Biomass-derived carbon materials: production and applications alagarsamy pandikumar - Download the e

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biomass-Derived Materials for Environmental Applications

Ioannis Anastopoulos

https://ebookmass.com/product/biomass-derived-materials-forenvironmental-applications-ioannis-anastopoulos/ ebookmass.com

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems 1st Edition Alagarsamy Pandikumar

https://ebookmass.com/product/nanostructured-functional-and-flexiblematerials-for-energy-conversion-and-storage-systems-1st-editionalagarsamy-pandikumar/ ebookmass.com

Biomass, Biofuels, Biochemicals – Biochemicals and Materials Production From Sustainable Biomass Resources Hu Li

https://ebookmass.com/product/biomass-biofuels-biochemicalsbiochemicals-and-materials-production-from-sustainable-biomassresources-hu-li/ ebookmass.com

Cat's Chance in Hell: An MM Paranormal Romance (Charm City Chronicles Book 2) Meghan Maslow

https://ebookmass.com/product/cats-chance-in-hell-an-mm-paranormalromance-charm-city-chronicles-book-2-meghan-maslow/ ebookmass.com

Continual Raving: A History of Meningitis and the People Who Conquered It Janet R. Gilsdorf

https://ebookmass.com/product/continual-raving-a-history-ofmeningitis-and-the-people-who-conquered-it-janet-r-gilsdorf/

ebookmass.com

Johns Hopkins Textbook of Cardiothoracic Surgery, Second Edition 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/johns-hopkins-textbook-ofcardiothoracic-surgery-second-edition-2nd-edition-ebook-pdf-version/

ebookmass.com

The Indian Legal System: An Enquiry 1st Edition Mahendra Pal Singh

https://ebookmass.com/product/the-indian-legal-system-an-enquiry-1stedition-mahendra-pal-singh/

ebookmass.com

Emergency Psychiatry (PRIMER ON SERIES) 1st Edition Tony Thrasher (Editor)

https://ebookmass.com/product/emergency-psychiatry-primer-onseries-1st-edition-tony-thrasher-editor/

ebookmass.com

Pineapple Street: A Novel Jenny Jackson

https://ebookmass.com/product/pineapple-street-a-novel-jenny-jackson/

ebookmass.com

Armenia’s Future, Relations with Turkey, and the Karabagh

Conflict 1st Edition Levon Ter-Petrossian

https://ebookmass.com/product/armenias-future-relations-with-turkeyand-the-karabagh-conflict-1st-edition-levon-ter-petrossian/

ebookmass.com

Biomass-DerivedCarbonMaterials

ProductionandApplications

Editedby

AlagarsamyPandikumar,PerumalRameshkumar,and PitchaimaniVeerakumar

Editors

Dr.AlagarsamyPandikumar ElectroOrganicandMaterials ElectrochemisryDivision (CSIR)-CentralElectrochemical ResearchInstitute Karaikudi-630003,TamilNadu India

Dr.PerumalRameshkumar DepartmentofChemistry KalasalingamAcademyofResearchand Education,Krishnankoil-626126 TamilNadu India

Dr.PitchaimaniVeerakumar InstituteofAtomicandMolecular SciencesAcademiaSinica(IAMS) NationalTaiwanUniversity,10617 Taipei Taiwan

Cover:©From“RecentAdvanceson PorousCarbonMaterialsfor ElectrochemicalEnergyStorage”by LibinWangandXianluoHu,Chem. AsianJ.10.1002/asia.201800553, CopyrightWiley-VCHGmbH. Reproducedwithpermission.

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetails,orotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>.

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.,usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34926-5

ePDFISBN: 978-3-527-83289-7

ePubISBN: 978-3-527-83291-0

oBookISBN: 978-3-527-83290-3

Typesetting Straive,Chennai,India

Contents

Preface xi

Acknowledgments xiii

1IntroductiontoBiomass-DerivedCarbonMaterials 1 A.Sivakami,R.Sarankumar,S.Vinodha,andL.Vidhya

1.1Introduction 1

1.2BiomassResourcesandComposition 3

1.2.1Plant-BasedBiomass 4

1.2.2Fruit-BasedBiomass 5

1.2.3Microorganism-BasedBiomass 7

1.2.4Animal-BasedBiomass 7

1.3ConditionforPrecursorSelectionofBiomass-DerivedCarbon 8

1.4ProductionMethodsofBiomass-DerivedCarbon 8

1.4.1Carbonization 9

1.4.1.1HydrothermalCarbonization 9

1.4.1.2Pyrolysis 10

1.5Biomass-DerivedCarbons(B-d-CMs)ActivationMethods 11

1.5.1PhysicalActivation 11

1.5.2ChemicalActivation 13

1.5.3CombinationofPhysicalandChemicalActivation 14

1.5.4ModificationandStructuralControlofB-d-CMs 14

1.5.4.1SurfaceModificationandHeteroatomDopingofB-d-CMs 15

1.5.4.2B-d-CMsSurfaceLoadingofMetalOxidesorHydroxides 15

1.5.4.3SurfaceIncorporationwithDifferentNanostructures 17

1.6ProductionProcessDescription 17

1.7CostAnalysis 19

1.8Summary 19 References 20

2IntroductiontoBiowaste-DerivedMaterials 27 ThangaveluKokulnathan,BalasubramanianSriram,Sabarison Pandiyarajan,SubramanianRamanathan,andThangaveluSakthiPriya

2.1Introduction 27

2.2Synthesis 28

2.2.1ActivationMechanismofBW-ACbyPhysicalActivation 28

2.2.2ActivationMechanismofBW-ACsbyChemicalActivation 29

2.2.2.1InfluenceofAlkalineActivatingAgents 30

2.2.2.2InfluenceofAcidicActivatingAgents 31

2.2.2.3InfluenceofNeutralActivatingAgents 31

2.2.2.4InfluenceofSelf-ActivatingAgents 32

2.3Characterization 32

2.3.1ElectronMicroscopes 32

2.3.2HR-TEMAnalysis 34

2.3.3FTIRSpectroscopy 35

2.3.4RamanSpectroscopy 36

2.3.5XPSAnalysis 38

2.3.6XRDPatterns 39

2.3.7BETAnalysis 41

2.4Properties 43

2.4.1SurfaceDefectsinBW-AC 43

2.4.2CharacterizationsofCarbonDefects 46

2.4.3IntrinsicCarbonDefectsActivity 47

2.4.4HeteroatomDopingDefects(or)ExtrinsicCarbonDefectsActivity 48

2.4.5ElectronicBandStructureProperties 48

2.5Summary 50 References 50

3Biomass-derivedCarbon-basedMaterialsforMicrobicidal Applications 63 SelvamuthuPreethi,ArunachalamArulraj,RamalingaViswanathan Mangalaraja,VelayuthamRavichandran,andNatesanSubramanian

3.1Introduction 63

3.2BiomassMaterials 64

3.2.1CarbonandItsDerivatives 65

3.3Microbicidal 66

3.3.1MechanismofAction 67

3.3.2MicrobicidalResistance 68

3.3.3FactorsAffectingMicrobicidalResistance 68

3.4MicrobicidalPerformanceofBiomass-DerivedCarbonaceous Materials 69

3.4.1RoleofMaterialPhysicochemicalProperties 70

3.4.1.1StructuralDestruction 70

3.4.1.2OxidativeStress 73

3.4.1.3WrappingEffect 76

3.4.1.4PhotothermalEffect 77

3.4.1.5ExtractionofLipid 78

3.4.1.6MetabolicInhibitoryEffect 79

3.5BioengineeringProspectiveTowardCarbonaceousMaterials 79

5.5.1MetalIonSensing 117

5.5.1.1Mercury(Hg2+ )Sensor 118

5.5.1.2Iron(Fe3+ )Sensor 119

5.5.1.3Lead(Pb2+ )Sensor 120

5.5.1.4Copper(Cu2+ )Sensor 120

5.5.1.5MiscellaneousMetalIons 122

5.5.2AnionSensors 122

5.5.3MiscellaneousMolecules 123

5.6ConclusionandFuturePerspectives 123 References 124

6Biomass-DerivedMesoporousCarbonNanomaterialsforDrug DeliveryandImagingApplications 129 BalajiMaddiboyina,RamyaKrishnaNakkala,andGandhiSivaraman

6.1Introduction 129

6.2DrugDeliverySystemsBasedonMCNs 130

6.2.1Immediate-releaseDDS 130

6.2.2Sustained-releaseDDS 130

6.2.3Controlled/TargetedDDS 131

6.3PhotothermalTherapy 131

6.3.1SynergisticTherapy 135

6.3.2CellLabeling 135

6.3.3RemovalofToxicSubstances 139

6.3.4TransmembraneDelivery 139

6.3.5PhotoacousticImaging 139

6.3.6TherapeuticBiomoleculeDelivery 140

6.3.7Biosensing 140

6.3.8MagneticResonance(MR)Imaging 142

6.4ConclusionandFuturePerspectives 143 References 143

7MesoporousCarbonSynthesizedfromBiomassasAdsorbent forToxicChemicalRemoval 147 BabuCadiamMohan,SrinivasanVinjuVasudevan,RamkumarVanaraj, SundaravelBalachandran,andSelvamaniArumugam

7.1Introduction 147

7.2SynthesizedMethodsofMesoporousCarbonsfromBiowasteor Biomass 148

7.3ApplicationofMesoporousActivatedCarbons 149

7.3.1RemovalofDyes 149

7.3.1.1GWACasanAdsorbentforMethyleneBlueandMetanilYellow 150

7.3.1.2RiceHusk(RH)-DerivedMesoporousActivatedCarbon(AC)for MethyleneBlue(MB)DyeRemoval 151

7.3.1.3ActivatedCarbonfromRattanWasteforMethyleneBlue(MB) Removal 152

8.4.1.2MetalOxides@Biomass-derivedCarbonNanocomposite Electrodes 186

8.4.1.3MetalSulfides@Biomass-derivedCarbonNanocomposite Electrodes 188

8.4.2Na-IonBatteries(SIBs) 189

8.4.2.1Biomass-derivedUndopedCarbonElectrodes 190

8.4.3Li-Sbatteries 195

8.4.3.1Biomass-derivedCarbonHosts 198

8.4.4Zn-AirBatteries 199

8.5Biomass-derivedHeteroatom-DopedCarbonElectrodesforRBs 201

8.5.1Single-Heteroatom-DopedCarbonElectrodes 202

8.5.2Dual-Heteroatom-DopedCarbonElectrodes 204

8.6SummaryandFutureProspectives 206 References 207

9RecentAdvancesinBio-derivedNanostructuredCarbon-based MaterialsforElectrochemicalSensorApplications 215 AkshatMathur,JayashankarDas,andSushmaDave

9.1Introduction 215

9.2ConclusionandFuturePerspectives 224 References 225

10PorousCarbonDerivedFromBiomassforFuelCells 229

A.Sivakami,AristatilGanesan,P.Sakthivel,KishoreSridharan, SabarinathanVenkatachalam,andSudhagarPitchaimuthu

10.1Introduction 229

10.2FuelCells–TheoryandFundamentals 233

10.3CatalystSupportMaterials 234

10.3.1AsaCatalyst 236

10.3.2SynthesisMethodsofPorousCarbonfromBiomass 236

10.4PorousCarbonSynthesisfromDifferentBiomass 237

10.4.1OxygenReductionReaction(ORR) 237

10.5SynthesisofBiomass-DerivedORRCatalystforFuelCell 238

10.6FutureOutlook 245

10.7Summary 245 References 246

11Biomass-DerivedCarbon-BasedMaterialsforSupercapacitor Applications 253

G.Murugadoss,M.Rajaboopathi,M.RajeshKumar,and A.M.KamalanKirubaharan

11.1Introduction 253

11.1.1Capacitor 253

11.1.2Battery 254

11.2Supercapacitor 255

x Contents

13RecentAdvancesofBiomass-DerivedPorousCarbonMaterials inCatalyticConversionofOrganicCompounds 293 N.MahendarReddy,D.Saritha,NaveenK.Dandu,Ch.G.Chandaluri,and GubbalaV.Ramesh

13.1Introduction 293

13.2SynthesisProcedures 295

13.2.1Carbonization 295

13.2.1.1HydrothermalCarbonization(HTC) 296

13.2.1.2Pyrolysis 297

13.2.2Activation 297

13.2.2.1PhysicalActivation 297

13.2.2.2ChemicalActivation 298

13.2.3PhysicochemicalActivation 299

13.2.4Microwave-basedsynthesis 299

13.2.5Functionalization/Doping/CompositesofACs 300

13.3Applications 302

13.3.1HeterogeneousCatalysis 302

13.4ConclusionandFutureChallenges 308 References 309

14SummaryonPropertiesofBio-DerivedCarbonMaterialsand theirRelationwithApplications 317

S.Vinodha,L.Vidhya,andT.Ramya

14.1RemovalofToxicChemicals 321

14.2ElectrodeMaterialsforBatteries 322

14.3ElectrochemicalSensorApplications 323

14.4FuelCellApplications 324 References 329

Index 331

Preface

Biomass-derivedcarbon-basedmaterialsareofgreatinterestbecauseofabundant andeasyavailabilityofbio-precursors,andthematerialswithlowdimensions possesslargesurfaceareaandporositythatallowforavarietyofapplications. Biomass-derivedcarbonisincreasinglypopularinmakingcompositematerials becauseofitscontinuity,interconnection,andporousandhierarchicalstructure. Todate,awidevarietyofcompositematerialsinvolvingbiomass-derivedcarbon havebeenpreparedandusedforinterestingapplications.Thisbookaimstoprovide adeepinsightonthepreparationandactivationprocessesofbiomass-derived carbon,synthesisofcomposites,andfutureopportunitiesontheexplorationof thesematerials.Theintroductorychaptersdealthepossiblesources,synthesis, properties,characterization,activation,andcostanalysisofbiomass-derived carbon-basedmaterials.Theremainingchapterselaboratelydiscusstheapplicationsofbiomass-derivedcarbon-basedmaterials,includingcatalysis,sensors, microbicidalactivity,toxicchemicalsremoval,drugdelivery,andelectrochemical energyconversionandstorageapplications.Thefinalchaptersgiveanoverviewof propertiesofbiomass-derivedcarbonmaterialsandtheirrelationwithapplications. Hence,thisbookgathersandreviewsmultidisciplinaryaspectsofbiomassderivedcarbon-basedmaterialsresearchperformedbychemists,physicists, materialsscientists,biologists,andengineers.Readerscaneasilyunderstand thefundamentalsofbiomass-derivedcarbonmaterialssynthesis,activation processes,properties,characteristics,andtheirroleinthecurrentscenarioof application-orientedresearchanddevelopment.Thisbookwillbehelpfulfor researcherstoestablishtheirownresearchintheareaofbiomass-derivedcarbon materials.

ElectroOrganicandMaterialsElectrochemisryDivision CSIR-CentralElectrochemicalResearchInstitute Karaikudi-630003,TamilNadu,India

xii Preface

Dr.PerumalRameshkumar AssistantProfessor DepartmentofChemistry SchoolofAdvancedSciences KalasalingamAcademyofResearchandEducation Krishnankoil-626126,TamilNadu,India and Dr.PitchaimaniVeerakumar DepartmentofChemistry InstituteofAtomicandMolecularSciencesAcademiaSinica(IAMS) NationalTaiwanUniversity Taipei-10617,Taiwan

Acknowledgments

Wearegratefultoalltheauthorswhocontributedtheirchapterstomakethisa valuablebookandforthesuccessfulcompletionoftheprocess.Wearethankful tothepublishingeditor,Wiley-VCH,foracceptingourproposalandgivingusan opportunitytoeditthisbook,andtheirhelptowardthesuccessfulcompletionofthe workisgreatlyacknowledged.

1IntroductiontoBiomass-DerivedCarbonMaterials

moldthecharacteristicsofthebio-derivedcarbonmaterials(B-d-CMs)according totheirapplication.Differentapproachesformanufacturingandmodifyingcarbon materialsarepursued.

Thereareseveralgeneralpropertiesofcarbonmaterialsthatmakethemattractiveindifferentapplications.Carbonisacommoncommodity,indicatingthatit haslongbeenusedbyindividuals.Graphite,carbonblack(CB),andACmaterials areincludedintheselong-usedtraditionalcarbonmaterials[11–14].Newcarbon materialswithcustomizedpropertieshavebeendevelopedinthepastcentury.This includedcarbonfibers,graphitethatwasstronglyfocused,andseveralothers.

Muchmoresophisticatednanosizedornanostructuredcarbonmaterialshave beendevelopedinrecentdecades.Carbonmaterialsarecurrentlybeingintensively researched,inparticularthenewestnanocarbons,butalsomacroscopiccarbons suchascarbonfibers[15,16].Duetotheirdistinguishedphysicochemicalproperties,innovativecarbonmaterialsnamelygrapheneanditsderivatives,fullerene, andcarbonnanotubeshavegainedsignificantinterestintheareaofenergystoring nowadays.Theyhavegoodconductivity,outstandingchemicalstability,porosity thatcanbetuned,largespecificsurfacearea,andenrichedelectroactivesites enriched.Porouscarbonnanomaterialshavegainedsignificantattentionbecause oftheirphysiochemicalpropertiesandhighsurfacearea.Thecarbonwithdifferent

Figure1.1 B-d-CMsstructurestrategiesfordifferentEESapplications.Source:Ref.[19]/ AmericanAssociationfortheAdvancementofScience/CCBY4.0.

1.2BiomassResourcesandComposition 3 poresizeshasattractedsignificantattentionforhighlyefficientelectrochemical storageapplications[17,18].

However,thesecarbonmaterialsdependonprecursorsbasedonfossilfuelsusing energy-consumingsyntheticmethods(e.g.chemicalvapordeposition,discharge ofelectricarcs,andlaserablation)thataretoxicandexpensivetotheatmosphere. Whilethesesyntheticmethodsareadvancedtechnologyonabenchscale,due tocomplexsyntheticprocesses,theyarenotyetreadyforcommercialization. Consequently,theestablishmentofmoreeffective,environmentallysustainable andeconomicapproachestotheprocessingofcarbonmaterialsisimportant.

B-d-CMsareshowinggreatimportance,andeffortshavebeendevotedfor enhancingtheperformanceofelectrochemicalstorageapplications[19].Itis essentiallytoknowhowthestructuredesignanddiffusionkineticsofB-d-CMsare affectingtheperformanceofelectrochemicalenergystorage(EES)devices.Itis showninFigure1.1.

1.2BiomassResourcesandComposition

Biomassreferstoanimal-andplant-basedmaterialsorby-productsthatmayserveas apotentialenergysource.Protein,carbohydrates,starch,lignin,andlipidsconstitute biomassandaresuchcomponentsthatdifferdependentonthegeographicsituation andsource.Proximateandfinalstudieshaveshownthatbiomassisabundantin carbon,hydrogen,oxygen,andnitrogen,andtracesofchlorineandsulfurarealso shown.Biomass-derivedcarbonhasmanycrucialadvantagesassociatedwithadditionalelectrodematerialsforenergyandecologicalapplications,suchascheapand plentifulsupply,environmentallysafe,insitunanoporousstructureestablishment, andprocessingelasticity[20–24].Asthesourceaffectsthefinishingcarbonreturn anditsstructuralfeatures,whicharemandatoryforenergystoringandecological applications,theoptionofabiomassprecursoriscrucial.

Agro-residuesfromcropproduction,solidwastefrommunicipal,andfurther agro-basedmanufacturingunitsarekeysourcesofprecursors.Owingtothelarge availabilityandlesscost,theseprecursorshavegainedalotofattention.They do,however,havevariouschemicalfunctionalities,creatingthemanidealchoice forawiderangeofmorphologiesfortheproposalofcarbonmaterials.Biomass derivativecarbonsaredeliberatedtobefavorableelectrodematerialsfordifferent formsofelectrochemicalenergystoringandtransformationsystemsduetothe aforementionedadvantages,includinglithiumbatteries,supercapacitors,potassiumbatteries,sodiumbatteries,andfuelcells[25–29].Giventhequickgrowthin thissector,athoroughanalysisandcomparisonoftheirmanufacturingapproaches, features,applications,andperformanceintheseelectrochemicalenergystoring applicationsarenotonlynecessarybutalsourgent.

Thecarbonpowderthatcompriseseggwhite,bacterialcellulose,mushrooms, peelsoforange,humanhair,dryelmsamara,chitin,catkin,etc.hasbeenused tomanufactureawidevarietyofbiomaterials.Thesebiomassproducts,however, canbeclassifiedintofourmaingroupings,i.e.biomassbasedonmicroorganisms,

1IntroductiontoBiomass-DerivedCarbonMaterials

Table1.1 Differencebetweenbiochar,activatedcarbon,andcarbonblack.

BiocharActivatedcarbonsCarbonblack PrecursorsBiomassCoal,asphalt,and biomass.

Carbon content

structural features

Preparation method

Petroleum,coaltar, andasphalt.

40–90%80–95% >95%

Amorphousand porouscarbonwith enrichedsurface functionalities

Mediumtemperature pyrolysis(400–600 ∘ C), followedbyphysicalor chemicalactivations

Amorphouscarbonand highlyporous

High-temperature carbonization (700–1000 ∘ C)with physicalorchemical treatments

Source:Ref.[30]/withpermissionofAmericanChemicalSociety.

Microcrystalor amorphouscarbon particles

Combustion processwithlittle orwithoutair

animalbased,plantbased,andfoodbased.Itbecomesmoredifficulttopredictthe concludingarrangementandconstructionofaderivedbiochar.Generallyspeaking, itisdifficulttounderstandtheawarenessoftheelementalandchemicalcompositionofbiomassastheresponsescanhappeninthephasesofcarbonizationand stimulation.Themorphologyandstructureofresultingcarboncouldeventuallybe changedbytheseinducedreactions.Table1.1liststhedifferencebetweenactivated, biochar,andCB[30].

Significantresearchstudiesaredoneinpursuitofbiomassthatatthesametime receivesfunctionalgroupscontainingoxygenornitrogen,interrelatedmicroor mesoporousarrangements,andsimilarlyhasalargecarboncontentproductionthat amplifiestheapplicationoftheenvironmentandresources.Mostadvancedprecursors,however,endupwithlowyields.Thebiocharisaderivativeofwillowcatkins, forexample,provedexcellentpresentationinperformance,capacitance,andcycling asenergystoragedevices.Thefinalcarbonoutcomewassignificantlylesser(5.5% wt.)relativetosimilarbiomassprecursorsincludingricestraw,consideringthese benefits[31–34].Thebiocharoutcome,heteroatom,anddopingofthebiochar dependgreatlyontheprecursors’basiccompositionandchemicalstructure.Itis thusimportanttodiscoverandunderstanddifferentprecursor-relatedpropertiesin ordertoenhancebiocharoutcometocreateitappropriatelyinenergystoringand ecologicalapplications.ThedifferentbiomassresourcesaregiveninFigure1.2.

1.2.1Plant-BasedBiomass

Thenumericalchemicalcompositionofplant-basedbiomassvariesaccording togeographicfactors,categorizationsoforganisms,andorgandependency.Still, cellulose,lignin,hemicellulose,andextractivesconsistofthequalitativechemicalconfigurationsofplant-basedbiomass[35,36].Forinstance,seedshells, palm,areca,etc.consistofsubstantialligninand83%ofcellulose.Whereas,for

High temperature and pressure

Oxidizing agents

Residence time Explosive decompression

Figure1.3 Plant-basedbiomassconstituents.Source:Ref.[36]/withpermissionofElsevier.

Untreated cell wall
Crystalline cellulose
Hemicellulose
Lignin
Hydrogen bond
Glucose

1.2BiomassResourcesandComposition 7 crudeproteinyields3.5to28.6%and5.8to43.4%,respectively.Largerlevelsof proteinsandcrudelipids,however,leadtodisadvantagesintheultimatebiochar outcome,astheseproteinsandcrudelipidsstartdegradingwhentemperatureis low,exemptingunstablecompoundsnamelywatervapors,methylesters,olefins, carbondioxide,andammoniafumes.Ontheotherhand,thepresenceofnitrogen andphosphorouscontentinproteinsandcrudelipidscanleadtoheteroatom-doped carbonproduction[25,37,38].Thecrudefibersoflignin,hemicellulose,and cellulosearethemainproviderstotheprocessingofcarbon.Themassportionsof crudefibers,however,areconsiderablylessandtypicallygoodincellulose,which affectsthegraphicstructureandbiocharyield.

1.2.3Microorganism-BasedBiomass

Newmeasurementsopenuptheprospectofusingmicroorganismsderivedfrom biochar,suchasbacterialcelluloseandfungi.Thefungi,suchasmushroomsand yeasts,haveevidencedtobeimprovedprecursorsofreformativebiomassforbiochar derivation,attributingtheirrapidlyincreasingcapacityandtheireaseofusein environmenttobulk.Carbohydrates,crudeproteins,fibers,andfatsarethemain elementsofmicroorganism-basedbiomass.Plant-andfruit-derivedbiomassare thekeycomponentsfoundinthemicroorganism-basedbiochar.Buttheindividual compoundsandelementsfromthesemodulesareconsiderablydifferent.

Thecarbohydratesexistinginthemicroorganismincludechitinsthatestablish aglucancross-link,servingasthemainsourceofcarbonintheprocessofpyrolysis,whilesucroseandstarcharethesourceofcarbohydratesinnon-cross-linked plantswiththelowestthermalstability.Inmicroorganisms,crudefibersareprimarilymadeofcellulose,whichshowsthesameplantorfruitbiomasscarbonization behavior.

Themainprecursorsaremushroomsbasedonmicroorganism-basedprecursors. Comparedtootherelementssuchasmycelium,thefruitingsectionofthemushroom ismostcommonlyusedforprocessingasitgoesintodepth.Owingtotheexistenceof largenitrogencontent,mushroomsareanattractivechoice.Themushroom’snitrogencontentvariesfrom3to10%and17%nitrogencontentisobservedforsome species.Astheyareabletogeneratecarbonderivedfromnitrogen-dopedbiomass, themushroomprecursorsarepromising[39–41].Geographicalfactors,however, haveamajoreffectonthecompositionoftheelementsandcandifferfromregionto region.

1.2.4Animal-BasedBiomass

Chitinisanalternativepositivebio-precursorforawidespreadvarietyofapplicationsowingtotheexistenceoflargernitrogenconcentrations,chemical stabilityandlargeexistenceintheenvironment.Chitiniscapableofcreating chitin-catecholamineandchitinglucancomplexcross-linknetworksandisableto formintermolecularhydrogenbonds.Comparedwithcellulose,chitinhaslarger thermalstabilityandcarbonoutcome.Chitinextractioncanbeusedforthepopular

8 1IntroductiontoBiomass-DerivedCarbonMaterials

animalspeciescontainingmollusks,pests,andcrustaceans.Thecrustaceans consistofasubstantiallyhighamountofchitincontentrangingfrom17to72%,i.e. Carcinus, Pandalus, Carangon,and Cancer [42,43].

Likewise,thecuticlesandsloughsofmanytypesofinsects,suchas,butterflies Holotrichiaparallela,andsilkworms,haveextraordinarychitincontentconcentrationsrangingfrom18.4to64%.

Chemicaldemineralization,deproteinization,andmechanicalcrushingareused toremovethechitincontentfromthebiomass.Thefinalextractionyielddepends onbiomassprecursors,anditrangesfrom4to40%intheprocessingsystem. Chitin’snitrogencontentisextractedfromanimalbiomassandmatcheswith thatofmicroorganism-basedbiomasswithnitrogenconcentrations,capableofits appropriatenessinenergyandecologicalapplications[44,45].

1.3ConditionforPrecursorSelectionof

Biomass-DerivedCarbon

Thefollowingconditionsmustbeaddressedinordertosynthesizegood-quality biocharbymeansofsuperiorconductivityandporosityandtosatisfytheneedsfor hugeecologicalandenergyapplications.

Theexistenceofnitrogencontentimprovesnitrogen-dopedcarbonproduction withgreaterconductivityandenhancedcyclingstability.Still,itisimportantto selectprecursorshavinglessoxygencontent,orelsethearomaticcarbonformation wouldbeobstructed.Theexistenceofstronglycross-linked,largemolecularweight withthermalstabilitybiomacromoleculesincludinglignin,keratin,andchitin enablestheformationofaromaticcarbonandintheprocessofcarbonization providessuperiorbiochar.Aliphaticcompoundsmustbepreventedbytheexistence oflittlecontentsofnoncrosslinkedandmolecularweight,otherwisetheyhinder aromaticcarbonformations.

1.4ProductionMethodsofBiomass-DerivedCarbon

Numerousactivationandvariousmethodsofcarbonizationcanbeusedtoturn biomassintocarbon.Inordertoturnbiomassintovalue-addedcarbongoods, physical,chemical,andacombinationmaybeused[16].

Incarbonmaterials,manyfactorsincludingsurfaceproperties,temperature,time, reagents,andavailabilitycauseaneffect.Thekeyprocessesusedtoextractcarbon frombiomassarepyrolysisandhydrothermalcarbonization(HTC).Pyrolysisis performedatadefinedtemperaturelevelinarestrictedoxygenorinertatmosphere environment,whereasathermochemicalmechanismisusedfortransforming biomassintocarbon.Temperature,temperaturerampingrate,catalyst,andparticle sizearetheproductsobtainedfrombiomasspyrolysis.HTCisdonewithorwithout theuseofacatalystinapressurizedaqueousatmosphereatlesstemperaturerange from120to250 ∘ C.Comparedtonaturalbiomasscoalification,theHTCprocedure

(500–1000 °C)

Single or combined with activation

1.4ProductionMethodsofBiomass-DerivedCarbon 9

(120–250 °C)

Single or combined with activation

Activated biochar

(< 500 °C)

Steam (800–1200 °C) Carbon dioxide (800–1200 °C) Chemical activation

H3PO4 (Low SSA)

ZnCl2, FeCl3 (Dehydrating agent)

KOH, NaOH (High SSA)

Figure1.4 OverviewofoverallproductionmethodsofB-d-CMs.Source:Ref.[36]/with permissionofElsevier.

isdoneatarateofhigherreactionaddedwithasmallerreactionlength.Various publicationshavestudiedhydrothermalconversioninrecentresearch[46–48].

TheoverviewofdifferentproductionmethodsofB-d-CMsisshowninFigure1.4.

HTCisathermochemicalconversionmethodthatrequiresavarietyof componentsincludingprecursorconcentration,catalyst,residenceperiod,and temperature.Itusessubcriticalwaterstotransformbiomasstocarbonproductsfor successfuldehydrationandhydrolysisofhydrocharprecursorswithhigh-oxygenrichfunctionalgroups.Throughtheuseofadditivesordoping-containing precursors,otherfunctionalgroups,includingnitrogengroups,mayalsobeadded tohydrochars.Recoveredcarbonproductshaveattractedinterestinawiderangeof uses,includingenergyharvesting,catalytic,andtraptechnologies.

ThemethodusedfortransformingcarbonmaterialsintoACisactivation.For activation,chemicalandphysicalmethodsmaybeintroduced.Physicalactivation bypyrolysisisachievedat1200 ∘ Cinthepresenceofcarbondioxide.Inthepresenceofachemicalagent,chemicalactivationtakesplaceattemperaturesbetween 450and900 ∘ C.ThemostusedchemicalactivatorsareNaOH,KOH,K2 CO3 ,FeCl3 , H3 PO4 ,andZnCl2 [48].

1.4.1Carbonization

1.4.1.1HydrothermalCarbonization

ThehydrocharmaterialproducedbythemethodofHTCispartlycarbonized andcontainsoxygengroupsoflargedensity.Thefinalyield,however,depends ontheprecursorfeaturesemployed.Forenergystorageapplications,hydrochars arestraightawayusedaselectrodes.Poorporosityandsmallspecificsurfacearea arenaturallypresentinthehydrocharformedbyHTC.Consequentinitiation orcarbonizationiscompulsorytochangeitschemicalandphysicalproperties.

1.5Biomass-DerivedCarbons(B-d-CMs)ActivationMethods 11

400–600 ∘ C,resultinginmaximizedbiocharyieldandlowbio-oilandsyngasproduct yields[52].Quickpyrolysis,ontheotherhand,possesseslargerheatingrateand lowerresidenceperiod,providingthevalueofmaximizedbio-oiloutcomeupto75%. Temperatureisamainparameterinregulatingthepyrolysisprocessandthenaffectingthebehaviorandbiocharoutcome,relativetorateofheating,reactiontime,and particlesizeoffeedstock.

Growingpyrolysistemperaturedecreasestheyieldofbiochar,theabilityofcation exchange,andthequalityofnutrients,butincreasesitsdegreeofaromatization, specificsurfacearea,largerrangeofheatingvalue,andsolutionpH.Inaddition, biochargeneratedatalowertemperatureofpyrolysishasalowerstablefraction ratiothanbiocharproducedathighertemperatures[53].Duetoitslessconductivity, poorerporecharacteristics,andlessspecificsurfacearea,biochardevelopedatlower temperaturepyrolysisisnotappropriateforuseasenergystoringandconversion materials.Therefore,surfacealterationandactivationproceduresarerequiredprior totheirimplementation[54].

1.5Biomass-DerivedCarbons(B-d-CMs)Activation Methods

ThetwobasicmethodsthatareappliedtoachieveACbasedonbiomassare physicalandchemicalactivation.Physicalactivationiseasierandmoreenvironmentallyfriendlythanthechemicalactivation,whichisnormallydoneathigher temperatures.

1.5.1PhysicalActivation

Overall,varioussuitabilityandacceptableactivationmethodscouldbealtered andmaterialfeaturescouldbedifferent.Itisafamousfactthat,asopposedto physicalactivation,chemicalactivationneedslessactivationperiodandtemperature.Chemicalactivation,however,hasshownmanysignificantdrawbacks comprisingofwaterwashingstepafteractivationthatisneededandneededto eradicate≪Reviseas“ thatisneededtoeradicate ”impurities.Normally,physicalactivationdeploysatwo-stepprocedure.Biomasscontentisinitiallypyrolyzed tocreatebiochar,whichisthentriggeredusinggases,namelysteam,CO2 ,air,or theirmixturebycontrolledgasification[23,56].Disorganizedcarbonsaremade intheprocessofpyrolysisfromtardecomposition,blockingbiocharpores,and minimizingtheirparticularsurfacearea.

ThecompleteoverviewofdifferentactivationmethodsisshowninFigure1.6. Thesuccessivelyregulatedgasificationisabletopromotefurtherdecomposition oftheas-preparedbiocharandgetafullycreated,usable,andinterrelatedporous structure.Porosityproductionalsoyieldsfromcarboncalcinationandgeneration ofvolatilesubstances,anddependingheavilyonthetriggeringgas.CO2 issafeand easyforusage,soitisalwaysused.Activationperiod,temperature,rateofgasflow, andfurnaceselectioncaninfluencethedegreeofcarboncalcination.Byactivation

1.5Biomass-DerivedCarbons(B-d-CMs)ActivationMethods 13

Still,additionalenhancementinactivationperiod(60minutes)decreasedtotal volumeandtherealsurfaceareaofthepore,asthecreationandexpansionof microporeswerelesssuccessfulthantheworseningofhighporosity.Chang etal.[63]andOkadaetal.[60]publishedsimilarfindings.Theporestructures weremainlycontributedbymicropores,closetoCO2 activation,andtheratioof microporevolumetototalporevolume(Vmicro/VT)wasbetween0.63and0.84. Thus,allmethodsofactivationofCO2 andsteamledtowell-builtmicroporosity. ComparedtoCO2 activation,however,steamactivationfavorsthewideningof microporosityandincreasesthegrowthofmesoporesatthecostofmicroporosity.

1.5.2ChemicalActivation

AiractivationneedslesstemperaturecomparedtotheCO2 andsteamactivation mentionedearlier.Nevertheless,sincetheycommonlygrowahierarchicalporosity, steamandCO2 activationsareoftenused.Researchonbiomassphysicalactivation isstillincomplete,incomparisontochemicalactivation.Thereisaneedforfurther methodicalresearchandevaluationsofCO2 ,air,andsteamactivationsofcarbons derivedfrombiomass,particularlyintheapplicationscenariosinthefieldofelectrochemicalenergystoring.Thermalpreparationofthebiomasscarbonprecursor andthetriggeringagentinthe450–900 ∘ Ctemperaturerangeispartoftheprocess ofchemicalactivation.Incontrasttophysicalactivation,chemicalactivationneeds lesserpyrolysistemperature,improvedcarbonoutcome,carbonyieldedwithlarge surfacearea,andproperlyarrangedanddefinedmicroporousstructure[64].

Thelargesurfaceareaandproperlyarrangedanddefinedmicroporousstructureof thecarbongeneratedshowavitalroleinecologicalandenergystoringapplications.

KOHiswidelyusedasanagentforchemicalactivation,performingasanoxidant andformingoxygenfunctionalgroupsonbiochar.Therefore,notonlyelectrochemicaldouble-layercapacitancebutalsopseudo-capacitancecanbecontributedby KOH-ACs.KOHfirstdehydratesintoK2 Oat400 ∘ Cintheactivationphase.Then, withthedevelopmentofH2 ,carbonreactswithH2 O,followedbyCO2 formation. K2 OreactsandformsK2 CO3 withCO2 .Oncethetemperatureisincreasedbeyond 600 ∘ C,itrespondscompletelytoKOH.K2 CO3 beginstodecomposeabove700 ∘ C andisabsentfromthesystemat800 ∘ C[65].Simultaneously,metallicpotassiumis formed.TogenerateCOathighertemperatures,theCO2 producedwillreactwith carbon.

ThethreekeymechanismsforporosityproductionbyactivationofKOHaregenerallyaccepted.AredoxreactiondecomposesthecarbonmatrixwithKOH,leading totheformationofabundantmicro-andmesopores.TheformationofH2 Oand CO2 helpsintheproductionofporosity.Afterextractingthemetallicpotassium andotherpotassiumsubstancesbyrinsing,asshowninthefigure,expandedcarbon latticesintegratedwithintermediatemetallicKareunabletorestoretheiroriginal structure.Therefore,onthebasisofthesynergisticeffectsofphysicalandchemical activation,microporosity,carbonlatticeexpansion,andhighspecificsurfacearea areformed.Variousprecursorsaredevelopedintoporouscarbonmaterialbymeans ofdistinguishingmorphologicalcharacteristics,poretexture,andsurfacefunctional

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Biomass-derived carbon materials: production and applications alagarsamy pandikumar - Download the e by Education Libraries - Issuu