Backgroundandintroduction
“Thepackagingindustrycurrently,dependsstronglyonthepetroleum-basedplastics whichcauseconcernstofutureinrelevancewithbothenvironmentandtheeconomy” (ShahzadTariq,2013).Theshortageofrawmaterialsalsocreatesathreattotheavailability,costofrawmaterialsandtheirbiodegradability(Gustafssonetal.,2011).
Thereareseveralreasonstosearchoutalternativestopetroleum-basedplastics:depletionoffossilfuels,awildlyunsteadyoilprice,theneedtoreducecarbonemissions,an accumulationofplasticwaste,andtheneedforpackagingmaterialshavingnewcharacteristics.Inresponse,researchershavedevelopedawholenewgenerationofplantor plant-waste-basedpackagingmaterials,somehavingcharacteristicssuchasbreathability orantimicrobialproperties.Therearealreadycountlessapplicationsforthem.
TheEuropeanUnion(EU)marketforpackaginghasavalueofabout127billionUS dollarsandhasabout40percentoftheglobalpackagingmarket(ShahzadTariq.2013). TheEuropeanpackagingmaterialscanbebrokendownascontributionfromglasswith 8%,metal14%,paper42%,andplastic36%(GlobalPackagingAlliance,2013).
Furthermore,petroleum-basedproductslackbiodegradability.Thiscancausesubstantialwastedisposalproblemsincertainareas(deVlieger,2003;Robertson,2008; FranzandWelle,2003).Packagingisbecomingaveryimportantpartofourdailylife. Theutilizationofpackagingmaterialsiscontinuouslyincreasingwithtime.Itisexpected thatinthefuturethemarketwillgrowglobally.Packagingproductsproducedfrom renewablesubstratescurrentlyrepresentonlyabout2%ofthemarket:traditional fiber-basedpackagingisnotincluded.
“Substantialattentionisnowbeinggiventotheconceptofsustainabledevelopment. Thecommonlyaccepteddefinitionofsustainabledevelopmentisdevelopmentthat meetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerations tomeettheirownneeds” (WorldCommissiononEnvironmentandDevelopment’ s report “OurCommonFuture,” 1987)(www.sustainabledevelopment2015.org/ AdvocacyToolkit/.../92-our-common-future).Foratransitiontoahigherlevelof sustainabilitydevelopment,itisveryimportanttomakeanumberoftechnological andsocialchanges,andoneoftheseistodevelopalternativeresourcesofrawmaterials.
BiobasedPolymers ISBN978-0-12-818404-2, https://doi.org/10.1016/B978-0-12-818404-2.00001-1
Sustainabledevelopmentisbecomingthecorecommitmenttocreatesharedvalueby increasingworldaccesstothebestqualityavailableinfoodandbeverageswhilefocusing onstayingbeingeco-friendly.OneprojectisledbyaSwedish firm,Innventia,apartly governmentindustrialresearchcompany,withtheaimtoexplorethenicheinbiobased/ ecofriendlypackagingmaterials.Foodpackagingisalargeandcomplexmarket, providingprotection,tamperresistance,andspecialphysical,chemical,orbiologicalrequirements.Most,ifnotallofthis,canbehandledbybiobasedmaterials.Focusingalone onthesustainabledevelopmentofthepackagingmaterialisnotenoughandisshortsighted.Thatiswhytheindustryhasincreasedthecommunicationeffortstorealize theprosandconsonthewholechain,i.e.,rawmaterialstoprocessingtowholesale andretailtouseand finallytodisposal.
Forsustainablegrowthofthepackagingindustry,itisveryimportanttodevelop high-performancesustainablerawmaterials.Thesustainablepackagingsectorisgrowing atafasterrateascomparedtotheoverallpackagingindustry.Studiesconductedbyseveral researchinstitutionsinGermanyandSwedenshowthatfromacarbonfootprintperspective,packagingmaterialsfromforestresourcescandeliverseveralbenefitsincomparison toconventionalplasticsorglasspackages.Paperboardduetoitsrenewabilityisbetterthan glassorplasticcontainersforpackagingofliquids(Wellenreutheretal.,2010;Jelseetal., 2011).Furthermore,theweightofbiobasedpackagingislower.Thispropertyis favorablefromatransportationpointofview.The finalproductsareusuallyreused (HohenthalandVeuro,2011).Consumersusuallylike fiber-basedpackagingasitis eco-friendly.
Biopolymersusedasdispersioncoatingonpaperorpaperboardforuseinpackaging andbioplasticswiththesameintendeduseofferenoughbarrierpropertiesforfats,but generallyhaveonlyreasonablewatervaporbarrierproperties.Poormechanicalproperties,inadequateheatresistance,andhighsensitivitytomoistureascomparedtoplastics obtainedfrompetroleumareotherweakpoints.Furthermore,tobecomecompetitive itisessentialthatbiopackagingsolutionsshouldbeeconomicallyfeasibleandcanbe includedintheindustrialprocesses.
Itisimportanttorememberthattheroleofpackagingnowrevolvesaboutaround threeconcepts environmental,economic,andsocial coveringtheaspectsofsustainability.TherecenttrendsinEUpackagingmarketsshowaninterestofmovingtoward whatiscalled “ green ” packaging,i.e.,usingrecyclableandrecycledmaterials,reduced materialusage,andpolymersextractedfrombiomass.Theaccomplishmenthasbeen drivenbyEUdirectivesfortheevolutionofeco-friendlypackagingsolutionsinthe EU(Parker,2008).Someoftheresearchgroupsthathavepursuedpackagingfrom renewablematerialsareSustainPack,SustainComp,FoodBiopackproject,SUNPAP, FlexPakRenew,RenewFunccBarr,andVTT( Johanssonetal.,2012;ShahzadTariq, 2013).
TheFoodBiopackprojectprovidedinformationontheproductionanduseofbiopackagingmaterialsforthefoodindustry,coveringtheentireperspectivefromproperties ofbiomaterialstofoodpackagingconsiderations,lifecycleanalysis,ecologicalimpacts,as wellasmarketissues(Weber,2000a,b).
SustainPackhasdealtwithimprovementsinarangeofpackagingfunctionalities.Selfhealingcoatingsweredevelopedformaintainingthebarrierpropertiesofpackageswhen subjectedtoexternalstress(Anderssonetal.,2009).Otherproblemsthatwereaddressed includedprintedelectronicsforcommunication,nanosizedthintoplayersforimproved barrierperformance,andcellulose fibersforreinforcement(Robertsson,2008;AmbergSchwabandKleebauer,2007;Aucejo,2005).
FlexPakRenewdevelopedenvironmentallyfriendlypaperpackagingfromsustainablerawmaterials.Theobjectivewastosubstitutebarrier filmsobtainedfrompetroleum andtodevelopabiodegradablemultilayerpackagingstructureinwhichtheseparate layerswouldcontributetotheperformanceofthepackaging. “Studywasconducted forimprovingthe flexiblebasepaperbywet-endprocessing,toreinforcedbio-based coatingsforbarriersagainstwatervapor,oxygen,andgreasetotheapplicationofthin nanocoatingstofurtherimprovethebarrierproperties,andtotheinclusionofsustainable materialswithantimicrobialfunctionalitiesforextendedshelflifeoffoodproducts.Life cycleanalysesweremadeforevaluatingthesustainabilityofthe finalproductwith detailedstudyofeverycomponent” ( Johanssonetal.,2012).
RenewFuncBarrprojectfromSwedenaimedatdevelopingcost-effective,sustainable productionofsustainablematerialsforuseinfoodpackaging.Starch,proteins,andwaste productswereused.Conventionalmethodslikecoatingwithwater-baseddispersions andextrusionwereusedalongwithplasmadepositionandelectrospinningmethods forimprovingbarrierfunctionality.
IntheSustainCompproject,sustainablecompositematerialsareaddressed.The SUNPAPprojectfocusesonscalingupproductionofnanoparticlesfordevelopingsustainablepackagingproducts.
TheAgrobarprojectconcentratesonproductsobtainedfromagriculturalrawmaterialsforutilizationinbarriercoatings.
TheEnzycoatandEnzycoatIIprojectsaredevelopingactivepackagingusingoxygen scavengersincludedinbarriercoatingsconsistingofbiomaterials.
Packaginghasalwaysbeenunderdiscussion,criticismandapparentlya “quietrevolution.” Thereisalwaysadebatetoredesignanddiscovernewpackagingmaterials,but theprocessonthewholeisverycomplex.Itinvolvesthealignmentoffourkeyplayers: packagingmanufacturers,fast-movingconsuminggoodscompanies,retailers,andgovernmentandtradebodies.Theultimatepotentialinthissectorisnotrealizedsincethe uncertaintyfacedbyinvestors,duetolegitimacyandlegislationissues,ishighinthese turbulentandvolatileeconomicsituations(StaffanJacobson,2008).
Inspiteoftheseissues,biobasedpackagingisshowingpromiseintermsofpriceand technicalfeasibility.Pricecaneffectivelyimproveifeconomiesofscaleareconsidered. Thiswouldmakebiobasedpackagingcompetent.Thistypeofpackagingappearsto betheappropriatesolutionforplasticwastecollectedintheseas,whichishaving dangerouseffectsonsealifeandaffectinghumanhealth.Earlier,themanufacturingpracticesfocusedonlyonimprovingthemethodsthatcouldhelpinobtainingmorequantitiesbyoptimizationoftheprocessparameters.Butnow,theworldischanging.Critical issuessuchassustainabilityhaveactivatedtheneedformanufacturingpracticesthatare notonlyeconomicallyadvantageousbutalsoadvantageousinthecontextofenvironmentandsociety.Intheworldofplastics,biobasedpackagingmaterialscansolvethe issuesmentionedabove.
Packagingmaterialsprotectandproduceappropriatephysicochemicalconditionsfor productsimportantforachievingalongershelflife.Thepackagingsystem,basedona properselectionofthepackagingmaterialsuppliedwithproperbarrierandmechanical properties,preventsproductspoilageandmaintainsthepackageditem’squalityduring storage.Itisimportantthatthepackagingmaterialshouldbiodegradeinareasonable timeperiodwithoutcreatinganyenvironmentalproblems.Inthisregard,biopackaging materialshaveafewadvantageouspropertiesforimprovingthequalityoffoodand increasingtheshelflifethroughreducingthegrowthofmicroorganismsintheproduct. Theyareabletoserveasbarrierstogases,moisture,watervapor,andsolutesandcanserve ascarriersofsomeactivesubstances(RhimandNg,2007).Biopolymer filmsalsocan functionsimilarlyandaugmentothertypesofpackagingbyincreasingtheshelflifeof foodsandimprovingthequality(Wongetal.,1994).Moreover,these filmscanincorporatedifferentadditives,forinstance,antimicrobials,antioxidants,antifungalproducts, colors,andothernutrients(Han,2000;Baldwin,1994;Wongetal.,1994).Incomparisontosyntheticpolymers,naturalbiopolymersshowmanyadvantagesinthattheyare renewable,edible,andcanbebiodegraded.Buttheirmechanicalpropertiesandbarrier propertiesarerelativelypoor.Thiscausesamainconstraintfortheiruseonacommercial scale.Polysaccharideandprotein filmsusuallyshowgoodoxygenbarrierpropertiesat lowtointermediaterelativehumidityandpossessgoodmechanicalproperties;buttheir watervaporbarrierpropertiesarenotgoodbecausetheyarehydrophilic(Gontardetal., 1994;Avena-BustillosandKrochta,1993;KesterandFennema,1986).Researchand development(R&D)isbeingconductedonmodificationofpropertiesofnatural biopolymer filmsforimprovingtheirmechanicalandbarrierproperties(Rhimand Ng,2007;Rhim,2004;RhimandWeller,2000; Micardetal.,2000;Rhimetal., 1998,1999;2000;Gennadiosetal.,1993,1998;Ghorpadeetal.,1995;Parketal.,1993).
Polymernanocompositematerials,containconstituentshavingdimensionsonthenanometer scale.Thesetopicsareintenselyresearchedinthe fieldofmaterialandpolymerscience,electronics,andbiomedicalscience(SinhaRayandOkamoto,2003a,b;VaiaandGiannelis,1997; Giannelis,1996).Apolymernanocompositeisthehybridmaterial.Itcontainsapolymermatrix
strengthenedwitha fiber,platelet,orparticlehavingonedimensiononthenanometerscale (Pandeyetal.,2005).Becauseofthenanometer-sizeparticlesdispersedinthepolymermatrix, thesenanocompositesshowsignificantlyimprovedpropertieswhencomparedwiththepure polymerorconventionalcomposites.Improvementsmayincludehighermoduli,strengthand heatresistance,andreducedgaspermeabilityand flammabilitywithverylow fillerloading,typically5wt%orlower(AlexandreandDubois,2000).Hence,naturalbiopolymershavebeen filled withlayeredsilicatesforenhancingtheirpropertieswhilemaintainingtheirbiodegradability.The impressiveincreaseofthematerialpropertiesofthenanocomposite filmsincomparisontothe purepolymerscanbeobtainedwithouttherequirementforcost-increasingprocessing.Furthermore,biodegradabilityisstillretained.Onlyinorganic,naturalmineralsremainafterthe final degradation
RhimandNg,2007;SinhaRayetal.,2003a,b,c;Yuetal.,2003;Schmidtetal.,2002
Table1.1 showsthebenefitsofnaturalbiopolymer filmsincomparisontoconventionalplasticmaterials.
Biobasedpackagingmaterialsderivedfromnaturalsourcesshowgreatpotentialfor improvingthequalityoffood,safety,andstabilityasanovelpackagingandprocessing technology.Thedistinctivebenefitsofthenaturalbiobasedpackagingmaydevelop newproducts,likecarriersforfunctionallyactivesubstances,individualpackagingof particulatefoods,andnutritionalsupplements.
Thefoodindustryisactivelyfocusingonusingbiobasedpackagingmaterials(U.S. Congress,1993).Biobasedmaterialspossessspecificcharacteristics,suchasmoresuitable barrierproperties,whichmakethemabetterchoiceincomparisontotraditional
Table1.1 Advantagesofnaturalbiopolymer films.
Lowcostandabundant
Renewableresources
Edible
Biodegradable
Supplementthenutritionalvalueoffoods
Enhancedorganolepticcharacteristicsoffood
Reducedpackagingvolume,weight,andwaste
Incorporatedantimicrobialagentsandantioxidants
Possibleuseinmultilayerfoodpackagingmaterialstogetherwithnonedible films
Extendedshelflifeandimprovedqualityofusuallynonpackageditems
Controloverintercomponentmigrationofmoisture,gases,lipids,andsolutes
Individualpackagingofsmallparticulatefoods
Functionascarriersforantimicrobialandantioxidantagents
Microencapsulationandcontrolledreleaseofactiveingredients
BasedonGennadios,A.,Weller,C.L.,1990.Edible filmsandcoatingsfromwheatandcornproteins.FoodTechnol. 44(10),63 67;HanandGennadios(2005);Krochta,J.M.,2002.Proteinsasrawmaterialsfor filmsandcoatings: definitions,currentstatus,andopportunities.In:Protein-BasedFilmsandCoatings(Gennadios,A.ed.),pp.1 41.CRC Press,BocaRaton,FL;Guilbert,S.,Cuq,B.,Gontard,N.,1997.Recentinnovationsinedibleand/orbiodegradable packagingmaterials.FoodAddit.Contam.14(6 7):741 751.
packagingmaterials.Somebiobasedmaterialsarealsoveryattractiveinappearanceor pleasanttotouch.Thisgeneratesinterestingmarketingopportunities,forexample,for packagingofluxuryproductsorproducingspecialdesigns.Thepriceofthesematerials isgenerallymorestableincomparisontooil-basedplastics,whichisamajorbenefit fortheindustry.
Sofar,toalargeextentpackagingmaterialshavebeenbasedonmaterialsproduced fromnonrenewablesources.Paperandboardarethemostcommonlyusedsustainable packagingmaterials.Thesearebasedoncellulose,whichisthemostabundantlyavailable sustainablepolymer.Seriouseffortsarebeingmadeforidentifyingalternativenonfood usesofagriculturalcropsandtheproductionofpackagingmaterialsfromthepolymers obtainedfromtheserawmaterials,whichmaybecomeamajoruseofthesecrops (CoombsandHall,2000;Mangan,1998).Inactuality,suchalternativebiobasedpackagingmaterialshaveattractedsignificantR&Deffortsforalongtime(Coombs andHall,2000;Mangan,1998).Thematerialsarenowbecomingavailableinthemarket. Thebiologicalbasisofthestartingmaterialsprovidesscientistswithauniqueopportunity toincludeaninterestingfunctionalityintothematerial,whichiscompostability.Dueto thisproperty,thesematerialsdegradeaftercompletionofusefullife. “Sofar,compostabilityhasbeenthemajorfocusforuseofbiobasedpackagingmaterialswhichisthelogical consequenceforthehugeamountofpackagingmaterialsusedandtheproductionof wasteassociatedwithit.Municipalplasticwasteisadifficultmaterialasitcontainsseveral fractionsofwasteandplastictypescontainingcontaminationfromfoodstuffsresultingin laborandenergyintensiverecycling.Tillnow,preventionorincreasedrecoveryof materialshasbeenusedforextendingthelifeoftheavailablenon-renewablematerials. Recoverymethodsincluderecycling,reuse,energyrecovery,compostingandbiomethanisation.Re-useandre-cyclingoffoodpackagingmaterialsisdifficult,because theyusuallycontainmixturesoflayersofdifferentplasticsforobtainingoptimalbarrier propertiesofthematerial.Cautionshouldbealsousedwhenre-usingthefoodcontact materials,astheremightbeanunwantedbuild-upofcontaminantsfromfoodcomponentsmigratedintothepackagingmaterialsafterre-usingforseveraltimes” (documents.mx).
Biomethanizationbycompostingoffersanalternativewastedisposalmethod.Both thefoodpackagingandtheleftoverfoodmaterialarediscarded.Thehindranceinusing organicrecoveryisthedevelopmentofbiobasedcompostablepackaginghavingthe requiredpropertiesforprotectingfoodduringstorage.Also,awasteinfrastructurefor thesecompostablematerialsalongwithlabelingforidentifyingthecompostablepackagingshouldbedeveloped.Tillnow,thecompostabilityofthesematerialshasbeen themainpointofinterestforcommercializationalthoughcompostingisnotthewidely usedmethodfordisposalinmanycountries.But,asthefunctioningofthebiomaterialsis beingimprovedcontinuously,advancedapplicationsarenowgettingwithinthereach.
Thematerialsthatarepresentlybeingusedforfoodpackagingarederivedfrompetroleum.Thesecontainplasticpolymers,metals,glass,paperandboard,orcombinations thereof.Thesematerialsandpolymersareutilizedindifferentcombinationsforproducingmaterialshavingspecialpropertiesensuringsafetyandqualityoffoodfromprocessing andmanufacturingthroughhandlingandstorageand,eventually,toconsumeruse. Theseproductsfulfillanimportanttaskbecauseinsufficientorabsenceofpackaging wouldresultinrapidworseningofqualityandsafety,resultinginsignificantlossesof foodmaterial.Individualfoodproductshavespecificrequirementsforstoragethatthe packagingmaterialsshouldprovide.Whenexaminingthefoodpackagingconcept,the interactionbetweenfood,packagingmaterial,andambientatmospherehastobetaken intoconsideration.Therefore,engineeringofnovelbiobasedfoodpackagingmaterialsis achallengingjobfortheindustry(mis.dost.gov.ph).Thebiobasedmaterialsappeartobe veryinterestingfromasustainabilityangle. “Thequestioniswhethertheymeetthestandardsofthematerialsusedtodayorwhethertheyevenaddvalue” (documents.mx).
Biopolymersareobtainedfrombiomass.Theymaybenatural(e.g.cellulose),orsyntheticpolymersmadefrombiomassmonomers(e.g.PolylacticAcid)orsyntheticpolymersmadefromsyntheticmonomersderivedfrombiomass(e.g.Polythenederivedfrombioethanol).Oxy-degradable plasticsarenotbiopolymers.(www.wrap.org.uk)
Biopolymersmayormaynotbebiodegradable.Inthebiodegradationprocess,the polymergetsconvertedintosmallercompounds.PLAisbiodegradable.Polytheneobtainedfrombioethanolisrenewablebutnotbiodegradable.Compostableimpliesthat abiodegradablepolymerwillbiodegradeunderstandardtestingconditions.Amaterial canbecompostedifitisathin film,butifthesamematerialisthickitmaynotbecomposted.Compostabilityisnotaninherentpropertyofamaterial;itisapropertyofa particularformofamaterial.EN13432isaEuropeanstandardforcompostability. Thispertainstoindustrialcompostingconditionsonly(www.wrap.org.uk).
Developmentofmaterialsfromrenewablerawmaterialsforvariousapplicationshas beenaveryimportanttopicformanyyearsbecauseofenvironmentalissuesandescalating pricesofpetrochemicals(Laineetal.,2013; Farrisetal.,2009a,b; saiapm.ulbsibiu.ro).For naturalproducts,biopolymersenhancingthequalityofproductsareimportantforsatisfyingthebuyerspreferringenvironmentfriendlypackaging.Thisstrategyisplayinga predominantroleinthefoodindustry(Satyanarayanaetal.,2009;Cutter,2006).The useofpolymersfromsustainablerawmaterialsinfoodpackagingisagrowingtrend nowadays(Mensitierietal.,2011). “Toextendtheshelf-lifeoffoodswithincreasing thepreservationandprotectionfromoxidationandmicrobialdamagethetrendisto usemorenaturalcompounds.Theuseofsynthetic filmshasledtoseriousenvironmental problemsbecausethesematerialsarenon-biodegradable.Thenaturalbiopolymersused infoodpackagingareavailablefromrenewableresources,andarebiodegradable” (Gabor andTita,2012;Sabiha-HanimandSiti-Norsafurah,2012).Allthesecharacteristicslead
toecologicalsafety(PrashanthandTharanathan,2007). “Thestructureofmonomerused inpolymerpreparationisdirectlyeffectiveonthepropertiesthatarerequiredindifferent areasofwork,suchas:thermalstability, flexibility,goodbarriertogases,goodbarrierto water,resistancetochemicals,biocompatibility,biodegradability” (G € uneretal.,2006). Polymersobtainedfromnaturalresourcescanbedegradedbythemicrobialactionunder differentenvironmentalconditions(Mensitierietal.,2011).Theclassificationofpolymershasbeendonebasedonthemethodofproductionortheirsource(Ruban, 2009;Nampoothirietal.,2010;Mensitierietal.,2011;Nairetal.,2017).
“Polysaccharidessuchasstarch,andcellulose,arecalledbiopolymers.Thesearenaturalpolymers,foundinnatureduringthegrowthcyclesofallorganisms.Othernatural polymersaretheproteinswhichcanbeusedforproducingbiodegradablematerials. Thesepolymersareoftenchemicallymodifiedwiththeobjectiveformodifyingthe degradationrateandimprovingthemechanicalproperties” (VromanandTighzert, 2009).In Table1.2 polymershavebeenclassifiedonthebasisofchemicalcomposition. Enzymesofbacteria,yeasts,andfungicandegradebiodegradablematerials.Theproductsofthedegradationprocessunderaerobicconditionsarecarbondioxide,water,and biomass.Underanaerobicconditions,hydrocarbons,methaneandbiomassareproduced (DoiandFukuda,1994).Thus,thereisagreatinteresttoreplacesomeoralloftheplastics bybiodegradablematerialsinvariousapplications. “Someofthenaturalpolymers(PHB
Table1.2 Classificationofbiopolymersdependingonthegeneralchemicalcomposition.
Biopolymers
Polymersdirectlyextractedfrom naturalmaterials
Polysaccharides
Starch/Starchderivatives
Potato,rice,corn,wheat
Cellulose/Cellulosederivatives, cotton,wood .
Chitosan
Pectins
Proteins
Animalproteins
Gelatin,casein,collagen
Plantproteins
Wheatgluten,zein
Polymerssynthesizedfrom bioderivedmonomers
Poly(lacticacid) Otherpolyesters
Polymersproducedby microorganismsor bacteria
Polyhydroxyalkanoates Bacterialcellulose
BasedonGabor,D.,Tita,O.,2012.Biopolymersusedinfoodpackaging:areview.ActaUniv.Cibiniensis.Ser.EFood Technol.16(2),3 19;Hu,B.,2014.Biopolymer-basedlightweightmaterialsforpackagingapplications,InLightweight MaterialsFromBiopolymersandBiofibers,Chapter13.ACSSymposiumSeries,vol.1175,pp.239 255. https://doi.org/ 10.1021/bk-2014-1175.ch013
anditscopolymers)(Gilbert,1985)andaliphaticpolyesters(polycaprolactone(Huang etal.,1990),polylacticacid(Jarowenko,1977))arebiodegradable,buttheircost comparedtothatofpetroleum-basedplasticsprohibitstheirlargercommercialutilisation andisbeingusedonlyinnicheareas.Amongthebiomaterialsavailablecommercially,are thoseobtainedfromrenewableresourcessuchasstarchbasedproducts.Thesearethe mostwidelyusedandeconomicbiomaterials.MaterbifromNovamont,ItalyandBiopar fromBiop.Germanyaresomeexamples.Thestarchismixedwithbiodegradable aliphaticpolyesters,suchasEcoflexfromBASFGermanyorBionollefromShowaHighpolymersJapan.” Starchisstoredasareserveinmostplants.Itisasemicrystallinepolymer andiscomprisedof1,4-alpha-Dglucopyranosylunits:amyloseandamylopectin.The amyloseislinear,inwhichtheglucopyranosylunitsarelinkedbyalpha(1 4)linkages; theamylopectinhasanalpha(1 4)-linkedbackboneandca.5%ofalpha(1 6)-linked branches(Garciaetal.,2011).Theamountofamyloseandamylopectinaredependent upontheplantsource.Cornstarchgenerallycontainsabout70%amylopectinand 30%amylose(LambertandPoncelet,1997).Theratiooftheamylaseandamylopectin characterizesmaterialswithverydifferentproperties.Starch-basedmaterialsarereceiving greatattentioninthefoodpackagingsectorbecausetheycostless(lessthanoneeuroper kg)andarebiodegradableandwidelyavailable.Severalstudieshavebeenconductedon starch-basedmaterials(Pelissero,1990).Buttherearesomedrawbackswithstarch.Itis stronglyhydrophilicandthemechanicalpropertiesareinferiorincomparisontotraditionalnonbiodegradableplastic filmsusedinthefoodpackaging(qcm-mazand.com). Nowadays,theuseofnanocompositeconcepthasbeenfoundtobeanattractive approachforimprovingmechanicalandbarrierproperties.
References
Alexandre,M.,Dubois,P.,2000.Polymer-layeredsilicatenanocomposites:preparation,propertiesanduse ofanewclassofmaterials.Mater.Sci.Eng.28,1 63.
Amberg-Schwab,S.,Kleebauer,M.,2007.In:Kleebauer,M.,Sangl,R.(Eds.),MultifunctionalCoatings WithNanoscalePolymers AnOverview,PTSWorkshopInnovativePackaging,p.8.Munich, Germany2007,GV773.
Andersson,C.,Jarnstrom,L.,Fogden,A.,Mira,I.,Voit,W., _ Zywicki,S.,Bartkowiak,A.,2009.Preparation andincorporationofmicrocapsulesinfunctionalcoatingsforself-healingofpackagingboard.Packag. Technol.Sci.22(5),275.
Aucejo,S.,2005.LatestDevelopmentsinFibreBasedCompositeFilms,PiraFirstSustainPackConference, Stockholm,Sweden,December6 7,2005.
Avena-Bustillos,R.J.,Krochta,J.M.,1993.Watervaporpermeabilitycaseinatebasededible filmsasaffected byPH.Calciumcrosslinkingandlipidcontent.J.FoodSci.58,904 907.
Baldwin,E.A.,1994.Ediblecoatingsforfreshfruitsandvegetables:past,presentandfuture.In: Krochta,J.M.,Baldwin,E.A.,Nisperos,M.O.(Eds.),EdibleCoatingsandFilmstoImproveFood Quality.Technomicpublishingcompany,Inc.,Lancaster,PA,pp.25 64. Coombs,J.,Hall,K.,2000.Non-FoodAgro-IndustrialResearchInformation.CD-RomVersion1.2,Issue 3,2000.CPLPublishingServices,Newbury,UK,ISBN1-872691-27-7.ISSN1368-6755.
Cutter,C.N.,2006.Opportunitiesforbio-basedpackagingtechnologiestoimprovethequalityandsafetyof freshandfurtherprocessedmusclefoods.MeatScience74(1),131 142.
DeVlieger,J.J.,2003.Greenplasticsforfoodpackaging.In:Ahvenainen,R.(Ed.),NovelFoodPackaging Techniques.WoodheadPublishingLtd.,Cambridge,UK,pp.519 534.
Doi,Y.,Fukuda,K.(Eds.),1994.BiodegradablePlasticsandPolymers.Elsevier,Amsterdam,pp.479 497.
Farris,S.,Schaich,K.M.,Liu,L.S.,Piergiovanni,L.,Yam,K.L.,2009a.Developmentofpolyion-complex hydrogelsasanalternativeapproachfortheproductionofbio-basedpolymersforfoodpackagingapplications:areview.TrendsFoodSci.Technol.20(8),316 332.
Farris,S.,Introzzi,L.,Piergiovanni,L.,2009b.Evaluationofabio-coatingasasolutiontoimprovebarrier, frictionandopticalpropertiesofplastic films.Packag.Technol.Sci.22(2),69 83.
Franz,R.,Welle,F.,2003.Recyclingpackagingmaterials.In:Ahvenainen,R.(Ed.),NovelFoodPackaging Techniques.WoodheadPublishingLtd.,Cambridge,UK,pp.497 518.
Gabor,D.,Tita,O.,2012.Biopolymersusedinfoodpackaging:areview.ActaUniv.Cibiniensis.Ser.E FoodTechnol.16(2),3 19.
Garcia,N.L.,Ribba,L.,Dufresne,A.,Aranguren,M.,Goyanes,S.,2011.Effectofglycerolonthe morphologyofnanocompositesmadefromthermoplasticstarchandstarchnanocrystals.Carbohydr. Polym.84(1),203 210,11.
Gennadios,A.,Weller,C.L.,1990.Edible filmsandcoatingsfromwheatandcornproteins.FoodTechnol. 44(10),63 67.
Gennadios,A.,Brandenburg,A.H.,Weller,C.L.,Testin,R.F.,1993.EffectofpHonpropertiesofwheat glutenandsoyproteinisolate films.J.Agric.FoodChem.41,1835 1839.
Gennadios,A.,Rhim,J.W.,Handa,A.,Weller,C.L.,Hanna,M.A.,1998.Ultravioletradiationaffectsphysicalandmolecularpropertiesofsoy.Protein films.J.FoodSci.63,225 228.
Ghorpade,V.M.,Li,H.,Gennadios,A.,Hanna,M.A.,1995.Chemicallymodifiedsoyprotein films.Trans. Am.Soc.Agric.Eng.38,1805 1808.
Giannelis,E.P.,1996.Polymerlayeredsilicatenanocomposites.Adv.Mater.8,29 35. Gilbert,S.G.,1985.Food/packagecompatibility.FoodTechnol.39,54 56. GlobalPackagingAlliance- http://www.global-packaging-alliance.com/ . Gontard,N.,Duchez,C.,Cuq,J.L.,Guilbert,S.,1994.Ediblecomposite filmsofwheatglutenandlipids: watervaporpermeabilityandotherphysicalproperties.Int.J.FoodSci.Technol.29,39 50. Guilbert,S.,Cuq,B.,Gontard,N.,1997.Recentinnovationsinedibleand/orbiodegradablepackaging materials.FoodAddit.Contam.14(6 7),741 751.
G € uner,F.,Yagci,Y.,Erciyes,A.T.,2006.Polymersfromtriglycerideoils.Prog.Polym.Sci.31(7), 633 670.
Gustafsson,M.,Stoor,R.,Tsvetkova,A.,2011.SustainableBio-economy:Potential,Challengesand OpportunitiesinFinland.PBIResearchInstitute. Han,J.H.,2000.Antimicrobialfoodpackaging.FoodTechnol.54(3),56 65.
Han,J.H.,Gennadios,A.,2005.Edible filmsandcoatings:Areview.In:Han,J.H.(Ed.),Innovationsin FoodPackaging.Elsevier,London,UK,pp.239 262.
Hohenthal,C.,Veuro,S.,2011.In:TheRoleofLCAinGuidingProjects,FlexPakRenewWorkshop, Lyon,France,May10,2011,No.3.
Hu,B.,2014.Biopolymer-basedlightweightmaterialsforpackagingapplications.In:LightweightMaterials fromBiopolymersandBiofibers,Chapter13.ACSSymposiumSeries,vol.1175,pp.239 255. https:// doi.org/10.1021/bk-2014-1175.ch013
Huang,J.C.,Shetty,A.S.,Wang,M.S.,1990.Biodegradableplastics:areview.Adv.Polym.Technol.10, 23 30.
Jacobsson,S.,2008.Theemergenceandtroubledgrowthofabio-powerinnovationsysteminSweden. EnergyPolicy36,1491 1497.
Jarowenko,W.,1977.EncyclopediaofPolymerScienceandTechnology,vol.12.Interscience,NewYork. Jelse,K.,Eriksson,E.,Einarson,E.,2011.LifeCycleAssessmentofConsumerPackagingforLiquidFood. IVL,SwedishEnvironmentalResearchInstitute. www.tetrapak.com
Johansson,C.,Bras,J.,Mondragon,I.,Nechita,P.,Plackett,D.,Simon,P.,Svetec,D.G.,Virtanen,S., Baschetti,M.G.,Breen,C.,Clegg,F.,Aucejo,S.,2012.Renewable fibersandbio-basedmaterials forpackagingapplications areviewofrecentdevelopments.BioResour.7(2),2506 2552. Kester,J.,Fennema,O.,1986.Edible filmsandcoatings:areview.FoodTechnol.40(12),47 59.
Krochta,J.M.,2002.Proteinsasrawmaterialsfor filmsandcoatings:definitions,currentstatus,and opportunities.In:Gennadios,A.(Ed.),Protein-BasedFilmsandCoatings.CRCPress,BocaRaton, FL,pp.1 41.
Laine,C.,Harlin,A.,Hartman,J.,Hyv€arinen,S.,Kammiovirta,K.,Krogerus,B.,Pajari,H.,Rautkoski,H., Set€al€a,H.,Siev€anen,J.,Uotila,J.,V€ah€a-Nissi,M.,2013.Hydroxyalkylatedxylans theirsynthesisand applicationincoatingsforpackagingandpaper.Ind.CropsProd.44,692 704. Lambert,J.F.,Poncelet,G.,1997.Acidityinpillaredclays:originandcatalyticmanifestations.Top.Catal.4, 43 56.
Mangan,C.(Ed.),1998.TheGreenChemicalandPolymersChain.EuropeanCommission,DG12,DG6, Luxenbourg.OfficeforOfficialPublicationsoftheEuropeanUnion,Belgium,ISBN92-828-6116-3. Mensitieri,G.,DiMaio,E.,Buonocore,G.G.,Nedi,I.,Oliviero,M.,Sansone,L.,Iannace,S.,2011.Processingandshelflifeissuesofselectedfoodpackagingmaterialsandstructuresfromrenewableresources. TrendsFoodSci.Technol.22(2 3),72 80.
Micard,V.,Belamri,R.,Morel,M.H.,Guilbert,S.,2000.Propertiesofchemicallyandphysicallytreated wheatgluten films.J.Agric.FoodChem.48,2948 2953. Nair,N.R.,Sekhar,V.C.,Nampoothiri,K.M.,Pandey,A.,2017.Biodegradationofbiopolymers.In: CurrentDevelopmentsinBiotechnologyandBioengineering,Chapter32.ElsevierBV,p.739. Nampoothiri,M.K.,Nair,N.R.,Rojan,P.J.,2010.Anoverviewoftherecentdevelopmentsinpolylactide (PLA)research.Bioresour.Technol.101(22),8493 8501. Pandey,J.K.,Kumar,A.P.,Misra,M.,Mohanty,A.K.,Drzal,L.T.,Singh,R.P.,2005.Recentadvancesin biodegradablenanocomposites.J.Nanosci.Nanotechnol.5,497 526. Park,H.,Weller,C.,Vergano,P.,Testin,R.,1993.Permeabilityandmechanicalpropertiesofcellulose basededible films.J.FoodSci.58(6),1361 1364.
Parker,G.,2008.Measuringtheenvironmentalperformanceoffoodpackaging:lifecycleassessment.In: Chiellini,E.(Ed.),EnvironmentallyCompatibleFoodPackaging.WoodheadPublishingLtd., Cambridge,UK,pp.211 237.
Pelissero,A.(Ed.),1990.Lematerieplasticheelambiente.AIM,Bologna,pp.129 138.
Prashanth,K.V.H.,Tharanathan,R.N.,2007.Chitin/chitosan:modificationsandtheirunlimitedapplicationpotential anoverview.TrendsFoodSci.Technol.18(3),117 131.
Rhim,J.W.,2004.Physicalandmechanicalpropertiesofwaterresistantsodiumalginate films.Lebensm. Wiss.Technol.37,323 330.
Rhim,J.W.,Ng,P.K.,2007.Naturalbiopolymer-basednanocomposite filmsforpackagingapplications. Crit.Rev.FoodSci.Nutr.47(4),411 433.
Rhim,J.W.,Gennadios,A.,Weller,C.L.,Cezeirat,C.,Hanna,M.A.,1998.Soyproteinisolate-dialdehyde starch films.Ind.CropsProd.8,195 203.
Rhim,J.W.,Gennadios,A.,Dejing,F.,Weller,C.L.,Hanna,M.A.,1999.Propertiesofultravioletirradiated protein films.Lebensm.Wiss.Technol.32,129 133.
Rhim,J.,Gennadios,A.,Handa,A.,Weller,C.,Hanna,M.,2000.Solubility,tensile,andcolorpropertiesof modifiedsoyproteinisolate films.J.Agric.FoodChem.48(10),4937 4941.
Rhim,J.W.,Weller,C.L.,2000.Propertiesofformaldehydeadsorbedsoyproteinisolate films.FoodSci. Biotechnol.9,228 233.
Robertson,G.,2008.State-of-the-artbiobasedfoodpackagingmaterials.In:Chiellini,E.(Ed.),EnvironmentallyCompatibleFoodPackaging.WoodheadPublishingLtd.,Cambridge,UK,pp.3 28. Ruban,S.W.,2009.Biobasedpackaging applicationinmeatindustry.Vet.World2(2),79 82. Sabiha-Hanim,S.,Siti-Norsafurah,A.M.,2012.Physicalpropertiesofhemicellulose filmsfromsugarcane bagasse.ProcediaEng.42,1390 1395.August.
Satyanarayana,K.G.,Arizaga,G.G.C.,Wypych,F.,2009.Biodegradablecompositesbasedonlignocellulosic fibers anoverview.Prog.Polym.Sci.34(9),982 1021. Schmidt,D.,Shah,D.,Giannelis,E.P.,2002.Newadvancesinpolymer/layeredSilicatenanocomposites. Curr.Opin.SolidStateMater.Sci.6,205 212. SinhaRay,S.,Okamoto,M.,2003a.Polymer/layeredsilicatenanocomposites:areviewfrompreparationto processing.Prog.Polym.Sci.28(11),1539 1641.
SinhaRay,S.,Okamoto,M.,2003b.Biodegradablepolylactideanditsnanocomposites:openinganew dimensionforplasticsandcomposites.Macromol.RapidCommun.24,815 840.
SinhaRay,S.,Yamada,K.,Okamoto,M.,Ueda,K.,2003a.Biodegradablepolylactide/montmorillonite nanocomposites.J.Nanosci.Nanotechnol.3,503 510.
SinhaRay,S.,Yamada,K.,Okamoto,M.,Ogami,A.,Ueda,K.,2003b.Newpolylactide/layeredsilicate nanocomposites.PartII:concurrentimprovementsofmaterialproperties,biodegradabilityandmelt rheology.Polymer44,857 866.
SinhaRay,S.,Yamada,K.,Okamoto,M.,Fujimoto,Y.,Ogami,A.,Ueda,K.,2003c.Newpolylactide/ layeredsilicatenanocompositespartIII:high-performancebiodegradablematerials.Chem.Mater.15, 1456 1465.
Tariq,S.,2013.SuccessFactorsfortheAdoptionofBio-BasedPackaginginEUFoodIndustry.Masterof ScienceThesis.Stockholm,Sweden2013.
U.S.Congress,OfficeofTechnologyAssessment,1993.Biopolymers:MakingMaterialsNature’sWayBackgroundPaper.OTA-BP-E-102.U.S.GovernmentPrintingOffice,Washington,DC.
Vaia,R.A.,Gianelis,E.P.,1997.Latticemodelofpolymermeltintercalationinorganically-modi fiedlayered silicates.Macromolecules30,7990 7999.
Vroman,I.,Tighzert,L.,2009.Biodegradablepolymers.Materials2(2),307 344.
Weber,C.(Ed.),2000a.TheFoodBiopackConferenceProceedings,Copenhagen,Denmark,August 27 29,2000.TheRoyalVeterinaryandAgriculturalUniversity,Frederiksberg,Denmark,ISBN 87-90504-09-7.
Weber,C.(Ed.),2000b.BiobasedPackagingMaterialsfortheFoodIndustry,StatusandPerspectives.The RoyalVeterinaryandAgriculturalUniversity,Frederiksberg,Denmark,ISBN87-90504-07-0. Wellenreuther,F.,vonFalkenstein,E.,Detzel,A.,2010.Comparativelifecycleassessmentofbeveragecartonscb3andcb3EcoPlusforUHTmilk,ifeu-institutfurEnergie-undUmwetforschungHeidelberg GmbH. www.sig.biz
Wong,W.S.,Camirand,W.P.,Pavlath,A.E.,1994.Developmentofediblecoatingsforminimallyprocessed fruitandvegetables.In:Krochta,J.M.,Baldwin,E.A.,Nisperos-Carriedo,M.O.(Eds.),EdibleCoatings andFilmstoImproveFoodQuality.TechnomicPub.Co,Lancaster,PA,pp.65 88. www. sustainabledevelopment2015.org/AdvocacyToolkit/.../92-our-common-future . Yu,Y.H.,Lin,C.Y.,Yeh,J.M.,Lin,W.H.,2003.Preparationandpropertiesofpoly(vinylalcohol)-clay nanocompositematerials.Polymer44(12),3553 3560.
Relevantwebsites
www.sustainabledevelopment2015.org/AdvocacyToolkit/.../92-our-common-future mis.dost.gov.ph qcm-mazand.com saiapm.ulbsibiu.ro. www.wrap.org.uk. documents.mx.
Descriptionofbiobasedpolymers
Biobasedpolymersaresustainablepolymersproducedfromrenewableresourcessuchasbiomass insteadoftheconventionalfossilresourcessuchaspetroleumandnaturalgas,preferablybased onbiologicalandbiochemicalprocesses.Theyarecharacterizedbythenatureofcarbonneutral orcarbonoffsetinwhichtheatmosphericcarbondioxideconcentrationdoesnotincreaseeven aftertheirincineration
MasutaniandKimura,2015
Globalproductioncapacityforbiopolymersincreasedby4% 6.6milliontonnesfrom2015to 2016.Thisrepresentsashareof2%oftheglobalpolymermarket.Theturnoverofbio-basedpolymerwasabout Vuro13billionworldwidein2016comparedto Vuro11billionin2014.Productioncapacityofbio-basedpolymersisforecastedtoincrease8.5milliontonnesby2021.In2016,it was6.6milliontonnes(http://news.bio-based.eu/bio-based-polymers-worldwide-ongoinggrowth-despite-difficult-market-environment; www.mdpi.com)
Alltypesofbiopolymersarenotbiodegradable,butsomeare.Examplesarestarch blends,polyhydroxyalkanoates(PHAs)andpolylacticacid(PLA).Themostimportant developmentisenvisagedforPHA. “Thisbelongstothelargefamilyofdifferentpolymers.PHAproductioncapacitywassmallin2016andisexpectedtoincreasethreetimes by2021.Anotherimportantdevelopmentispredictedforpolyamides(PA);itsproductioncapacityisexpectedtoincreasetwotimesby2021.Biodrop-inPETandbioPLA areshowingabout10%annualgrowthrates” (http://news.biobased.eu/biobasedpolymers-worldwide-ongoing-growth-despite-difficult-market-environment).
Severaldefinitionsareusedforbiopolymersinthepolymer,packaging,andcompositeareas.Theterm “bio” isusedfordesignatingabiodegradablematerial,andalsoused fordesignatingmaterialsfromsustainablerawmaterials.TheEuropeanBioplasticsAssociationusesabroaderdefinitionreferringtodifferenttypesofbioplastics(Table2.1) ( Johanssonetal.,2012).
Criteriausedforsortingbiopolymersarepresentedin Table2.2.
BiobasedPolymers ISBN978-0-12-818404-2, https://doi.org/10.1016/B978-0-12-818404-2.00002-3
Table2.1 Bioplastics(EuropeanBioplasticsAssociation).
1. Bioderivedandbiodegradable/compostable polylactides,polyhydroxyalkanoates
2. Fossilfuel derivedandbiodegradable polycaprolactone
3. Bioderivedandnonbiodegradable Biopolyethylene(bio-PE)andbiopolyethyleneterephthalate(bio-PET).Abioderived polymersuchasbio-PEischemicallyidenticaltoPEderivedfromoil,andthereforehasthe samechemicalandphysicalcharacteristics.
BasedonJohansson,C.,Bras,J.,Mondragon,I.,Nechita,P.,Plackett,D.,Simon,P.,Svetec,D.G.,Virtanen,S.,Baschetti, M.G.,Breen,C.,Clegg,F.,Aucejo,S.2012.Renewable fibersandbio-basedmaterialsforpackagingapplications a reviewofrecentdevelopments.BioResour.7(2),2506 2552.
Table2.2 Criteriausedforsortingbiopolymers.
Chemicalcomposition
Methodofsynthesis
Methodofprocessing Economicimportance Applicationareas
BasedonJohansson,C.,Bras,J.,Mondragon,I.,Nechita,P., Plackett,D.,Simon,P.,Svetec,D.G.,Virtanen,S.,Baschetti, M.G.,Breen,C.,Clegg,F.,Aucejo,S.2012.Renewable fibersand bio-basedmaterialsforpackagingapplications areviewofrecent developments.BioResour.7(2),2506 2552.
Biopolymerscanbegroupedintothreecategoriesaccordingtotheirorigin(Petersen etal.,1999):
1. Polymersproducedfromnaturalproductssuchaspolysaccharides
2. Polymersproducedbytraditionalchemicalsynthesisfromsustainablebiomonomers (examplePLA)
3. Polymersproducedbymicroorganismsorgeneticallymodifiedbacteria.Examplesare PHAs.Thesecomprisepolyhydroxybutyrate(PHB)andcopolymersofhydroxybutyrateandhydroxyvalerate).
Polysaccharides celluloseandstarch arecalledbiopolymers.Thesearenatural polymersfoundinnatureduringthegrowthofallorganisms.Othernaturallyoccurring polymersaretheproteinsthatcanbeusedforproducingmaterialsthatcanbebiodegraded(U.S.Congress,1993).Thesepolymersareusuallychemicallymodifiedwith anobjectiveformodifyingthedegradationrateandimprovingthemechanicalproperties (VromanandTighzert,2009).
Naturalpolymersarebeingusedasbarriercoatingsinpaperpackagingmaterials. Thesecanreplacesyntheticpapercoatingsbeingcurrentlyused,suchaspolyethylene, polyvinylalcohol,rubberlatex,and fluorocarboninfoodpackaging(ChanandKrochta, 2001a,b). “Agriculturallyderivedproductstosyntheticpapercoatingsprovidean
opportunityforstrengtheningtheagriculturaleconomyandreducingimportofpetroleumanditsderivatives” (Khwaldiaetal.,2010).
Anumberofcompanieshaveintroduceddifferenttypesofbiopolymers. Table2.3 liststheirmanufacturers,brands,andmainpackagingapplications. Accordingtothematerialstheyaremanufacturedfrom,thesebiopolymerscanalsobe classifiedasstarchpolymers(e.g.,Mater-Bi),cellulosic(e.g.,cellophane),aliphaticpolyesters(e.g.,PLA),biobasedpolyethylene(bio-PE),andmicrobialsynthesizedpolyhydroxyalkanoates(e.g.,PHB).
Instudyingthebiodegradationofpolymersanimportantdifferenceshouldbemadebetween degradationandbiodegradation.Usually,materialsexposedtoweathering,aging,and/or buryingwillundergochemical,mechanicalandthermaltransformations.Theseconditionsresult inthechangeofstructureofpolymersanditsproperties,andcanbeanimportantfactorininitiatingthebiodegradationprocess.Instancesofcompression,tension,shear,andotherforcesmay leadtothemechanicaldegradationofamaterial.Thesefactorsdonotplayapredominantrole inthebiodegradationprocessbutcanstimulateorsustainit Panetal.,2013;Khosravi-DaraniandBucci,2015
Table2.3 Manufacturersofbiopolymers.
PolymersManufacturersBrandApplications
StarchDuPontBiomaxLoose fill,bags, films,trays, wrap fi lm
BiotecBioplast
NovamontMater-Bi CellulosicsInnovia fi lmsNature flexFlexible fi lm
Eastman Chemical Tenite
FKuRBiograde
SateriSateri
Polylacticacid(PLA)BASFEcovioRigidcontainers, fi lms, barriers NatureWorksIngeo CargilldowEcoPLA
Biobasedpolyethylene terephthalate(PET)
SynbraBiofoam
DuPontBiomaxBottles,trays, fi lms
Biobasedpolyethylene(PE)BraskemBioPERigidcontainers, fi lmwrap, barriercoatings
Polyhydroxyalkanoates (PHAs)and polyhydroxybutyrate (PHB)
MonsantoBiopolFilms,barriercoatings,trays BiomerBiomer
BasedonHu,B.,2014.Biopolymer-basedlightweightmaterialsforpackagingapplications.InLightweightMaterialsfrom BiopolymersandBiofibers,Chapter13.ACSSymposiumSeries,vol.1175,pp.239 255. https://doi.org/10.1021/bk2014-1175.ch013.Mohanty,A.K.,Misra,M.,Hinrichsen,G.,2000.Biofibres,biodegradablepolymersandbiocomposites anoverview.Macromol.Mater.Eng.,276 277,1 24,Mohanty,A.K.,Misra,M.,Drzal,L.T.,2002.Sustainablebiocompositesfromrenewableresourcesopportunitiesandchallengesinthegreenmaterialsworld.J.Polym.Environ.10, 19 26.
Variouspolymersthatareabletobiodegradecanbeusedinpackaging;somebiodegradablepolymersarealreadybeingused.Cellophaneisthecommonlyusedcellulosebasedbiopolymerandisusedinfoodpackaging(Luetal.,2014;Panetal.,2013). Starch-basedpolymershavethetendencytoswell.Thesepolymerswhenexposedto moisturegetdeformed.OtherinterestingbiopolymersarePLAs,PHA,PHB,anda copolymerofPHBandvalericacid(MarshandBugusu,2007).But,inferiormechanical properties,higherhydrophilicnature,andrestrictedabilitytobeprocessedarelimiting theiruse(Wangetal.,2015).
Assustainablesolutionstoourfuturerequirementsforenergyandmaterialsarein focus,therenewabilityofbiopolymersisanimportantissueinoursociety( Johansson etal.,2012).Thebiodegradabilityofcertaintypesofpolymerswillbeimportantfor somematerialapplications.Biodegradabilityisanidealaspectforasustainablematerial tokeeptheloopof cradletograve closedforplasticsused(Shenetal.,2009;Natureworks, 2009;Weissetal.,2007).
Ecofriendlyandbiodegradablepolymersarebeingdevelopedbecauseofenvironmentalissuesandstudiesofend-of-lifeofmaterialspresentlyusedinpackagingandother fields(Oksmanetal.,2006;Pandeyetal.,2005;ShahzadTariq2013;Abdul-Muhmin, 2007;Leeetal.,2008;Ballesterosetal.,2018).Problemsofwastedisposalassociatedwith plasticsderivedfrompetroleumarereducedbytheuseofbiodegradablepolymers (Mohantyetal.,2000).Despitethefactthattotallyreplacingthetraditionalplasticsby biodegradablematerialsdoesnotlookfeasibleatthemoment,therearecertainapplicationsforwhichsuchareplacementappearstobeuseful.Theterm biodegradation hasnot beenusedconsistently(vanderZee,2005).Biodegradationmeansfragmentation,reductionofmechanicalproperties,orsometimesdegradationbythemicrobesforplasticsthat aredegradable.Severalinternationalorganizationsandgroupshavedevelopedmethods fordeterminingbiodegradabilityandcompostabilityunderdifferentenvironmentalconditions(Mohantyetal.,2000).Therearemanyreasonswhytheuseofasingledefinition hasnotbeeneasy(vanderZee,2005).Someofwhicharepresentedbelow( Johansson etal.,2012):
• Thevariationofthedefinitionsbecauseofthedifferencesintheenvironmentin whichthematerialisintroduced
• Differentviewpointsrelatedtobiodegradability
• Differentviewpointsonthepolicyimplicationsofthedifferentdefinitions
Severalexcellentreviewsandbookshavebeenpublishedonpolymers(Petersenetal., 1999;ChandraandRustgi,1998;Witt;etal.,1997;Guilbertetal.,1996;Krochtaand Mulder-Johnston,1997;GaborandTita,2012;Babuetal.,2013).
AccordingtoASTM D883-00,biodegradablepolymersgothroughsubstantial changesintheirchemicalstructureundercertainconditions( Johanssonetal.,2012). Thisresultsinalossofphysicalandmechanicalproperties.Biodegradablepolymers