Biochemistry of lipids, lipoproteins and membranes 7th edition neale ridgway (editor) - Download the

Page 1


BiochemistryofLipids,LipoproteinsandMembranes 7thEditionNealeRidgway(Editor)

https://ebookmass.com/product/biochemistry-of-lipidslipoproteins-and-membranes-7th-edition-neale-ridgway-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Lehninger Principles of Biochemistry 7th Edition eBook

https://ebookmass.com/product/lehninger-principles-ofbiochemistry-7th-edition-ebook/

ebookmass.com

Textbook of Biochemistry with Clinical Correlations, 7th Edition 7th Edition, (Ebook PDF)

https://ebookmass.com/product/textbook-of-biochemistry-with-clinicalcorrelations-7th-edition-7th-edition-ebook-pdf/

ebookmass.com

Biochemistry 7th Edition Reginald H. Garrett

https://ebookmass.com/product/biochemistry-7th-edition-reginald-hgarrett/

ebookmass.com

Transformational

Piano Teaching: Mentoring Students from All Walks of Life Derek

Kealii Polischuk

https://ebookmass.com/product/transformational-piano-teachingmentoring-students-from-all-walks-of-life-derek-kealii-polischuk/

ebookmass.com

The Cambridge History of Nationhood and Nationalism 2

Volume Hardback Set Carmichael

https://ebookmass.com/product/the-cambridge-history-of-nationhood-andnationalism-2-volume-hardback-set-carmichael/

ebookmass.com

A Rainbow Above Us Sharon Sala

https://ebookmass.com/product/a-rainbow-above-us-sharon-sala-3/

ebookmass.com

The Power of Art, Revised 3rd Edition

https://ebookmass.com/product/the-power-of-art-revised-3rd-edition/

ebookmass.com

Family Business in China, Volume 2: Challenges and Opportunities 1st Edition Chen

https://ebookmass.com/product/family-business-in-chinavolume-2-challenges-and-opportunities-1st-edition-chen/

ebookmass.com

Neurologie

Collège Des Enseignants De Neurologie France

https://ebookmass.com/product/neurologie-college-des-enseignants-deneurologie-france/

ebookmass.com

THE COSMIC CODE: A Journey to the Origin of the Universe

Domingues-Montanari

https://ebookmass.com/product/the-cosmic-code-a-journey-to-the-originof-the-universe-domingues-montanari/

ebookmass.com

BiochemistryofLipids, Lipoproteinsand Membranes

SeventhEdition

Editedby

NealeD.Ridgway

DepartmentofPediatrics,DepartmentofBiochemistry&Molecular Biology,DalhousieUniversity,Halifax,NS,Canada

RogerS.McLeod

DepartmentofBiochemistry&MolecularBiology, DalhousieUniversity,Halifax,NS,Canada

ElsevierScience

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright 2021ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-824048-9

ForinformationonallElsevierSciencepublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: StacyMasucci

AcquisitionsEditor: LinsleyB.Peter

EditorialProjectManager: PatGonzalez

ProductionProjectManager: SwapnaSrinivasan

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Contributors

KhosrowAdeli,MolecularMedicine,ResearchInstitute,theHospitalforSick Children,andDepartmentofLaboratoryMedicineandPathobiology,Universityof Toronto,Toronto,ON,Canada

ValentinBlanchard,DepartmentofMedicine,CentreforHeartLungInnovation, UniversityofBritishColumbia,Vancouver,BC,Canada

MichaelB.Boffa,DepartmentofBiochemistry,SchulichSchoolofMedicine& Dentistry,UniversityofWesternOntario,London,ON,Canada

MikhailBogdanov,DepartmentofBiochemistryandMolecularBiology,TheUniversityofTexasHealthScienceCenter,McGovernMedicalSchool,Houston,TX, UnitedStates

LauraM.Bond,DepartmentofBiochemistry,UniversityofWisconsin-Madison, Madison,WI,UnitedStates

AndrewJ.Brown,SchoolofBiotechnologyandBiomolecularSciences,The UniversityofNewSouthWales(UNSWSydney),Sydney,NSW,Australia

HudsonW.Coates,SchoolofBiotechnologyandBiomolecularSciences,The UniversityofNewSouthWales(UNSWSydney),Sydney,NSW,Australia

PaulA.Dawson,DivisionofPediatricGastroenterology,HepatologyandNutrition, DepartmentofPediatrics,SchoolofMedicine,EmoryUniversity,Atlanta,GA, UnitedStates

FangDing,KeyLaboratoryofRNABiology,InstituteofBiophysics,ChineseAcademyofSciences,Beijing,China;UniversityofChineseAcademyofSciences, Beijing,China

WilliamDowhan,DepartmentofBiochemistryandMolecularBiology,TheUniversity ofTexasHealthScienceCenter,McGovernMedicalSchool,Houston,TX,United States

GuangweiDu,DepartmentofIntegrativeBiologyandPharmacology,TheUniversity ofTexasHealthScienceCenteratHouston,Houston,TX,UnitedStates

SarahFarr,MolecularMedicine,ResearchInstitute,theHospitalforSickChildren, andDepartmentofLaboratoryMedicineandPathobiology,UniversityofToronto, Toronto,ON,Canada

EricA.Fisher,DepartmentofBiochemistry&MolecularBiology,Dalhousie University,Halifax,NS,Canada

GordonA.Francis,DepartmentofMedicine,CentreforHeartLungInnovation, UniversityofBritishColumbia,Vancouver,BC,Canada

AnthonyH.Futerman,DepartmentofBiomolecularSciences,WeizmannInstituteof Science,Rehovot,Israel

JessicaM.Gullett,DepartmentofInfectiousDiseases,St.JudeChildren’sResearch Hospital,Memphis,TN,UnitedStates

JoachimHerz,DepartmentofMolecularGeneticsandCenterforTranslationalNeurodegenerationResearch,UTSouthwesternMedicalCenter,Dallas,TX,United States

VictoriaHiggins,MolecularMedicine,ResearchInstitute,theHospitalforSick Children,andDepartmentofLaboratoryMedicineandPathobiology,Universityof Toronto,Toronto,ON,Canada

MurrayW.Huff,RobartsResearchInstituteandDepartmentsofMedicineand Biochemistry,TheUniversityofWesternOntario,London,ON,Canada

ElinaIkonen,MinervaFoundationInstituteforMedicalResearch,Helsinki,Finland; DepartmentofAnatomyandStemCellsandMetabolismResearchProgram,FacultyofMedicine,UniversityofHelsinki,Helsinki,Finland

MarlysL.Koschinsky,DepartmentofPhysiologyandPharmacology,SchulichSchool ofMedicine&Dentistry,UniversityofWesternOntario,London,ON,Canada; RobartsResearchInstitute,SchulichSchoolofMedicine&Dentistry,Universityof WesternOntario,London,ON,Canada

KristinaKuhbandner,DepartmentofMolecularGeneticsandCenterforTranslational NeurodegenerationResearch,UTSouthwesternMedicalCenter,Dallas,TX,United States

RichardLehner,GrouponMolecularandCellBiologyofLipids,Universityof Alberta,Edmonton,AB,Canada;DepartmentsofPediatricsandCellBiology, UniversityofAlberta,Edmonton,AB,Canada

SarahA.Lewis,DepartmentofBiochemistry,UniversityofWisconsin-Madison, Madison,WI,UnitedStates

GaryF.Lewis,DivisionofEndocrinology,DepartmentofMedicine,Universityof Toronto,Toronto,ON,Canada

JunLiu,DepartmentofBiochemistryandMolecularBiology,MayoClinicCollegeof MedicineandScience,Rochester,MN,UnitedStates

ZhaojinLiu,DepartmentofBiochemistry,UniversityofWisconsin-Madison,Madison,WI,UnitedStates

AndreaF.Lopez-Clavijo,LipidomicsFacility,BabrahamInstitute,Babraham ResearchCampus,Cambridge,UnitedKingdom

RogerS.McLeod,DepartmentofBiochemistry&MolecularBiology,Dalhousie University,Halifax,NS,Canada

MakotoMiyazaki,DepartmentofMedicine,DivisionofRenalDiseasesandHypertension,UniversityofColorado,AnschutzMedicalCampus,Aurora,CO,United States

JamesM.Ntambi,DepartmentofBiochemistry,UniversityofWisconsin-Madison, Madison,WI,UnitedStates;DepartmentofNutritionalSciences,Universityof Wisconsin-Madison,Madison,WI,UnitedStates

VesaM.Olkkonen,MinervaFoundationInstituteforMedicalResearch,Helsinki, Finland

LucasM.O’Neill,DepartmentofBiochemistry,UniversityofWisconsin-Madison, Madison,WI,UnitedStates

TheresaPohlkamp,DepartmentofMolecularGeneticsandCenterforTranslational NeurodegenerationResearch,UTSouthwesternMedicalCenter,Dallas,TX,United States

ArielD.Quiroga,InstituteofExperimentalPhysiology(IFISE-CONICET),Facultyof BiochemicalandPharmaceuticalSciences,Rosario,SantaFe,Argentina

KateyJ.Rayner,UniversityofOttawaHeartInstitute,DepartmentofBiochemistry, Microbiology&Immunology,FacultyofMedicine,UniversityofOttawa,Ottawa, ON,Canada

MarilynD.Resh,CellBiologyProgram,MemorialSloanKetteringCancerCenter, NewYork,NY,UnitedStates

NealeD.Ridgway,DepartmentofPediatrics,DepartmentofBiochemistry& MolecularBiology,DalhousieUniversity,Halifax,NS,Canada

CharlesO.Rock,DepartmentofInfectiousDiseases,St.JudeChildren’sResearch Hospital,Memphis,TN,UnitedStates

KatherineM.Schmid,DepartmentofBiology,ButlerUniversity,Indianapolis,IN, UnitedStates

LauraJ.Sharpe,SchoolofBiotechnologyandBiomolecularSciences,TheUniversity ofNewSouthWales(UNSWSydney),Sydney,NSW,Australia

BebianaC.Sousa,LipidomicsFacility,BabrahamInstitute,BabrahamResearch Campus,Cambridge,UnitedKingdom

JenniferTaher,MolecularMedicine,ResearchInstitute,theHospitalforSick Children,andDepartmentofLaboratoryMedicineandPathobiology,Universityof Toronto,Toronto,ON,Canada

JenniferK.Truong,DivisionofPediatricGastroenterology,HepatologyandNutrition, DepartmentofPediatrics,SchoolofMedicine,EmoryUniversity,Atlanta,GA, UnitedStates

MichaelJ.O.Wakelam,LipidomicsFacility,BabrahamInstitute,BabrahamResearch Campus,Cambridge,UnitedKingdom

ChangtingXiao,DepartmentofAnatomy,PhysiologyandPharmacology,Collegeof Medicine,UniversityofSaskatchewan,Saskatoon,SK,Canada

HongyuanYang,SchoolofBiotechnologyandBiomolecularSciences,TheUniversity ofNewSouthWales,Sydney,NSW,Australia

DakaiZhang,DepartmentofIntegrativeBiologyandPharmacology,TheUniversityof TexasHealthScienceCenteratHouston,Houston,TX,UnitedStates

Preface

The36yearssincethepublicationofthefirsteditionofthistextbookhaswitnessedremarkableadvancesinourunderstandingofthecellandmolecular biologyoflipids,andtheever-broadeningrolethattheseessentialmolecules playinhumanphysiologyandpathology.Nowinits7thedition,thetextbook summarisesandcontextualisesrecentadvancesintopicsrangingfrommembranebiophysicsandanalyticallipidanalysistothecellbiologyoflipidmetabolismandlipidmacromolecularassembliesinthecellandcirculation.Thetext alsoexploresnewevidencefortheroleofdifferentlipidspeciesinhumanpathologies,suchascardiovasculardisease,diabetes,lipidstoragedisorders, neuropathiesandimmunedisorders.Eachchapterprovidesaconciseandhighly accessibleintroductiontothediverseareasoflipidresearch,withinsightsthat canonlybeprovidedbyauthorswhoareleadersintheirrespectivefields.The contentisstructuredtoprovidethereaderwiththeessentialhistoricalperspectiveandbackgroundknowledgetofacilitatetheunderstandingofcurrentand complexproblemsinlipidbiochemistryandphysiology.Theauthorshave purposelyprovidedchaptersthatarenotcomprehensive,criticalreviewsbut insteadprovideessentialinformationandcontextforthereadertoventuredeeper intoeachresearchtopicattheirownpace.Thisisfacilitatedbyafocusontopics withimportantimplicationstofundamentalandappliedresearch.Aseditors,we havedeliberatelyaskedforandreceivedalimitedreferencelistthathighlights definitivereviewsandimpactfulrecentresearchstudies.Thisformatwillbenefit researchersneedinganintroductiontospecificfields,andthereferencestodelve further,aswellasundergraduateandgraduatestudentsseekingaresourcefor course-andresearch-relatedstudies.Thevisualappealandclarityofthisedition hasbeenenhancedbyfullcolourfiguresandstandardisedtables.

Wewouldliketoacknowledgethetimeandeffortthatnewandreturning authorsdevotedtoeachoftheirchapters.Thiswasespeciallydifficultsince authorsacceptedinvitationstoparticipatejustastheyhadtodealwithdisruption andshutdownoftheirlaboratoriesresultingfromtheSARS-CoV-2pandemic. ThiseditionisdedicatedtothememoryofDr.MichaelJ.O.Wakelam.

xxviii Preface

Thecontributorsandeditorsassumefullresponsibilityforthecontentherein, andwouldappreciateanycommentsonthecontentandlayoutfortherefinement offutureeditions.

Halifax,NovaScotiaCanada

April2021

Chapter1

Functionalrolesoflipidsin biologicalmembranes

DepartmentofBiochemistryandMolecularBiology,TheUniversityofTexasHealthScience Center,McGovernMedicalSchool,Houston,TX,UnitedStates

Listofabbreviations

(Man)2 DAG DimannosylDAG

CL Cardiolipin

CMC Criticalmicelleconcentration

EMD Extramembranedomain

GalDAG MonogalactosylDAG

GalGlcDAG GalactosylglycosylDAG

GlcDAG Monoglucosyldiacylglycerol

GlcGlcDAGor(Glc)2 DiglucosylDAG

GlcN-PG GlucosaminylPG

ISOvs Insideoutmembranevesicles

Ld Liquiddisordered

Lo Liquidordered

LPE LysoPE

LysPG LysylPG

MP Membraneprotein

MPE MonomethylPE

OL Ornithinelipid

Orn-PG OrnithinePG

PA Phosphatidicacid

PC Phosphatidylcholine

PE Phosphatidylethanolamine

PG Phosphatidylglycerol

PI Phosphatidylinositol

PS Phosphatidylserine

Tm Midpointtemperature

TMD Transmembranedomain

BiochemistryofLipids,LipoproteinsandMembranes. https://doi.org/10.1016/B978-0-12-824048-9.00020-1

2 BiochemistryofLipids,LipoproteinsandMembranes

1.Introductionandoverview

Definingtheroleslipidsplayincellstructureandfunctionhaslaggedbehindthe progressmadewithothermacromoleculesduetothepleiotropicnatureoflipid involvementincellularprocessesandthediversenatureoftheirstructuresand properties.Lipidcompositionvariesdrasticallyamongdifferentprokaryotesand eukaryotes,single-cellandmulti-cellularorganismsandamongdifferent subcellularorganellesandintracellularcompartments.Glycerol-basedglycolipidsandphospholipids,sterolsandsphingolipidsaretheprimarybuilding blocksofthebilayerstructureofbiologicalmembranesthatdefinethepermeabilitybarrierofcellsandorganelles(Figure1.1AandB).

Glycerol-basedphospholipids(termedphospholipidshereafter)makeup about75%oftotalmembranelipidsofprokaryoticandeukaryoticcells(see Chapters3and7). Figures1.2and1.3 showthemajorlipidsfoundinbiologicalmembranesbutnottheminorlipids,manyofwhicharefunctionally important.

Themajorcomponentsofbacterialmembranesarechargedandzwitterionicphospholipidsandneutralglycolipids,thebalanceofwhichisrequiredto maintainoverallmembranecharge(Figure1.2).Neutraldiacylglycerol glycansaremajormembrane-formingcomponentsinmanygram-positive bacteriaandplants.Gram-negativebacteriautiliseasaccharolipid(LipidA) asamajorstructuralcomponentoftheouterleafletoftheoutermembrane (OM),whichislackingingram-positivebacteria.

Eukaryoticorganellarmembranes(Figure1.3)alsouniquelycontain cholesterol,ergosterolandphytosterols.Themajorsterolofmammaliancells ischolesterolwhileyeastcontainsergosterol(see Chapter10).Theceramidebasedsphingolipidsarealsopresentinampleamountsinmembranesofall eukaryotes(see Chapter9).Someeukaryoticmicrobesalsocontainsphingolipidsandhydrophobicsterols.Bacteriadonotsynthesisesterolsbutsome pathogenicspeciesincorporatesterolsfromtheenvironment.Despitethe presenceofbonafideorthologuesofgenesencodingbiosyntheticenzymes, Drosophila areunabletosynthesisecholesteroldenovoandacquirecholesterolfromexogenoussources.

Thevarietyofhydrophobicdomainsoflipidsresultsinadditionaldiversity. Ineukaryotesandeubacteriathesedomainsaresaturatedandunsaturatedfatty acids,withlesseramountsoffattyalcohols.Manygram-positivebacteriaalso containbranchedchainfattyacids.Ifoneconsidersasimpleorganismsuchas Escherichiacoli,withthreemajorphospholipidscontainingseveraldifferent fattyacids,thenumberofindividualphospholipidspeciesrangesinthehundreds.Inmorecomplexeukaryoticorganismswithgreaterdiversityinboththe phospholipidsandfattyacids,thenumberofindividualspeciesisinthe thousands(see Chapter2).Sphingolipidsshowasimilardegreeofdiversity andwhenaddedtothesteroids,thesizeoftheeukaryoticlipidomedwarfsthat oftheproteome.

FIGURE1.1 Membranebilayerstructure.(A)ThefluidmosaicmodeloftheeukaryoticcellmembraneasanadaptationoftheoriginalmodelproposedbySinger andNicholson.Thephospholipidbilayerisshownwithintegralmembraneproteinsasblobsthattraversethemembranebilayerwiththeir a-helicaltransmembrane domains(TMDs).Peripheralmembraneproteinsassociatewithsubsetsoflipidspeciesorwithothermembraneproteins.Lipidrafts(darkgreen headgroups)are enrichedincholesterolandsphingolipidsandcontainaGPI-anchoredprotein.The purple headgroupsdepictlipidsincloseassociationwithprotein.(B)Near realisticcomputationalviewofasimulatedplasmamembrane.MoleculardynamicsmodellingshowscompositionalcomplexityofheterogeneousTMDsandlateral organisationoftypicalcellularmembranescontaininghundredsofdifferentlipids,asymmetricallydistributedbetweenthetwobilayerleafletsandcrowdedwith proteinscoveringanestimatedmembraneareaaslargeas30%. ReproducedwithpermissionfromMarrink,etal.ChemRev2019;119:6184 6226.

4 BiochemistryofLipids,LipoproteinsandMembranes

FIGURE1.2 Phospholipidprofilesofgram-negativebacteria(A)andgram-positivebacteria (B)areshownaspie-charts.Compositionisgiveninmol%. (Man)2 DAG,dimannosylDAG; CL, cardiolipin; GalDAG,monogalactosylDAG; GalGlcDAG,galactosylglycosylDAG; GlcDAG, monoglucosyldiacylglycerol; GlcGlcDAGor(Glc)2,diglucosylDAG; GlcN-PG,glucosaminyl PG; LPE,lysoPE; LysPG,lysylPG; MPE,monomethylPE; Orn-PG,phosphorus-freeornithine PG; PA,phosphatidicacid; PC,phosphatidylcholine; PE,phosphatidylethanolamine; PG, phosphatidylglycerol; PI,phosphatidylinositol; PS,phosphatidylserine. Constructedfromdata fromSohlenkampandGeigerFEMS.MicrobiolRev2016;40:133 159withpermission.

Thelipidbilayerprovidesthesolventforintegralmembraneproteins (MPs)whosetransmembranedomains(TMDs)spanthebilayerandare integratedintoahighlyhydrophobicinteriorboundedbythehydrophilicand chargedlipidheadgroups.Thelatteractsasascaffoldforassociationof peripheralMPs(Figure1.1).Thelipidandproteincomponentsofthemembranearenotheldtogetherbycovalentinteractionsandthereforearein dynamicequilibriumundergoingtransientinteractionswithinthesupramolecularmembranestructure.Aswillbediscussedfurther,theinterfacialregion atthemembranesurfaceorganiseswaterandcounterionsinamannerdifferent fromthecellaqueousphase,whichimpartsdistinctpropertiestotheaqueous layerinclosecontactwithmembranes.

FIGURE1.3 Distributionoflipidsineukaryoticorganellemembranes.Shownisthedistribution ofindividualphospholipidsandsphingomyelin(SM)incellularorganelles,aswellasthedistributionoftotalphospholipidsinthesecompartments. AdaptedwithpermissionfromYang,etal.J BiolChem2018;293:6230 6240.

Determiningthefunctionofindividuallipidsandthecollectiveproperties ofthemembranelipidbilayerhasbeenchallenging.Manylipidfunctionshave beendefinedbytheirserendipitouseffectonproteinsandotherbiological componentsobservedinvitrowithlittleverificationinvivo.Genetic approaches,whichhavebeensuccessfulindefiningproteinfunctions,are complicatedbythefactthatlipidsareproducedbycomplexbiosynthetic pathwaysratherthanbydirectgeneticdetermination.Inordertoalterlipid compositioninvivo,mutationsmustbemadetoenzymesinthesebiosynthetic pathways,whichmayaffectmultiplelipidprecursorsandproducts.Since lipids,unlikeproteins,arenotlocalisedtoaspecificsiteincells,genetic manipulationoflipidsynthesishasglobaleffects.However,combininggenetic studieswithbiochemicalcharacterisationofinvivophenotypesandstudiesin definedreconstitutedsystemsinvitrohasuncoveredspecificandgeneralroles formembranelipidsincellfunction.

Thischapterwilloutlinethediversestructure,chemistryandsupramolecularpropertiesoflipids.Geneticapproachestostudylipidfunctioninvivo willbesummarised.Finally,howthephysicalandchemicalpropertiesof lipidsrelatetotheirmultiplefunctionsinlivingsystemswillbereviewedto

provideamolecularbasisforthediversityoflipidstructuresinnatural membranes.

2.Diversityinlipidstructure

Lipidswereoriginallydefinedasthosebiologicalmoleculesreadilysolublein organicsolventssuchaschloroform,etherortoluene.However,manypeptides andsomehydrophobicproteinsarealsosolubleinorganicsolvents,andlipids withlargehydrophilicdomainsarenotreadilysolubleinthesesolvents.Here wewillconsiderthoselipidsthatcontributesignificantlytomembrane structureorhavearoleindeterminingproteinstructureorfunction.TheLIPID MAPSconsortium(http://www.lipidmaps.org)intheUnitedStates,Lipid Bank(http://www.lipidbank.jp)inJapanandtheLipidomicNet(http://www. lipidomicnet.org)inEuropehavecooperatedtodeviseclassificationsystems andmethodologyforthebenefitofresearchers.

2.1Glycerolipids

Thediacylglycerolbackboneineubacteriaandeukaryotesis sn-3-glycerol (L-glycerol)esterifiedatthe1-and2-positionwithlong-chainfattyacids (Figure1.4A).

Ineubacteria,fattyacidchainlengthsvaryfrom12to18carbonsandcan befullysaturatedorcontaindoublebonds(See Chapter3).Somegrampositivebacteriacontainodd-numbered,branchedchainfattyacidsrather thanunsaturatedfattyacids.Eukaryoticlipidscontainfattyacidchainsupto 26carbonsinlengthwithmultipleornodoublebonds.Theheadgroupsofthe phospholipids(Figure1.4A)extendthediversityoflipids.In Archaea,sn-1glycerol(D-glycerol)formsthebackbone,andthehydrophobicdomainis composedofphytanyl(saturatedisoprenyl)groupsinetherlinkageatthe2and3-position(anarchaeol)(Figure1.4B).Inaddition,two sn-1-glycerol groupsareconnectedinetherlinkagebytwobiphytanylgroups(dibiphytanyldiglycerophosphatetetraether)(Figure1.4C),orbiphytanyldiglycerol diether(Figure1.4D),toformacovalentlylinkedbilayer.Many Archaea phospholipidscontainheadgroupsofglycerol,serine,ethanolamine, myo-inositol,aswellasglyceromethylphosphateandacardiolipin(CL) analogue. Archaea alsohaveneutralglycanlipidderivativesinwhichmonoanddisaccharides(glucoseorgalactose)aredirectlylinkedtothe sn-1position ofarchaeol(Figure1.4E). Archaea membranesarehighlyresistanttotheharsh acidicandhyperthermicenvironmentoftheseextremophilicorganisms. Furtherstabilityofthelipidbilayerof Archaea comesfrommanyofthe hydrocarbonchainsspanningthemembranewithcovalentlylinkedheadgroupsateachend.Someeubacteria(mainlyhyperthermophiles)havedialkyl (long-chainalcoholsinetherlinkage)phospholipidsandsimilaretherlinkages arefoundintheplasmalogensofeukaryotes(see Chapter7).

FIGURE1.4 Structureofglycerophosphate-basedlipids.(A)Thelipidstructureshownis1,2distearoyl-sn-glycerol-3-phosphocholineorphosphatidylcholine (PC).Substitutionofcholine(boxed)withotherheadgroupsproducestheindicatedphospholipids.(B)StructureofArchaealdialkylglycerolwith phytanylchainsin etherlinkagetothe2-and3-positionsof sn-1-glycerol(archaeol).Shownisdiphytanylglycerol(C20 C20diether)withthestereochemistryofglycerolindicated. (C)Cyclicbiphytanyl(C40)diether.(D)Biphytanyldiglyceroldiether.(E)Aglyceroglycanwitheitheramono-ordisaccharide(glucoseorgalactose)atthe 1-positionof sn-1-glycerol.TheRgroupsareether-linkedphytanylchains.Similarglyceroglycansarefoundineubacteriaandplantswitha sn-3-glycerolbackbone andester-linkedfattyacidchainsatthe1-and2-position.

8 BiochemistryofLipids,LipoproteinsandMembranes

Themajorityoftheinformationonthechemicalandphysicalpropertiesof lipidscomesfromstudiesonthemajorphospholipidclassesofeubacteriaand eukaryotes.Thebiosyntheticpathwaysandthegeneticsoflipidmetabolism havealsobeenextensivelystudiedineubacteria(see Chapter3)andeukaryotes(see Chapter7).Howthephysicalpropertiesofthemorecommonly studiedlipidschangewithenvironmentwillbediscussedlater.

2.2Saccharolipids

TheOMofgram-negativebacteriacontainslipopolysaccharide(LPS),or endotoxin,whichismadeupofabackbonederivedfromglucosaminephosphateratherthanglycerophosphate(Figure1.5A).

Thecorelipid(LipidA)of E.coli containstwoglucosaminegroupsin b 1 6linkagethataredecoratedatpositions2,3,20 and30 withR-3hydroxymyristicacid(C14)andatpositions1and40 withphosphates (Figure1.5B).Furthermodificationatposition60 withaKDOdisaccharide (two3-deoxy-D-manno-octulosonicacidsina1 3linkage)resultsinKDO2LipidAthatisfurthermodifiedbyaninnercore,anoutercore,andthe O-antigen.StudiesofLipidAareofclinicalimportancebecauseitisthe primaryantigenresponsiblefortoxicshocksyndrome.

ThecoreLipidAformstheoutermonolayeroftheOMbilayerofgramnegativebacteriawiththeinnermonolayerbeingmadeupofphospholipids (about90%PE)(Figure1.5A).LPSismodifiedpost-assemblyinresponseto environmentalfactors,suchasgrowthmedia,temperature,ionicpropertiesand antimicrobialagents,anddisplaysadditionaldiversityamongentericandnonentericgram-negativebacteria.

ThehighlyasymmetrictransmembranearrangementofLPS(outerleaflet) andPE(periplasmicleaflet)intheOMisexpectedtobeinanon-equilibrium thermodynamicstatethatismaintainedinnormallygrowingcells.However, stressfulconditions(acidicpH,chelatingagentsanddetergents)displaceLPS fromouterleafletandpromotetheaberranttranslocationofphospholipidsinto theouterleafletofOMreplacingLPSmoleculesthathavebeenshed.

2.3Sphingolipids

Alleukaryoticcellscontainsphingolipidsderivedbythecondensationof palmitoyl-CoAandserinetoformalong-chainbase,followedbyconversion tothecoreceramidemolecule(see Chapter9)(Figure1.6A).Inhigher eukaryotes,thelong-chainbasederivedfrompalmitatecanhaveadditional doublebondsandhydroxylgroupsaswellasconsiderablediversityinthe amide-linkedfattyacid,whichcanbeupto26carbonsinlength.

Yeastcellscontainmainlyderivativesofphytoceramide(4-hydroxyceramide)andC26fattyacidchainsinamidelinkage.Themajorclassesof sphingolipidsaregroupedaccordingtotheheadgroupesterifiedattheprimary

FIGURE1.5 The E.coli double-membraneenvelope.(A)Gram-negativebacteriaareenvelopedbytwolipidbilayers,separatedbytheperiplasmicspace containingthepeptidoglycancellwall.Theasymmetricphospholipidoutermembrane(OM)ofgram-negativebacteriaservesasthefirstlineofdefenceagainst cytotoxicsubstancesincludingantibiotics.TheOMiscomposedofaninnermonolayerofphospholipidandanoutermonolayeroftheLipidAportionof lipopolysaccharide(LPS)thatislocatedexclusivelyintheouterleafletoftheOM.Theperiplasmicspacecontainsmembrane-derivedoligosaccharide(MDO)that isacomponentoftheosmolarityregulatorysystem.Theaminoacid sugarcross-linkedpeptidoglycangivesstructuralrigiditytothecellenvelope.(B)Structureof KDO2-LipidA.LipidAisadisaccharideofglucosaminephosphatethatismultiplyacylatedwithbothamideandesterlinkagestofattyacidsofthechainlengths indicated. AdaptedfromRaetzetal.,Discoveryofnewbiosyntheticpathways:thelipidAstory,J.Lipid.Res.2009,50:S103 S108

FIGURE1.6 Sphingolipidstructure.(A)Sphingosineisan18-carbonaminoalcoholwithan unsaturatedhydrocarbonchain.Ceramideiscomposedofsphingosineandan N-acylatedfatty acid.Headgroups(R)areaddedtoceramidetoformtheindicatedsphingolipids.(B)Molecular modellingsimulationsofgalactosylceramide(GalCer)complexedwithcholesterol,wherethe galactoseheadgroupismaintainedthroughanetworkofH-bondsinvolvingthehydroxylof cholesterol(donorgroup),thenitrogenatomofsphingosineandtheoxygenatomoftheglycosidic bond(bothacceptorgroups). AdaptedwithpermissionfromYahi,etal.PLoSOne2010;5:e9079.

b-hydroxylofceramide(Figure1.6A).Sphingomyelinhascholinephosphate atthispositionwhiletheglycosphingolipidshaveoligosaccharidesofvarious lengths.Theacidicglycosphingolipids,foundprimarilyinmammaliancells, containeithersulphatedsugars(sulfatide)orsialicacid(gangliosides)inthe terminalsugarposition.Yeastsphingolipidscontaininositolphosphateand mannoseinositolphosphatelinkedatthishydroxyl.Theamidebondandthe hydroxylgroupofsphingolipidsallowspecificH-bondinginteractionswith otherlipidsincludingcholesterol(Figure1.6B).

3.Propertiesoflipidsinsolution

Thematrixthatdefinesabiologicalmembraneisalipidbilayercomposedofa hydrophobiccoreexcludedfromwaterandanionicsurfacethatinteractswith wateranddefinesthehydrophobic hydrophilicinterface.Muchofour understandingofthephysicalpropertiesoflipidsinsolutionandthedriving forcefortheformationoflipidbilayerscomesfromtheconceptofthe ‘hydrophobicbond’asdescribedbyWalterKauzmanninthecontextofthe forcesdrivingproteinfolding,whichwaslaterextendedtothe‘hydrophobic effect’byCharlesTanfordtoexplainself-associationoflipidswithinbiological systems[1].The‘fluidmosaic’modelformembranestructurefurtherpopularisedtheseconcepts[2].Althoughthismodelstimulatedresearchinthearea ofMPs,itrelegatedlipidstoamonolithicroleasafluidmatrixwithinwhich MPsresideandfunction.Aswillbediscussedbelow,ourcurrentunderstanding oftheroleoflipidsincellfunctionisasspecificanddynamicasthatofproteins.

3.1Whydomembranesform?

Polarlipidsareamphipathicinnature,containinghydrophobicdomains, whichdonotinteractwithwater,andhydrophilicdomainsthatreadilyinteract

withwater.Thebasicpremiseofthehydrophobiceffectisthatthehydrocarbondomainsdistortthestablehydrogen-bondedstructureofwaterby inducingorderedcage-likestructuresaroundtheapolardomains[1].Selfassociationofthehydrophobicdomainsminimisesthetotalsurfaceareain contactwithwaterresultinginentropy-drivenrelaxationofwaterstructureand anenergyminimumforthefinalself-associatedmolecularorganisation.The polardomainsoflipidsinteracteitherthroughhydrogenbondingorionic interactionwithwaterorotherlipidheadgroupsandthereforeareenergetically stableinanaqueousenvironment.Thestructuralorganisationthatapolarlipid assumesinwaterisdeterminedbyitsconcentrationandthelawofopposing forces,i.e.hydrophobicforcesdrivingself-associationofhydrophobic domainsversusstericandionicrepulsiveforcesofthecloselyassociatedpolar domainsopposingself-association.Atlowconcentrations,amphipathic moleculesexistasmonomersinsolution.Astheconcentrationofmolecules increase,theirstabilityinsolutionasamonomerdecreasesuntiltheunfavourablerepulsiveforcesofcloselypackedpolardomainsareoutweighedby thefavourableself-associationofthehydrophobicdomains.Atthispoint, termedthecriticalmicelleconcentration(CMC),afurtherincreaseinconcentrationresultsintheformationofincreasingamountsofself-associated monomersinequilibriumwithaconstantamountoffreemonomer.Dueto theincreasedhydrophobiceffect,alargerhydrophobicdomainresultsina lowerCMC.However,increasingtheeffectivesizeofthepolardomain,either duetosterichindranceofneutraldomainsorchargerepulsionforionicdomains,increasestheCMC.TheCMCofamphipathicmoleculeswithanet chargeisloweredbyincreasingtheionicstrengthofthesolutionphasedueto dampeningofthechargerepulsioneffect.

Thesephysicalpropertiesandtheshapeofamphipathicmoleculesdefine threesupramolecularstructuralorganisationsofpolarlipidsanddetergentsin solution(Figure1.7).

Detergents,detergent-likelysophospholipids(containingonlyonealkylor acylchain),andphospholipidswithshortalkyloracylchains(8orfewer carbons)haveaninvertedconeshape(largeheadgrouprelativetoasmall hydrophobicdomain)andself-associateabovetheCMCwithasmallradiusof curvaturetoformmicellarstructureswithahydrophobiccoreexcludingwater. Themicellesurface,ratherthanbeingasmoothsphericalorellipticalstructure withthehydrophobicdomainscompletelysequesteredinsideashellofpolar residuesthatinteractwithwater,isaveryroughsurfacewithmanyofthe hydrophobicdomainsexposedtowater.Theoverallstructurereflectsthe optimalpackingofamphipathicmoleculesatanenergyminimumasgoverned bythelawofopposingforces.TheCMCformostdetergentsrangesfrom micromolartomillimolar.LysophospholipidsalsoformmicelleswithCMCs inthemicromolarrange.However,phospholipidswithchainlengthsof16 carbonsself-associateataconcentrationaround10 10 M.Thecylindrical shapeofmostphospholipidswithlongacylchainsatphysiological

12 BiochemistryofLipids,LipoproteinsandMembranes

FIGURE1.7 Polymorphicphasesandmolecularshapesexhibitedbylipids.Thespace-filling modelforamicelleisß-D-octylglucosidemicelle(50monomers).Thepolarportionsof thedetergentmolecules(oxygenatomsare red)donotcompletelycoverthemicellesurface (hydrocarbonsin grey)leavingsubstantialportionsofthecoreexposedtobulksolvent.Polarlipids withtwolongalkylchainsadoptabilayerornon-bilayer(HII)structuredependingonthegeometry ofthemolecule(cylindricalorconeshaped,respectively)andenvironmentalconditions.

temperaturesresultsinalipidbilayerorganisationthatmaximisestheexclusionofwaterfromthehydrophobicdomains.Thisiswhythebilayer arrangementisacommonfeatureofbiologicalmembranes.Duetorepulsive forcesamongtheheadgroups,significantlengthsofthehydrocarbonchain neartheglycerolbackboneareexposedtowater.Sincetheassociationofthe freeedgeofabilayerwithwaterisenergeticallyunfavourable,phospholipids containinglong-chainfattyacidstendtospontaneouslyformclosedvesicles surroundinganaqueousluminaldomain.

Cylindrical-shapedlipids(headgroupandhydrophobicdomainsofsimilar diameter),suchasPC,formlipidbilayers.Cone-shapedlipids(smallheadgroupsrelativetoalargehydrophobicdomain)suchasPE,containingatleast

oneunsaturatedfattyacid,orCLinthepresenceofdivalentcations,generally formaninvertedmicellarstructurewithincreasingtemperature.Theselatter structuresaredenotedashexagonalII(HII)andcubicphases(amorecomplex organisationsimilartotheHII phase).Theabilityoflipidstoformmultiple structuralassociationsisreferredtoaslipidpolymorphism.PE,PA,CLand monosaccharidederivativesofdiacylglycerolcanexistineitherabilayeror non-bilayerphasedependingonsolventconditions,acylchaincomposition, andtemperature.Thesephasesaregovernedbythepackinggeometryofthe hydrophilicandhydrophobicdomainsuponself-associationasdiscussed below.

However,non-bilayerbiologicallipids,eveninpureform,displaybilayer organisationatphysiologicaltemperatures.Addingnon-bilayer-forminglipids tobilayer-forminglipidschangesthephysicalpropertiesofthebilayerby introducinglateralstressduetoshapedifferencesandstrainwithinthebilayer structure.Whenbilayer-forminglipidsarespreadasamonolayeratan aqueous airinterfacetheyorientwiththehydrophobicdomainfacingair,and havenotendencytobendawayfromortowardtheaqueousphase.Monolayers ofthecone-shapedlipids(HII-forming)tendtobendtowardtheaqueous interface(negativeradiusofcurvature)whilemonolayersofinvertedconeshapedlipids(micelle-forming)tendtobendawayfromtheaqueousphase (positiveradiusofcurvature).TheintroductionofnegativelycurvedPEintoa PCbilayercausesbilayer“frustration”;unsatisfiedhighcurvaturewithina bilayerleadstostoredcurvatureelasticstressduetothetendencyofeach monolayertoundergopositivecurvaturetowardthesurroundingaqueous phase.Suchstresscanberelievedbyinsertionofbilayerlipids,positively curvedlipids(lysolipids)orproteinswhichwillrelaxthe“frustrated”bilayer.

3.2Physicalpropertiesofmembranebilayers

Theorganisationofphospholipidsinsolutionisdependentonthenatureofthe acylchains,theheadgroupsandthesolventconditions(i.e.ionicstrength,pH andtemperature).Thetransitionbetweenorganisationalstatesforpurelipids insolutioncanbemeasuredbyphysicaltechniquessuchas 31PNMRand microcalorimetry.Thedifferencebetweentheorderedgel(Lß)andliquid crystalline(La)phasesistheviscosityorfluidityofthehydrophobicdomains ofthelipids,whichisafunctionoftemperatureandtheacylchainstructure. Belowthemeltingtemperature(Tm),thebilayerispresentinagelphase wherelipidacylchainsareorderedandtheirmobilityisrestricted(Figure1.8). AbovetheTm,thebilayerexistsinliquidcrystallinephaseinwhichacyl chainsarefluidanddisordered.

WhenabilayeriscomposedoftwolipidswithdifferentTm’s,aphase separationmayoccur.Thegelphasedoesnotappeartoexistinbiological membranes,butphaseseparationbetweentwofluidphasesmayoccur whenmembranescontainsphingolipidsand/orcholesterol.Inthiscase,a

FIGURE1.8 Phasepropertiesofbiologicalmembranes.TheLb (gel)andLa (liquidcrystalline) bilayerphasesdifferintheorderwithinthehydrophobicdomainandinmobilityoftheindividual lipidmolecules. AdaptedwithpermissionfromBaoukinaandTielemanMethodsMolBiol2015; 1232:307 322.

liquid-ordered(L0)phasecanseparatefromaliquidcrystallinephaseandthen fromaliquid-disordered(Ld)phaseastheamountofcholesterolisincreased.

Atanygiventemperature,the‘fluidity’(theinverseoftheviscosity)ofthe hydrocarboncoreofthebilayerincreaseswithincreasingcontentofunsaturatedorbranchedacylchainsorwithdecreasingacylchainlength.Duetothe increasedmobilityofthefattyacidchainswithincreasingtemperature,the fluidityandspaceoccupiedbythehydrophobicdomainoflipidsincreases, whichalsotendstomovetheheadgroupsapart.Abilayer-forminglipidsuch asPCassumesacylindricalshapeoverabroadtemperaturerangeandwith differentacylchaincompositions.Whenanalysedinpureform,PCexistsin eithertheLb orLa phasemainlydependentonitsacylchaincompositionand thetemperature.Non-bilayer-forminglipidssuchasPEexistatlowtemperaturesintheLb phase,atintermediatetemperaturesintheLa phase,andat elevatedtemperaturesintheHII orcubicphase.Thelasttransitionalso dependsontheshapeofthelipid.Thesupramolecularorganisationoflipids withrelativelysmallheadgroupscanchangefromcylindricaltoconical(HII phase)withincreasingunsaturationorlengthoftheacylchainsorwith increasingtemperature.Sincethephysicalpropertyofalipidmixtureis determinedbyeachofthecomponentlipids,theTm ofartificialorbiological membranesstrictlydependsonitslipidcompositionandlipidmolecular forms.TheTm ofthetransitionfromtheLb toLa phaseincreaseswithan increaseinthelengthanddegreeofsaturationofthefattyacids,butthe

midpointofthetransitiontemperature(TLH)betweentheLa andHII phases decreaseswithincreasingchainlength(orincreasingunsaturation).

Additionofcholesteroltolipidmixtureshasaprofoundeffectonthe physicalpropertiesofabilayer.Increasingamountsofcholesterolinhibitthe organisationoflipidsintotheLb phaseandfavouralessfluidL0 phase resultinginthelackofaphasetransitionnormallyobservedintheabsenceof cholesterol.Thesolventsurroundingthelipidbilayeralsoinfluencesthese transitionsprimarilybyaffectingthesizeoftheheadgrouprelativetothe hydrophobicdomain.Ca2þ andotherdivalentcations(Mg2þ,Sr2þ butnot Ba2þ)reducetheeffectivesizeofthenegativelychargedheadgroupsofCL andPAthusendowingnon-bilayerproperties.LowpHhasasimilareffecton theheadgroupofPS.SinceCa2þ isanimportantsignallingmoleculethat elicitsmanycellularresponses,itispossiblethatpartofitseffectistransmittedthroughchangesinthephysicalpropertiesofmembranes.

3.3Whatdoesthemembranebilayerlooklike?

Aprimaryroleofbiologicalmembranesistodefinethelimitsofacellor organellebymaintainingacontrolledpermeabilitybarriertosmallpolarand chargedmoleculesaswellasmacromolecules.Asecondroleistoprovidethe solventandsurfaceinwhichmanyessentialbiologicalprocessesareorganised. Amphipathiclipidmoleculesorganisedintoaflexiblenon-covalentlyassociated supramolecularstructureoptimallysatisfytheserequirements.Thefunctional propertiesofnaturalfluidbilayersarenotonlyinfluencedbythehydrophobic coreandthehydrophilicsurfacebutbytheinterfaceregioncontainingbound waterandions(Figure1.9).

Figure1.9A showsthedistributionofthecomponentpartsofdioleoylPC acrossthebilayerandillustratesthedynamic,ratherthanstatic,natureofthe membrane.ThelengthofthePCfattyacylchainsdefinesthebilayerthickness of30A ˚ .However,thethicknessisnotstaticasindicatedbytheprobabilityof findingCH2 residuesrandomlydistributedoverarangeofdistances.Bilayer thicknesscanvaryoverthesurfaceofamembraneifmicrodomainsoflipids areformedwithdifferentacylchainlengths.Thewidthoftheinterfaceregion betweenthehydrocarboncoreandthebulkwaterphaseisgenerallynot appreciated(Figure1.9B).Thisregioncontainsacomplexmixtureofchemicalspeciesdefinedbythephosphodiestermoiety,theheadgroupsandbound waterandions.Themanybiologicalprocessesthatoccurwithinthisinterface regionaredependentonitsuniqueproperties,includingthesteeppolarity gradientwithinwhichsurface-boundcellularprocessesoccur.

4.Engineeringofmembranelipidcomposition

Giventhediversityinbothlipidstructureandfunction,howcantheroleofa givenlipidbedefinedatthemolecularlevel?Unlikeproteins,lipidshaveno

16 BiochemistryofLipids,LipoproteinsandMembranes

FIGURE1.9 TheprobabilitydistributionforchemicalconstituentsacrossaPCbilayer.(A)The diagramwasgeneratedfromX-rayandneutrondiffractiondata.Thewidthofeachpeakdefinesthe mobilityofeachconstituentofPC.(B)Asan a-helicalpeptideapproachesfromthebulkwateron eithersideofthebilayertowardsthecentrethechargedensityofthemembraneinterfacialregion steeplydeclinesasindicatedbytheline. AdaptedwithpermissionfromWhite,etal.JBiolChem 2001;276:32395 32398.

obviousfunctionsinisolation.Many potentialfunctionsoflipidshavebeen uncoveredserendipitouslybasedontheireffectoncatalyticprocessesand otherbiologicalfunctionsstudiedinvitro.Althoughconsiderableinformationhasaccumulatedwiththisapproach ,suchstudiesarepronetoartifacts andmanyhavenotbeenverifiedinlivingcells.Thephysicalpropertiesof lipidsareasimportantastheirchemicalpropertiesindeterminingfunction. Yetthereislittleunderstandingofhowthephysicalpropertiesoflipids measuredinvitrorelatetotheirinvivofunction.Geneticapproachesare generallythemostusefulforidentifyinginvivofunction,butthisapproach hasconsiderablelimitationswhenappl iedtolipids.First,inordertomake mutantcellsororganismswithalteredl ipidcomposition,thegenesencoding enzymesinalipidbiosyntheticpathwa ymustbetargeted.Therefore,the resultsofgeneticmutationareindirectandcouldberemovedfromthe

primarylesion.Second,aprimaryfunctionofmembranelipidsistoprovide thepermeabilitybarrierofthecell.Th erefore,geneticapproachesthatsuggestalipidisessentialforcellviabilitycouldbeduetocompromising membranebarrierfunctionatlevelshigherthanthosethatcompromisea specificfunction.Thechallengeistousegeneticinformationtomanipulate thelipidcompositionofcellswithoutseverelycompromisingcellviability. Incaseswherethishasbeenpossible,a combinationofgeneticapproachesto uncoverphenotypesofcellswithalteredlipidcomposition,andthedissectioninvitroofthemolecularbasis forthephenotype,hasproventobea powerfulapproachfordefininglipidfunction.Significantinformationtodate hascomefromgeneticmanipulationo fprokaryoticcellsandeukaryotic microorganisms.However,thebasicmolecularandthermodynamicprinciplesunderlyinglipidfunctionaregenerallyapplicabletomorecomplex mammaliansystems.

4.1Alterationoflipidcompositioninbacteria

Thepathwaysforsynthesisofthemajorphospholipidsof E.coli werebiochemicallyestablishedbyEugeneKennedyandcoworkers[3]andsubsequentlyverifiedusinggeneticapproaches[4](Figure1.10).Thedesignof strainsinwhichlipidcompositioncanbegeneticallyalteredinasystematic mannerhasbeenimportantindefiningnewrolesforlipidsincellfunction [5,6].

Themajorphospholipidsof E.coli arezwitterionicPE(ca. 70%)plus anionicPG(ca. 20%)andCL(ca. 5%)(Figure1.2A).Theremainingphospholipidsarelessthan5%ofthetotalpool.

Theratioofzwitterionictoanionicphospholipidscanbevariedbymutationsinandregulationofthe pssA and pgsA genesthatencodetheenzymes catalysingthecommitmentstepsforsynthesisofPEandPG/CL,respectively (Figure1.10).Surprisingly, E.coli mutantscompletelylackingeitherPEand PSorPGandCLareviableunderdefinedlaboratoryconditionsorinmutants withsuppressedstressresponse.Byplacingthe pgsA geneundercontrolofthe lac promoter-operator,thelevelofPGandCLcanberegulatedinasystematic manner.TheeffectsoncellgrowthofacompletelackofPGandCLaremild, mostlikelyduetoelevatedanionicphospholipidprecursors(PAandCDPdiacylglycerol)andanionic N-acyl-PEthatsubstituteforPGand/orCL.Null mutationsinthe pssA generesultincompleteeliminationofallaminocontainingandzwitterionicphospholipids,leavingonlyanionicphospholipids.Bothgeneshavebeenplacedunderthecontrolofinduciblepromotersso theratioofzwitterionictoanionicphospholipidscanbesystematicallyvaried.

Cellswithmutationsin pgsA wereusedtoestablisharoleforanioniclipids assitesfororganisationofintegralMPswithamphitropicperipheralMPsto formmembrane-associatedmolecularmachinesresponsibleforcelldivision, DNAreplication,proteinsecretionandMPinsertion.Cellscompletelylacking

18 BiochemistryofLipids,LipoproteinsandMembranes

FIGURE1.10 Synthesisofnativeandforeignlipidsin Escherichiacoli.Thenativepathways(blue arrows),nativelipids(blue,orangeandblack)andtherespectivegenenamesareshownbythe numbers.1.CDP-diacylglycerolsynthase;2.phosphatidylserinesynthase;3.phosphatidylserine decarboxylase;4.phosphatidylglycerophosphatesynthase;5.phosphatidylglycerophosphatephosphataseencodedbythreegenes;6.cardiolipinsynthaseencodedbythreegenes.Althoughnotshown, ClsAandClsBcondense2PGswhileClsCcondensesPGandPEtoformCL.ClsBcanalsodisplace ethanolaminefromPEusingglyceroltomakePG.7.PG:pre-membrane-derivedoligosaccharide (MDO) sn-glycerol-1-P transferaseencodedby mdoB;8.diacylglycerolkinase.Non-nativeenzyme andgenenamesexpressedin E.coli (redarrows)producetheindicatedproducts(greenandgrey);9. monoglucosyldiacylglycerolsynthase(Acholeplasmalaidlawii);10.diglucosyldiacylglycerolsynthase(A.laidlawii);11.phosphatidylcholinesynthase(Legionellapneumophila);12.phosphatidylinositolsynthase(Saccharomycescerevisiae);13.and14. N-acylationofPEand O-AcylationofPG arecatalysedbyunknowntransacylases;15.lysylt-RNA:phosphatidylglycerollysinetransferase (Staphylococcusaureus).Lipidsarecolourcodedaszwitterionic (blue),neutral(green),anionic (orange)orcationic(grey). AdaptedwithpermissionfromDowhanandBogdanov,BiochimBiophys Acta2012;1818:1097 1107.

PE(pssA nullstrains)aredependentonmillimolarlevelsofdivalentcations (Caþ2 >Srþ2 >Mgþ2 withBaþ2 beingineffective)topreventcellslysisand possiblytosupportnon-bilayerpropertiesofCL.LackofPEalsocompromiseslatestagesofcelldivisionandfinalconstrictionbothin E.coli and eukaryoticcells.Inaddition,PEisrequiredtosupporttheenergy-dependent uphilltransportofsolutescatalysedbyseveralaminoandsugarpermeases. Detailedanalysisofthemolecularbasisforthelackofuphilltransport functiondiscussedbelowuncoveredtheinvolvementofmembranelipid compositionasadeterminantoftopologicalorganisationofsomeMPsand furtherextendedtherulesgoverningMPfoldingandassembly.

Theplasticityinspecificlipidrequirementsforviabilityof E.coli hasbeen utilisedtodesignstrainsinwhichphospholipidcompositioncanbenotonly

eliminatedbutalsovariedatsteadystateortemporallyoverthegrowthcycle ofaculture. E.coli membranelipidcompositioncanbefurthermanipulatedby introductionofforeigngenesthatencodelipidsnotfoundin E.coli (Figure1.10).Sincetheforeignlipidsdisplayadifferentcombinationof physicalandchemicalproperties(Figure1.11)fromthoseassociatedwith nativelipids,theirabilitytosuppressthephenotypeofmutantslackingspecific naturallipidshasbeenusedtoestablishwhichpropertiesofagivenlipidare necessarytosupportaparticularcellularfunction.

Employingamicrobialmodelsysteminwhichaparticularlipidcanbe completelyeliminated,substitutedbyforeignlipids,tightlytitratedor controlledtemporallyprovidesameanstostudytheeffectsofchangesin membranelipidcompositiononthestructure,functionandfoldingofasubset ofMPsthataresensitivetomembranelipidcompositionandhighlyconserved throughoutnature.

5.Roleoflipidsincellfunction

Proteinstructureisinfluencedbyspecificprotein lipidinteractionsthat dependonthechemicalandstructuralanatomyoflipids(headgroup,backbone,alkylchainlength,degreeofunsaturation,chirality,ionisationand chelatingproperties)(Figures1.4and1.11).However,proteinstructureisalso influencedbytheuniqueself-associationpropertiesoflipidsthatresultfrom thecollectiveproperties(bilayerfluidity,thickness,surfacecharge,shape, packingproperties)ofthelipidsorganisedintoalipidbilayer.

5.1Thebilayerasasupramolecularlipidmatrix

Biophysicalstudiesonmembranelipidscoupledwithbiochemicalandgenetic manipulationofmembranelipidcompositionhaveestablishedthattheLa state ofthemembranebilayerisessentialforcellviability.However,membranes aremadeupofavastarrayoflipidsthathavedifferentphysicalproperties,can assumeindividuallydifferentphysicalarrangementsandcontributecollectivelytothefinalphysicalpropertiesofthemembrane.Mammaliancell membranesareexposedtoaconstanttemperature,pressureandsolvent environmentandthereforedonotchangetheirlipidmakeupdramaticallyin responsetoexternalconditions.Incontrast,lowerformsoflifeareexposedto abroadrangeofenvironmentalconditionssohavedevelopedsystemsfor changingmembranelipidcompositioninordertomaintaintheLa phase.

5.2MPstructureandfunction:lipidsincharge?

ThefoldingofintegralMPsoccursviamultiplemodesofinteractionwiththeir environment.Extramembranedomains(EMDs)interactwithwater,solutes, ionsandwater-solubleproteinsinthestructuredinterfacialregionaswellasin thefreelydiffusingextracellularfluid(Figures1.9and1.12).TMDscomposed

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.