Biomass, biofuels, biochemicals: circular bioeconomy: technologies for waste remediation sunita varj

Page 1


https://ebookmass.com/product/biomass-biofuels-biochemicals-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biomass, Biofuels, Biochemicals – Biochemicals and Materials Production From Sustainable Biomass Resources Hu Li

https://ebookmass.com/product/biomass-biofuels-biochemicalsbiochemicals-and-materials-production-from-sustainable-biomassresources-hu-li/

ebookmass.com

Biomass, Biofuels, Biochemicals: Advances in Enzyme Catalysis and Technologies 1st Edition Sudhir P. Singh (Editor)

https://ebookmass.com/product/biomass-biofuels-biochemicals-advancesin-enzyme-catalysis-and-technologies-1st-edition-sudhir-p-singheditor/

ebookmass.com

Biomass, Biofuels, Biochemicals : Microbial Fermentation of Biowastes Le Zhang

https://ebookmass.com/product/biomass-biofuels-biochemicals-microbialfermentation-of-biowastes-le-zhang/

ebookmass.com

Structural engineering handbook 5th Edition Edwin Henry Gaylord (Editor)

https://ebookmass.com/product/structural-engineering-handbook-5thedition-edwin-henry-gaylord-editor/

ebookmass.com

Visualization, Modeling, and Graphics for Engineering Design 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/visualization-modeling-and-graphics-forengineering-design-2nd-edition-ebook-pdf-version/

ebookmass.com

A Handbook for Wellbeing Policy-Making: History, Theory, Measurement, Implementation, and Examples Frijters

https://ebookmass.com/product/a-handbook-for-wellbeing-policy-makinghistory-theory-measurement-implementation-and-examples-frijters/

ebookmass.com

Christmas at Home Carolyn Brown

https://ebookmass.com/product/christmas-at-home-carolyn-brown-3/

ebookmass.com

https://ebookmass.com/product/%e8%bf%99%e6%89%8d%e6%98%af%e4%b8%ad%e5%

ebookmass.com

Smith’s Anesthesia for Infants and Children 9th Edition

https://ebookmass.com/product/smiths-anesthesia-for-infants-andchildren-9th-edition-peter-j-davis/

ebookmass.com

https://ebookmass.com/product/etextbook-978-1305505490-macroeconomicsa-contemporary-introduction/

ebookmass.com

BIOMASS,BIOFUELS,BIOCHEMICALS

CircularBioeconomy:TechnologiesforWaste

Remediation

DistinguishedScientist,CentreforInnovationandTranslationalResearch, CSIR-IndianInstituteofToxicologyResearch,Lucknow,India

BIOMASS,BIOFUELS, BIOCHEMICALS

CircularBioeconomy: TechnologiesforWaste

Remediation

Editedby

SUNITA VARJANI

ScientificOfficer,GujaratPollutionControlBoard,Gandhinagar,Gujarat,India

ASHOK PANDEY

DistinguishedScientist,CentreforInnovationandTranslationalResearch,CSIR-IndianInstituteofToxicology Research,Lucknow,India

MOHAMMAD J.TAHERZADEH

Professor,SwedishCentreforResourceRecovery,UniversityofBora ˚ s,Bora ˚ s,Sweden

HUU HAO NGO

ProfessorofEnvironmentalEngineering,UniversityofTechnologySydney,Sydney,Australia

R.D.TYAGI

ChiefScientificofficer,BOSK-Bioproducts,QuebecCity,Quebec,Canada

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-88511-9

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

SeniorAcquisitionsEditor: KatieHammon

EditorialProjectManager: AndreaDulberger

ProductionProjectManager: JoyChristelNeumarinHonestThangiah

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

Contributorsix

Prefacexiii

Solidwasteremediationand sustainabilityinacircular bioeconomy

1.Sustainablebiowasterecyclingtoward zerowasteapproaches

XiunaRen,TaoLiu,YueZhang,XingChen,MukeshKumarAwasthi, andZengqiangZhang

1Introduction3

2Biowastegeneration,collection,and characteristics5

3Biowasterecyclingandresourcerecovery7

4Publicengagementfortheimplementationof wastereductionandrecyclingpolicies8

5Possibletechnologyandmanagementoptionfor biowaste9

6Treatmentandusesofashandbiowasteresidues afterprocessing16

7Bio-basedrecyclingandcirculareconomy17

8Perspectivesforacircularbioeconomy19

9Conclusions19 References19

2.Compostingasasustainabletechnology forintegratedmunicipalsolidwaste management

TaoLiu,HongyuChen,YuwenZhou,SanjeevKumarAwasthi, ShiyiQin,HuiminLiu,ZengqiangZhang,AshokPandey, SunitaVarjani,andMukeshKumarAwasthi

1Introduction23

2Understandingtheprocesstowardsustainable wastemanagementapproach25

3Typesofcompostingandtheirintegratedprocess27

4Roleofcompostingforattenuationofpersistent organicandinorganiccompounds29

5Thecriticalaspectsofcompostingprocess improvementtowardanovelcleancomposting strategy30

6Sustainabilityassessmentandtechnologygapof cleanercomposting31

7Impactofcompostapplicationinsoilbiological propertiesandclimatechange33

8Economicfeasibilityanalysisofcomposting34

9Cerspectivesforcircularbioeconomy35

10Conclusions35 Acknowledgments36 References36

3.Integratedterrestrialweedmanagement andgenerationofvaluableproductsina circularbioeconomy

KrishnaChaitanyaMaturi,IzharulHaq,andAjayS.Kalamdhad

1Introduction41

2Plantsmorphology42

3Weeds43

4Adverseeffectsandtoxicityassessmentofterrestrial weedsoncrops46

5Weedmanagementpractices50

6Perspectivesforcircularbioeconomy57

7Conclusions60 References60

4.Hydrothermalliquefactionofbiomass forthegenerationofvalue-added products

J.Nallasivam,P.FrancisPrashanth,andR.Vinu

1Introduction65

2Roleofoperatingparametersinhydrothermal liquefactionprocesses66

3Feedstocksforhydrothermalliquefaction69

4Coliquefaction74

5Typesofreactorsforhydrothermalliquefaction processes74

6Hydrothermalliquefactionprocessintegration withexistingrefineries80

7Characteristicsofhydrothermalliquefaction products82

8Applicationsofhydrothermalliquefaction products87

9Processeconomics92

10Challengesandopportunities94

11Perspectivesforcircularbioeconomy96

12Conclusions98 References98

5.Circularbioeconomyinagriculturalfood supplychainandvalueaddition

ArvindKumar,V.DavidChellaBaskar,UmanathMalaiarasan, TanujMisra,ManmohanDobriyal,andAnilKumar

1Introduction109

2Presentsituationofagriculturalproduction andconsumptionproblems110

3Linearfoodproductionsystem(LFS)110

4Circulareconomyandfoodsupplychain116

5Perspectivesforcircularbioeconomy119

6Conclusions119 References120

II

Industrialwastewaterremediation andsustainabilityinacircular bioeconomy

6.Sustainableconversionoffoodwaste intohigh-valueproductsthrough microalgae-basedbiorefinery

Jia-XingGuo,Long-LingOuyang,Zhi-GangZhou,CarolSzeKiLin, andZhengSun

1Introduction125

2Classificationoffoodwaste126

3Treatmentmethods129

4Microalgae-basedbioconversionoffoodwaste132

5Techno-economicassessment140

6Perspectivesforacircularbioeconomy145

7Conclusions146

Acknowledgment146

References146

7.Sustainablewastewaterremediation technologiesforagriculturaluses

AnitaSingh,KaushikGautam,andMadhoolikaAgrawal

1Introduction153

2Wastewatergeneration154

3Wastewatertreatmenttechnologiesforusein agriculture157

4Policiesandguidelinesforwastewatertreatmentfor agriculturaluses167

5Perspectivesforcircularbioeconomy168

6Conclusions172

Acknowledgments172

References172

8.Sustainableaquaculturewastewater remediationthroughdiatomandbiomass valorization

BhartiMishraandArchanaTiwari

1Introduction181

2Compositionofaquaculturewastewater184

3Cultivationofdiatomsinaquaculture184

4Roleofdiatomsinaquaculturewastewater remediation187

5Potentialapplicationofdiatomsbasedaqua feed188

6Biocontrolefficacyofdiatoms191

7Diatomsasasourceofhigh-valueproducts194

8Diatomsforbiofuels195

9Perspectivesforcircularbioeconomy196

10Conclusions198

Acknowledgment198

References198

9.Membranebioreactorforthetreatment ofemergingpharmaceuticalcompounds inacircularbioeconomy

PunitKumar,MrinalKantiMandal,SupriyaPal,HirokChaudhuri, andKashyapKumarDubey

1Introduction203

2Membranebioreactor(MBR)205

3Membranefoulingmechanisms206

4Methodstocontrolthemembranefouling208

5Removalofemergingpharmaceuticalcompounds usingMBR210

6Factorsaffectingmembranebioreactors (MBRs)212

7Comparisonofmembranebioreactors(MBRs)with conventionalprocesses215

8Perspectivesforacircularbioeconomy215

9Conclusions216

Acknowledgments217

References217

10.Circularbioeconomyperspectiveof agro-waste-basedbiochar

MuhammadKashifShahid,AyeshaKashif,YounggyunChoi, SunitaVarjani,MohammadJ.Taherzadeh,andPrangyaRanjanRout

1Introduction223

2Feedstockforbiocharproduction224

3Conversiontechnologies227

4Applicationsofbiochar228

5Environmentalimpactofbiochar233

6Perspectivesforcircularbioeconomy234

7Conclusions235

Acknowledgments235 References236

11.Sustainableanaerobictechnologiesfor biogasandbiohythaneproduction

YuQin,HuiCheng,andYu-YouLi

1Introduction245

2Fundamentalsinanaerobictechnologies246

3Operatingfactors247

4Anaerobiccodigestion249

5Anaerobicmembranebioreactor253

6Biohythaneproduction259

7Perspectivesforcircularbioeconomy263

8Conclusions264

Acknowledgment265

References265

12.Microbialbiomassforsustainable remediationofwastewater

NeeluNawani,AminurRahman,andAbulMandal

1Introduction271

2Typesofwastewaters,sourcesandtheireffectonthe environment272

3Microbialtechnologiesusedinwastewater remediationwithspecialreferencetoheavy metals276

4Commerciallyviabletechnologiesforwastewater remediation279

5Newdimensionstowastewatertreatmentandallied processes284

6Perspectivesforacircularbioeconomy286

7Conclusions288

Acknowledgment288

References288

13.Integratedtechnologiesfor thetreatmentofandresourcerecovery fromsewageandwastewaterusingwater hyacinth

ManjushaAnipeddi,SameenaBegum,andGangagniRaoAnupoju

1Introduction293

2Harvestingofwaterhyacinth295

3Utilizationofwaterhyacinthbiomass305

4Perspectivesforcircularbioeconomy310

5Conclusions311

Acknowledgments312 References312

14.Techno-economicanalysisand life-cycleassessmentofvermi-technology forwastebioremediation

SanketDeyChowdhury,RupamBandyopadhyay,and PuspenduBhunia

1Introduction315

2Mechanismofvermi-technology316

3Applicationofvermi-technology321

4Life-cycleassessment(LCA)studieson vermi-technology330

5Environmentalbenefitsof vermi-technology337

6Economicalperspectivesandlinkagetocircular bioeconomy339

7Conclusions343

Acknowledgment344

References344

15.Integratedtechnologiesforthe remediationofpaperindustrywasteina circularbioeconomy

IzharulHaq,AnshuSingh,andAjayS.Kalamdhad

1Introduction351

2Anoverviewofpaperindustry352

3Paperindustrywaste352

4Remediationofwastegeneratedfrompaper industry353

5Developmentofvaluableproductfromwaste356

6Challenges357

7Perspectivesforcircularbioeconomy357

8Conclusions358

Acknowledgment359 References359

16.Constructedwetlandsystemforthe treatmentofwastewaterinacircular bioeconomy

RajatChandrakantPundlik,RajeshRoshanDash,and PuspenduBhunia

1Introduction365

2Constructedwetlands367

3Enhancedconfigurationforperformance growth370

4Hybridconstructedwetlandsystemsforacircular bioeconomyapproach374

5Environmentbenefitsofconstructedwetlands379

6Challengesofconstructedwetlands380

7Perspectivesforacircularbioeconomy380

8Conclusions382 References383

17.Productionandenvironmental applicationsofactivatedsludgebiochar

AbhishekGupta,AnuradhaSingh,TalatIlyas,PankajChowdhary, andPreetiChaturvedi

1Introduction387

2Processingofactivatedsludge388

3Valorizationofbiowaste390

4Applicationsofactivatedsludgebiochar392

5Perspectivesforcircularbioeconomy396

6Conclusions398

Conflictsofinterests398

Acknowledgments399 References399

18.Waste-derivedvolatilefattyacids forsustainableruminantfeed supplementation

AmirMahboubi,SwarnimaAgnihotri,ClarisseUwineza, UmarinJomnonkhaow,andMohammadJ.Taherzadeh

1Introduction407

2Organicwastes,digestion,andvolatilefattyacids inacircularbioeconomy409

3Ruminaldigestionandfermentation411

4Volatilefattyacidsasfeedadditivesinruminant diet413

5Waste-derivedvolatilefattyacids(VFA)417

6Perspectivesforcircularbioeconomy423

7Conclusions424 References424

19.Sustainablemanagementofalgal bloomsinpondsandrivers

OmarAshrafElFar,NurulSyahirahMatAron,KitWayneChew,and PauLokeShow

1Introduction431

2Characteristicsandtypesofalgae432

3Potentialofconvertingalgaeinto bioresources432

4Hazardsofalgalbloom433

5Harvestingofalgaefromalgalbloomsites436

6Extractionofbioproductsfromalgalblooms437

7Strategiestoharvestandutilizealgalbloom biomassinindustry5.0438

8Perspectivesforcircularbioeconomy438

9Conclusions440

References440

Index445

Contributors

SwarnimaAgnihotri SwedishCentrefor ResourceRecovery,UniversityofBora ˚ s,Bora ˚ s, Sweden

MadhoolikaAgrawal CenterofAdvanced StudyinBotany,InstituteofScience,B.H.U., Varanasi,UttarPradesh,India

ManjushaAnipeddi Bioengineeringand EnvironmentalSciences(BEES)Division, DepartmentofEnergyandEnvironmental Engineering(DEEE),CSIR-IndianInstituteof ChemicalTechnology,Hyderabad,India

GangagniRaoAnupoju Bioengineeringand EnvironmentalSciences(BEES)Division, DepartmentofEnergyandEnvironmental Engineering(DEEE),CSIR-IndianInstituteof ChemicalTechnology,Hyderabad;Academy ofScientificandInnovativeResearch(AcSIR), Ghaziabad,India

NurulSyahirahMatAron Departmentof ChemicalandEnvironmentalEngineering, FacultyofScienceandEngineering,University ofNottinghamMalaysia,Semenyih,Malaysia

MukeshKumarAwasthi CollegeofNatural ResourcesandEnvironment,NorthwestA&F University,Xianyang,China

SanjeevKumarAwasthi CollegeofNatural ResourcesandEnvironment,NorthwestA&F University,Xianyang,China

RupamBandyopadhyay Schoolof Infrastructure,IndianInstituteofTechnology, Bhubaneswar,Odisha,India

V.DavidChellaBaskar RaniLakshmiBai CentralAgricultureUniversity,Jhansi,India

SameenaBegum Bioengineeringand EnvironmentalSciences(BEES)Division, DepartmentofEnergyandEnvironmental Engineering(DEEE),CSIR-IndianInstituteof ChemicalTechnology,Hyderabad,India

PuspenduBhunia SchoolofInfrastructure, IndianInstituteofTechnology,Bhubaneswar, Odisha,India

PreetiChaturvedi AquaticToxicology Laboratory,EnvironmentalToxicologyGroup, CouncilofScientificandIndustrialResearchIndianInstituteofToxicologyResearch (CSIR-IITR),Lucknow,UttarPradesh,India

HirokChaudhuri DepartmentofPhysics, NationalInstituteofTechnology,Durgapur, India

HongyuChen CollegeofNaturalResources andEnvironment,NorthwestA&FUniversity, Xianyang,China

XingChen CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

HuiCheng SchoolofEnvironmentaland ChemicalEngineering,ShanghaiUniversity, Shanghai,China

KitWayneChew SchoolofEnergyand ChemicalEngineering,XiamenUniversity Malaysia,Sepang,Malaysia

YounggyunChoi Departmentof Environmental&ITEngineering,Chungnam NationalUniversity,Daejeon,SouthKorea

PankajChowdhary AquaticToxicology Laboratory,EnvironmentalToxicology Group,CouncilofScientificandIndustrial Research-IndianInstituteofToxicology Research(CSIR-IITR),Lucknow,UttarPradesh, India

RajeshRoshanDash SchoolofInfrastructure, IndianInstituteofTechnology,Bhubaneswar, Odisha,India

SanketDeyChowdhury Schoolof Infrastructure,IndianInstituteofTechnology, Bhubaneswar,Odisha,India

ManmohanDobriyal RaniLakshmiBaiCentral AgricultureUniversity,Jhansi,India

KashyapKumarDubey Bioprocess EngineeringLaboratory,Schoolof Biotechnology,JawaharlalNehruUniversity, NewDelhi,India

OmarAshrafElFar SchoolofPharmacy,Faculty ofScienceandEngineering,Universityof NottinghamMalaysia,Semenyih,Malaysia

KaushikGautam CenterofAdvancedStudyin Botany,InstituteofScience,B.H.U.,Varanasi, UttarPradesh,India

Jia-XingGuo KeyLaboratoryofExploration andUtilizationofAquaticGeneticResources, MinistryofEducation;InternationalResearch CentreforMarineBiosciences,Ministryof ScienceandTechnology;National DemonstrationCentreforExperimental FisheriesScienceEducation,ShanghaiOcean University,Shanghai,China

AbhishekGupta AquaticToxicology Laboratory,EnvironmentalToxicologyGroup, CouncilofScientificandIndustrialResearchIndianInstituteofToxicologyResearch (CSIR-IITR),Lucknow,UttarPradesh,India

IzharulHaq DepartmentofCivilEngineering, IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

TalatIlyas AquaticToxicologyLaboratory, EnvironmentalToxicologyGroup,Councilof ScientificandIndustrialResearch-Indian InstituteofToxicologyResearch(CSIR-IITR), Lucknow,UttarPradesh,India

UmarinJomnonkhaow Departmentof Biotechnology,FacultyofTechnology,Khon KaenUniversity,KhonKaen,Thailand

AjayS.Kalamdhad DepartmentofCivil Engineering,IndianInstituteofTechnology Guwahati,Guwahati,Assam,India

AyeshaKashif DepartmentofSeniorHealth Care,EuljiUniversity,Daejeon,SouthKorea

AnilKumar RaniLakshmiBaiCentral AgricultureUniversity,Jhansi,India

ArvindKumar RaniLakshmiBaiCentral AgricultureUniversity,Jhansi,India

PunitKumar DepartmentofMorphologyand Physiology,KaragandaMedicalUniversity, Karaganda,Kazakhstan

Yu-YouLi DepartmentofCiviland EnvironmentalEngineering,GraduateSchool ofEngineering,TohokuUniversity,Sendai, Japan

CarolSzeKiLin SchoolofEnergyand Environment,CityUniversityofHongKong, Kowloon,HongKong

HuiminLiu CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

TaoLiu CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

AmirMahboubi SwedishCentreforResource Recovery,UniversityofBora ˚ s,Bora ˚ s,Sweden

UmanathMalaiarasan MadrasInstituteof DevelopmentStudies,Chennai,India

AbulMandal SchoolofBiosciences,University ofSkovde,Skovde,Sweden

MrinalKantiMandal DepartmentofChemical Engineering,NationalInstituteofTechnology, Durgapur,India

KrishnaChaitanyaMaturi DepartmentofCivil Engineering,IndianInstituteofTechnology Guwahati,Guwahati,Assam,India

BhartiMishra DiatomResearchLaboratory, AmityInstituteofBiotechnology,Amity University,Noida,UttarPradesh,India

TanujMisra RaniLakshmiBaiCentral AgricultureUniversity,Jhansi,India

J.Nallasivam DepartmentofChemical EngineeringandNationalCenterfor CombustionResearchandDevelopment, IndianInstituteofTechnologyMadras, Chennai,India

NeeluNawani MicrobialDiversityResearch Centre,Dr.D.Y.PatilBiotechnologyand BioinformaticsInstitute,Dr.D.Y.Patil Vidyapeeth,Pune,India

Long-LingOuyang KeylaboratoryofEast ChinaSeaFisheryResourcesExploitation, MinistryofAgricultureandRuralAffairs,East

ChinaSeaFisheriesResearchInstitute,Chinese AcademyofFisherySciences,Shanghai,China

SupriyaPal DepartmentofCivilEngineering, NationalInstituteofTechnology,Durgapur, India

AshokPandey CentreforInnovationand TranslationalResearch,CSIR-IndianInstitute ofToxicologyResearch,Lucknow,India

P.FrancisPrashanth DepartmentofChemical EngineeringandNationalCenterfor CombustionResearchandDevelopment, IndianInstituteofTechnologyMadras, Chennai,India

RajatChandrakantPundlik Schoolof Infrastructure,IndianInstituteofTechnology, Bhubaneswar,Odisha,India

ShiyiQin CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

YuQin DepartmentofCivilandEnvironmental Engineering,GraduateSchoolofEngineering, TohokuUniversity,Sendai,Japan

AminurRahman SchoolofBiosciences, UniversityofSkovde,Skovde,Sweden

XiunaRen CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

PrangyaRanjanRout Departmentof Biotechnology,SchoolofEnergyand Environment,ThaparInstituteofEngineering andTechnology,Patiala,Punjab,India

MuhammadKashifShahid ResearchInstitute ofEnvironment&Biosystem,Chungnam NationalUniversity,Daejeon,SouthKorea

PauLokeShow DepartmentofChemicaland EnvironmentalEngineering,FacultyofScience andEngineering,UniversityofNottingham Malaysia,Semenyih,Malaysia

AnitaSingh CenterofAdvancedStudyin Botany,InstituteofScience,B.H.U.,Varanasi, UttarPradesh,India

AnshuSingh DefenceInstituteofBio-energy Research-DRDO,Haldwani,Uttrakhand,India

AnuradhaSingh AquaticToxicology Laboratory,EnvironmentalToxicologyGroup, CouncilofScientificandIndustrialResearchIndianInstituteofToxicologyResearch (CSIR-IITR),Lucknow,UttarPradesh,India

ZhengSun KeyLaboratoryofExplorationand UtilizationofAquaticGeneticResources, MinistryofEducation;InternationalResearch CentreforMarineBiosciences,Ministryof ScienceandTechnology;National DemonstrationCentreforExperimental FisheriesScienceEducation,ShanghaiOcean University,Shanghai,China

MohammadJ.Taherzadeh SwedishCentrefor ResourceRecovery,UniversityofBora ˚ s,Bora ˚ s, Sweden

ArchanaTiwari DiatomResearchLaboratory, AmityInstituteofBiotechnology,Amity University,Noida,UttarPradesh,India

ClarisseUwineza SwedishCentreforResource Recovery,UniversityofBora ˚ s,Bora ˚ s,Sweden

SunitaVarjani GujaratPollutionControlBoard, Gandhinagar,Gujarat,India

R.Vinu DepartmentofChemicalEngineering andNationalCenterforCombustionResearch andDevelopment,IndianInstituteof TechnologyMadras,Chennai,India

YueZhang CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

ZengqiangZhang CollegeofNaturalResources andEnvironment,NorthwestA&FUniversity, Xianyang,China

YuwenZhou CollegeofNaturalResourcesand Environment,NorthwestA&FUniversity, Xianyang,China

Zhi-GangZhou KeyLaboratoryofExploration andUtilizationofAquaticGeneticResources, MinistryofEducation;InternationalResearch CentreforMarineBiosciences,Ministryof ScienceandTechnology;National DemonstrationCentreforExperimental FisheriesScienceEducation,ShanghaiOcean University,Shanghai,China

Preface

Thebooktitled CircularBioeconomy:TechnologiesforWasteRemediation isapartofthe comprehensiveseries Biomass,Biofuels,Biochemicals (SeriesEditor:AshokPandey).The leapfrogincreaseinsolidwasteandwastewaterbyindustrialactivitiesandwastematerialsgeneratedbyhumanactivity,duetothe potentialharmfuleffectsontheenvironment andpublichealth,ledtoincreasingawareness aboutthealarmingneedforthedevelopment ofnoveltechnologiesforthemanagementof bothsolidwasteandwastewater.Onthe onesidethereisaneedtominimizewaste generationandontheothersidethereisa needtoreuseandrecyclethem.Thetechnologiesformanaging/treatingsuchwastesplay animportantroleinmitigatingissuescreated bywastegeneration.Apartfromthis,recoveryofenergyandfuelsfromwastesbyvarioustechnologiesleadstonotablereduction inthetotalquantityofwastegenerated, whichneedstobedisposedoffinallyinacontrolledmannerwhilemeetingpollutioncontrolstandards.Reductioninthequantumof solidandliquidwasteisacriticalissue,particularlyinlightoffiniteavailabilityofdisposalsitesatmanypartsaroundtheglobe. Althoughtreatmentplantsforwastestreams andby-productrecoveryprocesseshavebeen introducedinmanysectors,lifecycleassessmentandtechno-economicfeasibilityprovide detailedunderstandingforadaptingtechnologyforsustainability,whichformsanintegral partofthecircularbioeconomy.Integrationof biological,thermal,andchemicalprocessesin resourcerecoveryfromsolidwasteand wastewaterintovalue-addedproductswould

helpimplementthecircularbioeconomyapproachincludingsocialaspects.

Amongvariousenvironmentalproblems, effectivesolidwasteandwastewatermanagement/treatmentareimportantsectors thatneedmoreattention.Thepresentsystem dealingwithmanagement/treatmentofboth sectorsisstillnotuptothemarkformeeting societalneedsofthegrowingworldpopulation.Thisbooktouchesuponvariousaspects ofsolidwasteandwastewatermanagement/treatment.Itcoverstechnologicalinterventionsinwastemanagementinavery straightforwardandscientificmanner.The bookalsocoverstrendsandperspectives forcircularbioeconomyinthetreatmentof wastestreams(solidwasteandwastewater) andproductionofvalue-addedproducts fromthewastes.Thebookprovidesinformationabouttheproductionofvalue-added productsthroughdifferentwaystoincrease productselectivitywiththeintegrationof technologies.Theeditorshavemadeserious attemptstoensurethatthisbookisasrelevanttoallaspectsaspossible,addressing burningissuesinthefieldofwasteremediationandsustainabilityandtherationale underpinningthem.

Thisbookcoversin-depthinformation aboutthestrategiesandapproachesfacilitatingtheintegrationoftechnologiesforwastewaterandsolidwasteremediation.Thebook highlightsthemodelsdevelopedtovalorize wastesfortheproductionofbio-basedproducts.Wastewatersandsolidwastearean abundantsecondarysourceforfiniteresources;hence,nutrientremovalfromwaste

streamsisimportantinacircular bioeconomy.Remediation/valorizationof solidwasteorwastewaterwouldreduceenvironmentalpollution.Integrationoftechnologies,includinglifecycleanalysisand techno-economicanalysisofsuchprocesses tovalorizethewastesforvalue-addedproducts,isoneoftheaspectsofthecirculareconomythatneedtobegivenaholisticandallinclusiveapproach,andthishasbeen addressedinthebook.

Variouschapterspresentedinthebook havefocusedonthesustainabilityapproaches asthecenterthemeinordertofacilitateindustriesandpolicymakersforadoptingcircular economygoals.Sincetheprincipalideaisto makeatransitionfromlineareconomytoa circularbioeconomy,itinvolvesadvanced technologicalanddesigningbreakthroughs toreducewastewithaclose-loopedsystem. Thispioneersacradle-to-cradleandwasteto-resourcesapproach.Integrationofvarious technologieshasbeenconsideredaspossibly thebestwaytoutilizethewastes. Chapter1 dealswiththesustainablebiowasterecycling towardzerowasteapproaches,whichemphasizesthatitisessentialtosatisfytherequirementsofzerowastetorecycle biowastesinasustainableway.Inorderto improveandmakebetteruseofthesebiotechnologiesinactualproduction,moreefforts mustbemade. Chapter2 describescompostingasasustainabletechnologyforintegratedmunicipalsolidwaste,which reviewstherecentdevelopmentsinthecompostingoforganicmanureasasustainable technologyforintegratedsolidwastemanagement. Chapter3 examinestheefficiency, toxicity,andviableoptionforconvertingterrestrialweedsintovalue-addedproducts throughabiologicalmanagementcompostingtechniqueinacircularbioeconomy. Chapter4 discussesthepossibilitiesof derivingchemicals,fuelmolecules,andbioproductsfromarangeoffeedstocksvia

HTLtechnology,withspecialemphasison (a)characteristicsandapplicationsofdifferentproductsfromHTL,(b)possibilitiesoftailoringtheselectivitytospecificchemicalsby usingcatalysts,(c)challengesandopportunitiesinintegratingtheHTLproductsinthe existingrefineryinfrastructure,and (d)industrialpotentialandeconomicsofthe process. Chapter5 presentsacircular bioeconomyintheagriculturalfoodsupply chainandvalueaddition. Chapter6 focuses onthesustainableconversionofwasteinto high-valueproductsthroughamicroalgaebasedbiorefinery. Chapter7 presentsdifferentsustainabletechnologiesusedtoreduce theriskrateofwastewaterutilization.Itisalso correlatedwiththeperspectiveofacircular bioeconomy,i.e.,shiftfrom“useandthrow” toa“use,treat,andreuse.”Theobjectiveof thecircularbioeconomycanonlybefulfilled byrecoveringtheresourcesfromwastewater sothattheycanbereusedforthebetterment oftheenvironmentandbenefitofthesociety. Chapter8 highlightsthediverseroleof microalgaeinaquaculturewastewaterquality evaluation,remediation,andaquafeedpotentialasasustainablesolution. Chapter9 discussesmembranebioreactorsforthe treatmentofemergingpharmaceuticalcompoundsinacircularbioeconomy. Chapter10 focusesonthesynthesisandapplicationofagro-waste-basedbiocharwitha perspectiveofthecircularbioeconomy. Chapter11 focusesontheapplicationofanaerobictechnologiesforcircularbioeconomy. Therealizationofrecyclingsocietyrequires accelerationtodrivethebiomassflowing alongthecycles,whiletheanaerobicapproachesaregenerallyslow. Chapter12 compilesthelatesttechnologiesinwhich microbial/bacterialbiomasswasusedfor wastewatertreatmentandremediation,with aspecialfocusontheremediationofwastewaterscontaminatedwithheavymetalsdescribingthebasictechnologiesaswellas

smarttechnologies.Emphasisisgivento thecircularbioeconomyandhowitcanbe implementedinwastewatertreatment. Chapter13 describesthenumerouswaysof valorizingwaterhyacinth,whichmayhave ahugepotentialtocreateanicheinthecircularbioeconomy. Chapter14 presentsatechnoeconomicanalysisandlifecycleassessment ofvermintechnologyforwastebioremediation. Chapter15 providesupdateddetails ontheproductionofpaperandthegeneration ofwastewateranditscharacteristicsandtoxicity.Biologicalandphysicochemicalprocesseshavealsobeendiscussedforthe treatmentofwastewaterfromthepaperindustry. Chapter16 presentsthepossibleapplicationofconstructedwetlandsfocused ondesign,optimization,sustainability,and resourcegenerationtowardacircularbioeconomy. Chapter17 providescomprehensiveinformationoninnovativetechnologies andstrategiesforgreenerwastemanagement andsustainableeconomicdevelopment. Chapter18 discusseswaste-derivedvolatile fattyacidsasasustainablesourceofanimal feed.Finally, Chapter19 focusesontherelationshipofalgalbloomandeutrophication withparticularfocusontheapplicationand implicationofalgal.Agriculturalcultivation

ofalgaeisoneofthepromisingsolutionsto improvetheproductionandefficiencyof bio-basedproducts,reductionofgreenhousegasemissions,andextractionofconstituentsthatareusedasdiagnosticand medicinetools.Thechapteralsodiscusses stepstoidentifyandharvestalgaefromthealgalbloomsites.

Wegratefullyacknowledgealltheauthors fortheircontributionstothisbook.Wethank thereviewerswhoprovidedvaluablesuggestionstoimprovedifferentchapters.We greatlyappreciateDr.KostasMarinakis,FormerSeniorBookAcquisitionManager; Ms.KatieHammon,SeniorBookAcquisition Manager;AndreaDulberger,EditorialProjectManager;KumarAnbazhagan,ProductionManager;andothersatElsevierfor theirsupporttowardpublishingthebook. Weareconfidentthatthebookwouldbeof greatvalueforacademiciansandresearchers aswellasforpolicyplannersandindustry persons.

SunitaVarjani AshokPandey

MohammadJ.Taherzadeh HuuHaoNgo R.D.Tyagi

Solidwasteremediationand sustainabilityinacircular bioeconomy

Sustainablebiowasterecyclingtoward zerowasteapproaches

XiunaRen,TaoLiu,YueZhang,XingChen, MukeshKumarAwasthi,andZengqiangZhang CollegeofNaturalResourcesandEnvironment,NorthwestA&FUniversity,Xianyang,China

1Introduction

AccordingtotheWorldResourcesInstitution(WRI),theworldwidepopulationis expectedtoreach10billionpeopleby2050,withtheprosperityanddevelopmentofsocial economy [1].Hugeenergydemandwillinevitablyaggravatethedepletionandscarcityof nonrenewableresourceswhilealsobringingaboutseriousecologicalandsocioeconomic challengessuchashugewastegeneration,environmentalpollution,andclimatechange [2].Hence,sustainabledevelopmentisthebestwaytomanagebiowaste.Biorefineriesareespeciallynecessaryinthecircularbioeconomy.Thetransitionfromasinglelineardevelopmentmodeltoasustainableeconomywhichgasgraduallytriggeredpeopleattention [3].

Biowasteisconsideredtobewastefromtheagriculturalproductionprocessaswellas wastefromthedevelopmentofcompositematerials.Biorefinery,amaintechnologyofsustainabledevelopment,couldnotonlyimproveutilizationefficiencyofbiomassresources,but alsopreventenvironmentalpollutionthrougheffectivemanagement.Besides,theproducts generatedinthebiorefineryprocesslikebiofertilizer,biochemistry,bioenergy,andothers werebeneficialforeconomicdevelopment [4].Asanindispensablerenewableresourcefor energyandconsumerproducts,biowastehasaninestimablepotentialvalueinthebiological developmentfieldtobiorefineriesduetoitslargequantityanddiversecomposition.Nizami [5] reportedthattheworldgenerates1.3billiontonsayearofbiowaste,andcouldreach2.2 billiontonsayearby2025.TheWorldEnergyCouncil(WEC)reportedthatbiofuelsextracted frombiomasswillreplaceabout40%ofthepetroleumusedintransportationin2050 [3].To achievesustainabilityofbiowastemanagement,thereareaseriesofbiotechnologiesin recyclingbiowaste,includingthermaltreatmentaswellasaerobicandanaerobictreatment.

Thesetechnologiessucceededinthebioconversionofwasteintofuel,heatsources,electrical energy,andbioproducts(i.e.,biochemical,biofuel,bioenergy) [6].Accordingtotheenvironmentallyfriendlytarget,thebioeconomyutilizedorganicresourcestogenerateproductsthat hadinestimableeconomicandsocialvalue.Thedevelopmentofthebioeconomyhashuge opportunities,potential,andbroadprospects.TheEuropeanCommissionproposeda bioeconomystrategyin2012,updatedin2018,thatrecommendedreinforcingbio-relatedindustriesandpromotingabioeconomiclayout.Itwasimportanttoexploitthepotentialof biowasteandprotecttheecosystemtoachieveanenvironmentallyfriendlyrecycling bioeconomyandworldwidechallenges(i.e.climatechange) [7].Fromanenergypointof view,biorefineriesareconsideredtobeaneffectivemethodofbiowastemanagement,providingcost-effectiveandprospectiveapproachesforenhancingenergysustainabilityand achievingsustainablewastetreatmenttorealizeacircularbioeconomy [8].Usingthemethod shownin Fig.1,thedevelopmentfromtraditionalthermoelectricfuelstobioagricultureand bioenergyutilizationtoachievesustainableofbiowaste.Duetothevarietyofnaturalrawmaterials,thedifferencesinapplicablepractices,geographyandbiomassavailability,insufficientinfrastructure,lowinvestmentandmarketization.Thereareavarietyoftechnology andfinanceobstaclesaswellassocietychallenges [9].Thesustainabledevelopmentof bioeconomyisclosetothecontributionofbiotechnologytotheeffectiveusingofbiowaste, optimizingtheincentivemechanism,strengtheninnovationandpromoteindustrialization.

Takingintoaccountthehugedevelopmentpotentialofthebiowastesustainablemodel, basedontheabundantbiowasteresourcesandstrongmarketdemand,inthischapter,we giveacomprehensiveexplanationofitscurrentsituationaswellaspublicparticipationin

implementingwastereductionandrecyclingpoliciesandmeasuresforthereasonablemanagementandutilizationofbiowaste.Meanwhile,thetechnology,managementoption,stateof recyclingandcirculareconomywassucceedimplementationintheconceptofbiowaste sustainability.

2Biowastegeneration,collection,andcharacteristics

Biowasteisatypeofwastematerialthathastheabilitytodegradeorganicmatter(OM) underananaerobicoraerobicprocess.Biomasscomesfromlivingthings,includingbiosolids (sewagesludge),animals,andwoodandgreenwaste [10,11].TheconcentrationofOMand nutrientsrequiredbyplantsinbiowasteisincreased,makingitagoodsoilfertilizer.Commercialresourcesfromforests,agriculturalproducts,animalcarcasses,manure,sewage sludge,andfoodwasteshavebeenwidelyused.Householdresourcescontainkitchenand gardenwaste,paperandcardboard,andnaturaltextilesthatalsoformpartofbiowaste. Rapidpopulationgrowth,vigorousurbanization,andimprovementoflivingstandardshave increasedenergydemandandwasteproduction.Biowastewillcausepollutioninallaspects, includingproducingodorseasily,pollutingwaterandsoil,andincreasingGHG,allofwhich aremajorchallengesfacingtheenvironment.Itisnecessarytoexploresustainableapproaches toimprovetheecology [12].Biowastecomesfromvariablesourceswithdifferenthuman activities,includingagriculturalandindustrialactivitieswithheterogeneousandvariable characteristics.Proteins,sugars,andmineralscontainedinbiowastearevaluableresources forthegenerationofbioproductsthroughcomprehensivebioprocesses.However,dueto differencesineconomicconditionsandindustrialstructures,wastecomponentsindifferent regionsaredifferent,anddisposalmethodsarenotthesame.

Agriculturalactivitiesproducelargeamountsoflignocellulose,containingteaseeds,crop waste(straw,stems,andshells),peels,andotherseeds,mainlycomposedofcellulose(35%–50%),hemicellulose(25%–30%),andlignin(25%–30%) [5].Organicsolidwasteproducedin agriculturecontainshighlignocellulose,whichcandevelopandproducevaluablebiological products.Theyarewidelyusedinindustrialbiorefineriesandtransformedintofuel,biochar, organicfertilizer,andcompositematerials.Withtherapiddevelopmentofindustrialization, biowastehasattractedwidespreadattention,involvingvarioussourcessuchasplants,poultryprocessing,slaughterhouses,andthewood,sugar,andpaperindustries.Forexample,a varietyofproducts(ethanol,methane,oil,enzymes,andnanocellulose)areextractedfrom orangepeelsthroughmicrobialengineeringtechnology [13].Thefoodandpaperindustry arethemostimportantwaste-sustainingsector.Itiswidelyreportedthatfoodwasteishighly degradableandhaspotentialforenergybiotransformation.Amongthem,vegetablesand fruitsaresuitableforthecompositionoforganicacidsandvitalenzymes.Animalmeat,which isabundantwithproteinandhair,iscombinedwithanaerobicdigestiontogenerateproteases.Fatandproteinflowoutduringfishprocessing,andtheyaresuitableforproducingesterasethatisbeneficialtochemicalproduction [13].Withtherapidincreaseofpopulationand urbanization,urbanbiowastehasturnedintoaninevitablebarriertosocialdevelopment. Householdwasteandcateringwastearecommonbiowasteswhosemaincomponentsareorganicandcanbeusedforabiorefinery [12].Inparticularly,foodwastecomesfromfood

processing,producing,distribution,andconsumptioninresidentialkitchens,commercial restaurants,andmarketshops.Thecompositionofhouseholdwasteiscomplex,containing paper,bread,noodles,rice,andvegetables.Theyallcontainorganicingredientssuchasfat, cellulose,andprotein.Becausebiowasteisextremelyperishable,itcanunpleasantodors, GHGs,andotherpollution.Itstreatmentfacesseverechallenges. Table1 showsthedifferent typesofbiowastestrategictechnologies.

TABLE1 Differenttypesofbiowastestrategictechnologies.

Typeof biorefineryBiowasteStrategictechnologyRemarksoncirculareconomyReferences

WasteSawdust,rice husk,pig manure

WasteLivestock manure

WasteChicken manure, Caragana microphylla straw

WasteFoodwaste, dryleaves

LignocelluloseAgriculture waste

LignocelluloseAgriculture waste

Reactorcomposting, staticcomposting, windrow composting

Electricfield-assisted aerobiccomposting

Biocharandfluegas desulfurization, gypsum cocomposting

Consideringtheimprovedtreatment efficiencyandtheenvironmental benefits,reactorcompostingmayhave morepotentialinthedevelopmentof sustainablecompostingtechnology

Thisopensanewwaytorecoverwaste heatduringaerobiccompostingand acceleratecompostmaturity

Theeffectofbiocharcombinedwith gypsumoncompostqualitywasclosely associatedwithmicrobialactivitiesand functions,andplayedapivotalrolein determiningtheagronomic performanceofcompost [16]

ReactorcompostingThisstudycouldprovidethe appropriateconditionsforsmall-scale compostingwithfoodwasteanddry leaves

Enzymatic saccharification

Proteomics-basedsaccharificationand fermentationcompoundtechnologyhas hugepotentialforglobalcommercial benefits

AnaerobicdigestionIthashugepotentialtotransformitinto asustainableplatformwithvalueaddedproducts/chemicals/biofuels. ThebyproductsofPHA,bioplastics, andorganicacidsmeetsocialneedsand development [19]

WasteFoodwasteIntegrated biorefinery

Lacticacidandbiogasdemonstratethe opportunitytotransformfromalinear bioeconomytoacircularbioeconomy, supportingregenerationandrepair systemsbypreventingwasteand economicprofitability [20]

Therearemanykindsofbiologicalwaste.Thethreetypeswiththehighestyieldarethe mostcommon:agriculturalresidue,foodwaste,andsewagesludge.Wasteproductscan beconvertedintovaluableresourcesbyincineration,anaerobicfermentation,orcomposting, generatinglargeamountsofheat,electricity,orfertilizer.

3.1Livestockandpoultrymanure

Producedintheprocessoflivestockandpoultrybreedingpollutionisthemainsourceof agriculturalnonpointsourcepollution,occurringintheprocessoflivestockandpoultry breedinglivestockandpoultrydungbesidescontainrichorganicnitrogenphosphorus andpotassium,alsocontainsmetalelements,pathogenicmicroorganisms,allkindsofcolloid andhasnotbeenfullydigestplantresidues,haveabadodor,willdirectlyorindirectlyleadto soilandatmosphericpollutionandeutrophicationofwaterbodies,afterreasonableusecan bearesource [2,3].

3.2Renewal

Withtheoperationofthebiogasproject,renewalandbiogasslurrydisposalbecomesdifficult,renewalbiogasslurrycontainsnutrientsneededforplantgrowth,thesurvivalofthe pathogenicmicroorganismquantityislittle,andrichinadvantageoforganicmatterinsoil improvementandsmallmoleculehumusiseasytobeabsorbedbyplants,thuscomposting isrenewalbiogasslurry,isoneofthemainwaysofusingnotonlycanproduceorganicfertilizer,stillcanreducelandresources,reduceenvironmentalpollution,increasetheeconomic benefit [2].

3.3Agriculturalwaste

Agriculturalwastesareorganicsubstancesderivedfromagriculturalproduction,includingplantandanimalwaste.Agriculturalwastesaremainlylignocellulosicmaterials consistingoflignin,hemicellulose,andcellulose.Byfarthemostcommonusesarecompostingandincineration [21].Biodegradablepolymers,suchaspolylacticacid(PLA)andvarious polylacticacidbiocomposites,canbemadefromagriculturalwaste.Agriculturalresidues withlowmoisturecontent(cornstalks)canbeusedasfuel [22].Livestockmanurecontains alargeamountofusefulmicrobialresources,isanunderutilizedsourceofnitrogenfertilizer, andcanimprovesoilqualityandincreasecropoutput [23].

3.4Kitchenwaste

Aboutone-thirdoftheediblefoodproducedgloballyiswastedeachyear.Foodwaste includeshouseholdandrestaurantresidues,processedwaste,andcropresidues [24].Such wastescontaincarbohydrates(starch,hemicellulose,andcellulose),lignin,fats,proteins, andlargeamountsofwater.Kitchenwasteisincineratedorburiedwithothercombustible

waste [25] .Anaerobicdigestion,aerobiccomposting,andchemicalhydrolysiscanallturn foodwasteintobiofertilizer.Only40% – 60%ofthematerialsusedinprocessinganimal productsareusedinfoodproduction.Therestoftheskinandfatisrecycled,mostlyin theformofmeatandbonemealforanimalfeedproductionduetoitslowproteincontent. Thesematerialscanalsobeusedasanelementforthegenerationofthermoplasticand thermosettinggoodsaswellascoagulantsand flocculantsutilizedinwastewatermanagement [22] .Bonesareexcellentphosphatefert ilizer,evenwool,andcanbetreatedas fertilizer.

3.5Sewagesludge

Withthebiologicalwastewaterprocess,alotofresidueswillbeproducedintheformof sludge(biologicalsolids).Phosphorusinsewagesludgecanberecycled [26].Sewagesludge removestoxiccompounds,pathogens,andunpleasantodors,andafterstabilization,thiscan beusedinagriculture.Anaerobicdigestionisthemostcommonlyusedmethodforsewage sludgetreatment,followedbyimprovedbiologicalphosphorusremovalorphosphateremovalbysedimentationofstruvite.Thealgalbiomassinthewastewateralgalsystemcould beutilizedtorecycleupto44%ofthenitrogenand91%ofthephosphorusconcentrationin thestruvitegeneration,withhigheconomicvalue [27]

4Publicengagementfortheimplementationofwastereductionand recyclingpolicies

Solidwasteisproducedduetopeople’sdailyactivitiesandhabits.Therefore,public engagementshouldbeanecessaryconditionforwastedisposal [27].The“3R”method—reduce, reuse,andrecycling—istheoptimizedmethodtomanagewaste.Publicengagementisrequired toimplement3Rpoliciesintopractice.Thelevelandextentofpublicparticipationinwaste treatmentactivitieshavegraduallyexpanded.Long-termandeffectiveparticipationinwaste treatmentactivitiescancultivatepublicawareness,whichisconducivetopublicsupportand thesustainabilityofprojectactivities.

Ingeneral,manyareasandlevelscanbeutilized“3R”policesbythepublicengagement. Theseincludewaste-decreaseactivities,resourceisolationfromwaste,engagementin communityreuseactivities,thepurchaseof“green”products,adviceonwastetreatmentprogramsandinfrastructure,andparticipationintheassessmentofwastedisposalactivities [28] suchaswastecollectionandpreventionoflittering.Thisarrangementisachievedthroughthe contractemploymentofcollectorsofrecyclablewasteforindividualsandcommunities.Publicawarenessoftheuseofthenoveltywastetreatmentprojects.Thesearemainlythe importantaspectsofpublicengagementinwastemanagementprocesses.

Implementationofacomprehensivesolidwastetreatmentplans:Firstofall,wemustunderstandhowtoplayaroleinthisgenerationandtheneedsofmanyinterestsinvolvedin ordertoformulateeffectiveplanningandsustainablewastemanagementregulations [29], collection,reuse,transportanddisposalofsolidwasteandintheprovisionofservices.

Siteandtechnicalselectionforwastetreatment:Selectingtheappropriatetechnologyand placingthefacilities(recyclingstations,landfills,wastefrompowerplants,etc.)intheright placeinvolvecomplexprocessesandareusuallyperformedbyexpertsandtechnicians.

Effectivesupervisionandassessment:Publicengagementcouldalsocontributesignificantlytotheeffectiveandimpartialmonitoringofwastemanagementservicesinboththe publicandprivatesectors.

Educationandawareness:Wastedisposaltoagreatextentinvolvestheactionsofindividuals.Becomingperformanceandattitudesarethereforethefirststepgotoeffectivepublic participation.Thisawarenessisimportantforpeopletounderstandtheconnectionbetween theirperformanceandtheenvironment,sothatpeoplecaneffectivelyparticipateinenvironmentallyfriendlymanagement.

Correctassessmentandrecognitionarecriticaltomaintainthespiritofpubliceffort.

Avarietyofservicefacilitiesandinfrastructure:Withappropriate,convenient,andaffordablealternativesandinfrastructuresupport,thepubliccancoordinateandparticipatein wastereductionandseparationactivities.

Strictlyimplementpoliciesandplans:Asystemofstrictandenforcedrulesandpenalties forviolationsisonemethodtoconfirmhigherengagement.

Institutionalarrangementsforpublicparticipationingovernmentdepartments:Alotof localinstitutionshavespecialdepartmentstopromotecommunityengagementinwaste treatmentactivities [30]

Underthesolidwastetreatmentprocess,publicengagementisessential.Legislationin somewayshasfacilitatedpublicparticipation.Thecommunitycouldgivethoseparticipating inwastemanagementactivitiesrewardsandrecognition.Tosumup,wastereductionand recyclingareinevitablyassociatedwithpeople’sbehaviorandsoundpolicy,soincreasing publicparticipationisthebestwaytomaximizewastemanagement. 5Possibletechnologyandmanagementoptionforbiowaste

5.1Thermaltreatmentandprocessing

5.1.1Incineration

Definitionofincineration

Incinerationwastheoxidativecombustionreactwhichincludedthecombinationofwastes andoxygeninthehightemperatureunderaerobicconditions.Afterthat,theheatenergyis releasedandtransformedintohightemperaturegasandsolidresidue [31].Moreover,the biomasswasreducedgreatly.Thesolidresiduecouldbeutilizedinlandfillandbuilding rawmaterialswhilethegascanbeusedasaheatresource [32].Thehazardouschemicals andpathogensinthewasteweredegradedandruinedunderthehightemperature [33]. Badodorsandorganicwastegasarealsodecomposedbyhightemperature.

Theprocessofincineration

Itisgenerallybelievedthatthecombustionofsolidwastecouldbeseparatedintothree stages:drying,combustion,andburnout.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.