Biodegradability of conventional plastics: opportunities, challenges, and misconceptions anjana sark

Page 1


BiodegradabilityofConventionalPlastics: Opportunities,Challenges,andMisconceptions AnjanaSarkar

https://ebookmass.com/product/biodegradability-ofconventional-plastics-opportunities-challenges-andmisconceptions-anjana-sarkar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Oil and Oilseed Processing: Opportunities and Challenges

Tomás Lafarga

https://ebookmass.com/product/oil-and-oilseed-processingopportunities-and-challenges-tomas-lafarga/

ebookmass.com

International Management: Strategic Opportunities and Cultural Challenges

https://ebookmass.com/product/international-management-strategicopportunities-and-cultural-challenges/

ebookmass.com

Teaching: Dilemmas, Challenges & Opportunities Robyn Ewing

https://ebookmass.com/product/teaching-dilemmas-challengesopportunities-robyn-ewing/

ebookmass.com

Multicultural Books for PreK-Grade Three Xiufang Chen

https://ebookmass.com/product/multicultural-books-for-prek-gradethree-xiufang-chen/

ebookmass.com

Social Research Methods 5th Edition Alan Bryman && Edward Bell

https://ebookmass.com/product/social-research-methods-5th-editionalan-bryman-edward-bell/

ebookmass.com

Jews, Cinema and Public Life in Interwar Britain 1st ed. Edition Gil Toffell

https://ebookmass.com/product/jews-cinema-and-public-life-in-interwarbritain-1st-ed-edition-gil-toffell/

ebookmass.com

Machine Learning, Big Data, and IoT for Medical Informatics Pardeep Kumar

https://ebookmass.com/product/machine-learning-big-data-and-iot-formedical-informatics-pardeep-kumar/

ebookmass.com

Anthropological Perspectives on Environmental Communication Annelie Sjölander-Lindqvist

https://ebookmass.com/product/anthropological-perspectives-onenvironmental-communication-annelie-sjolander-lindqvist/

ebookmass.com

Understanding Risk-Taking 1st ed. 2020 Edition Jens O. Zinn

https://ebookmass.com/product/understanding-risk-taking-1sted-2020-edition-jens-o-zinn/

ebookmass.com

The Emperor Caligula in the Ancient Sources Anthony A.

Barrett

https://ebookmass.com/product/the-emperor-caligula-in-the-ancientsources-anthony-a-barrett-2/

ebookmass.com

DepartmentofChemistry,NetajiSubhasUniversityofTechnology,Delhi,India

DepartmentofChemistry,ShivajiCollege,UniversityofDelhi,India

ShashankShekhar

DepartmentofAppliedScienceandHumanities,FacultyofTechnology, UniversityofDelhi,Delhi,India

BhashaSharma

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-323-89858-4

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: AnaClaudiaA.Garcia

EditorialProjectManager: SaraGreco

ProductionProjectManager: KameshRamajogi

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

Listofcontributors

MuhammadAfzal

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

OmarAmin

MechanicalEngineering,AinShamsUniversity,Cairo,Egypt

AyodejiEmmanuelAmobonye

DepartmentofBiotechnologyandFoodScience,FacultyofAppliedSciences,Durban UniversityofTechnology,Durban,SouthAfrica

ChristianaEleojoAruwa

DepartmentofBiotechnologyandFoodScience,FacultyofAppliedSciences,Durban UniversityofTechnology,Durban,SouthAfrica;DepartmentofMicrobiology,Schoolof Sciences,FederalUniversityofTechnology,Akure,Nigeria

FarrukhAzeem

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

PrashantBhagwat

DepartmentofBiotechnologyandFoodScience,FacultyofAppliedSciences,Durban UniversityofTechnology,Durban,SouthAfrica

AndyM.Booth

SINTEFOcean,Trondheim,Norway

OddGunnarBrakstad SINTEFOcean,Trondheim,Norway

VijayChaudhary

DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology,Amity University,Noida,UttarPradesh,India

ParthaPratimDas

DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology,Amity University,Noida,UttarPradesh,India;DepartmentofMaterialsScienceandMetallurgical Engineering,IndianInstituteofTechnologyHyderabad,Sangareddy,Telangana,India

SherifaElHady

IndustrialEngineering,SESCCentre,NileUniversity,Cairo,Egypt

AmalElhussieny

IndustrialEngineering,SESCCentre,NileUniversity,Cairo,Egypt

IreneSamyFahim

IndustrialEngineering,SESCCentre,NileUniversity,Cairo,Egypt

SanjeevGautam

AdvancedCentreforPolymerScience,DepartmentofChemistry,NetajiSubhasUniversityof Technology,Delhi,India

PallavGupta

DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology,Amity University,Noida,UttarPradesh,India

SumitGupta

DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology,Amity University,Noida,UttarPradesh,India

SigridHakva ˚ g

SINTEFOcean,Trondheim,Norway

MuhammadH.Hasan

DepartmentofMechanicalandIndustrialEngineering,RyersonUniversity,Toronto,Canada

Md.EnamulHoque

DepartmentofBiomedicalEngineering,MilitaryInstituteofScienceandTechnology(MIST), Dhaka,Bangladesh

MuhammadImran

DepartmentofEnvironmentalSciences,COMSATSInstituteofInformationTechnology, Islamabad,Pakistan

HabibulIslam

DepartmentofBiomedicalEngineering,MilitaryInstituteofScienceandTechnology(MIST), Dhaka,Bangladesh

HiraKanwal

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

M.MahfuzaKhatun

DeptartmentofGeneticEngineeringandBiotechnology,BangabandhuSheikhMujibur RahmanMaritimeUniversity,Dhaka,Bangladesh

Khushbu

DepartmentofAppliedChemistry,DelhiTechnologicalUniversity,Delhi,India

StephanKubowicz

SINTEFIndustry,Oslo,Norway

AmitKumar

DepartmentofChemistry,DayalSinghCollege,UniversityofDelhi,India

LakhanKumar

DepartmentofBiotechnology,DelhiTechnologicalUniversity,Delhi,India

Meenu

MalaviyaNationalInstituteofTechnologyJLNMarg,Jaipur,Rajasthan,India

MankeshwarKumarMishra

DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology,Amity University,Noida,UttarPradesh,India

SaimaMuzammil

DepartmentofMicrobiology,GovernmentCollegeUniversityFaisalabad,Faisalabad,Punjab, Pakistan

HabibullahNadeem

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

ShubhamPant

ElectrochemicalProcessEngineeringDivision,CSIR-CentralElectrochemicalResearch Institute(CECRI),Karaikudi,TamilNadu,India;AcademyofScientificandInnovativeResearch (AcSIR) CSIR,Ghaziabad,UttarPradesh,India

SanthoshPillai

DepartmentofBiotechnologyandFoodScience,FacultyofAppliedSciences,Durban UniversityofTechnology,Durban,SouthAfrica

Md.ZillurRahman

DepartmentofMechanicalEngineering,AhsanullahUniversityofScienceandTechnology, Dhaka,Bangladesh

ManviriRani

MalaviyaNationalInstituteofTechnologyJLNMarg,Jaipur,Rajasthan,India

IjazRasul

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

JustynaRybak

WrocławUniversityofScienceandTechnology,FacultyofEnvironmentalEngineering,Wroclaw, Poland

AnuradhaSaha

DepartmentofAppliedSciences,GalgotiasCollegeofEngineering&Technology,GreaterNoida, UttarPradesh,India

AnjanaSarkar

DepartmentofChemistry,NetajiSubhasUniversityofTechnology,NewDelhi,India

UmaShanker

DepartmentofChemistry,Dr.BRAmbedkarNationalInstituteofTechnologyJalandhar, Jalandhar,Punjab,India

AmitKumarSharma

DepartmentofChemistry,RamjasCollege,UniversityofDelhi,UniversityEnclave,Delhi,India

BhashaSharma

DepartmentofChemistry,ShivajiCollege,UniversityofDelhi,India

ReetuSharma

DepartmentofChemistry,NetajiSubhasUniversityofTechnology,NewDelhi,India

ShreyaSharma

DepartmentofChemistry,NetajiSubhasUniversityofTechnology,NewDelhi,India

ShashankShekhar

DepartmentofChemistry,NetajiSubhasUniversityofTechnology,NewDelhi,India

MuhammadHussnainSiddique

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

AshokSingh

DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology,Amity University,Noida,UttarPradesh,India

HarjeetSingh

GuruNanakDevInstituteofTechnology,DelhiSkillandEntrepreneurUniversity,Delhi,India

SurenSingh

DepartmentofBiotechnologyandFoodScience,FacultyofAppliedSciences,Durban UniversityofTechnology,Durban,SouthAfrica

AgnieszkaStojanowska

WrocławUniversityofScienceandTechnology,FacultyofEnvironmentalEngineering,Wroclaw, Poland

PrakashChanderThapliyal

AdvancedStructuralCompositesandDurabilityGroup,CSIR-CentralBuildingResearch Institute,Roorkee,Uttarakhand,India

RaviBabuValapa

ElectrochemicalProcessEngineeringDivision,CSIR-CentralElectrochemicalResearch Institute(CECRI),Karaikudi,TamilNadu,India;AcademyofScientificandInnovativeResearch (AcSIR) CSIR,Ghaziabad,UttarPradesh,India

SudhirG.Warkar

DepartmentofAppliedChemistry,DelhiTechnologicalUniversity,Delhi,India

FarhadZeynalli

WrocławUniversityofScienceandTechnology,FacultyofEnvironmentalEngineering,Wroclaw, Poland

MuhammadZubair

DepartmentofBioinformaticsandBiotechnology,GovernmentCollegeUniversityFaisalabad, Faisalabad,Punjab,Pakistan

Lifecycleassessmentand environmentalimpactofplastic waste 1

ParthaPratimDas1, 2,AshokSingh2,MankeshwarKumarMishra2,VijayChaudhary2, SumitGupta2

andPallavGupta2

1DepartmentofMaterialsScienceandMetallurgicalEngineering,IndianInstituteofTechnologyHyderabad, Sangareddy,Telangana,India; 2DepartmentofMechanicalEngineering,AmitySchoolofEngineeringandTechnology, AmityUniversity,Noida,UttarPradesh,India

Introduction

Expandingenvironmentalconsciousnesstoachieveproductsustainabilityhasencouragedimpressive effortstousemoreenvironmentallyfriendlyproductsinproductdesigns(Ahmadetal.,2020; Chaudharyetal.,2018; Das & Chaudhary,2020; Dasetal.,2021).Crudeoilisrecognizedgloballyasa keyunsustainablesourceofcarbondioxide(CO2)andmethane(CH4)concentrationsworldwidethat haslargelysurpassednaturalconsumptionlevels(Huber,2004; Pretty & Bharucha,2018).Most plasticsusedtodayaremadefromcrudeoilandotherfossilfuels,includingnaturalgasandcoal. Moreover,theirpredictedlives,andthustheirenvironmentalperseverance,arefarfromcertain.Ofthe problemsofresourcedepletion,CO2 fromfossilfuelcombustionshouldalsobeconsidered.This undoubtedlyandsignificantlyaffectsglobalwarming,whichcouldhavefuturesocietal,economic,and environmentaleffectsifitisnotaddressed.Alistofpropertiesshouldbeconsideredforengineersto designproductsaccordingtorigidity,strength,density,andworkingtemperaturetoensurethatthe materialchosenbestfitstheintentandrespectiveproductiontechnology(Manraletal.,2020).Sucha listmustalsoresolvepossibleenvironmentalconcernsconcerningenergyefficiency,pollution emissions,andrecycling(Chaudhary & Ahmad,2020; Das & Chaudhary,2021a).Aproductdesign focusingonenvironmentalissueswilluselessenvironmentallydamagingproductsandchoosecleaner manufacturingprocesses(Knight & Jenkins,2009; Roy,2000; Tsoulfas & Pappis,2006).Asaresultof suchdesigns,dangerousandharmfulproductswouldbeavoided,andenergyefficiencyinprocessing wouldbesimultaneouslymaximized.Designconsiderationsalsoincludetheuse,management,and recyclingoftheproduct(Das & Chaudhary,2021c).

Lifecycleassessment(LCA),asshownin Fig.1.1,isavaluabletoolforcreatingproductstosolve environmentalproblems.Itisacomprehensivemethodtodeterminetheoverallenvironmentalimpact andaclearstructureforminimizingthem(Arenaetal.,2003; Guetal.,2017; Zhaoetal.,2009).

FIGURE1.1

Stepsoflifecycleassessment.

Lifecycleassessment

Definitionoflifecycleassessment

ISO14040:2006describesLCAas“compilingandassessment,overtheentirelifecycle,oftheinputs, outputsandpossibleimpactsontheenvironmentgeneratedbyaproductivesystem,”asshownin Fig.1.2.LCAcanbeintroducedtoestimatetheeffectofafinalproductbyconsideringtheimpactsof resourceproductionoveritsentirelifecycle.LCAsupportsthedesignandevaluationoftechnological solutionsusedinthemanufacturingphasetomitigateimpactsfrommanufacturing,use,andend-oflifeperiods(Pryshlakivsky & Searcy,2013; ISO,2006).

LCAisamethodassessingtheenvironmentalimpactofacommodityoveritsentirelifespan, beginningwiththeremovaloftheEarth’srawmaterialsandendingwiththereturnofthecommodity’s wasteproductstotheEarth.LCAgathersinformationandtranslatesitintoenvironmentaleffects (usingimpactassessmentmethodologies),suchasclimatechangecontribution,smoggeneration, eutrophication,acidification,andhumanandecosystemtoxicities.Italsocoversinputsandoutputs suchaswasteandprocessresources(lifecycleinventory)(Finnvedenetal.,2009; Yarramsettyetal., 2018).

LifecycleassessmentprocedureaccordingtoISO14040.

Fateofplasticsintheenvironment

Determiningtheenvironmentalfateofmicro/nanoplasticsisinherentlydifficult,mostlyduetothe multiplicityofsourcesandentryroutesintotheenvironmentandthetimescalesnecessarytodetermine theirdegradationpathways(Wangetal.,2021).Environmentalanalysesofsmallerparticlesaremade difficultbytheirsize.Quantifyingthesematerialsisratherdifficult particularlyforsmaller-sized plastics,standardizedmethodsforsampling,unitnormalization,dataexpression,quantification,and identificationarelacking(Bergmannetal.,2016).Inaddition,aunifieddefinitionisabsentforthese materials,especiallyfornanoplastics.Microplasticshavebeenidentifiedacrosstheglobe,includingin remotelocations,fromtheArctictotheAntarctic,throughoutthewatercolumn,andfromthesurface tothedepths(benthos).Microplasticsarealsofoundinriversandlakes,agriculturalsoils,sediments, andtheatmosphereinbothindoorandoutdoorenvironments(Bootsetal.,2019; Hurleyetal.,2018; Vianelloetal.,2019; Woodalletal.,2014).Plasticsreachtheenvironmentthroughvariousroutes, particularlythemarineenvironment.Abioticorbioticprocessesmaycausetheenvironmental degradationofplastics.Suchbiodegradationrequiresabioticdegradationasthevitalfirststep.Abiotic degradationresultsinmaterialswithreducedstructuralandmechanicalintegrityandparticleswith highersurface-area-to-volumeratios,thusmakingthemmoresusceptibletomicrobialaction (Alshehrei,2017; daCostaetal.,2020).However,includingplasticsinvariousenvironmentalmatrices almostcertainlyleadstoexpandedphysical,chemical,andbiologicalinteractionswithpotential environmentalandecotoxicologicalconsequences(Palusellietal.,2018).

Movementofplastictrash:fromlandtoaquaticecosystem

Plasticisasyntheticmaterialmadefromhydrocarbonsthatcanbemoldedintosolidobjectsofnearly anyshapeorsize crackingcrudeoilresultsinvariouspetrochemicalsasthebasesforplastics.

FIGURE1.2

Plasticsincludepolyethyleneandpolypropylene(PP),synthesizedfromolefins,andmaterialssynthesizedfromaromatichydrocarbons forexample,polyamide(PA)andpolystyrene(PS,ornylon). Plasticsaretypicallysynthesizedin0.5to5mmnurdlesorsphericalpellets;thesepreproduction materialsaretransportedtofactorieswheretheyareheated,blow-molded,orextrudedintothe requiredshapefortheintendedpurpose.Currently,theplasticssectorsaredividedintopackaging, transportation,building,textiles,electronics,safety,andleisure.In2017,plasticproductionapproximated348milliontonsworldwide.Plasticshavereplacedheavierandmoreexpensivematerialssuch asglass,steel,andaluminum.Plasticscomeinvariousconfigurations,dependingonthechemical buildingblocksused.TheprimarypolymerscurrentlyproducedarePP,high-densitypolyethylene (HDPE),low-densitypolyethylene,PS,polyethyleneterephthalate(PET),PA,andpolyvinylchloride (PVC)(Barnes,2019; Laskar & Kumar,2019; Vermaetal.,2016; Wagneretal.,2014).

Presently,only9%ofallplasticsmanufacturedareeverrecycled(d’Ambrie ` res,2019),whichis characteristicallyaccomplishedthroughmechanicalrecycling,orclosed-looprecycling,whichretains thechemicalstructureofrecycledmaterials,andopen-looprecycling,whereinrecycledplasticsare usedfordifferentpurposesthanthosefromwhichtheywererecovered.Mechanicalrecyclingmethods produceaslightlylower-qualityproductthanvirginplastic thisisduetothedegradationprocesses, whichresultindecreasedmaterialquality.Newrecyclingtechniquesarebeingdevelopedtoimprove recyclabilityinclosed-looprecycling;thesemethodsincludechemicalrecycling(bydissolvingthe plasticsinsolvents)andthermochemicalrecycling(pyrolysis).Twelvepercentofplasticwasteis incinerated.Afewcountriesobtainenergyfromthisburningprocesstoheathousesandproduce electricity.Globally,mostplasticisdisposedofinlandfills.Inaddition,afractionofplasticislostto theenvironmentdirectlythroughlittering,estimatedat2%oftotalplasticproduction(Geyeretal., 2017; Letcher,2020; Thiounn & Smith,2020).Themovementofplastictrashfromlandtoaquatic environmentscausesmarinedebris litterthatendsupinoceans,seas,orotherlargebodiesofwater. Thismanufacturedwasteentersthewaterinvariousways.Humansoftenleavetrashonbeachesor throwitfromboatsoroffshorefacilitiesintothewater.Occasionally,littermakesitswayintothe oceanfromland,carriedbystorms,drains,canals,orrivers.Thewindcanalsoblowtrashfrom landfillsandotherareasintothewater.Plasticproductsareveryharmfultomarinelife.Forexample, loggerheadseaturtlesoftenmistakeplasticbagsforjellyfish,theirfavoritefood.Also,manybirdsand seaanimalshavebeenchokedbytheplasticringsoftenusedtoholdsix-packsofsodatogether (Isangedighietal.,2018; Provencheretal.,2019; Schwarzetal.,2019).

Effectofplasticdumpingonaquaticecosystem

Theplasticrevolutionthatprofoundlyandrapidlyinfluencedthemaritimeindustryhasalsoproduced tellingimpactsonthemarineenvironment.Onestudydeterminedthat86%ofmanufactureddebrisin thenorthernPacificOceanisplasticmaterial.Severalvarietiesofmarinelifeareperniciouslyaffected byplasticpollution.Theplasticthreatisnowaglobalphenomenonthatafflictscrustaceans,fish, turtles,marinebirds,andmammals.Thescopeandseverityofthisthreatvarybyspeciesandthetype ofplasticinvolved.Plasticsthreatenthemarineenvironmentinvariouswaysbutprincipallythrough theentanglementofmarineanimals.Forexample,birdsthatdivebeneaththewaterfortheirpreycan becomeensnaredinthenearlyinvisibleplasticmonofilamentlinediscardedbyrecreationalfishermen. Whenthesebirdsreturntotheirnests,thelinemaysnagintreebranchesandmayevenentanglethe birds’younginsomecases.EntanglementinfishinglineshasreplacedDDTpoisoningastheprimary

causeofmortalityfortheendangeredbrownpelican.Seabirdsmaybecomeentangledinotherformsof plasticwareaswell.Plasticsix-packringscanensnarebirds,impairingtheirabilitytoflyorbreathe. Otherbirdsdrownindiscardedpiecesoffishingnetsthathavebeenleftinthesamelocationsasthe birds’prey.Entanglementinfishingnetswasestimatedin1987tocausenearlyone-thirdofthedeaths ofNorthSeagannets.Piecesofplasticfishingnetsalsopresentaseriousthreattofursealsandsea lionsinthenorthernPacificOcean.Itisthenatureofyoungsealpupstoplayindriftingnaturaldebris, suchaskelp.Forthisreason,sealpupsareattractedtodiscardedgillnetpieces,wheretheycanbecome entrapped.Thecuriosityofyoungsealsmayalsopromptthemtoinserttheirheadsthroughplastic strappingbands.Asthesealgrows,thebandtightensandslowlystranglesthecreature.Arecentstudy suggeststhatentanglementofnorthernfursealpupsmaywellbethechiefreasonfortheirdeclining population(Chae & An,2018; Derraik,2002; Pratetal.,1999; Wilber,1987).

Plasticdebrisfurtherthreatensmarinelifewhenitisaccidentallyingested;onceeaten,thedurablepropertiesofplasticpreventitfrombeingeasilydigested.Ingestedplasticparticlesoften remaininsideacreature,producingseveralharmfuleffects.Plasticdebriscanbeaccidentally ingestedinseveralways.Somespeciesofwhales,forexample,mayunintentionallyeatplasticdebris whilefeedingonschoolsoffish.Othersarethoughttoconfusetranslucentplasticbagsforthesquid onwhichtheyfeed.Autopsiesrecentlyperformedonwhaleshaverevealedabdominalinfections causedbyirritatingplasticwastes.Rawplasticpelletsareconsumedbyavarietyofsealife.Sotiny thattheyoftenescapenotice,theseparticlesareamongthemostcollectedplasticitemsintheworld’s oceans.Onesurveydiscoveredthat90%ofHawaiianalbatrosschickshadplasticpelletsintheir digestivetracts.Thechickswerelikelyfedthepelletsaftertheirparentsmistookthemforflyingfish eggs.AnotherstudyconcludedthatseveralAlaskanseabirdspeciesconsumedpelletsbecausethey resembledtheirtypicalcrustaceanprey.Ingestedplasticitemscreateavarietyofproblemsforsealife. Besidesdamagingananimal’sstomachlining,plasticsmayinhibitthesensationofhunger,thereby depressingtheanimal’sfeedingdrive.Plasticsalsomayfurnishabasetowhichtoxicchemicalssuch aspolychlorinatedbiphenyls(PCBs)andDDTcanattach.Theplasticmaterialmayalsobeasourceof chemicalsthatcoulddamagetissueorcauseeggshellthinninginseabirdsorturtles.Plasticpollution posesaseriousthreatlargelybecauseittendstoconcentrateinregionswhereabundantmarinelife exists.Likeotherfloatingdebris,plasticlitterconcentratesalong“oceanfronts”locatedatthemargins ofoceanstreamsandcontinentalshelves.Thesameprocessconcentratesplanktonandotherformsof lifeseekingshelterwithinthedebris.Thedriftingdebrisactsasakindofoasis,attractingmarine animalsinsearchofprey.Seaturtlehatchlings,whichspendtheirjuvenilestagealongoceanfronts, canunintentionallyconsumeplasticpellets.Inlaterlife,seaturtlessometimesfrequentoceanfrontsto searchforfood.Theseturtlesareknowntoingestplasticbags,whichtheymistakeforjellyfish. Becauseplasticcannotbedigested,theresultisoftenfatal(Guzzettietal.,2018; vanTruong & BeiPing,2019; Vince & Hardesty,2017).

Plasticpollutionhasseverelyaffectedthemarineenvironment.Scientistscanonlyobservethe surfaceeffectsoftheproblemsinceafflictedanimalsmaybeeatenorsinktotheseabed.Whatis importanttorealizeisthatthedurablepropertiesofplasticenableittokillrepeatedly.Marineanimals alreadythreatenedbyothermanufacturingprocessesmustnowconfrontthethreatofplasticdebris. Somevictimizedspecieshavecommercialvalue;plasticpollutionthuscarrieseconomiccostsaswell. Theconsiderableeffortsinvolvedinuntanglingfouledboatpropellersandcleaninguplitteredbeaches representadditionalcostsofplasticpollution(Duckett & Repaci,2015; LIetal.,2016; Ronkayetal., 2021; Wormetal.,2017).

Environmentalimpactofvariousplasticproducts

Plasticsaremadeupofsyntheticpolymersandarecommonlyusedtomanufacturebottles,food packaging,electronicgoods,clothing,constructionmaterials,medicalsupplies,etc.Varioususesand manufacturingofplasticsandplasticproductsstartedin1839afterPSandvulcanizedrubberwere discovered.Nowadays,environmentalpollutionbyplasticwasteisamajorenvironmentalburden, especiallyforwildlife.Phthalates,polyfluorinatedchemicals,brominatedflameretardants,andantimonytrioxidearesomeplasticconstituentswithcontraryimpactsontheenvironmentandpublic health.From1950to2018,about6.3billiontonsofplasticswereproducedworldwide,ofwhichonly 9%and12%wererecycledandburned,respectively(Barnes,2019).

PETisasmooth,transparent,andrelativelythinplastic.PETiscommonlyusedinbottlesforjuice, mouthwash,softdrinks,cosmetics,andwaterbecauseofitsantiinflammatoryandfullyliquidproperties.PETexposedtohightemperaturescanspreadtoxicadditiveslikeacetaldehyde,antimony,and phthalates.HDPE,aheat-resistantplasticmadefrompetroleum,iscommonlyassumedtobesafefor foodanddrink.PVC,aheat-resistantpolymerusedinpackagingcookingoil,fruitjuice,etc.,is assumedtobehighlytoxicbecauseofchemicalingredientsthatincludeheavymetals,phthalates,and dioxins.PVChasbeenascribedtobirthdefects,cancers,ulcers,geneticchanges,deafness,liver dysfunction,skindiseases,indigestion,andvisionfailure.PS,usedinthemanufacturingofinsulators andcoveringmedia,isapetroleumplasticthatcontainsbenzene,whichhascarcinogenic,cytogenetic, andhematologicaleffectsonhumans.Microplastics(plasticswithadiameterlessthan5mm),either manufacturedbydesignorresultingfromplasticdeterioration,aretheprimepollutantsreportedin ecosystemdegradation.Theenvironmentalreportsaysthatmostusedmicroplasticsarefromcosmetic productsandcleaningadditivesliketoothpasteandmicrobeadsinfacewashes(Agarskietal.,2019; Hahladakisetal.,2018; Rajendranetal.,2012; ISO,2006).

Approximately10%ofhouseholdwasteisplasticandismostlydisposedofonland,resultinginthe releaseoftoxicchemicalsatthedisposalsite.Incinerationisanalternativetolanddisposalofplastic, butitreleaseshazardouschemicals.Forexample,plasticincinerationreleasesPCBs,dioxins,and furans,andplasticwastegasreleaseshalogenatedingredientsandPVC(Alabietal.,2019). Table1.1 showsthecompoundsgeneratedduringPVCincinerationandtheirharmfuleffects.

Plasticsincinerationcreatessoot,ashes,andvariouspowdersthatsettleonplantsandthesoiland canprospectivelyresettlewithintheaquaticenvironment.Someofthesetoxiccompositespermeate thesoilwiththehelpofrainfall,whichmayresultingroundwatercontaminationoruptakebyplants, enablingthesetoxinstoenterthefoodchain.Someplasticincinerationoutputsreactwithwater, resultinginalteredpHandthusthealteredfunctioningofaquaticecosystems.Regainedenergyfrom plasticsisanadvantageofplasticincineration(daCostaetal.,2016; Pengetal.,2020).Variousimpact categoriesofplasticwasteareanalyzedthroughLCA,aspresentedin Fig.1.3.

Majorrepercussionsofplasticwaste

Plasticsaremadeupofsyntheticorganicpolymersthatarewidelyusedinawiderangeofapplications: waterbottles,clothing,foodpackaging,medicalsupplies,electronicgoods,constructionmaterials, etc.Syntheticplasticsthataccumulateintheenvironmenttothepointofcreatingproblemsfor wildlife,wildlifehabitats,andhumanpopulationsareconsideredplasticpollution.In1907,the

Table1.1Compoundsgeneratedduringpolyvinylchlorideincinerationandtheirharmful effects.

CompoundHealtheffect(s)

AcetaldehydeNervoussystemdamage,lesions

AcetoneEyeandrespiratorytractirritation

BenzaldehydeEye,skin,andrespiratorysystemirritation;limitingofbrainfunction

BenzolCarcinogenic;adverselyaffectsbonemarrow,theliver,andtheimmunesystem

FormaldehydeSeriouseyedamage,carcinogenic

PhosgeneGasusedinWWI;corrosivetoeyes,skin,andrespiratoryorgans

Polychlorinated dibenzo-dioxin

Polychlorinated dibenzofuran

Carcinogenic;irritatestheskin,eyes,andrespiratorysystem;damagesthe circulatory,digestive,andnervoussystemaswellastheliverandbonemarrow

Irritatestheeyesandrespiratorysystem;causesasthma

HydrochloricacidCorrosivetotheeyes,skin,andrespiratorytract

SalicylicaldehydeIrritatestheeyes,skin,andrespiratorytract;canaffectthecentralnervous system

TolueneIrritatestheeyesandtherespiratorytract;cancausedepression

XyleneIrritatestheeyes;canalsoaffectthecentralnervoussystem,reduce consciousness,andimpairlearningability

PropyleneDamagescentralnervoussystembyreducingconsciousness

VinylchlorideCarcinogenic;irritateseyes,skin,andrespiratorysystem;affectsthecentral nervoussystem,liver,spleen,andblood-formingorgans

FIGURE1.3

Impactcategoriesresultingfromplasticwaste.

inventionofBakelitebroughtaboutamaterialsrevolutionbyintroducingtrulysyntheticplasticresins intoworldcommerce.Bytheendofthe20thcentury,however,plasticshadbecomepersistent pollutersofmanyenvironmentalniches,fromMountEveresttothebottomofthesea.Whetherbeing mistakenforfoodbyanimals,floodinglow-lyingareasbycloggingdrainagesystems,orsimply causingsignificantaestheticblight,plasticshaveincreasinglyattractedattentionaslarge-scale pollutants(Singhetal.,2020).

Plasticsarepolymericmaterials thatis,materialswithverylargemoleculesthatoftenresemble longchainsmadeupofaseeminglyendlessseriesofinterconnectedlinks.Naturalpolymerssuchas rubberandsilkexistinabundance,butnature’s“plastics”havenotbeenimplicatedinenvironmental pollutionbecausetheydonotpersistintheenvironment.Today,theaverageconsumercomesinto dailycontactwithahugearrayofplasticmaterialsdevelopedspecificallytodefeatnaturaldecay processes materialsderivedmainlyfrompetroleumthatcanbemolded,cast,spun,orappliedas coatings.Sincesyntheticplasticsarelargelynonbiodegradable,theypersistinnaturalenvironments. Moreover,manylightweight,single-useplasticproductsandpackagingmaterials,whichaccountfor approximately50%ofallplasticsproduced,arenotdepositedincontainersforsubsequentremovalto landfills,recyclingcenters,orincinerators.Instead,theyareimproperlydisposedofatornearthe locationwheretheyendtheirusefulnesstotheconsumer.Droppedonthegroundorinadvertently carriedoffbyagustofwind,theyimmediatelypollutetheenvironment.Indeed,landscapeslittered withplasticpackaginghavebecomecommoninmanylocationsworldwide.Globalstudieshavenot attributedthistoanyspecificcountriesordemographicgroups,althoughpopulationcentersgenerate themostlitter.Thecausesandeffectsofplasticpollutionaretrulyglobal(Rajkumar,2015; Yousefi etal.,2021).

Globalproductionofplasticsandgenerationofwaste

Inmodernlife,plasticsareubiquitous.Itsearlyusedatesbackto1600 BCE,whenhumanhandsshaped naturalrubberandpolymerizeditintodifferentusefulobjectsinprehistoricMesoamerica.Thediverse useandmanufacturingofplasticsandplasticproductsbeganin1839whenPSandvulcanizedrubber werediscovered.ProductionofBakelite,thefirsttrulysyntheticpolymer,beganin1907inBelgium; by1930,Bakelitewaseverywhere,especiallyinfashion,communication,andelectricalandautomotiveindustries.Ittookadecadeafterthisformassproductionofplasticstobegin,andithas constantlyexpandedeversince.

Asof2008,annualplasticproductionwasestimatedtobe245milliontonsglobally.Atpresent, single-usepackagingisthelargestsector,accountingfornearly40%ofoverallplasticuseinEurope, followedbyconsumergoodsandmaterialsforconstruction,automotive,electrical,andagricultural applicationsat22%,20%,9%,6%,and3%,respectively.Ithasbeenestimatedthatin2015,thehighest rateofproductionwasinAsia,with49%oftotalglobaloutput,withChinaasthelargestglobal producer(28%),followedbyNorthAmericaandEuropeat19%each.Theremainingregionsareless importantforproductionthoughnotnecessarilyforconsumption.

Managementofplasticwastes

Landfilling Approximately10%ofhouseholdwasteisplastics,andmostofitendsupinlandfills. Eventhoughlandfillingistheconventionalapproachforwastemanagementinmanycountries,

dwindlingspaceforlandfillsisbecomingamajorproblem.Environmentalpollutionandriskstopublic healthcanbereducediflandfillsarewellmanaged,althoughsoilandgroundwatercontaminationby disintegratedplasticby-productsandadditiveshasthepotentialforlong-termenvironmental persistence.

Plasticincineration Analternativetolandfillingplasticwasteisincineration,butconcerns continuetogrowaboutthepotentialatmosphericreleaseofhazardouschemicalsduringincineration. Forinstance,plasticwastefumesreleasehalogenatedadditivesandPVC,whilefurans,dioxins,and PCBsfromplasticsincinerationarereleased.Thedisadvantageofplasticscombustionisairpollution causedbythenoxiousfumesreleasedintotheatmosphere.Thecombustionheateroffluesystemsis permanentlydamagedbyplasticsduringplasticsincineration,andtheby-productsofthisplastics combustionaredetrimentaltobothhumansandtheenvironment.Compoundsoflowmolecularweight canvaporizedirectlyintotheair,therebypollutingtheair.Dependingontheirvarieties,theymayform acombustiblemixtureoroxidizeinsolidform.

Plasticsincinerationisusuallyaccompaniedbychalkformation,andtheextentofcokingdepends ontheincinerationconditions.Gaseousreleasesduringplasticandplasticcompositeproducts incinerationareverydangerous.Forexample, Table1.1 showsthecompoundsreleasedduringPVC incinerationandthehealtheffectsofthosecompounds.Plasticincinerationproducessoot,ash,and variouspowdersthateventuallysettleonplantsandsoilandcanpotentiallymigratetotheaquatic environment.Rainfallcanenablesomeofthesetoxiccompoundstopermeatethesoil,contaminatethe groundwater,orbeabsorbedbyplants,thusbecomingincorporatedintothefoodchain.Someofthese plasticincinerationproductscanchemicallyreactwithwater,andtheresultingcompoundscanalter thepH,therebychangingthefunctioningofaquaticecosystems.Duetothepotentialenvironmental pollutionimpact,plasticincinerationisnotemployedforwastemanagementasfrequentlyasrecycling andlandfilling.

Plasticsrecycling Reprocessingofrecoveredplasticscrapsorwastesintouseableproductsis calledplasticrecycling.Mostplasticsarenonbiodegradableinnature;hence,thefundamentalworkis thereductionofwasteemissions,effectivemanagement,andrecyclingofresultingwastes.Recycling ofplasticsisamajoraspectoftheworldwideeffortsinminimizingtheyearlyeightmilliontonnesof plasticsinthewastestreamenteringtheEarth’soceans.AccordingtoHopewelletal.plasticrecycling terminologyiscomplexduetovariousrecoveryactivitiesandrecycling.Therearefourmaincategoriesofrecyclingwhichare:primary(whichinvolvesthemechanicalreprocessingofplasticsintoa newproductwithequivalentproperties),secondary(whichinvolvesthemechanicalreprocessingof plasticsintoaproductwithlowerproperties),tertiary(whichconsistsoftherecoveryofthechemical constituentsoftheplastics)andquaternary(whichrequiresenergyrecoveryfromtheplastics).

Incontrasttothelucrativemetalrecyclingbutlikethelowvalueofglassrecycling,recycling plasticsisoftenmorechallengingbecauseoflowdensityandlowvalue.Also,thereareseveral technicalissuestodealwithwhenrecyclingplastic.Meltingtogetherofdifferentplastictypesoften causephaseseparationlikeoilandwater,andtheyaresetintheselayers.Theresultingphase boundariesareresponsibleforstructuralweaknessinthefinalproduct(s),whichhaslimitedthe applicationofthesepolymerblends.ThisisthecasewithpolyethyleneandPP,thetwocommonly manufacturedplastics,thuslimitingtheirrecyclability.Recently,blockcopolymershavebeen proposedasaformofmacromolecularweldingfluxormolecularstitchestoovercomethechallengeof phaseseparationduringplasticrecycling.

Therecanbeanincreaseinthepercentageofplasticswiththepossibilityoffullrecyclinginstead ofthelargequantitygeneratedaswastesifpackagedgoodsmanufacturersreducetheirmixingof packagingmaterialsandeliminatecontaminants.

Table1.2Disadvantagesofplasticwastemanagementtechnologies. Sl.No.TechnologiesDisadvantages

1.LandfillingLandfillsareresponsibleforclimatechange,soilandwatercontamination, andcancers,respiratorydisorders,andotherailmentslinkedtoprolonged landfillexposure.

2.PlasticincinerationEmissionoftoxicpollutants;highcosts

3.MechanicalrecyclingTheeffortssurroundingcollection,sorting,washing,andrecyclingandthe highpercentageofmateriallossinvolveenormouscostsandproducearaw materialoflimitedquality.Thismakesitcommerciallyunattractivetoreuse therecycledrawmaterialsfromthesestreamsinnewproducts.

4.ChemicalrecyclingThewasteflowsrequiredforchemicalrecyclingmustbecleanerthan previouslythought.Inaddition,techniqueswithhighCO2 reductionplace higherdemandsonwastequality.

Environmentalpollutionbyplasticwastes Thedistributionofplasticwasteisassociatedwith humanpopulations.Anincreaseinthehumanpopulationhasledtoincreasingdemandforplasticsand plasticproducts.Indiscriminatedisposalofwastesfromplasticsandplasticproductscanleadto environmentalpollution,whichisevidentinseveralways,includingdeteriorationofthebeautyofthe naturalenvironment,entanglementanddeathofaquaticorganisms,sewagesystemblockageintowns andcities,especiallyindevelopingcountries,thatcreatesaconduciveenvironmentformosquitoesand otherdisease-causingvectors,productionoffoulsmells,andreductionsinwaterpercolationand normalagriculturalsoilaeration,thuscausingthereducedproductivityofsuchlands.Thedisadvantagesofplasticwastemanagementtechnologiesarehighlightedin Table1.2 (Das & Chaudhary, 2021c; Letcher,2020).

Recommendationstoreduceandcontrolplasticwastes

Manycountriesarelaboringtocontrolenvironmentalpollutionfromplasticwastesbyreducingthe productionofplasticsandplasticproducts,prohibitingexcessivepackaging,capturinglitter,and recycling.Inthestruggleagainstplasticpollution,thefollowingrecommendationsmightbehelpful:

Policymaking Tocombatandcurbpersistentenvironmentalpollutionbyplastics,thereisaneed forrealisticpoliciesthatareproperlyfollowedandenforced.Thisshouldincludetheneedforaglobal conventiononenvironmentalpollutionbyplasticstomandateplasticproducerstodeclareallingredientsintheirplasticproductsandputawarningontheproductsforconsumersaboutthepotential healtheffectsofsuchconstituents.Policiestoclassifysomeoftheharmfulingredientsinplastic productsshouldbeenacted.

Itisalsoimportantforthegovernmenttoenforceandimplementregulationsthatwillcheckthe production,consumption,use,andeventualdisposalofplasticsirrespectiveoftheirhazardousstatus. The3Rs reduce,reuse,andrecycle mustbeemployedatallstagestopreventzerodiversionto landfillsandindiscriminatedisposaltotheenvironment.

Plasticwastemanagementandrecycling Inreducingthetoxiceffectsofplasticwastesonthe environmentandpublichealth,wastemanagementplaysamajorrole.Fortheglobalreductionof

plasticlitterandoceanpollution,thereisaneedtoimproveproperplasticwastecollection,treatment, anddisposal.Inadequatelandfillmanagementwillmakewayforharmfulchemicalsinplasticwastes toleachintotheenvironment,pollutingthesoil,air,andundergroundwater.

Properwastewatermanagementwillpreventmicroplasticsfromenteringtheenvironmentfrom landfills.

Educationandpublicawareness Effortsmustbemadetoeducatethegeneralpopulaceonthe potentialenvironmentalandpublichealtheffectofpollutionbyplasticwastes.Thiswillgoalongway towardreducingthepollutionrateandpreservingenvironmentalquality.Peopleshouldbemadeaware ofthechemicalconstituentsofplasticproductsandtheirhealtheffects.Educationalcurriculaat variouslevelsmustincludeplasticpollutionreductionmethodsandwastemanagementsystemsas informationresources.

Bioplasticsasanalternative Bioplasticswasfirstproducedfromcellulose,madeofwoodpulp byaBritishchemistinthe1850s.Now,bioplasticscanbeproducedfromdifferentbiodegradableand nonbiodegradablematerials,includingweeds,hemp,plantoils,potatostarch,cellulose,andcorn starch.Sugar-basedbioplasticscanbiodegradeundernormalconditionsforcomposting.Bioplastics areenvironmentallyfriendlysincetheyrequirefewerfossilfuelsduringproductioncomparedwith otherplastics.

Webelievethattheproblemofplasticwastegenerationandtheaccompanyingenvironmentaland publichealtheffectscanbehandledif,globally,manufacturerscanembracetheuseofbioplastics.The biodegradabilitywithlittleornotoxicproductsleftbehindwillgoalongwaytoprotectournatural environmentfromthemenaceofconventionalplasticwastes,protectourworld’sorganisms,andmake theworldsaferforhumans.

Futuredirectionsandrecommendations

Plasticwastemanagementreferstoagroupefforttorecycleplasticorproduceelectricitybyincineration.Recyclinghasseveraladvantages,includingtheabilitytosaveenergyandprotecttheenvironment.Itcanalsoassistbusinessesinloweringtheirproductioncostsbyrecyclingproducts, resultinginincreasedrevenuegeneration.Theseadvantagesimprovethemarket’sgrowthrateby offeringamajorboosttodemand.Thebulkoftheindustry’splayersservethecommercial,residential, andindustrialsectors.Consolidationisincreasingthemarketconcentrationasdevelopedeconomies andcorporationsoutsourcewastemanagementanddisposalservices(Kamaruddinetal.,2017; Lebreton & Andrady,2019; Wongetal.,2015).Overtheforecastera,thisisprojectedtodrivethe plasticwastemanagementindustry.Variousfactorssuchasrisingenvironmentalissues,growing industrialization,rapidurbanization,andrisingwastemanagementprocessinnovationareexpectedto drivemarketgrowthovertheforecastedera.TheglobalplasticwastemanagementmarketisanticipatedtoreachUSD42.2billionby2027,expandingataCAGRof3.1%.Economicgrowth,rising industrialization,increasingurbanization,andgrowinghealthawarenessarethemajorfactorslikelyto boostmarketgrowthovertheforecastperiod.People’sincreasingenvironmentalconsciousness,as wellastougherregulationsimplementedbymanyend-useindustriesandvariousspecifications pertainingtoplasticwastemanagement,wouldboostconsumerdemand.Inaddition,becauseofrapid urbanizationandindustrialization,therehasbeenasurgeintheadoptionofsustainablewastemanagementeffortsandprocesses,pavingthewayforplasticwastemanagementservices.Advanced technologiesandframeworksforreprocessing,organizing,andsortingrecyclableplasticsareopening

newpossibilitieswithintheplasticwastemanagementmarket.Furthermore,lawsandguidelines enforcedbythegovernmentandrelatedagenciesacrossthecountriesforplasticwastedisposal managementareanticipatedtodrivethemarketovertheforecastperiod(Das & Chaudhary,2021b). Thecostatwhichrecycledplasticcanbecreatedisstable,whilethecostofvirginplasticfluctuates basedontheperformanceoftheoilandgasindustryandthedemandforcrudeoil-basedproducts acrosstheend-useindustries.Thisfluctuationinpricespromotestheincentivetomakelong-term investmentsinrecyclingtechnologyandinfrastructure.Variousrecommendedapproachestoplasticsfocusingoninnovationareshownin Fig.1.4

Therefore,anewplasticparadigmisneeded.Achievingalong-termsustainablefutureforplastics willrequireintegrationalongtheentirevaluechain,fromdesigntoreuse,togetherwiththetransition toatrulycirculareconomy.Acirculareconomyischaracterizedbyavaluechainapproachinwhicha

Recommendedapproachforplasticsfocusingoninnovation.

FIGURE1.4

product’send-of-lifeisconsideredfromthemomentitisdeveloped,andresourcesarereusedrather thanbeingcontinuouslyadded.Intermsofinnovation,thiswillrequireanincreasedfocuson composition,intermsofbothsmartermaterialsdesigntoimproverecyclabilityandthedevelopment ofbio-basedalternatives.

Conclusions

Sciencehasyettodevelopconsistentandreliablebaselinedataonplastic’sexistence,fluxes,pathways,fates,andeffectswithinvariousenvironmentalcompartments.Despitetheimmediateinterest arisingfromtheclearlymeasurableimpactofpollutantsonplantsandanimalsandevidenceofthe transboundaryandfar-reachingnatureofplastics,farmoreattentionhasthusfarbeenpaidtomarine pollution.Someestimates,however,indicatethatpollutionlevelsinfreshwatersystemsandsoilsmay surpassthoserecordedinthemarineenvironment,especiallyformicroplastics.Despiteallthewellfoundedassumptions,uncertaintyandunknownsabound.Thesecomplexitiesandinformationgaps makeitdifficulttothoroughlyevaluatethehealtheffects,thuslimitinginformeddecisionsbycustomers,societies,andpolicymakers.Atalllevelsofthelifecycleofplasticproducts,inadequateand incompleteinformationleadstopossiblelong-termenvironmentalandhealthconsequences.Asa result,morefocusedscienceandpolicyattentionmustbepaidtotheseenvironmentalcompartments, notinplaceofbutinadditiontocurrentmarine(micro)plasticemissionstudies.Overtheforecast period,variousfactorssuchasincreasingenvironmentalconcerns,growingindustrialization,rapid urbanization,andrisingwastemanagementprocessinnovationareexpectedtodrivemarketgrowth. TheglobalplasticwastemanagementmarketisexpectedtoexpandataCAGRof3.1%toUSD 42.2billionby2027.Economicdevelopment,industrialexpansion,risingurbanization,andincreasing healthawarenessarethemajordriversofmarketgrowthovertheforecastperiod.

References

d’Ambrie ` res,W.(2019).Plasticsrecyclingworldwide:Currentoverviewanddesirablechanges.FieldActions ScienceReports. TheJournalofFieldActions,19,12 21.SpecialIssue.

Agarski,B.,Vukelic,D.,Micunovic,M.I.,&Budak,I.(2019).Evaluationoftheenvironmentalimpactofplastic capproduction,packaging,anddisposal. JournalofEnvironmentalManagement,245,55 65.

Ahmad,F.,Yuvaraj,N.,&Bajpai,P.K.(2020).Effectofreinforcementarchitectureonthemacroscopic mechanicalpropertiesoffiberouspolymercomposites:Areview. PolymerComposites,41(6),2518 2534. Alabi,O.A.,Ologbonjaye,K.I.,Awosolu,O.,&Alalade,O.E.(2019).Publicandenvironmentalhealtheffectsof plasticwastesdisposal:Areview. JournalofToxicologyandRiskAssessment,5(021),1 13. Alshehrei,F.(2017).Biodegradationofsyntheticandnaturalplasticbymicroorganisms. JournalofApplied & EnvironmentalMicrobiology,5(1),8 19.

Arena,U.,Mastellone,M.L.,&Perugini,F.(2003).Lifecycleassessmentofaplasticpackagingrecycling system. TheInternationalJournalofLifeCycleAssessment,8(2),92 98. Barnes,S.J.(2019).Understandingplasticspollution:Theroleofeconomicdevelopmentandtechnological research. EnvironmentalPollution,249,812 821.

Bergmann,M.,Peeken,I.,Beyer,B.,Krumpen,T.,Primpke,S.,Tekman,M.B.,&Gerdts,G.(2016).Vast quantitiesofmicroplasticsinArcticSeaIce aprimetemporarysinkforplasticlitterandamediumof transport. FateandImpactofMicroplasticsinMarineEcosystems,75 76.

Boots,B.,Russell,C.W.,&Green,D.S.(2019).Effectsofmicroplasticsinsoilecosystems:Aboveandbelow ground. EnvironmentalScience & Technology,53(19),11496 11506.

Chae,Y.,&An,Y.-J.(2018).Currentresearchtrendsonplasticpollutionandecologicalimpactsonthesoil ecosystem:Areview. EnvironmentalPollution,240,387 395.

Chaudhary,V.,&Ahmad,F.(2020).Areviewonplantfiberreinforcedthermosetpolymersforstructuraland frictionalcomposites. PolymerTesting,91,106792.

Chaudhary,V.,Bajpai,P.K.,&Maheshwari,S.(2018).Studiesonmechanicalandmorphologicalcharacterization ofdevelopedjute/hemp/flaxreinforcedhybridcompositesforstructuralapplications. JournalofNatural Fibers,15(1),80 97.

daCosta,J.P.,Mouneyrac,C.,Costa,M.,Duarte,A.C.,&Rocha-Santos,T.(2020).Theroleoflegislation, regulatoryinitiativesandguidelinesonthecontrolofplasticpollution. FrontiersinEnvironmentalScience,8, 104.

daCosta,J.P.,Santos,P.S.,Duarte,A.C.,&Rocha-Santos,T.(2016).Nano)plasticsintheenvironment sources, fatesandeffects. ScienceoftheTotalEnvironment,566,15 26.

Das,P.P.,&Chaudhary,V.(2020).Tribologicalanddynamicmechanicalanalysisofbio-composites:Areview. MaterialsToday:Proceedings,25,729 734.

Das,P.P.,&Chaudhary,V.(2022).Environmentalimpactandeffectofchemicaltreatmentonbiofiberbased polymercomposites. MaterialsToday:Proceedings,49,3418 3422.

Das,P.P.,&Chaudhary,V.(2021b).Movingtowardstheeraofbiofibrebasedpolymercomposites. Cleaner EngineeringandTechnology,100182.

Das,P.P.,&Chaudhary,V.(2021c).Mechanical,chemicalandthermalrecyclingofbio-composites:Areview. AdvancesinEngineeringMaterials:SelectProceedingsofFLAME,2020,387 395.

Das,P.P.,Chaudhary,V.,&Mishra,S.(2021).Emergingtrendsingreenpolymerbasedcompositematerials: Properties,fabricationandapplications.In Graphenebasedbiopolymernanocomposites (pp.1 24).Springer. Derraik,J.G.(2002).Thepollutionofthemarineenvironmentbyplasticdebris:Areview. MarinePollution Bulletin,44(9),842 852.

Duckett,P.E.,&Repaci,V.(2015).Marineplasticpollution:Usingcommunitysciencetoaddressaglobal problem. MarineandFreshwaterResearch,66(8),665 673.

Finnveden,G.,Hauschild,M.Z.,Ekvall,T.,Guine ´ e,J.,Heijungs,R.,Hellweg,S.,Koehler,A.,Pennington,D.,& Suh,S.(2009).Recentdevelopmentsinlifecycleassessment. JournalofEnvironmentalManagement,91(1), 1 21.

Geyer,R.,Jambeck,J.R.,&Law,K.L.(2017).Production,use,andfateofallplasticsevermade. Science Advances,3(7),e1700782.

Gu,F.,Guo,J.,Zhang,W.,Summers,P.A.,&Hall,P.(2017).Fromwasteplasticstoindustrialrawmaterials:A lifecycleassessmentofmechanicalplasticrecyclingpracticebasedonareal-worldcasestudy. Scienceofthe TotalEnvironment,601,1192 1207.

Guzzetti,E.,Sureda,A.,Tejada,S.,&Faggio,C.(2018).Microplasticinmarineorganism:Environmentaland toxicologicaleffects. EnvironmentalToxicologyandPharmacology,64,164 171. Hahladakis,J.N.,Velis,C.A.,Weber,R.,Iacovidou,E.,&Purnell,P.(2018).Anoverviewofchemicaladditives presentinplastics:Migration,release,fateandenvironmentalimpactduringtheiruse,disposalandrecycling. JournalofHazardousMaterials,344,179 199.

Huber,J.(2004). Newtechnologiesandenvironmentalinnovation.EdwardElgarPublishing. Hurley,R.,Woodward,J.,&Rothwell,J.J.(2018).Microplasticcontaminationofriverbedssignificantlyreduced bycatchment-wideflooding. NatureGeoscience,11(4),251 257. InternationalOrganizationforStandardization.(2006). Environmentalmanagement:Lifecycleassessment; principlesandframework (Vol.14044).ISO.

Isangedighi,I.A.,David,G.S.,&Obot,O.I.(2018).Plasticwasteintheaquaticenvironment:Impactsand management. Environment,2,1 31.

Kamaruddin,M.A.,Abdullah,M.M.A.,Zawawi,M.H.,&Zainol,M.(2017).Potentialuseofplasticwasteas constructionmaterials:Recentprogressandfutureprospect. IOPConferenceSeries:MaterialsScienceand Engineering,267(1),012011.

Knight,P.,&Jenkins,J.O.(2009).Adoptingandapplyingeco-designtechniques:Apractitionersperspective. JournalofCleanerProduction,17(5),549 558.

Laskar,N.,&Kumar,U.(2019).Plasticsandmicroplastics:Athreattoenvironment. EnvironmentalTechnology & Innovation,14,100352.

Lebreton,L.,&Andrady,A.(2019).Futurescenariosofglobalplasticwastegenerationanddisposal. Palgrave Communications,5(1),1 11.

Letcher,T.M.(2020).Introductiontoplasticwasteandrecycling.In Plasticwasteandrecycling (pp.3 12). Elsevier.

LI,W.C.,Tse,H.F.,&Fok,L.(2016).Plasticwasteinthemarineenvironment:Areviewofsources,occurrence andeffects. ScienceoftheTotalEnvironment,566,333 349.

Manral,A.,Ahmad,F.,&Chaudhary,V.(2020).StaticanddynamicmechanicalpropertiesofPLAbio-composite withhybridreinforcementofflaxandjute. MaterialsToday:Proceedings,25,577 580.

Paluselli,A.,Fauvelle,V.,Galgani,F.,&Sempe ´ re ´ ,R.(2018).Phthalatereleasefromplasticfragmentsand degradationinseawater. EnvironmentalScience & Technology,53(1),166 175.

Peng,L.,Fu,D.,Qi,H.,Lan,C.Q.,Yu,H.,&Ge,C.(2020).Micro-andnano-plasticsinmarineenvironment: Source,distributionandthreats areview. ScienceoftheTotalEnvironment,698,134254.

Prat,N.,Toja,J.,Sola,C.,Burgos,M.D.,Plans,M.,&Rieradevall,M.(1999).Effectofdumpingandcleaning activitiesontheaquaticecosystemsoftheGuadiamarRiverfollowingatoxicflood. ScienceoftheTotal Environment,242(1 3),231 248.

Pretty,J.,&Bharucha,Z.P.(2018). Sustainableintensificationofagriculture:Greeningtheworld’sfood Economy.Routledge.

Provencher,J.F.,Ammendolia,J.,Rochman,C.M.,&Mallory,M.L.(2019).Assessingplasticdebrisinaquatic foodwebs:Whatweknowanddon’tknowaboutuptakeandtrophictransfer. EnvironmentalReviews,27(3), 304 317.

Pryshlakivsky,J.,&Searcy,C.(2013).FifteenyearsofISO14040:Areview. JournalofCleanerProduction,57, 115 123.

Rajendran,S.,Scelsi,L.,Hodzic,A.,Soutis,C.,&Al-Maadeed,M.A.(2012).Environmentalimpactassessment ofcompositescontainingrecycledplastics. Resources,ConservationandRecycling,60,131 139. Rajkumar,P.(2015).Astudyontheplasticwasteandenvironmentaldegradation. ABCJournalofAdvanced Research,4(1),9 16.

Ronkay,F.,Molnar,B.,Gere,D.,&Czigany,T.(2021).Plasticwastefrommarineenvironment:Demonstrationof possibleroutesforrecyclingbydifferentmanufacturingtechnologies. WasteManagement,119,101 110. Roy,R.(2000).Sustainableproduct-servicesystems. Futures,32(3 4),289 299.

Schwarz,A.E.,Ligthart,T.N.,Boukris,E.,&VanHarmelen,T.(2019).Sources,transport,andaccumulationof differenttypesofplasticlitterinaquaticenvironments:Areviewstudy. MarinePollutionBulletin,143, 92 100.

Singh,N.,Duan,H.,&Tang,Y.(2020).ToxicityevaluationofE-wasteplasticsandpotentialrepercussionsfor humanhealth. EnvironmentInternational,137,105559.

Thiounn,T.,&Smith,R.C.(2020).Advancesandapproachesforchemicalrecyclingofplasticwaste. Journalof PolymerScience,58(10),1347 1364.

vanTruong,N.,&BeiPing,C.(2019).Plasticmarinedebris:Sources,impactsandmanagement. International JournalofEnvironmentalStudies,76(6),953 973.

Tsoulfas,G.T.,&Pappis,C.P.(2006).Environmentalprinciplesapplicabletosupplychainsdesignandoperation. JournalofCleanerProduction,14(18),1593 1602.

Verma,R.,Vinoda,K.S.,Papireddy,M.,&Gowda,A.N.S.(2016).Toxicpollutantsfromplasticwaste-areview. ProcediaEnvironmentalSciences,35,701 708.

Vianello,A.,Jensen,R.L.,Liu,L.,&Vollertsen,J.(2019).Simulatinghumanexposuretoindoorairborne microplasticsusingaBreathingThermalManikin. ScientificReports,9(1),1 11.

Vince,J.,&Hardesty,B.D.(2017).Plasticpollutionchallengesinmarineandcoastalenvironments:Fromlocalto globalgovernance. RestorationEcology,25(1),123 128.

Wagner,M.,Scherer,C.,Alvarez-Munoz,D.,Brennholt,N.,Bourrain,X.,Buchinger,S.,Fries,E.,Grosbois,C., Klasmeier,J.,&Marti,T.(2014).Microplasticsinfreshwaterecosystems:Whatweknowandwhatweneedto know. EnvironmentalSciencesEurope,26(1),1 9.

Wang,L.,Wu,W.-M.,Bolan,N.S.,Tsang,D.C.,Li,Y.,Qin,M.,&Hou,D.(2021).Environmentalfate,toxicity andriskmanagementstrategiesofnanoplasticsintheenvironment:Currentstatusandfutureperspectives. JournalofHazardousMaterials,401,123415.

Wilber,R.J.(1987).Plasticinthenorthatlantic. Oceanus,30(3),61 68.

Wong,S.L.,Ngadi,N.,Abdullah,T.A.T.,&Inuwa,I.M.(2015).Currentstateandfutureprospectsofplastic wasteassourceoffuel:Areview. RenewableandSustainableEnergyReviews,50,1167 1180.

Woodall,L.C.,Sanchez-Vidal,A.,Canals,M.,Paterson,G.L.,Coppock,R.,Sleight,V.,Calafat,A., Rogers,A.D.,Narayanaswamy,B.E.,&Thompson,R.C.(2014).Thedeepseaisamajorsinkformicroplasticdebris. RoyalSocietyOpenScience,1(4),140317.

Worm,B.,Lotze,H.K.,Jubinville,I.,Wilcox,C.,&Jambeck,J.(2017).Plasticasapersistentmarinepollutant. AnnualReviewofEnvironmentandResources,42 Yarramsetty,S.,Sivakumar,M.V.N.,&Raj,P.A.(2018).Recentdevelopmentsinlifecycleassessment andservicelifeprediction:Areview. UrbanizationChallengesinEmergingEconomies:Resilienceand SustainabilityofInfrastructure,509 520.

Yousefi,M.,Oskoei,V.,Jafari,A.J.,Farzadkia,M.,Firooz,M.H.,Abdollahinejad,B.,&Torkashvand,J.(2021). MunicipalsolidwastemanagementduringCOVID-19pandemic:Effectsandrepercussions. Environmental ScienceandPollutionResearch,1 10.

Zhao,W.,VanDerVoet,E.,Zhang,Y.,&Huppes,G.(2009).Lifecycleassessmentofmunicipalsolidwaste managementwithregardtogreenhousegasemissions:CasestudyofTianjin,China. ScienceoftheTotal Environment,407(5),1517 1526.

Composition,propertiesandother factorsinfluencingplastics biodegradability

SigridHakva ˚ g1,OddGunnarBrakstad1,StephanKubowicz2 andAndyM.Booth1

1SINTEFOcean,Trondheim,Norway; 2SINTEFIndustry,Oslo,Norway

Introduction

Thereisnouniversaldefinitionofbiodegradation(biologicaldegradation).Inthischapter,weusethe UnitedNationsdefinition:a“processbywhichorganicsubstancesaredecomposedbymicroorganisms (mainlyaerobicbacteria)intosimplersubstancessuchascarbondioxide,waterandammonia”(United Nations,1997).Severalotherdefinitionsofbiodegradabilityexist,dependingonwhetherthe biodegradationsolelyaltersthechemicalstructureofamaterialorthematerialiscompletely mineralizedbymicroorganisms(Harrisonetal.,2018).Theterm“biodegradable”alsodoesnotyield anyusefulinformationregardingthetimescaleandextentofthedecompositionprocess(Harrison etal.,2018; Kubowicz & Booth,2017a; Montazeretal.,2020).Inmanycases,thecompletemineralizationofacompound/ultimatebiodegradabilityisusedasadefinition,wheretheprocessproduces newbiomasspluscarbondioxideandwater(aerobicconditions)ormethane(anaerobicconditions) (Gu,2003; Jacquinetal.,2019).

Plasticsaretypicallybiodegradedaerobically(Gu,2003; Jacquinetal.,2019; Shahetal.,2008). Thermodynamically,oxygenisamoreefficientelectronacceptorthaneithersulfateorCO2,and therefore,aerobicrespirationismoreenergy-rewardingthananaerobicrespiration.Aerobicrespiration canconsequentlysupportagreatermicroorganismpopulationthananaerobicrespiration.Anaerobic biodegradationoccursinlandfillsandsediments,whilepartiallyaerobicconditionsarecharacteristic ofcompostandsoil.Itshouldbenotedthatevenunderoptimizedlaboratoryconditions,the biodegradationratesofconventionalthermoplasticsareverylow(Kruegeretal.,2015).Inmarineand terrestrialenvironments,thelifetimesofconventionalplasticscanextendintocenturies(Chamasetal., 2020).

Arangeofindividualstandardsandtestmethodshavebeendevelopedtoassesspolymericmaterial biodegradabilityinvariousaerobicandanaerobicenvironments,includingbothmanagedandopen environments(Harrisonetal.,2018; Montazeretal.,2020).Whilemostoftheseavailabletestproceduresaresufficientlyreliableforassessingbiodegradability,differenttestscansignificantlyoverestimateorunderestimatethedurationrequiredforpolymerbiodegradationandmineralizationwithin naturalecosystems.Thesedifferencesresultfromthecomplexinteractionofmultiplefactorsthat influencethebiodegradabilityofaspecificplasticitemunderaparticularsetofenvironmental conditions.

BiodegradabilityofConventionalPlastics. https://doi.org/10.1016/B978-0-323-89858-4.00014-2 Copyright © 2023ElsevierInc.Allrightsreserved.

Table2.1Factorsaffectingplasticsbiodegradation.

Factorsaffectingbiodegradation

Plastics (intrinsic)ChemicalpropertiesPolymericcomposition(backbone)

Additivechemicals

PhysicalpropertiesMolecularproperties:crystallinity,molecularweight, hydrophobicity,morphology

Exposureconditions (extrinsic)

Microbialcommunity (biotic)

Environmentalfactors (abiotic)

Extracellularenzymes

Hydrophobicity

Biosurfactants

Temperature

SalinityandpH

Dissolvedoxygen

Pressure

SunlightandUVexposure

Moistureandhumidity

Fragmentationandtransportofpolymers

Adsorptionofpollutants

Sowhatfactorsaffectplasticbiodegradation?Broadlyspeaking,biodegradationfactorscanbe dividedaccordingtotheintrinsicphysicalandch emicalpropertiesofthepolymerandextrinsic exposureconditions;see Table2.1 ).Thelatterisafunctionofthetypeoforganism(biotic)andthe environmentalparametersthatexternallyin fluencethedegradationprocess(abiotic)( Ahmedetal., 2018 ; Kijchavengkul & Auras,2008 ; Kumaretal.,2019 ).Theintrinsicphysicalandchemical characteristicsofaparticularpo lymermaterialarehighlyimportantfactorsinbiodegradability. Themicrobialandenzymaticaccessibilityofpolym ersisdeterminedbymolecularweight,melting temperature,additives,crystallin ity,flexibility,andfunctionalgroup( Kaleetal.,2015 ; Tokiwa etal.,2009 ).Forexample,enzymesmainlyattack thelooselypackedamorphousdomainsof polymermaterials,whereascr ystallineregionstypicallyexhibitgreaterresistanceto biodegradation.

Thekineticsofpolymerbiodegradationalsodependontheenvironmentalconditionssurrounding thematerial.Furthermore,asynergisticrelationshipexistsbetweenabioticandbioticexposureparameters.Amicrobialcommunity’scomposition,growthrates,andmetabolicactivityareaffectedby abioticenvironmentalconditions;hence,theseconditionsalsoplayasignificantroleinthebiodegradationof(bio)plastics(Emadianetal.,2017).Abioticfactorsincludetemperature,moisture,pH,and UVradiation.Inadditiontodirectlyinfluencingmicrobialparameters,thesameabioticfactorscan affecttherateofhydrolysisandtherebyaffectpolymerbioavailabilitytomicroorganisms.Thebiotic factorsinvolvetheproductionofextracellularenzymesbymicroorganismsasdepolymerasesand biosurfactants.Consequently,plasticbiodegradationisacomplexinterplayofmultiplebioticand abioticfactorsandproceedsatvariousratesfordifferentpolymertypesandenvironmentalcompartmentsandmatrices.

Microbialdegradationofplasticmaterials

Mechanismsofbiodegradation

Thebiodegradationofplasticscanbeschematicallydividedintostepwiseprocessescomprising(1) microbialfilmformation,(2)biodeterioration,(3)biofragmentation,(4)assimilation,and(5)mineralization(Jacquinetal.,2019; Kumaretal.,2019; Lucasetal.,2008).Importantly,biodegradation occursafterorsimultaneouslywithphysicalandchemicalpolymerdegradation.Theseprocesses increasetheavailablesurfaceareaandchangethesurfacechemistry,makingiteasierformicroorganismstometabolizethepolymer.Asaresult,biodegradationproceedsatanincreasinglyhigherrate asphysicalandchemicaldegradationprocessesprogress.

Biofilmformationisinitiatedbytheadsorptionofnaturallyoccurringdissolvedorganicmolecules. Oncethesemoleculeshaveformedabaselayer,theattachmentofmicrobialcellsproceeds.Primary colonizersrapidlyattachtotheplasticsurfacesandproducebiofilmswithoutnecessarilyincluding plastic-degradingmicroorganisms(Lobelle & Cunliffe,2011).Furtherdevelopmentusuallyinvolves colonizationbyunicellulareukaryotesandattachmentofmulticellulareukaryotes(deCarvalho, 2018).Bacterialcolonizationstartsrapidlyontheplastic.Ithasbeenshownthatbiofilmdevelopment onpolyethylene(PE)inseawatercoincideswithreducedhydrophobicityandmoreneutralbuoyancy ofthepolymer(Lobelle & Cunliffe,2011).Biofilmsareassociatedwiththeproductionofextracellular polymericsubstances(EPSs),whichcomprisepolysaccharides,proteins,extracellularDNA,andlipids (DiMartino,2018).Biofilmformationonplasticsurfacesfollowssuccessionalstates,separating betweenearlyandlatecolonizers(Dang & Lovell,2000; Leeetal.,2008; Pintoetal.,2019; Saltaetal., 2013).Atypicalbiofilmconsistsofdeadandactivecellsinsideamatrixofextracellularpolymers formedbyEPS-producingmicrobes).Oxygenmaybecomelimitedintheinteriorofthebiofilmasit evolves,makingconditionsfavorableforanaerobicmicrobes,whichinthemarineenvironmentmay includesulfate-reducingprokaryotes.Biodeteriorationrelatestoboththephysicalandchemical deteriorationofthepolymerduetothedevelopmentofthebiofilm(e.g.,duetotheproductionof enzymes,acids,andperoxides).Whilemicroorganismsplayanessentialroleinthedeteriorationand degradationofbothsyntheticpolymersandthosethatoccurnaturally,evenminordifferencesinthe chemicalstructuresofthepolymerscanresultinsignificantvariationinthematerial’sbiodegradability (Gu,2003).

Onceattached,extracellularenzymesproducedbymicroorganismsintheestablishedbiofilmbegin toactonthepolymersurface.Asplasticscanrepresentasourceofcarbonaswellasenergy,microorganismshaveevolvedarangeofmechanismstosuccessfullydegradecomplexpolymers.This includesdirectdegradationbyusingplasticfragmentsasasourceofnutritionorindirectdegradation throughmicrobialenzymes(Gu,2003; Kumaretal.,2019).Bacteriarequirethesubstratetobe assimilatedthroughthecellularmembraneintothecells,soanincreaseinthemolecularweightofa polymerwillresultinadecreaseinitsbiodegradability.Monomers,dimers,andoligomersofthe repeatingunitsofapolymer,ontheotherhand,aremoreeasilydegradedandmineralized,astheyare smallenoughtopassthroughtheoutermembranesofthebacteria.Thisisaprimaryreasonfor biodegradationbeingconsideredmoreeffectiveafterphysicalandchemicaldegradationprocesses havealreadyacteduponapolymermaterial.Biofragmentationofplasticpolymersisprimarilyperformedbyextracellular(exoenzymes)andintracellular(endoenzymes)depolymerase,eventually leadingtoanincreaseinmicrobialbiomassduetotheassimilationofsmallerconstituents(monomers

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.