Biogas plants: waste management, energy production and carbon footprint reduction wojciech czekala -

Page 1


https://ebookmass.com/product/biogas-plants-waste-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biomass-Derived Carbon Materials: Production and Applications Alagarsamy Pandikumar

https://ebookmass.com/product/biomass-derived-carbon-materialsproduction-and-applications-alagarsamy-pandikumar/

ebookmass.com

Circular Economy: From Waste Reduction to Value Creation

Karen Delchet-Cochet

https://ebookmass.com/product/circular-economy-from-waste-reductionto-value-creation-karen-delchet-cochet/

ebookmass.com

Sustainable food waste-to-energy systems Babbitt

https://ebookmass.com/product/sustainable-food-waste-to-energysystems-babbitt/

ebookmass.com

Macro Cookbook for Men Andy De Santis

https://ebookmass.com/product/macro-cookbook-for-men-andy-de-santis/

ebookmass.com

Transatlantis: Der öffentliche Intellektuelle

Galbraith und Deutschland (1945-1979) Anne-Kristin Von Dewitz

https://ebookmass.com/product/transatlantis-der-offentlicheintellektuelle-john-kenneth-galbraith-und-deutschland-1945-1979-annekristin-von-dewitz/ ebookmass.com

BiogasPlants

WOJCIECHCZEKAŁA

Pozna ´ nUniversityofLifeSciences,Poland

Tomymotherandfather,whoneverstoppedbelievinginme. Tomywifeforunderstandingmebetterthaneveryone. Tomysons,whofillmyheartwithjoyeachandeveryday.

ListofContributorsxvii

SeriesPrefacexxi

1AnaerobicDigestionProcessandBiogasProduction1 LiangliangWei,WeixinZhao,LikuiFeng,JianjuLi,XinhuiXia,HangYu, andYuLiu

1.1Introduction1

1.2BasicKnowledgesofADProcessesandOperations2

1.2.1FundamentalMechanismsandTypicalProcessesofAD2

1.2.2FactorsAffectingtheADProcessofBiogasProduction4

1.2.2.1Temperature4

1.2.2.2pH5

1.2.2.3OrganicLoadingRate(OLR)5

1.2.2.4Carbon–NitrogenRatio5

1.2.2.5Inoculum-to-SubstrateRatio(ISR)6

1.2.2.6SolidsConcentration6

1.2.2.7HydraulicRetentionTime(HRT)6

1.3CurrentChallengesofADProcessandBiogasProduction7

1.3.1AmmoniaInhibition7

1.3.2VolatileFattyAcidInhibition10

1.3.3PsychrophilicTemperatureInhibition12

1.4ProposedStrategiesforEnhancedBiogasProduction14

1.4.1PromotingDirectInterspeciesElectronTransfervia ConductiveMaterialsAdditive14

1.4.2Co-digestionofDifferentSubstrates16

1.4.3Bioaugmentation19

1.4.4BioelectrochemicalSystem-AssistedAD20

1.5Techno-EconomicandEnvironmentalAssessmentofAnaerobic DigestionforBiogasProduction22

1.5.1Techno-EconomicAnalysis22

1.5.2EnvironmentalFeasibilityandBenefitAssessment24 References26

2PretreatmentofLignocellulosicMaterialstoEnhanceBiogasRecovery37 JonathanT.E.Lee,NalokDutta,To-HungTsui,EeY.Lim,YanjunDai,and YenW.Tong

2.1Introduction37

2.1.1LignocellulosicWasteMaterialProduction38

2.1.2StructuralInsightofLignocellulosicMaterials39

2.1.3BiogasProductionfromLignocellulosicMaterialsandthe NeedforPretreatment40

2.2AvailablePretreatmentTechnologiesforLignocellulosicMaterials andtheCorrespondingBiogasRecoveryAssociated41

2.2.1PhysicalPretreatment41

2.2.1.1Comminution43

2.2.1.2MicrowaveThermalPretreatment43

2.2.1.3Extrusion44

2.2.1.4Ultrasonication45

2.2.2ChemicalPretreatment45

2.2.2.1AcidHydrolysisPretreatment45

2.2.2.2AlkaliHydrolysisPretreatment47

2.2.2.3IonicLiquidsPretreatment48

2.2.2.4DeepEutecticSolventsPretreatment48

2.2.2.5OrganosolventsPretreatment49

2.2.3BiologicalPretreatment49

2.2.3.1EnzymaticPretreatment50

2.2.3.2Whole-cellMicrobialPretreatment51

2.2.3.3FungalPretreatment52

2.2.3.4Ensiling52

2.2.3.5SummaryofIndividualPretreatmentEfficiencies53

2.2.4PhysiochemicalPretreatmentofLignocellulosicBiomassin theProductionofBiogas54

2.2.4.1HybridStateofArtLignocellulosicPretreatments54

2.3PertinentPerspectives58

2.3.1IntegratedBiorefineryWhileTreatingVariousWastes58

2.3.1.1MunicipalSolidWaste(MSW)58

2.3.1.2ForestryWaste59

2.3.1.3CropStraw59

2.3.2BiogasProductionfromLignocellulosicWasteandIts EconomicViability59

2.4Conclusions60 Acknowledgments61 References61

3BiogasTechnologyandtheApplicationforAgriculturalandFoodWaste Treatment73

WeiQiao,SimonM.Wandera,MengmengJiang,YapengSong,and RenjieDong

3.1DevelopmentofBiogasPlants73

3.1.1AgriculturalWaste74

3.1.1.1LivestockandPoultryManure74

3.1.1.2CropStraw74

3.1.2MunicipalSolidWaste75

3.1.2.1MunicipalSolidWaste75

3.1.2.2SewageSludge75

3.2AnaerobicDigestionProcess76

3.3BiogasProductionfromLivestockandPoultryManure77

3.3.1SuccessfulADofCattleandSwineManure77

3.3.1.1Industrial-scaleADofCattleManure77

3.3.1.2Industrial-scaleADofSwineManure77

3.3.2SuccessfulAnaerobicDigestionofChickenManureina LargePlant77

3.3.3StrategiesforMitigatingAmmoniaInhibitioninChicken ManureAD78

3.3.3.1SupplementationwithTraceElements78

3.3.3.2In-situAmmoniaStrippingforChickenManure Digesters79

3.4FoodWasteAnaerobicDigestion79

3.4.1ChallengesofFoodWasteADandtheSolutions79

3.4.1.1VFAsAccumulationinThermophilicADofFood Waste79

3.4.1.2ADTechnologiesforFoodWaste80

3.4.1.3AnaerobicMembraneBioreactorTechnologyfor FoodWaste81 References81

4BiogasProductionfromHigh-solidAnaerobicDigestionofFoodWaste andItsCo-digestionwithOtherOrganicWastes85 LeZhang,To-HungTsui,Kai-CheeLoh,YanjunDai,JingxinZhang,and YenWahTong

4.1Introduction85

4.2ReactorSystemsforHSAD86

4.2.1High-solidAnaerobicMembraneBioreactor86

4.2.2Two-stageHSADReactorSystem87

4.2.3High-solidPlug-flowBioreactor88

4.3IntensificationStrategiesforHSAD89

4.3.1High-solidAnaerobicCo-digestion(HS-AcD)89

4.3.2SupplementationofAdditives90

4.3.3BioaugmentationStrategiesforHSAD91

4.3.4OptimizationofProcessParameters91

4.4MicrobialCommunitiesforHSAD93

4.5DigestateManagementforHSAD94

4.6ConclusionsandPerspectives94 Acknowledgments95 References95

6.12.3FerricChlorideInjection129

6.12.4BiologicalMethod130

6.13DifferentApproachesforMoistureReduction130

6.13.1CompressionorCondensation130

6.13.2Adsorption130

6.13.3Absorption130

6.14SiloxaneRemoval131

6.14.1GasDrying131

6.15CO2 Separation132

6.15.1CryogenicTechnique132

6.15.2WaterScrubber133

6.15.3Adsorption133

6.15.4MembraneSeparation134

6.16Conclusion135 References136

7DigestatefromAgriculturalBiogasPlant–PropertiesandManagement141 WojciechCzekała

7.1Introduction141

7.2DigestatefromAgriculturalBiogasPlant–Production,Properties, andProcessing142

7.2.1Production142

7.2.2Properties142

7.2.3Processing144

7.3DigestatefromAgriculturalBiogasPlant–Management145

7.3.1RawDigestateFertilization145

7.3.2LiquidFractionManagement146

7.3.3SolidFractionManagement147

7.3.4EnergyManagementoftheSolidFraction149

7.4Conclusion150 References150

8EnvironmentalAspectsofBiogasProduction155 YelizavetaChernysh,ViktoriiaChubur,andHynekRoubík

8.1Introduction155

8.2ImpactofFarmsandLivestockComplexesontheEnvironment157

8.3TheEnvironmentalBenefitsofBiogasProduction158

8.4EnvironmentalSafetyoftheIntegratedModelofBioprocessesof HydrogenProductionandMethaneGenerationintheStagesof AnaerobicFermentationofWaste162

8.5LifeCycleAssessmentforBiogasProduction165

8.6EnvironmentalIssueofBiogasMarketinUkraine–CaseStudy167

8.7Conclusion172 References172

9HybridEnvironmentalandEconomicAssessmentofBiogasPlantsin

IntegratedOrganicWasteManagementStrategies179 AmalElfeky,KaziFattah,andMohamedAbdallah

9.1Introduction179

9.2Methodology180

9.2.1Overview180

9.2.2WasteManagementScenarios181

9.2.3LifeCycleAssessment182

9.2.3.1GoalandScopeDefinition182

9.2.3.2InventoryAnalysis183

9.2.3.3ImpactAssessment183

9.2.3.4Interpretation184

9.2.4LifeCycleCosting184

9.2.5Eco-EfficiencyAnalysis185

9.2.6CaseStudy:TheUAE185

9.3ResultsandDiscussion185

9.3.1MaterialandEnergyRecovery186

9.3.2LifeCycleAssessment188

9.3.2.1OverallImpactAssessment188

9.3.3LifeCycleCosting190

9.3.3.1CostandRevenueStreams190

9.3.3.2NetPresentValue191

9.3.4Eco-EfficiencyAnalysis192

9.4Conclusion193 References193

10ReductionoftheCarbonFootprintinTermsofAgriculturalBiogas Plants195 AgnieszkaWawrzyniak Acronyms195 10.1Introduction196

10.1.1ManureManagementandBiomethanePotentialinPoland andEUCountries196

10.1.2SubstratesUsedforBiogasPlantsinPoland196

10.1.3GHGEmissionsfromAgricultureandBiogasPlantsasTool foritsReduction198

10.2MethodologyofCF201

10.2.1GHGFluxesfromAgricultureandToolsforits Calculations202

10.2.2SystemBoundariesforBiogasPlantandDataCollection203

10.3LifeCycleCO2 FootprintsofVariousBiogasProjects–Comparison withLiteratureResults204

10.4Conclusions207 References207

11FinancialSustainabilityandStakeholderPartnershipsofBiogasPlants211 To-HungTsui,LeZhang,JonathanT.E.Lee,YanjunDai,andYenWahTong 11.1Introduction211

11.2BasicTechnologicalFactors212 11.3EconomicEvaluationandFailures214

11.3.1InvestmentRisksforFixedAssets214

11.3.2FailuresandIntervention215

11.4StakeholdersPartnershipandCo-governance216

11.4.1Government216

11.4.2ConsultantandConstructor216

11.4.3SourceofWasteStreams217 11.4.4CustomersforEnergyandResource217 11.5SummaryandOutlooks217 Acknowledgments218 References218

12MeasuringtheResilienceofSupplyCriticalSystems:TheCaseofthe BiogasValueChain221

RaulCarlssonandTatianaNevzorova 12.1Introduction221 12.2Background222 12.3Methodology223

12.4MeasurementScheme224

12.4.1IntroductiontotheMeasurementConcept224

12.4.2MeasuringManagementSystemResilience227

12.4.3MeasuringtheResilienceofPhysicalResourcesandAssets229

12.4.4TotalSystemResilience230

12.4.5ApplyingtheSystemResilienceModeltotheBiogasValue Chain231

12.4.5.1AnalysisofTwoSupplyChainsWithout Disruptions231

12.4.5.2DisruptingScenarioswithParametrizedResilience Functions233

12.4.5.3AnalysisofTwoSupplyChainswithDisruptions234 12.5ConclusionandRecommendations239 References240

13TheoryandPracticeinStrategicNichePlanning:ThePolish BiogasCase243 SteliosRozakis,KaterinaTroullaki,andPiotrJurga 13.1Introduction243

13.1.1ThePromisingPotentialofBiogasTransitioninCentral EasternEuropeanCountries243

14.3SocialAcceptabilityofAgriculturalBiogasPlants285

14.3.1FearofSomethingNew286

14.3.2ConcernsAboutUnpleasantOdors286

14.3.3ConcernsAboutContaminationofSoilsandGroundwater WhenUsingDigestateasFertilizer286

14.3.4ConcernsAboutDecliningPropertyValuesAroundBiogas Plants287

14.3.5ConcernsAbouttheDestructionofAccessRoads287 14.4Conclusion287 References288

15PracticesinBiogasPlantOperation:ACaseStudyfromPoland291 TomaszJasi ´ nski,JanJasi ´ nski,andWojciechCzekała 15.1Introduction291

15.2LegalAspectsRelatedtoRunningaBusinessintheFieldofBiogas ProductionandWasteManagement292

15.2.1IntegratedPermitorWasteProcessingPermit293

15.2.2ApprovalofthePlantbyVeterinaryServicesfortheDisposal ofWasteofAnimalOrigin294

15.2.3PermittoPlaceDigestateontheMarket295

15.2.4PermittoIntroducetotheElectricityDistributionNetwork296

15.3BiogasPlantComponents:ACaseStudyfromPoland297

15.3.1HallforReceivingandProcessingSlaughterhouseWaste297

15.3.2SubstrateStorageYard297

15.3.3SolidSubstrateDispenser297

15.3.4ReceivingBufferTankforLiquidSubstrates298

15.3.5SolidSubstrateBufferTank298

15.3.6MixingBufferTank298

15.3.7BufferandMixingTank298

15.3.8TechnologicalSteamGenerator298

15.3.9MainPumpingStation299

15.3.10First-stageFermentationTanks299

15.3.11Second-stageFermentationTank(3900m3 )withBiogas Tank(1800m3 )300

15.3.12CondensingCircuit301

15.3.13BiogasRefiningSystem301

15.3.14CogenerationModules301

15.3.15DigestateStorageReservoirs301

15.3.16BiogasTorch302

15.3.17Biofilter302

15.4FunctioningofaBiogasPlantProcessingProblematicWaste:ACase StudyfromPoland302

15.4.1SearchingandObtainingSubstrates303

15.4.2Receiving,Storage,andProcessingoftheSubstrate,Feeding ofRawMaterials304

15.4.3EnergyProductionandBiogasManagement305

15.4.4DigestateManagement306

15.4.5ManagementofanAgriculturalBiogasPlant307

15.5Summary308

ListofContributors

MohamedAbdallah DepartmentofCivilandEnvironmentalEngineering,Universityof Sharjah,Sharjah,UnitedArabEmirates

MuhammadArslan DepartmentofEnergySystemsEngineering,Universityof Agriculture,Faisalabad,Pakistan

RaulCarlsson CertificationDevelopmentUnit,RISEResearchInstitutesofSweden, Jönköping,Sweden

YelizavetaChernysh FacultyofTropicalAgriSciences,DepartmentofSustainable Technologies,CzechUniversityofLifeSciencesPrague,Suchdol,Czechia DepartmentofEcologyandEnvironmentalProtectionTechnologies,FacultyofTechnical SystemsandEnergyEfficientTechnologies,SumyStateUniversity,Sumy,Ukraine

ViktoriiaChubur FacultyofTropicalAgriSciences,DepartmentofSustainable Technologies,CzechUniversityofLifeSciencesPrague,Suchdol,Czechia DepartmentofEcologyandEnvironmentalProtectionTechnologies,FacultyofTechnical SystemsandEnergyEfficientTechnologies,SumyStateUniversity,Sumy,Ukraine

WojciechCzekała DepartmentofBiosystemsEngineering,Pozna ´ nUniversityofLife Sciences,Pozna ´ n,Poland

YanjunDai EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII, CampusforResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore SchoolofMechanicalEngineering,ShanghaiJiaoTongUniversity,Shanghai,China

RenjieDong CollegeofEngineering,ChinaAgriculturalUniversity,Beijing,China

NalokDutta DepartmentofBiochemicalEngineering,UniversityCollegeLondon, London,UK

BioproductsSciencesandEngineeringLaboratory,WashingtonStateUniversity,USA

AmalElfeky DepartmentofCivilandEnvironmentalEngineering,UniversityofSharjah, Sharjah,UnitedArabEmirates

SteliosRozakis BiBELab,DepartmentofChemicalandEnvironmentalEngineering, TechnicalUniversityofCrete,Chania,Greece

AbidSarwar DepartmentofIrrigationandDrainage,UniversityofAgriculture, Faisalabad,Pakistan

YapengSong CollegeofEngineering,ChinaAgriculturalUniversity,Beijing,China

YenWahTong NUSEnvironmentalResearchInstitute,NationalUniversityof Singapore,Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofChemicalandBiomolecularEngineering,NationalUniversityofSingapore, Singapore

KaterinaTroullaki BiBELab,DepartmentofChemicalandEnvironmentalEngineering, TechnicalUniversityofCrete,Chania,Greece

To-HungTsui NUSEnvironmentalResearchInstitute,NationalUniversityofSingapore, Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofEngineeringScience,UniversityofOxford,Oxford,UK

SimonM.Wandera DepartmentofCivil,Construction&EnvironmentalEngineering, JomoKenyattaUniversityofAgriculture&Technology,Nairobi,Kenya

AgnieszkaWawrzyniak DepartmentofBiosystemsEngineering,Pozna ´ nUniversityof LifeSciences,Pozna ´ n,Poland

LiangliangWei StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

XinhuiXia StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

HangYu StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

JingxinZhang EnergyandEnvironmentalSustainabilityforMegacities(E2S2) PhaseII,CampusforResearchExcellenceandTechnologicalEnterprise(CREATE), Singapore

China-UKLowCarbonCollege,ShanghaiJiaoTongUniversity,Shanghai,China

LeZhang NUSEnvironmentalResearchInstitute,NationalUniversityofSingapore, Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofResourcesandEnvironment,SchoolofAgricultureandBiology,Shanghai JiaoTongUniversity,Shanghai,China

WeixinZhao StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

SeriesPreface

Renewableresources,theiruseandmodification,areinvolvedinamultitudeofimportant processeswithamajorinfluenceonoureverydaylives.Applicationscanbefoundinthe energysector,paintsandcoatings,andthechemical,pharmaceutical,andtextileindustries, tonamebutafew.

Theareainterconnectsseveralscientificdisciplines(agriculture,biochemistry,chemistry,technology,environmentalsciences,forestry,etc.),whichmakesitverydifficultto haveanexpertviewonthecomplicatedinteractions.Therefore,theideatocreateaseries ofscientificbooks,focusingonspecifictopicsconcerningrenewableresources,hasbeen veryopportuneandcanhelptoclarifysomeoftheunderlyingconnectionsinthisarea.

Inaveryfast-changingworld,trendsarenotonlycharacteristicoffashionandpoliticalstandpoints;sciencetooisnotfreefromhypesandbuzzwords.Theuseofrenewable resourcesisagainmoreimportantnowadays;however,itisnotpartofahypeorafashion. Asthelivelydiscussionsamongscientistscontinueabouthowmanyyearswewillstillbe abletousefossilfuels–opinionsrangingfrom50to500years–theydoagreethatthe reserveislimitedandthatitisessentialnotonlytosearchfornewenergycarriersbutalso fornewmaterialsources.

Inthisrespect,thefieldofrenewableresourcesisacrucialareainthesearchforalternativesforfossil-basedrawmaterialsandenergy.Inthefieldofenergysupply,biomass-and renewables-basedresourceswillbepartofthesolutionalongsideotheralternativessuchas solarenergy,windenergy,hydraulicpower,hydrogentechnology,andnuclearenergy.Inthe fieldofmaterialsciences,theimpactofrenewableresourceswillprobablybeevenbigger. Integralutilizationofcropsandtheuseofwastestreamsincertainindustrieswillgrowin importance,leadingtoamoresustainablewayofproducingmaterials.Althoughoursocietywasmuchmore(almostexclusively)basedonrenewableresourcescenturiesago,this disappearedintheWesternworldinthenineteenthcentury.Nowitistimetofocusagain onthisfieldofresearch.However,itshouldnotmeana“retouràlanature”,butshouldbe amultidisciplinaryeffortonahighlytechnologicalleveltoperformresearchtowardsnew opportunities,andtodevelopnewcropsandproductsfromrenewableresources.Thiswill beessentialtoguaranteeanacceptablelevelofcomfortforthegrowingnumberofpeople livingonourplanet.Itis“the”challengeforthecominggenerationsofscientiststodevelop moresustainablewaystocreateprosperityandtofightpovertyandhungerintheworld. Aglobalapproachiscertainlyfavored.

Thischallengecanonlybedealtwithifscientistsareattractedtothisareaandarerecognizedfortheireffortsinthisinterdisciplinaryfield.Itis,therefore,alsoessentialthat consumersrecognizethefateofrenewableresourcesinanumberofproducts.Furthermore,scientistsdoneedtocommunicateanddiscusstherelevanceoftheirwork.Theuse andmodificationofrenewableresourcesmaynotfollowthepathofthegeneticengineering conceptinviewofconsumeracceptanceinEurope.Relatedtothisaspect,theserieswill certainlyhelptoincreasethevisibilityoftheimportanceofrenewableresources.Being convincedofthevalueoftherenewablesapproachfortheindustrialworld,aswellasfor developingcountries,Iwasmyselfdelightedtocollaborateonthisseriesofbooksfocusing onthedifferentaspectsofrenewableresources.Ihopethatreadersbecomeawareofthe complexity,theinteraction,andinterconnections,andthechallengesofthisfield,andthat theywillhelptocommunicateontheimportanceofrenewableresources.

IcertainlywanttothankthepeopleofWiley’sChichesteroffice,especiallyDavid Hughes,JennyCossham,andLynRoberts,inseeingtheneedforsuchaseriesofbookson renewableresources,forinitiatingandsupportingit,andforhelpingtocarrytheprojectto theend.

Last,butnotleast,Iwanttothankmyfamily,especiallymywifeHildeandchildren PaulienandPieter-Jan,fortheirpatience,andforgivingmethetimetoworkontheseries whenotheractivitiesseemedtobemoreinviting.

ChristianV.Stevens FacultyofBioscienceEngineering,GhentUniversity,Belgium SeriesEditor,“RenewableResources” June2005

1 AnaerobicDigestionProcess andBiogasProduction

LiangliangWei,WeixinZhao,LikuiFeng,JianjuLi,XinhuiXia, HangYu,andYuLiu

StateKeyLaboratoryofUrbanWaterResourcesandEnvironment(SKLUWRE),SchoolofEnvironment, HarbinInstituteofTechnology,Harbin,China

1.1Introduction

Theincreasingamountoforganicwastesworldwidehasbecomeproblematicformost countriesduetothecontinuousdeteriorationoflandandwaterconditions,whichposes seriousriskstothesafetyofourcommunity[1].Moreover,theimpropertreatmentofthese organicwastesmightleadtotheundesiredreleaseofhugegreenhousegases(GHGs)into theatmosphere[2,3].ItwasestimatedbytheIntergovernmentalPanelonClimateChange (IPCC)andUSEnvironmentalProtectionAgency(USEPA)thattheglobalanthropogenic methaneemissionfrommunicipalsolidwastes(MSWs)reached1077millionmetricton ofCO2 equivalentin2020andisexpectedtoincreaseby17%intheyear2030.Mitigation practiceshaveforcedglobalactiontoadoptatechnologythatcanaddressanthropogenic methaneemissions[4].Numerousavailablemitigationopportunitiescurrentlyincludethe treatmentoftheorganicportionofMSWinacontrolledfacilityandrecoveringmethaneas afuelforon-siteoroff-siteelectricitygeneration[5].

EnergygenerationfromtheMSWandtheotheralternativesourceswillbenefitclimate changemitigationandminimizethealarmsposedtotheenvironment[6].Therehas beenahighuptakeofrenewableenergytechnologies(RETs)worldwidetodealwith thedetrimentaleffectspausedbyfossil-relatedenergygenerationtechnologies.Fora purposeofincreasingtheenergyaccessibilitywhilesimultaneouslyrestrictingthe

BiogasPlants:WasteManagement,EnergyProductionandCarbonFootprintReduction, FirstEdition.EditedbyWojciechCzekała ©2024JohnWiley&SonsLtd.Published2024byJohnWiley&SonsLtd.

worldwidetemperatureincreasedwithin2 ∘ Cbefore2050,adoptionofRETsshouldbe highlyencouragedandraisedsignificantly.Thisgrowingimpetusforalternativeavenues forrenewableenergydemandstheconsiderationofdifferentfeedstocks,exploringofnovel techniques,andimprovementsofexistingtechnologies.

Bioenergyhasbeenregardedasthemostsubstantialrenewableenergysourceduetoits cost-effectiveadvantagesandgreatpotentialforsubstitutingnonrenewablefuels.Bioenergy derivedfrombiomassmaterials,suchasbiologicalorganicmatterobtainedfromplants oranimals,isrenewableandgreen.Generally,thosebiomassenergysourcesincludebut arenotlimitedtoterrestrialplants,aquaticplants,timberprocessingresidues,MSWs, animaldung,sewagesludge,agriculturalcropresidues,andforestryresidues.Undoubtedly, bioenergyisoneofthemostversatilerenewableenergiesbecauseitcanbemadeavailableinsolid,liquid,and/orgaseousforms.Differentavenuescanbeexploredtoharvest energyfrombiomassmaterials.Biomethanehasahighheatingvaluerangingbetween50 and55MJm 3 andalowheatingvaluerangingbetween30and35MJm 3 [7].

Anaerobicdigestion(AD)ispracticedextensivelyforthetreatmentofbiodegradable wasteforbiomethanegeneration[8].Thistechnologyhasthecapabilityofmanagingthe typicalorganicwastessuchasfoodwaste,lignocellulosicbiomassandresidues,energy crops,andtheorganicfractionofmunicipalsolidwaste(OFMSW)[9],anditsenvironmentallysoundfeaturesattractedworldwideattentionforbiogasproduction.ADisamicrobedriven,multiphase,andcomplexbiochemicalprocess,andfourtypicalbiochemicalphases suchashydrolysis,acidogenesis,acetogenesis,andmethanogenesisareinvolvedinits wholeprocess.Organicmattercouldbeefficientlymetabolizedbybacteriaandarchaea andfinallyconvertedintomethaneandcarbondioxide[10,11].However,ADprocesses arealwayslimitedbythreemainfactors:(i)hydrolysisofsubstratesistherate-limiting factorforthebioconversionphase;(ii)inefficientutilizationofkeyintermediatessuchas propionicandbutyricacid;(iii)slowgrowthofanaerobesofmethanogenesis[12],and finallyleadtoalowbiomethanerecoveryrateduringtheirpracticaloperation[13].Thus, theadvancementsintheADprocessarelargelyaimedtowardonegoal:improvingbiogas productionandrecovery.

ThereiscurrentlyconsiderablepotentialforbiogastechnologytobedevelopedasaRET thataddressesenergyandenvironmentalissues.Biogasisacriticaltechnologythatprovidesrenewableenergyfromprocessingavarietyofdigestiblebiomasstypes.Substrates suchasstraw,forestryresidues,animalandpoultrymanure,andotherorganicwastescan betreatedwithinADsystems.Thepurifiedbiomethanecanbeintegratedintoconventional fossilenergysupplysystemsandguaranteetheADtechnologyinenergytransformation andecologicalcivilizationconstruction.However,thebiogasindustryfacesmanychallenges,includinglowgasproductivity,shortbiogastanklife,highdeteriorationratesof digesters,difficultyindigestionresidueutilization,andlimitedeconomicbenefits[14,15]. Toimprovethebiogasandhighlightitsroleinenergyandenvironmentalproblem-solving, itisnecessarytodevelopnewapproachesforthepurposeofextendingtheindustrialchain andfurtherexploringnewmodelsthatcanpromotethecommercialization.

1.2BasicKnowledgesofADProcessesandOperations

1.2.1FundamentalMechanismsandTypicalProcessesofAD AD,fullmicrobiologicaldegradationprocessunderanaerobicconditions,representsone ofthemostpromisingprocessestoconvertdiverseorganicsubstrates(animalmanure,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.