Biology of cardiovascular and metabolic diseases 1st edition chaya gopalan - Quickly download the eb

Page 1


https://ebookmass.com/product/biology-of-cardiovascular-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The impact of nutrition and statins on cardiovascular diseases Lordan

https://ebookmass.com/product/the-impact-of-nutrition-and-statins-oncardiovascular-diseases-lordan/

ebookmass.com

Molecular, Cellular, and Metabolic Fundamentals of Human Aging Evandro Fei Fang

https://ebookmass.com/product/molecular-cellular-and-metabolicfundamentals-of-human-aging-evandro-fei-fang/

ebookmass.com

Medicinal Spices and Vegetables from Africa: Therapeutic Potential against Metabolic, Inflammatory, Infectious and Systemic Diseases Victor Kuete

https://ebookmass.com/product/medicinal-spices-and-vegetables-fromafrica-therapeutic-potential-against-metabolic-inflammatoryinfectious-and-systemic-diseases-victor-kuete/ ebookmass.com

Humans in the Making In the Beginning was Technique_ Volume 4 Michael J.F.Dubios

https://ebookmass.com/product/humans-in-the-making-in-the-beginningwas-technique_-volume-4-michael-j-f-dubios/

ebookmass.com

Nanotoxicity: Prevention and Antibacterial Applications of Nanomaterials (Micro and Nano Technologies) 1st Edition

https://ebookmass.com/product/nanotoxicity-prevention-andantibacterial-applications-of-nanomaterials-micro-and-nanotechnologies-1st-edition-susai-rajendran-editor/

ebookmass.com

Blackwood Institute: The Complete Trilogy Rose

https://ebookmass.com/product/blackwood-institute-the-completetrilogy-rose/

ebookmass.com

Weight Training for Beginners: A Complete Illustrated Guide to Strenght Training at Home for Men and Women. Easy and Effective Exercises and Workouts with dumbbells to Burn Fat and Build Muscle John Mcdillon

https://ebookmass.com/product/weight-training-for-beginners-acomplete-illustrated-guide-to-strenght-training-at-home-for-men-andwomen-easy-and-effective-exercises-and-workouts-with-dumbbells-toburn-fat-and-build-muscle-john-m/ ebookmass.com

L’attachement : Approche Théorique 4th Edition Guédeney

https://ebookmass.com/product/lattachement-approche-theorique-4thedition-guedeney/

ebookmass.com

Equine Reproductive Procedures 2nd Edition John Dascanio

https://ebookmass.com/product/equine-reproductive-procedures-2ndedition-john-dascanio/

ebookmass.com

Over the Hills and Far Away Lama Lindblom

https://ebookmass.com/product/over-the-hills-and-far-away-lamalindblom/

ebookmass.com

BIOLOGYOFCARDIOVASCULAR ANDMETABOLICDISEASES

BIOLOGYOF CARDIOVASCULAR ANDMETABOLIC DISEASES

CHAYA GOPALAN,PH.D.,FAPS

DepartmentofAppliedHealth,SchoolofEducation,Health&HumanBehavior; DepartmentofNurseAnesthesiology,SchoolofNursing,SouthernIllinoisUniversityEdwardsville, Edwardsville,IL,UnitedStates

ERIK KIRK,PH.D.

DepartmentofAppliedHealth,SchoolofEducation,Health&HumanBehavior, SouthernIllinoisUniversityEdwardsville,Edwardsville,IL,UnitedStates

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom

525BStreet,Suite1650,SanDiego,CA92101,UnitedStates

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuse oroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-823421-1

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: StacyMasucci

AcquisitionsEditor: KatieChan

EditorialProjectManager: BillieJeanFernandez

ProductionProjectManager: OmerMukthar

CoverDesigner: ChristianJ.Bilbow

TypesetbySTRAIVE,India

Dedication

Tomyfamilyandstudentswhohaveinspiredmeinmyteachingandwriting.

– Dr.ChayaGopalan

Tomyfamily,mentors,andthemanystudentsIhavehadtheprivilegetoteach.

– Dr.ErikKirk

Preface

Teachinghealthsciencemajorsaboutthe biologyofcardiovascularandmetabolic diseaseinastraightforwardyetconcise wayhasalwaysbeenourpassion.Itisessentialforstudentswhowouldworkinhealth caretolearnaboutthesignificantcardiovascularandmetabolicdiseasestheywouldencounterintheircareers.Inaddition,students musthaveagoodunderstandingofthe manymetabolicpathways/mechanismsassociatedwiththeseconditionstoprovide qualitysupport.Forexample,onlyrecently havewelearnedabouttheroleofinflammationandtheinteractionwithspecificgenesin contributingtovariousdiseases.Itisalsovitalforstudentstounderstandhowdietand exercisecouldpreventortreattheseconditions.Thesearejustsomeofthecriticalareas forhealthsciencestudentstolearnasthey willsomedayworkinvariousareassuchas exercisescience,nutrition,dietetics,medicine,nursing,physicaltherapy,occupational therapy,andathletictraining,amongothers. Whiletheamountandtypeoftreatmentvary byprofession,allhealthprofessionalshave patientswithoneormorecommonconditions.Westronglyfeelthathealthscience studentswouldbenefitbyhavingabasicunderstandingofthemorecommoncardiovascularandmetabolicdiseases.Eveniftheyare notdirectlytreatingthecondition(s),practitionersshouldstillunderstandhowand whytheydevelopedsincemanyoftheirpatientswillhavetheseconditions.However, uponresearchingthebesttextbookfora basicunderstandingofthemorecommon cardiovascularandmetabolicdiseases,we

foundthatthechoiceswereminimal.Some excellentpathophysiologybooksgointo greatdetailovervariousdiseases,butthese textbooksaretooadvancedforanintroductorycourse.Wealsofoundthattheycontain manydetailsoverconditionsthat,although necessary,werenotverycommon.Therefore wedecidedtodevelopanintroductorytextbookfocusedonthemorecommoncardiovascularandmetabolicdiseasesinthe healthsciences.Manyconditionsarenotincluded,butthegoalinthisintroductorybook istofocusonthemorecommondiseasesand beasclearyetconciseintheapproach.We feelwehaveaccomplishedthatgoalwith thistextbook.Wehopeyouandyourstudentsdotoo!

Organization

Thebookisorganizedintotwounits:Cardiovasculardiseasesandmetabolicdiseases. Eachcontainschaptersrelevanttothesetwo units.Tohelpwiththecomprehensionofthe material,theauthorshaveincludedvarious featuresandaidstoreinforceconceptsand enhancelearning.Thefollowingisanoverviewofeachfeatureandaid:

Chapterobjectives:Objectivesarelistedat thebeginningofeachchaptertohelp identifykeyconcepts. Illustrationsandfigures:Numerous illustrations,figures,charts,and tablesclarifyandenhancetheessential conceptsandinformation.

Abouttheauthors

Dr.ChayaGopalan receivedherbachelor’sandmaster’sdegreesfromBangalore University,India,andPhDfromtheUniversityofGlasgow,Scotland,forherresearchon opioidpeptidesintheregulationofthereleaseofluteinizinghormone.Shecontinued herworkongalaninandotherneuropeptidesasapostdoctoralresearchfellowat MichiganStateUniversity.Dr.Gopalan wantedtofollowherpassionforteaching. ItstartedasanadjunctpositionatMaryville UniversityinSt.Louis,whichledtotenuretrackpositionsatSt.LouisCommunity CollegeandSt.LouisCollegeofPharmacy, andnowatSouthernIllinoisUniversity Edwardsville(SIUE).Shehasbeenteaching intheareasofanatomy,physiology,and pathophysiologyatbothgraduateandundergraduatelevelsforhealthprofessional programs.Dr.Gopalanhasbeenpracticing evidence-basedteachingusingteam-based learning,case-basedlearning,andmostrecently,theflippedclassroommethods.Besidesherpassionforteaching,Dr.Gopalan haskeptupwithlabresearchinneuroendocrinephysiology.Currently,sheisworking ontworesearchprojects:oneontheroleof gonadalsteroidhormonesinthesexualdimorphismofthebrainandtheotheronobesity,intermittentfasting,andphysicaland mentalexhaustion.Dr.Gopalanhasreceived manyteachingawards,includingtheArthur C.GuytonEducatoroftheYearAwardfrom theAmericanPhysiologicalSociety(APS), OutstandingTwo-YearCollegeTeaching AwardbytheNationalAssociationofBiologyTeachers,andExcellenceinUndergraduateEducationAwardbySIUE.Shehasalso

receivedseveralgrants,includingan NSF-IUSE,anNSF-STEMTalentExpansion Program,andtheAPSTeachingCareerEnhancementawards.

Besidesteachingandresearch,Dr. Gopalanenjoysmentoringnotonlyherstudentsbutalsoherpeers.Sheregularlyconductsworkshopsandparticipatesinpanel discussionsrelatedtohighereducation.Dr. Gopalanisveryactiveintheteachingsection oftheAPSandhasservedonmanycommittees.Shehaspublishednumerousmanuscriptsandcasestudiesandcontributed severaltextbookchaptersandquestion banksfortextbooksandboardexams.

Dr.ErikKirk receivedhisbachelorsfrom DruryUniversityandhisPhDfromtheUniversityofKansas.Hisresearchandclinical experienceareintheareasofexercise,metabolism,andobesity.Dr.KirkisCertifiedClinicalExercisePhysiologistthroughthe AmericanCollegeofSportsMedicineanda CertifiedStrengthandConditioningSpecialistsandCertifiedPersonalTrainerthrough theNationalStrengthandConditioningAssociation.Dr.Kirkteachescoursesinadvancedexercisephysiology,cardiovascular andrespiratoryphysiology,biologyofcardiovascularandmetabolicdiseases,and pathophysiologyandtreatmentofobesity. Dr.Kirk’sresearchinterestinvolvesevaluatinghowobesitycontributestocardiovascular andmetabolicdiseases.Hisworkfocuseson understandingthenormaladiposetissue physiology,thealterationsinfatmetabolism associatedwithobesityanddiabetes,and howweightlossimprovesthemetabolic problemscausedbyobesity.Heisalso

OBJECTIVES

•Reviewthelocation,size,andexternala anatomyoftheheart.

•Locatetheinternaldetailsoftheheart includingthechambers,valves,andlayers withinthewall.

•Followtheflowofbloodthatreachesthe heartinastep-by-stepmanneruntilitejects blood.

•Summarizethecharacteristicsofthecardiac musclefiber.

•Comparetheelectricalactivitywithina cardiacconductive(pacemaker)celltothatof acardiaccontractilecell.

•Locatethepartsofthecardiacconduction system.Namethenormalpacemakerofthe heart.

•DefinethePwave,QRScomplex,Twave,PR andSTsegments,andPRandQTintervalsin anormalelectrocardiogram.

•Highlighttheeventsthatoccurinanormal cardiaccyclebeginningwiththe depolarizationofthepacemakercellsand endingwiththenextroundofpacemaker depolarization.Correlatetheelectricalevents tothemechanical,pressure,andblood volumechangesthatoccurinonecomplete cardiaccycle.

•Explainhowcardiacoutputismeasured. Describehoweachcomponentofcardiac outputisregulated.

•StatetheFrank-Starlinglawoftheheart.

•Definepreloadandafterload.

•Comparethemechanismsbywhichthe parasympatheticandsympatheticnervous systemsaffectcardiacoutput.

1.1Introduction

Ahumanheartpumpsapproximately108,000timesperday,morethan39milliontimesin 1year,andnearly3billiontimesduringa75-yearlifespanatthenormalheartrate(HR)of 75beatsperminute(bpm).Eachchamberoftheheartejectsapproximately70mLofbloodper contractioninarestingadult.Thiswouldequalto5.25Lofbloodperminuteandapproximately14,000Lperday.Over1year,thiswouldequalto10,000,000Lor2.6milliongallons ofbloodsentthroughroughly60,000milesofvessels.

1.2Locationoftheheart

Theheartissituatedwithinthethoraciccavity,mediallybetweenthelungs,inadedicated spaceknownasthe mediastinum (Fig.1.1).Theheartisseparatedfromtheotherstructures withinthemediastinumbyatoughmembraneknownasthe pericardium,or pericardialsac, whichsitsinitsownspaceknownasthe pericardialcavity.

1.3Thepericardium

The pericardium,whichtranslatesas“aroundtheheart,”isadouble-layeredconnective tissuemembranethatsurroundstheheartlikeasacand,therefore,isalsocalledasa

1.4Layersoftheheartwall

FIG.1.1 Locationoftheheartinthethoraciccavity [1].Theheartissituatedwithinthethoraciccavity,mediallybetweenthelungsinthemediastinum.

pericardialsac (Fig.1.2).Theoutersturdy parietalpericardium consistsofdenseconnective tissuethatprotectstheheartandmaintainsitspositionwithinthethoraciccavity.Theinner visceralpericardium ,or epicardium,isattachedtotheheartandispartoftheheartwall. Thereisaspacebetweenthevisceralpericardiumandtheparietalpericardiumandisreferredtoasthepericardialcavity.Thepericardiumsecretesasmallamountofserousfluid thatfillsthepericardialcavityandcoatsthetwopericardiallayerswhichservesasalubricant toreducefrictionastheheartexpandsandcontracts.

1.4Layersoftheheartwall

Thewalloftheheartiscomposedofthreelayersofunequalthickness.Fromsuperficialto deep,theselayersarethe epicardium, myocardium,and endocardium (see Fig.1.2).Theoutermostlayer,theepicardium,isalsotheinnermostlayerofthepericardium,thevisceralpericardium.Thethickestlayeroftheheartisthemyocardium.Asthenamesuggests,the myocardiumconsistsofcardiacmusclefibersalongwithitssupplyofbloodvesselsand nervefiberstohelptheheartpumpblood.Itisthecontractionofthemyocardiumthatpumps bloodthroughtheheartandintothemajorarteriestobedistributedthroughoutthebody.As showninthefigure(Fig.1.3),thepatternisuniquetocardiacmusclewherethemusclefibers swirlandspiralaroundthechambersoftheheartandformafigure8patternbetweenthe atriaandtheventricles.Thisswirlingpatternallowsthehearttowithstandstressandpump bloodeffectively.

Althoughtheventriclesontherightandleftsidespumpthesameamountofbloodper contraction,themuscleoftheleftventricleismuchthickercomparedtotherightbecause theleftventriclemustgenerateaveryhighpressuretoovercomeresistancerequiredtopump bloodintothelong systemiccircuit.Ontheotherhand,therightventricledoesnotneedto generateasmuchpressuresincethe pulmonarycircuit isshorterandprovideslessresistance.

Fig.1.4 illustratesthedifferencesinmuscularthicknessbetweenthetwoventricles.Theinnermostlayeroftheheartwall,the endocardium,isathinlayerofconnectivetissue.Theendocardiumlinesthechambersandcoverstheheartvalves.

1.5Externalanatomyoftheheart

Theadultheartweighsapproximately250–350g(9–12oz)andmeasures12cm(5in.)in length,8cm(3.5in.)wide,and6cm(2.5in.)inthickness.Awell-trainedathletemayhavea considerablylargerheartsinceexerciseresultsintheadditionofmuscleproteinstopump moreblood.Itisimportanttonote,however,thatthethickenedheartisnotalwaysdueto

FIG.1.2 Pericardialmembranesandlayersoftheheartwall [2]

FIG.1.3 Musculatureoftheheart [3].The swirlingpatternofcardiacmuscletissuecontributessignificantlytotheheart’sabilityto pumpbloodeffectively.

exercise.Itcanresultfromabnormalconditionssuchas hypertrophiccardiomyopathy, whichmaycausesuddendeathinapparentlyotherwisehealthyyoungpeople.

Theheartisbroaderatthesuperiorsurfaceandisreferredtoasthe base whichtapersoffat the apex (see Fig.1.5).Thebaseisatthelevelofthethirdcostalcartilagewhereastheapexis betweenthefourthandfifthribs.Cardiacmuscle(myocardium)isnourishedfromtheright andleftcoronaryarteries.Thesearteriesbranchoffintosmallerandsmallerarteries,deliveringoxygenatedbloodandnutrientstothemyocardium.

FIG.1.4 Differencesintherightandleftventricularmusclethickness [4]

Ascending Aorta (to head and arms)

Superior vena cava

Pulmonary artery (to right lung)

Right atrium

Right pulmonary veins (from right lung)

Right coronary artery

Right ventricle

Inferior vena cava

Descending aorta (to lower body)

FIG.1.5 Externalanatomyoftheanteriorpartoftheheart [5]

Aorta

Base

Pulmonary artery (to left lung)

Left atrium

Left pulmonary veins (from left lung)

Left coronary artery

Apex Left ventricle

1.6Internalanatomyoftheheart

Theheartisdividedintofourchambersbythesepta,orwalls.Locatedbetweenthetwo atriaisthe interatrialseptum.Theseptumsituatedbetweenthetwoventriclesiscalled the interventricularseptum.Theinterventricularseptumissubstantiallythickercompared totheinteratrialseptumtoallowtheventriclestogeneratehighpressurewhentheycontract. The atrioventricularseptum,asthenamesuggests,isfoundbetweentheatriaandtheventricles.Ithousesfouropeningsthatallowbloodtomovefromtheatriaintotheventriclesand fromtheventriclesintothepulmonarytrunkandaorta.Locatedineachoftheseopenings betweentheatriaandventriclesisa valve,aspecializedstructurethatensuresone-wayflow ofblood.Thevalvesbetweentheatriaandventriclesareknownasthe atrioventricular (AV) valves (Fig.1.6).TherightAVvalveisknownasthe tricuspidvalve andtheleftAVvalveis knownasthe mitralvalve.

1.6.1Chambersoftheheart

1.6.1.1Rightatrium

Therightatriumreceivesdeoxygenatedbloodfromthesystemiccirculation.Thetwomajorsystemicveins,the superior and inferiorvenaecavae,andthelargecoronaryveincalled the coronarysinus thatdrainsthemyocardium,emptyintotherightatrium(Figs.1.5and

FIG.1.6 Internalanatomyoftheheart [6].Thisanteriorviewoftheheartshows thefourchambers,themajorvessels,and theirearlybranches,aswellasthevalves. Thepresenceofthepulmonarytrunkand aortacoverstheinteratrialseptum,and theatrioventricularseptumiscutaway toshowtheatrioventricularvalves. Arrows representflowofbloodthroughthe heart.

1.6).Thesuperiorvenacavadrainsbloodfromregionsabovethediaphragmandtheinferior venacavadrainsbloodfromareasbelowthediaphragm.Thecoronarysinusdrainsmostof thecoronaryveinsthatreturnsystemicbloodfromtheheart.

1.6.1.2Rightventricle

Therightventriclereceivesbloodfromtherightatriumthroughthetricuspidvalve,avalve foundintheopeningoftheatrioventricularseptum.Whentherightventriclecontracts,the pressurewithintheventricularchamberincreasescausingthebloodtoflowtowardthepulmonarytrunkandtherightatrium(Figs.1.7and1.8).Thetricuspidvalveclosestoprevent anypotentialbackflowintotherightatrium.

1.6.1.3Leftatrium

Aftertheexchangeofgasesbetweenthealveoliandthepulmonarycapillaries,oxygenated bloodreturnstotheleftatriumviafourpulmonaryveins(Figs.1.7and1.8).Mostofthefilling occurswhiletheatriaarerelaxed.

1.6.1.4Leftventricle

Thebloodfromtheleftatriumflowsintotheleftventriclethroughthebicuspid(mitral) valvewhichissituatedintheopeningoftheatrioventricularseptumontheleftsideofthe heart.Theleftventricleejectsbloodintotheaortathroughtheaorticsemilunarvalve (Figs.1.7and1.8).

FIG.1.7 Aflowchartshowingthecirculationofbloodthroughtheheartaswellasbetweentheheartandthe lungs. Whitearrows withintheheartand blackarrowsbetweenboxes representflowofbloodthroughtheheart. Blue boxes indicatedeoxygenatedblood, redboxes indicateoxygenatedblood,and purpleboxes indicatesitesofgas exchange.

FIG.1.8 Heartvalves [7].Theatrioventricularvalvesincludethetricuspidvalveandmitralvalve.Thesemilunar valvesarethepulmonaryandmitralvalves, https://www.heartandstroke.ca/heart-disease/conditions/valvularheart-disease

1.6.1.5Valvesoftheheart

Valvesarespecializedstructuresthatensureone-wayflowofblood.Therearefourvalves intotalwithintheheart.Theopeningbetweentherightatriumandrightventricleisguarded byatricuspidvalveortherightAVvalve.Itconsistsofthreeflaps,orleaflets,madeofendocardiumalongwithadditionalconnectivetissue.Eachflapofthevalveisattachedtostrong strandsofconnectivetissue,the chordaetendineae (Figs.1.9Band 1.10B).Thereareseveral

FIG.1.9 Bloodflowfromtheleftatriumtotheleftventricle [7].(A)Atransversesectionthroughtheheartillustratesthefourheartvalves.Thetwoatrioventricularvalvesareopen(TricuspidandBicuspidorMitral);thetwosemilunarvalves(AorticandPulmonary)areclosed.Theatriaandvesselshavebeenremoved.(B)Afrontalsection throughtheheartillustratesbloodflowthroughthemitralvalve.Whenthemitralvalveisopen,itallowsblood tomovefromtheleftatriumtotheleftventricle.Theaorticsemilunarvalveisclosedtopreventthebackflowofblood fromtheaortatotheleftventricle.

chordaetendineaeassociatedwitheachoftheflapswhichinturnareattachedtoa papillary muscle (Figs.1.9Band 1.10B)thatextendsfromtheinferiorventricularsurface.Thereare threepapillarymusclesintherightventriclewhichcorrespondtothethreesectionsofthe valves.

Locatedattheopeningbetweentheleftatriumandleftventricleisthemitralvalve,also calledtheleftAVvalve.Structurally,thisvalveconsistsoftwocuspswhichareattachedby chordaetendineaetotwopapillarymusclesthatprojectfromtheinferiorwalloftheleft ventricle.

FIG.1.10 Bloodflowfromtheleftventricleintotheaortaandpulmonaryartery [8].(A)Atransversesection throughtheheartillustratesthefourheartvalvesduringventricularcontraction.Thetwoatrioventricularvalves areopen(TricuspidandMitral);thetwosemilunarvalves(AorticandPulmonary)areclosed.Theatriaandvessels havebeenremoved.(B)Afrontalviewshowstheclosedmitral(bi-leaflet)valvethatpreventsthebackflowofblood intotheleftatrium.Theaorticsemilunarvalveisopentoallowbloodtobeejectedintotheaorta.

Emergingfromtherightventricleatthebaseofthepulmonarytrunkisthe pulmonary semilunarvalve orthe pulmonaryvalve;itisalsoknownasthe pulmonicvalve orthe right semilunarvalve whichpreventsbackflowofbloodfromthepulmonarytrunkintotheright ventricle.Thepulmonaryvalveismadeofthreesmallflapsofendocardiumreinforcedwith connectivetissue.Whentheventriclerelaxes,thepressuredifferencecausesbloodtoflow backintotherightventriclefromthepulmonarytrunk.Thisflowofbloodfillsthepocket-like flapsofthepulmonaryvalve,causingthepulmonaryvalvetocloseproducinganaudible sound.

Atthebaseoftheaortaisthe aorticsemilunarvalve,orthe aorticvalve,whichprevents backflowfromtheaortaintotheleftventricle.Itisalsocomposedofthreeflaps.Whenthe ventriclerelaxesandbloodattemptstoflowbackintotheleftventriclefromtheaorta,blood willfillthecuspsofthevalve,causingittocloseandproducinganaudiblesound.

TheAVvalvesareclosedwhilethetwosemilunarvalvesareopen(Fig.1.10).Thisoccurs whentheventriclescontracttoejectbloodintothepulmonarytrunkandaorta.Closureofthe twoAVvalvespreventsbloodfrombeingforcedbackintotheatria.In Fig.1.9A,thetwoAV valvesareopenandthetwosemilunarvalvesareclosed.Thisoccurswhenbothatriaand ventriclesarerelaxedandfillingoftheventriclesfromtheatriaoccurs.

Whentheventriclesbegintocontract,thepressurewithintheventriclesrises,andblood flowstowardtheareaoflowerpressure,whichisinitiallyintheatria.Thisbackflowcauses thecuspsofthetricuspidandmitralvalvestoclose(Fig.1.9A).Duringtherelaxationphase ofthecardiaccycle,thepapillarymusclesare alsorelaxedandthetensiononthechordae tendineaeisslight(see Fig.1.9B).However,astheventriclescontract,sodothepapillary muscles.Thiscreatestensiononthechordaetendineae(see Fig.1.9 B),helpingtohold thecuspsoftheAVvalvesinplaceandpreventingthemfrombeingblownbackintothe atria.

UnliketheAVvalves,therearenopapillarymusclesorchordaetendineaeassociatedwith thesemilunarvalves.Whentheventriclesrelaxcausingachangeofpressure,itforcesthe bloodtowardtheventricles,thebloodpressesagainstthesecuspsandsealstheopenings. Visit http://openstaxcollege.org/l/heartvalve toobserveanechocardiogramofactualheart valvesopeningandclosing.

1.7Cardiacmuscleandelectricalactivity

1.7.1Structureofcardiacmuscle

Cardiacmusclefibers,orcardiomyocytes,likeskeletalmusclefibers,arestriatedandhave asingle,centralnucleus.However,twoormorenucleimaybefoundoccasionally. Transverse(or T) tubules,thefoldsofthe sarcolemma (plasmamembrane),penetratedeepinto theinteriorofthecell,allowingelectricalimpulsestoreachtheinnerpartsofthecell. Sarcoplasmicreticulum (endoplasmicreticulum)storesCa2+ butisnotsufficientformusclecontraction.AdditionalCa2+ mustcomefromtheextracellularfluid.Mitochondriaarepresentin largenumbersinthecardiacmusclefiberstoprovideenergyformusclecontraction (Fig.1.11A).

Unlikeskeletalmusclefibers,cardiacmusclefibersbranchfreely.Ajunctionbetweentwo adjoiningcellsismarkedbyaspecializedstructurecalledan intercalateddisc (Fig.1.11A), whichhelpsspreaddepolarizationbetweenadjacentcells(Fig.1.11B).Thesarcolemmasfrom adjacentcellsbindtogetherattheintercalateddiscsandpossessgapjunctionstoallowpassageofionsbetweenthecells(Fig.1.11C). Desmosomes arespecialcell-to-celljunctions foundattheintercalateddiscstoprovideadditionalsupportandstabilityforthecardiacmusclefibers.

FIG.1.11 Cardiacmuscle [9].(A)Cardiacmusclecellshavemyofibrilscomposedofmyofilamentsarrangedin sarcomeres,Ttubulestotransmittheimpulsefromthesarcolemmatotheinteriorofthecell,numerousmitochondria forenergy,andintercalateddiscsthatarefoundatthejunctionofdifferentcardiacmusclecells. (B)Aphotomicrographofcardiacmusclecellsshowsthenucleiandintercalateddiscs.(C)Anintercalateddiscconnectscardiacmusclecellsandconsistsofdesmosomesandgapjunctions.

Therearetwomajortypesofcardiacmusclefibers: myocardialcontractilecells and myocardialconductingcells (pacemakercells).Themyocardialcontractilecellsconstitutethe bulk(99%)ofthecellsintheatriaandventriclesandareresponsibleforcontractionsthat pumpbloodthroughthebody.Themyocardialconductingcellsmakeuptheremaining 1%toformthe conductionsystem oftheheart.Themyocardialconductingcellsaregenerally muchsmallerthanthecontractilecellsandhavefewofthemyofibrilsorfilamentsneededfor contraction.

1.8Cardiacmusclemetabolism

Fattyacidsandglucosefromthebloodsupplyarebrokendownwithinthemitochondriato releaseenergyintheformofATP.Bothfattyaciddropletsandglycogen,thestorageformof glucose,arestoredwithinthesarcoplasmtoprovideadditionalnutrientsupply.

1.9Conductionsystemoftheheart

Cardiacmusclehastheabilitytoinitiateitselectricalpotentialthatspreadsrapidlyfrom celltocelltotriggerthecontractilemechanism.Thispropertyisknownas autorhythmicity. Everycardiacmusclefiberiscapableofgeneratingitsownelectricalimpulse.Thecellwith thehigherinherentrateofdepolarizationsetsthepace,andtheimpulsespreadsfromthe fastertotheslowercelltotriggeracontraction.Thefivekeycomponentsofthecardiacconductionsystemincludethe sinoatrial (SA) node,the AVnode,the AVbundle or bundleof His,the AVbundlebranches,andthe Purkinjefibers (Fig.1.12).

FIG.1.12 Conductionsystemoftheheart [10].Theinitiationofanactionpotentialatthesinoatrial(SA)node spreadsthroughouttheatriareachingtheatrioventricular(AV)node,AVbundle(bundleofHis),bundlebranches, andultimatelyPurkinjefibers.Thecontractilecellsthenbegincontractionfromthesuperiortotheinferiorportionsof theatria,efficientlypumpingbloodintotheventricles.

1.9.1Sinoatrialnode

Sinoatrialnodeisaspecializedgroupofmyocardialconductingcellslocatedinthesuperiorandposteriorwallsoftherightatriumclosetotheopeningofthesuperiorvenacava.The SAnodehasthehighestinherentrateofdepolarizationandthereforereferredtoasthe pacemaker oftheheart.Itinitiatesthesinusrhythmornormalelectricalpattern.Thisimpulse spreadsfromtheSAnodetotheatrialmyocardialcontractilecellsandtheAVnode.Theinternodalpathwaysthatconnectcontractilecellsconsistofthreebands(anterior,middle,and posterior; Fig.1.12).Theimpulsetakesapproximately50milliseconds(ms)totravelbetween theSAnodeandtheAVnode.

1.9.2Atrioventricularnode

TheAVnodeisasecondsetofmyocardialconductivecells,locatedintheinferiorportion oftherightatriumaspartoftheatrioventricularseptum.Astheimpulsereachestheatrioventricularseptum,theconnectivetissuesurroundingtheheart,referredtoas fibrousskeleton,preventstheimpulsefromspreadingintothemyocardialcellsintheventriclesexcept theAVnode.

ThereisadelayinthespreadingofdepolarizationfromtheAVnodetotheAVbundle(see Fig.1.13,step3).Thisdelayintransmissionispartiallyduetothesmalldiameterofthecellsof thenode,whichslowstheimpulse.Thus,ittakestheimpulseapproximately100mstopass throughthenode.Thispausehelpsatrialmyocardiumtocompletetheircontractionthat pumpsbloodintotheventriclesbeforetheimpulseistransmittedtothecellsoftheventricle.

1.9.3Atrioventricularbundle(bundleofHis),bundlebranches,andPurkinje fibers

AVbundle,or bundleofHis,originatesattheAVnodeandproceedsthroughthe interventricularseptumbeforedividingintotwo AVbundlebranches,commonlycalled the left and rightbundlebranches.Accordingtotheirlocations,theleftbundlebranchsuppliestheleftventricle,andtherightbundlebranchsuppliestherightventricle.Sincetheleft ventricleismuchlargercomparedtotheright,theleftbundlebranchisalsoconsiderably largercomparedtotheright.Bothbundlebranchesdescendandreachtheapexoftheheart wheretheyconnectwiththePurkinjefibers(see Figs.1.12and1.13,step4).Thispassagetakes approximately25ms.

ThePurkinjefibersaremyocardialconductivecellsthatspreadtheimpulsetothemyocardialcontractilecellsintheventricles.Theyextendthroughoutthemyocardiumfromtheapex ofthehearttowardtheatrioventricularseptumandthebaseoftheheart.ThePurkinjefibers haveafastconductionrate,andtheelectricalimpulsereachesalloftheventricularmuscle cellsinabout75ms(see Fig.1.13,step5and6).Sincetheelectricalimpulsearrivesattheapex throughthebundlebranches,thecontractionalsobeginsattheapexandtravelstowardthe baseoftheheart,similartosqueezingatubeoftoothpastefromthebottom.Thisallowsthe bloodtobepumpedoutoftheventriclesintotheaortaandpulmonarytrunk.Thetotaltime elapsedfromtheinitiationoftheimpulseintheSAnodeuntildepolarizationoftheventricles isapproximately225ms.

1.10Membranepotentialsincardiacconductivecells

FIG.1.13 Cardiacconduction [11].(1)Thesinoatrial(SA)nodeandtheremainderoftheconductionsystemareat rest.(2)TheSAnodeinitiatestheactionpotential,whichsweepsacrosstheatria.(3)Afterreachingtheatrioventricularnode(AV),thereisadelayofapproximately100msthatallowstheatriatocompletepumpingbloodbeforethe impulseistransmittedtotheatrioventricularbundle.(4)Followingthedelay,theimpulsetravelsthroughtheatrioventricularbundleandbundlebranchestothePurkinjefibers(5and6).

1.10Membranepotentialsincardiacconductivecells

Therestingmembranepotentialofconductivefibersintheheartrangesfrom 50to 60mV.Actionpotentialsareconsiderablydifferentbetweencardiacconductivecells(pacemakercells)suchastheSAnodeandAVnodeandcardiaccontractilecells(nonpacemaker) suchasthePurkinjecells.Cardiacconductivecellsdonothaveastablerestingmembrane potentialbecausetheyconsistofaseriesofNa+ leakchannels(referredtoasfunnychannels) whichallowaslowinfluxofNa+ andthereforeraisemembranepotentialslowlyfromaninitialvalueof 60mVtoabout 40mV(orangeline).SlowCa2+ channelsarealsoopenduring thisperiodresultingina spontaneousdepolarization (or prepotentialdepolarization).The shiftinmembranepotentialtoitsthresholdlevelof 40mVcausesvoltage-gatedfastCa2+ channelstoopenandCa2+ enterthecellinlargenumbers,furtherdepolarizingitatamore

FIG.1.14 Actionpotentialinthesinoatrialnode [12].Theprepotential(phase4)isduetoaslowinfluxofNa+ until thethresholdisreachedfollowedbyarapiddepolarization(phase0)andrepolarization(phase3).Theprepotential (phase4)accountsforthemembranereachingthresholdandinitiatesthespontaneousdepolarizationandcontraction ofthecell.Notethelackofarestingmembranepotential.

rapidrateuntilthemembranepotentialreachesavalueofapproximately+5mV(redline). Thisphaseofrapiddepolarizationisreferredtoas phase0.Suchsuddenchangeinmembrane potentialallowsCa2+ channelstocloseandvoltage-gatedK+ channelstoopen,allowingan outfluxofK+ bringingarepolarizationstate.Thisparticularphaseisreferredtoas phase3. Whenthemembranepotentialreachesapproximately 60mV(restingmembranepotential), K+ channelscloseandNa+ channelsopenonceagain,andtheprepotentialphasebeginsasin thepreviouscycleandisreferredtoas phase4.Thisphenomenonexplainsthe autorhythmicity propertiesofcardiacmuscle(Fig.1.14).

1.11Membranepotentialsincardiaccontractilecells

Theactionpotentialpatternisdifferentincardiaccontractilemusclefiberswhichdemonstrateamuchmorestablerestingphasethanconductivecells.Therestingmembranepotential isapproximately 80mVforatrialmyofibersand 90mVfortheventricularmusclefibers. Thenatureoftheactionpotentialisverydifferentinthecardiaccontractilecells;thereisa rapiddepolarization,followedbya plateauphase andthenrepolarization.Thisphenomenon accountsforthelongrefractoryperiodsrequiredforthecardiacmusclecellstopumpblood effectivelybeforetheyarecapableoffiringforasecondtime.Thesecardiacmyocytesdonot normallyinitiatetheirownelectricalpotential,althoughtheyarecapableofdoingso,butare triggeredbyanimpulsefromaconductivecell(SAnode)toinitiateanactionpotential. Whenstimulatedbyanactionpotentialinthepacemakercell,voltage-gatedNa+ channels openinapositive-feedbackmannerallowingarapidinfluxofNa+ toraisethemembranepotentialtoapproximately+30mV,atwhichpointthevoltage-gatedNa+ channelsclose.The rapiddepolarizationperiodtypicallylasts3–5ms(orangeline; phase0).Depolarizationis followedbytheplateauphase.Duringtheinitialperiodoftheplateauphase,onlytheK+

channelsareopenandmembranepotentialdeclinesrelativelyslowly(phase1).Theopening oftheslowCa2+ channels,allowingCa2+ toenterthecellmaintainsamembranepotentialof approximately0mV.Duringthisperiod,K+ channelsarealsoopen,allowingK+ toexitthe cellwhileCa2+ aremovinginward.Thus,thisperiodconsistsofthemovementsofCa2+ inwardwhereasK+ outwardanditlastsapproximately175ms(purpleline; phase2).Next,the Ca2+ channelscloseandK+ channelsremainopen,allowingmoreK+ toexitthecellinitiatinga repolarizationphase(phase3).Therepolarizationphaselastsapproximately75ms.Atthis point,membranepotentialdropsuntilitreachesrestinglevelsandK+channelsclose (phase4)oncemoreandthecyclerepeats.Theentireeventlastsbetween250and300ms (Fig.1.15).

Afteranactionpotentialisinitiated,thecardiacmusclecellisunabletoinitiateanother actionpotentialforsometime,andthisperiodoftimeisreferredtoasthe refractoryperiod, whichlasts250msindurationandhelpsprotecttheheart.Thecardiacrefractoryperiodis separatedintoan absoluterefractoryperiod anda relativerefractoryperiod.Duringtheabsoluterefractoryperiod,anewactionpotentialcannotbeelicited.Ontheotherhand,during therelativerefractoryperiod,anewactionpotentialcanbegeneratedgivenasituationsuch asastrongstimulus.

Theactionpotentialinthecontractilecells ofthecardiacmuscleiscomparedwiththat oftheskeletalmusclefiberin Fig.1.15B.Boththedurationofanactionpotentialandrefractoryperiodaremuchshorterintheskele talmusclefibercomparedtothecontractile cellsofthecardiacmuscle. Fig.1.15 Balsocomparesthenatureofcontractionthatfollows eachactionpotential.Sincetherefractoryperiodismuchlongerinthecardiacmusclefiber,thecontractioncycleissuchthattheentirecyclemustbecompletedpriortoanew contractioncycleunlikeintheskeletalmusclewhereanewcontractionmaybeinitiated beforethecompletionofthepreviousoneduet otheshorterrefractoryperiod.Thisphenomenonisreferredtoastetanuswhichiscommonlyseenintheskeletalmusclebutnotin thecardiacmuscle.Cardiacmusclecellsunde rgotwitchtypeofcontractionswithlong refractoryperiodsfollowedbybriefrelaxationperiods.Therelaxationisessentialso theheartcanfillwithbloodforthenextcycle.Therefractoryperiodisverylongtoprevent thepossibilityof tetany,aconditioninwhichmuscleremainsinvoluntarilycontracted.In theheart,tetanyisnotcompatiblewithlife,sinceitwouldpreventtheheartfrom pumpingblood.

1.11.1Comparativeratesofconductionsystemfiring

Thepatternofslowdepolarization,followedbyrapiddepolarizationandrepolarization,is seenintheSAnodeandafewotherconductivecellsintheheart.TheSAnodeservesasthe pacemakersinceitreachesthethresholdfasterthananyothercomponentoftheconduction system.Itinitiatestheimpulsesspreadingtotheotherconductingcells.TheSAnode,without nervousorendocrinecontrol,initiatesaheartimpulseapproximately80–100timesperminute.Althougheachcomponentoftheconductionsystemiscapableofgeneratingitsown impulse,therateprogressivelyslowsfromtheSAnodetothePurkinjefibers.

WithouttheSAnode,theAVnodewouldgenerateaheartrateof40–60bpm.IftheAV nodealsowasincapableofservingasapacemaker,theAVbundlewouldfireatarateof

FIG.1.15 Actionpotentialinthecardiaccontractilecells [13].(A)Notethelongplateauphaseduetotheinfluxof Ca2+.Theextendedrefractoryperiodallowsthecelltofullycontractbeforeanotherelectricaleventcanoccur.The numbers0,1,2,3,and4indicatethephasesoftheactionpotential.(B)Theactionpotentialforheartmuscleiscomparedtothatofskeletalmuscle.

approximately30–40impulsesperminute.Thebundlebrancheswouldhaveaninherentrate of20–30impulsesperminute,andthePurkinjefiberswouldfireatabout15–30impulsesper minute.WhileafewexceptionallytrainedaerobicathletesdemonstraterestingHRinthe rangeof30–40bpm(thelowestrecordedfigureis28bpmforMiguelIndurain,acyclist), formostindividuals,rateslowerthan50bpmwouldindicate bradycardia,aslowHR.As

1.12Electrocardiogram

ratesfallmuchbelowthislevel,theheartwouldbeunabletomaintainadequateperfusion ofbloodtovitaltissues,resultinginorganfailureormultisystemfailureandultimately death.

1.12Electrocardiogram

Onecanrecordtheelectricalsignalsoftheheartbytheplacementofelectrodesincertain partsofthebody.Thetracingoftheelectricalsignalfromtheheartiscalledthe electrocardiogram (ECG),alsoabbreviatedas EKG (Kstandsfor kardiology,theGermantermforcardiology).AtypicalECGisnotarecordingfromasinglemusclefiberbuttheoverallchangein theflowofelectricalcurrentandrevealsadetailedpictureoftheheartfunctionthusserving asanimportantclinicaldiagnostictool.Theterm“lead”typicallydescribesthevoltagedifferencebetweentwooftheelectrodes.Thestandardelectrocardiographuses3,5,or12leads. Thegreaterthenumberofleadsanelectrocardiographuses,themoredetailedinformation theECGprovides.The12-leadelectrocardiographuses10electrodesplacedinthevarious locationsonthepatient’sbodyasshownin Fig.1.16

ThemajorpointsontheECGarethe Pwave,the QRScomplex,andthe Twave (Fig.1.17). ThesmallPwaverepresentsthedepolarizationoftheatriawhereasthelargeQRScomplex representsthedepolarizationoftheventricles.QRScomplexisamuchstrongerelectricalsignalbecauseofthelargersizeoftheventricularcardiacmuscle.TheTwaverepresents

FIG.1.16 StandardplacementofECGleadsina12-leadECG,6 electrodesareplacedonthechest,and4electrodesareplacedon thelimbs [14]

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.