendothelialgrowthfactor (VEGF)]arereleasedintotheTME.StructuralcuesincludetherigidityoftheECMaswell asitsarchitecture.Thetumoristypicallystifferthanthesurroundinghealthytissueasa consequenceofanincreasedECMdepositionbyCAFs,eventhoughcancercellsaresofter thantheirhealthycounterparts [20].Finally,rheologicalcuesincludethehydrodynamic propertiesoftheTME,suchasanenhancedinterstitialfluidflow,whichplaysafundamentalroleintriggeringtheinvasionofcellsintothevasculature.Overall,allthesecues synergizewiththecellsandregulatealltheeventsoccurringinthecascadeoftumor growthandmetastasis.

Finally,itisworthnotingthattheimportanceoftheTMEintumordisseminationisso highthattherapiestargetingthetumorECMhavebecomeverypopulartoimprovethe responseofthetumortochemotherapyandtheaccessofdrugs [21].Indeed,recentevidenceshaveshownthattheTMEcanmodulatethetherapeuticresponsesandresistance totherapies [22].ThisconfirmstheimportanceofmodelingtheTMEforthedesignof moreefficientanticancerdrugs.

1.2.2Biomaterialsasamodelofthetumorniche

DespitetheacceptedimportanceoftheTMEinthegrowthandprogressionofatumor, itsexactroleisnotwellunderstoodyet.ThisismainlyaconsequenceofthehighcomplexityoftheTMEanditsconstituents,whichmakesdifficulttoidentifythemechanisticdeterminantsofdiseaseprogression.Forthisreason,largeeffortshavebeeninvestedin

FIGURE1.1 Schematicsofthedifferenttypeofmodelstypicallyemployedincancerresearchandother biomedical-relatedapplications.

modelingwithprecisionthehighcellular,biochemical,andstructuralheterogeneityofthe tumorniche.Standardtumormodelsbasedonflatsurfacescoatedwithpurifiedproteins oftheECMcannotreproducethishighheterogeneity,andinparticular,the3Darchitectureofthetumorniche(see Fig.1.1).Thisresultsinalimitedinformationabouttumoretiology,diseasemechanism,anddrugefficiency.Incontrast,engineered3Dbiomaterials canreproducebettertheintrinsicpropertiesofthenativeTME.Forthis,theintegrationof innovativeTEstrategies,nanotechnologytools,biosensingtechnologies,andmaterial sciences,haspermittedthedesignanddevelopmentofbiomimetic3Dbiomaterialsfor cancerresearchwithunprecedentedproperties.These3Dbiomaterialscanbeengineered toprovideprecisecontrolonthe(1)composition,(2)mechanicalproperties,(3)selfassemblingproperties,and(4)degradabilityofthebiomaterialthatcouldnotbeachieved withstandard2Dcultures.

Duringthelastdecade,3Dinvitrocancermodelshavewidelybeenemployedtounderstandbetterthetumorbiologyanddrugefficiency.Indeed,thereisalargebodyofliteraturedescribing3D-basedbiomaterialsasmodelsofthetumornichefordifferent applications.Typically,3Dbiomaterialsfortumormodelingcanbeclassifiedinto(1) scaffold-based or(2) scaffold-free.Theformersincludestiffbiomaterialsactingassupporting structuresandhydrogels,whereasthelatterincludemulticellulartumorspheroids [23] or organoids [24].Otherexisting3D-basedmethodstypicallyemployedincancerresearch includematrix-basedmodels,microcarriers,ortopographicallystructuredsurfaces [25] (see Fig.1.1).Allthesemethodshaveincommonthattheyprovidetocancerandstromal cellsabiomimetic3Dmulticellularmicroenvironmentimitatingthenativescenario. Overall,thesesystemsmaybridgethegapbetweentheconventional2Dinvitroandanimaltestingmodels [26]

1.2.2.1Scaffold-basedbiomaterials

Invivo,tumorcellsaresupportedbyacomplex3DECM,whichinfluencestheir responsetoexternalstimuli.Thisnativephysicalmicroenvironmentcanbemimicked usingscaffold-basedbiomaterials,whichprovide3Darchitecturalsupporttotumorcells [10].Inthiscondition,tumorcellsdisplayphenotypesreminiscentofinvivocondition,

andtherefore,theseareidealplatformsfordrugdiscovery,screening,andtestingapplications [11,27 29].Asanexample,MCF7breastcancercellsseededinto3Dchitosanscaffoldsandexposedto tamoxifen,anantiestrogendrugtypicallyemployedinthetreatment ofthistypeoftumor [30],producedlactatelevelssimilartothoseobservedinvivo. Interestingly,theIC50 was10-foldhigherforthe3Dmodelthanthatoftheflatsurface.

Scaffold-basedbiomaterialsarealsoemployedasmodelstoinvestigatetheinteraction betweentumorcellsandothercelltypes(malignantandhealthy),suchasimmunecells, endothelialcells,stemcells,andothers [12].Typically,thematerialusedforthefabrication ofsuchscaffold-based3Dmodelsismadeofasinglecomponentorablendofdifferent materials [9].Indeed,theselectionofthismaterialiscrucialtocopycatthemechanochemicalpropertiesofthenativeECM.Aspecifictypeofscaffoldare hydrogels,whicharecrosslinkednetworksofpolymericchainscontaininghighamountofwater;thisfacilitatesthe exchangeofnutrientsandcellularmetabolites.Hydrogelshaveexcellentmechanicalproperties,whichcanbemodulatedtypicallybychangingpolymerconcentrationsorcrosslinkerdensitiestomatchthoseofthetargettissuesorECMs [31].Typically,themechanical propertiesofhydrogelsare,ingeneral,static;thatis,theydonotevolveovertime.Others displayreversiblepropertiesbyincorporatingreversiblechemistries,whichallowthemto reproducethedynamicpropertiesofthenativeECM [32].Oneexampleofsuchadynamic behavioristumorformation,wherethereisacontinuousstiffeningoftheECM [33] Importantly,specificbioactivemoietiescanbeincorporatedwithinthehydrogel,suchas adhesivesites,toinfluencethebehavioroftheencapsulated(cancer)cellsormatrixmetalloproteinases(MMPs).ThelattermakethebiomaterialsusceptibletodegradationbycellsecretedproteasesmimickingthenaturallyoccurringremodelingoftheECMbycancer cells.

Scaffold-basedmaterialscanbeclassifiedas natural,synthetic,orhybrid:

• Natural-derived:Thistypeofbiomaterialsdisplaybetterbiocompatibility, biodegradability,andbioavailability.Theyalsohaveahighersimilaritytothenative ECM,andtherefore,cellsinteractbetterwiththistypeofbiomaterials.Inaddition,the mechanicalandphysicochemicalpropertiesofnatural-derivedhydrogelscanbe modulated,andtheirmorphologyadapted.TypicalexamplesincludenaturalECMderivedproteins,suchascollagen,laminin,hyaluronicacid(HA),fibrinogen,or reconstitutedbasementmembrane,suchasMatrigel TM (Table1.1).However,these biomaterialspresentcertainlimitations,suchasbatch-to-batchvariability,complex molecularcomposition,oruncontrolleddegradation.Inaddition,theyshowalimited abilitytoaltertheirstiffnessandthedensityofcelladhesionpeptides.Thismakes challengingtocontroltheinfluenceofspecificparametersoftheECMoncancercells. Othertypeofnatural-derivedbiomaterialsincludeothertypesofproteins,suchassilk fibroin [29],andpolysaccharides,suchaschitosan,gellangum,oralginate(Table1.1). Thesebiomaterialshaveabroaderrangeofchemicalandmechanicalproperties. However,theylackcelladhesionsitesandoftenrequirechemicalmodificationfor cross-linking.

• Synthetic-derived:Thistypeofmaterialstypicallydisplaybettermechanicalproperties comparedtonaturalones.Theyare,ingeneral,easiertosynthesizethantheirnatural counterpartsandprovidebetterexperimentalcontroloverbiochemicalandmechanical

TABLE1.1 Examplesofnaturalandsyntheticoriginbiomaterialsusedincancerresearch.

MaterialCharacteristicsandapplications

Naturalorigin

MatrigelTM

Derivedfrommousetumor;containsangiogenicandtumorpromotingfactors; cytocompatibility;celladhesionsites;tunablephysicalproperties;possiblepresenceof undefinedsubstances.

CollagenIMostprominentECMproteinoftheTME;multiplecross-linkingmethods;biocompatibility; biodegradability;angiogenesispotential.

FibrinogenBloodclotting;cellularandmatrixinteractions;neoplasia;architecturemimicsnativeECM;3D microenvironmentforcancergrowth.

HAGlycosaminoglycanfoundinextracellulartissueinmanypartsofbody;majorcomponentof nativebrainECM;usedforstudyingtumormigrationprocesses.

ChitosanAnalysisofinteractionofprostatecancertumorcellswithimmunecells;formationoftumor spheroids.

AlginatePropertiesforcelltransplantation,drugdelivery,andTE;suitableforhydrogelmicrospheres; promotesconversionofculturedcancercellstoamoremalignantinvivo-likephenotype; nonadhesivetocells.

Cell-derivedmatrices (CDMs) Distinctlydifferentcellmorphology,aggregationpattern,proliferationprofile,andinvasive potential;however,thesematricesdonotfullyrepresentthecompositionandstructureofthe TME.

SilkfibroinUniquemechanicalproperties;goodbiocompatibility;well-controlleddegradability;versatile processability.

AgaroseAmenablemechanicalandbiologicalproperties;morestablethantraditionalnaturalhydrogels.

Syntheticorigin

PolyethyleneglycolBiocompatibility;high-watercontent;multitunableproperties;specificbiologicalfunctionalities canbecovalentlyincorporated.

Poly(lactic -co-glycolic) acid Highlyporousscaffolds;convenienttohandle;amenabletolarge-scaleuse.

Poly ε-caprolactoneBiologicallyinertsyntheticpolymer;highporosity;largesurfacearea:volumeratioforcellular attachment;tunablefiberdiameter;lowcost.

SyntheticpeptidesControlledaminoacidcompositionforeasyincorporationofspecificbiologicalrelevant ligands.

AdaptedfromCarvalhoMR,etal.Evaluatingbiomaterial-andmicrofluidic-based3Dtumormodels.TrendsBiotechnol2015;33(11):667 78 [1] withpermissionofElsevier.

propertiesoftheTME.Theyalsodisplaylowbatch-to-batchvariabilityandaremore reproducible.Examplesofsynthetichydrogelsusedforbiomedicalapplicationsinclude poly(acrylamide),poly(ethyleneglycol)(PEG),poly(vinylalcohol),poly(methacrylic acid),orpoly(acrylicacid),andtheirderivatives(Table1.1).However,synthetic-derived biomaterialslacknaturalcelladhesionsitesand,ingeneral,arenotremodeledbycells. However,theycaneasilybefunctionalizedwithwell-controlleddensityofcelladhesion ligands,likeRGDorMMP-sensitivepeptides.

• Hybrid(bio)materials:Thistypeofmaterialincludesthecombinationoftwoormore biomaterialsfromnaturaland/orsyntheticorigin.Therefore,theresultingbiomaterial individuallyorsynergisticallydisplaysalltheadvantagesoftheconstituentpartsor provideanaddedvalue,suchasthepresenceofspecificmoieties.Insomecases,oneof thematerialsisusedasasacrificialtemplatetoengineermicrostructures,suchas channels,forcellstoadhereorforflowingafluid.HybridbiomaterialsincludePEGconjugatedproteins,biofunctionalizedalginate,orothertypeofblends,suchasgellan gumandsilkfibroin [9],whichhasrecentlyshownitsperformancetomodel osteosarcoma.Overall,hybridbiomaterialsprovidecombinatorialadvantagesofboth naturalandsyntheticmaterialsforthedevelopmentof3Dbioengineeredscaffoldsfor cancerresearchapplications.

Altogether,scaffold-basedbiomaterialscanbeengineeredmechanically,chemically, andstructurallytomodulatethemorphodynamicsofcellsaswellastomimicthe3D architectureofthenativeTME.

1.2.2.2Matrix-based

Matrix-basedbiomaterialstrytoreproducethefibrillarstructureandcompositionofthe nativeECMnetwork.Thiscategoryof3Dbiomaterialcanagainbeofnatural-orsynthetic originandincludeadiversesubsetoffabricationmethods.Themainmethodsthoughare basedon(1)cell-derivedmatrices(CDMs),(2)decellularizedtissues,and(3)electrospun meshwork.

• CDMs:ThesearenaturalECMsthataredepositedbycells,typicallyfibroblasts,on tissueculturedishes,whichcloselymimictherandomstromalfiberorganizationand molecularcontentofthenativeECMs [34].CDMsprovidearichmolecularcontent, whichissimilartotheinvivoscenario,withthicknessesthatareintheorderof 10 20 μm.Thesecuesstimulatesignalingpathwaysthatregulateadhesion,survival, proliferation,polarity,andcellmigration.Aderivationofthisapproachistheuseofa guidingtemplatetoguidethegrowthof3Dmatriceswithspecificmorphologies.Thisis ofspecialrelevancewhentryingtomimictheTME,wherethecollagenfibersare alignedintoparallelbundles.Thisapproachwasrecentlyfollowedbycombiningthe confluentcultureofNIH3T3fibroblastswithmicrofabricatedguidingtemplatesto directthe3Dgrowthofwell-definedextracellularnetworks [35].TheresultingECM modelrecapitulatedthestructuralandbiomolecularcomplexityoffeaturestypically foundinvivo.Overall,CDMscanbeemployedasa3Dmodeltoreproducethe architectureandmechanochemicalpropertiesoftheTME.Importantly,bymanipulating thecultureconditions(e.g.,culturemediacompositionandadditives,morphologyof theculturesubstrates,celltypes,cultureperiods,passagenumber,andothers),a significantcontroloverCDMcompositionandmicrostructurecanbeachieved.Forthis, CAFscanbeusedtoobtainaCDMwithtumor-likeproperties.

• Tissue/organ-deriveddecellularizedmatrices:Decellularizedtissuesandorgansare extensivelyusedintissueengineeringandregenerativemedicineapplications.This methodisbasedontheremovalofthecellularcontentofatissueororganresulting withonlythematrixcomponent.Thiscontainsasimilarcompositionand3D architectureofthenativeECM.Forthis,differentdecellularizationprotocolshavebeen

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.