Biobased polymers: properties and applications in packaging pratima bajpai - Download the ebook with

Page 1


https://ebookmass.com/product/biobased-polymers-propertiesand-applications-in-packaging-pratima-bajpai/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Cellulases in the Biofuel Industry Pratima Bajpai

https://ebookmass.com/product/cellulases-in-the-biofuel-industrypratima-bajpai/

ebookmass.com

Pulp and Paper Industry. Nanotechnology in Forest Industry 1st Edition Pratima Bajpai

https://ebookmass.com/product/pulp-and-paper-industry-nanotechnologyin-forest-industry-1st-edition-pratima-bajpai/

ebookmass.com

Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications Sajjad Haider

https://ebookmass.com/product/renewable-polymers-and-polymer-metaloxide-composites-synthesis-properties-and-applications-sajjad-haider/ ebookmass.com

Lying and Insincerity 1st Edition Andreas Stokke

https://ebookmass.com/product/lying-and-insincerity-1st-editionandreas-stokke/

ebookmass.com

Mastering Competencies in Family Therapy: A Practical Approach to Theory and Clinical Case Documentation 3rd Edition Diane R. Gehart

https://ebookmass.com/product/mastering-competencies-in-familytherapy-a-practical-approach-to-theory-and-clinical-casedocumentation-3rd-edition-diane-r-gehart-2/ ebookmass.com

Cosmetic Dermatology: Principles and Practice, Second Edition: Principles & Practice 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/cosmetic-dermatology-principles-andpractice-second-edition-principles-practice-2nd-edition-ebook-pdf/

ebookmass.com

This is Not a Leadership Book: 20 Rules for Success Emmanuel Gobillot

https://ebookmass.com/product/this-is-not-a-leadership-book-20-rulesfor-success-emmanuel-gobillot/

ebookmass.com

Intermediate Accounting 11th Edition David Spiceland

https://ebookmass.com/product/intermediate-accounting-11th-editiondavid-spiceland/

ebookmass.com

Canadian

Fundamentals of Nursing 2019 6th edition Patricia A. Potter, Anne Griffin Perry, Patricia Stockert, Amy Hall, Barbara J. Astle, Wendy Duggleby Patricia A. Potter

https://ebookmass.com/product/canadian-fundamentals-ofnursing-2019-6th-edition-patricia-a-potter-anne-griffin-perrypatricia-stockert-amy-hall-barbara-j-astle-wendy-duggleby-patricia-apotter/ ebookmass.com

Electromyography in Clinical Practice 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/electromyography-in-clinicalpractice-3rd-edition-ebook-pdf/

ebookmass.com

BIOBASEDPOLYMERS PropertiesandApplications inPackaging

PRATIMABAJPAI

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-818404-2

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: KostasMarinakis

EditorialProjectManager: ReddingMorse

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: GregHarris

TypesetbyTNQTechnologies

“Dedicatedtomybelovedparents&family” Fortheirlove,endlesssupport,encouragement&sacrifices.

Listof fi gures

Figure3.1 Structureofamylose.27

Figure3.2 Structureofamylopectin.28

Figure3.3 Molecularstructureofcelluloserepresentingthecellobiose unitasarepeatingunit.34

Figure3.4 Structureofchitinandchitosan.40

Figure3.5 Structureofpullulan.43

Figure3.6 Structureofalginate.45

Figure3.7 Structureofcarrageenan.48

Figure3.8 Structureofxanthangum.51

Figure3.9 Generalstructureofclass1dextransconsistingofalinear backboneof a(1/6)-linked D-glucopyranosyl repeatingunits.53

Figure3.10 (A)Arepeatingsegmentofpectinmoleculeandfunctional groups:(B)carboxyl;(C)ester;(D)amideinpectinchain.56

Figure3.11 Structureof b-glucan.57

Figure3.12 Structureofgellan.58

Figure3.13 Gelatin.61

Figure:3.14 Chemicalstructureofpolylacticacid(PLA).73

Figure3.15 Synthesisofhigh-molecular-weightPLAfromL-and D-lacticacids.74

Figure3.16 Polybutylenesuccinate.79

Figure3.17 PBSanditsproductionroute.80

Figure3.18 StructureofPHAswithrespecttoclassification.83

Figure3.19 PEmacromoleculecarbonchain.85

Figure4.1 Rigidpackaging.114

Figure4.2 Flexiblepackaging.120

Figure6.1 Examplesoftime-temperatureindicators:(A)Fresh-Check byTemptimeCorporation(USA)(B)CoolVuby Freshpoint(Switzerland(C)CheckpointbyVitsab InternationalAB(Sweden)(D)OnVubyFreshpoint (Switzerland)(E)TempixbyTempixAB(Sweden)and (F)TimestripbyTimestrip(UK).156

Figure6.2 Exampleof:(A)a1-Dbarcode;B)aPDF4172-D barcode;and(C)aQR2-Dbarcode.159

Figure7.1 Prevalenceofenvironmentalimpactindicators(damage orresourceindicators)in72publishedlifecycleanalysis (LCA)studiesonbiobased(nonenergy)products.173

Figure7.2 Averageproduct-specificenvironmentalimpactsof biobasedmaterialsincomparisontoconventionalmaterials (Dij).Uncertaintyintervalsrepresentthestandarddeviation ofdata.Numbersinparenthesesindicatethesamplesize forthefunctionalunitsofpermetrictonandperhectare andyear,respectively.176

Figure7.3 Averagenonrenewableprimaryenergyuseandgreenhouse gas(GHG)emissionsofbiobasedchemicalsincomparison toconventionalchemicals(Dij).Uncertaintyintervals representthestandarddeviationofdata.Numbersin parenthesesindicatethesamplesizeforthebiobased andconventionalchemicals,respectively.177

Listoftables

Table1.1 Advantagesofnaturalbiopolymer films.5

Table1.2 Classificationofbiopolymersdependingonthegeneral chemicalcomposition.8

Table2.1 Bioplastics(EuropeanBioplasticsAssociation).14

Table2.2 Criteriausedforsortingbiopolymers.14

Table2.3 Manufacturersofbiopolymers.15

Table3.1 Biobasedpolymersproducedbyvariousprocesses.26

Table3.2 Applicationsofstarchproducts.30

Table3.3 Propertiesandapplicationsofmodifiedstarches.30

Table3.4 Suppliersofstarch-basedproducts.32

Table3.5 Globalsuppliersofcellulosicproducts.36

Table3.6 Manufacturersproducingcellulose-basedpolymer films forpackaging.37

Table3.7 Industriallyimportantcellulosederivatives.37

Table3.8 AdvantagesofPLAovertraditionalpetroleum-basedpolymers.73

Table3.9 GlasstransitionandmeltingtemperatureofPLAwithvarious ratiosofL-monomercomposition.75

Table3.10 SuppliersofPLA.78

Table3.11 SuppliersofPBS.81

Table3.12 GlobalsuppliersofvarioustypesofPHAs.89

Table4.1 Rigidpackaging.113

Table4.2 Globalrigidplasticpackagingconsumption.117

Table4.3 Keyplayersfortherigidpackagingmarket.117

Table4.4 Typesof flexiblepackaging.119

Table4.5 Main flexiblepackagingmaterials.120

Table4.6 Typesof flexibleplastics.120

Table4.7 Advantagesof flexiblepackagingoverrigidcontainers.124

Table4.8 Keymanufacturersof flexiblepackaging.126

Table6.1 Theimportanceofpackaging.140

Table6.2 Roleofpackaging.140

Table6.3 Activeandintelligentpackagingsystems.142

Table6.4 Afewexamplesofactivepackagingsystems.143

Table6.5 Attributesofcommercialoxygenscavengers.144

Table6.6 Advantagesofantimicrobialediblecoatingsand films.148

Table6.7 Commercialactivepackagingsystems.153

Table6.8 TTIs’ marketapplications.155

Table6.9 Commercialapplicationsoffreshnessindicators.157

Table6.10 Gasindicators.157

Table6.11 Thermochromicinksareproducedbyseveralcompanies.161

Table6.12 Commercialintelligentpackagingsystems.161

Table7.1 Energyandgreenhousegassavings.174

Table8.1 Typesoffoodcontactmaterials.185

Table8.2 Europeanlegislationandotherresources.188

Table9.1 Globalmarketshareforbiopolymersusedinpackaging byvalue,2010(%).192

Table11.1 Diverseapplicationsofnanotechnology.204

Preface

Developmentofbiobasedmaterialisoneimportantfactorforsustainablegrowthof thepackagingindustry.Recenttrendsintheconsumermarkethavemovedtoward greenerpackaging.Drivenbybiodegradabilityandbiorenewabilitytrends,thedemand forbiobasedmaterialsinpackagingisexpectedtogrowtoabout9.45milliontonsby 2023.

Theissueofsustainabilityhasbeenhighforthelastseveralyears,encouraging academiaaswellasindustrytodevelopsustainablealternativesforpreservingresources forfuturegenerations.Thesuccessfuluseofrenewablebiologicalmaterialsforthe productionofpackagingmaterialswillsatisfyanumberofthemajorobjectives.Toalarge extent,packagingmaterialsarebasedonnonrenewablematerials.Theonlywidelyused renewablepackagingmaterialsarepaperandboard,whicharebasedoncellulose,which isthemostabundantrenewablepolymer.However,significanteffortsarebeingmadeto identifyalternativenonfoodusesofagriculturalcropsandtheproductionofpackaging materials,basedonpolymersfromagriculturalsources.Suchalternativebiobased packagingmaterialshaveattractedconsiderableresearchanddevelopmentinterestfora significantlengthoftime,andinrecentyearsthesematerialshavereachedthemarket. Eco-concernsplayedamajorroleinencouragingthedevelopmentofbiopolymersin packagingapplications.Thisoccurreddirectlyviaconsumerdemandforeco-friendly productsaswellasindirectlyviathepoliticalandensuingregulatoryenvironment.Sourcesofbiopolymersthatareexpectedtobecomeincreasinglysignificantincludethosethat donotcompetewithfoodproductionforresources,suchasalgae,andmaterialssuitable forpackagingapplicationsbasedonalgaeareprojectedforlaunchsoon.Furthermore, technologicaladvances,suchasthosebasedonnanotechnology,areforecasttocontinue improvingbiopolymerpropertiesandincreasingthenumberofpotentialapplicationsfor suchmaterialsinpackaging.Thisbooklooksathowbiopolymersmaybeusedin packagingasapotentialgreensolution.Itaddressesbiobasedfeedstocks,production processes,packagingtypes,recenttrendsinpackaging,environmentalimpactsof biobasedpolymers,andlegislativedemandsforfoodcontactpackagingmaterials.It coversopportunitiesforbiopolymersinkeyendusesectorsandpenetrationof biopolymer-basedconceptsinthepackagingmarket,aswellasbarrierstowidespread commercialization.

Acknowledgments

SomeexcerptstakenfromGangeA(2010).BiopolymersinPackagingApplications IntertechPira,USA,withkindpermission.

SomeexcerptstakenfromBajpaiP(2016).PulpandPaperIndustry,FirstEdition: NanotechnologyinForestIndustry,Elsevier,USAwithkindpermission.

SomeexcerptstakenfromBijiKB,RavishankarCN,MohanCO,andSrinivasa GopalTK(2015).Smartpackagingsystemsforfoodapplications:areview.JFoodSci Technol.,52(10):6125 6135withkindpermission.

SomeexcerptstakenfromWeissM,HaufeJ,CarusM,Brand~aoM,BringezuS, HermannB,andPatelMK(2012).Areviewoftheenvironmentalimpactsofbiobasedmaterials.JournalofIndustrialEcology,16(S1):S169 81withkindpermission.

SomeexcerptstakenfromDayBPFandPotterL(2011).ActivePackaginginFood andBeveragePackagingTechnology,SecondEdition.EditedbyRichardColesand MarkKirwan.BlackwellPublishingLtd.withkindpermission.

SomeexcerptstakenfromBajpaiP(2016).PretreatmentofLignocellulosicBiomass forBiofuelProduction,SpringerBriefsinGreenChemistryforSustainability.Springer NatureAmerica,Inc.withkindpermission.

SomeexcerptstakenfromBajpaiP(2018).ThirdGenerationBiofuels.Springer BriefsinEnergy.SpringerNatureSingaporePteLtd.withkindpermission.

SomeexcerptstakenfromBabu,RP,O’ConnorK,andSeeram,R(2013).Current progressonbio-basedpolymersandtheirfuturetrends.Prog.Biomater,2(8):1 16with kindpermission.

Khwaldia,K(2010).Watervaporbarrierandmechanicalpropertiesofpaper sodium caseinateandpaper sodiumcaseinate paraffinwax films.JournalofFoodBiochemistry,34:998 1013withkindpermission.

Backgroundandintroduction

“Thepackagingindustrycurrently,dependsstronglyonthepetroleum-basedplastics whichcauseconcernstofutureinrelevancewithbothenvironmentandtheeconomy” (ShahzadTariq,2013).Theshortageofrawmaterialsalsocreatesathreattotheavailability,costofrawmaterialsandtheirbiodegradability(Gustafssonetal.,2011).

Thereareseveralreasonstosearchoutalternativestopetroleum-basedplastics:depletionoffossilfuels,awildlyunsteadyoilprice,theneedtoreducecarbonemissions,an accumulationofplasticwaste,andtheneedforpackagingmaterialshavingnewcharacteristics.Inresponse,researchershavedevelopedawholenewgenerationofplantor plant-waste-basedpackagingmaterials,somehavingcharacteristicssuchasbreathability orantimicrobialproperties.Therearealreadycountlessapplicationsforthem.

TheEuropeanUnion(EU)marketforpackaginghasavalueofabout127billionUS dollarsandhasabout40percentoftheglobalpackagingmarket(ShahzadTariq.2013). TheEuropeanpackagingmaterialscanbebrokendownascontributionfromglasswith 8%,metal14%,paper42%,andplastic36%(GlobalPackagingAlliance,2013).

Furthermore,petroleum-basedproductslackbiodegradability.Thiscancausesubstantialwastedisposalproblemsincertainareas(deVlieger,2003;Robertson,2008; FranzandWelle,2003).Packagingisbecomingaveryimportantpartofourdailylife. Theutilizationofpackagingmaterialsiscontinuouslyincreasingwithtime.Itisexpected thatinthefuturethemarketwillgrowglobally.Packagingproductsproducedfrom renewablesubstratescurrentlyrepresentonlyabout2%ofthemarket:traditional fiber-basedpackagingisnotincluded.

“Substantialattentionisnowbeinggiventotheconceptofsustainabledevelopment. Thecommonlyaccepteddefinitionofsustainabledevelopmentisdevelopmentthat meetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerations tomeettheirownneeds” (WorldCommissiononEnvironmentandDevelopment’ s report “OurCommonFuture,” 1987)(www.sustainabledevelopment2015.org/ AdvocacyToolkit/.../92-our-common-future).Foratransitiontoahigherlevelof sustainabilitydevelopment,itisveryimportanttomakeanumberoftechnological andsocialchanges,andoneoftheseistodevelopalternativeresourcesofrawmaterials.

BiobasedPolymers ISBN978-0-12-818404-2, https://doi.org/10.1016/B978-0-12-818404-2.00001-1

Sustainabledevelopmentisbecomingthecorecommitmenttocreatesharedvalueby increasingworldaccesstothebestqualityavailableinfoodandbeverageswhilefocusing onstayingbeingeco-friendly.OneprojectisledbyaSwedish firm,Innventia,apartly governmentindustrialresearchcompany,withtheaimtoexplorethenicheinbiobased/ ecofriendlypackagingmaterials.Foodpackagingisalargeandcomplexmarket, providingprotection,tamperresistance,andspecialphysical,chemical,orbiologicalrequirements.Most,ifnotallofthis,canbehandledbybiobasedmaterials.Focusingalone onthesustainabledevelopmentofthepackagingmaterialisnotenoughandisshortsighted.Thatiswhytheindustryhasincreasedthecommunicationeffortstorealize theprosandconsonthewholechain,i.e.,rawmaterialstoprocessingtowholesale andretailtouseand finallytodisposal.

Forsustainablegrowthofthepackagingindustry,itisveryimportanttodevelop high-performancesustainablerawmaterials.Thesustainablepackagingsectorisgrowing atafasterrateascomparedtotheoverallpackagingindustry.Studiesconductedbyseveral researchinstitutionsinGermanyandSwedenshowthatfromacarbonfootprintperspective,packagingmaterialsfromforestresourcescandeliverseveralbenefitsincomparison toconventionalplasticsorglasspackages.Paperboardduetoitsrenewabilityisbetterthan glassorplasticcontainersforpackagingofliquids(Wellenreutheretal.,2010;Jelseetal., 2011).Furthermore,theweightofbiobasedpackagingislower.Thispropertyis favorablefromatransportationpointofview.The finalproductsareusuallyreused (HohenthalandVeuro,2011).Consumersusuallylike fiber-basedpackagingasitis eco-friendly.

Biopolymersusedasdispersioncoatingonpaperorpaperboardforuseinpackaging andbioplasticswiththesameintendeduseofferenoughbarrierpropertiesforfats,but generallyhaveonlyreasonablewatervaporbarrierproperties.Poormechanicalproperties,inadequateheatresistance,andhighsensitivitytomoistureascomparedtoplastics obtainedfrompetroleumareotherweakpoints.Furthermore,tobecomecompetitive itisessentialthatbiopackagingsolutionsshouldbeeconomicallyfeasibleandcanbe includedintheindustrialprocesses.

Itisimportanttorememberthattheroleofpackagingnowrevolvesaboutaround threeconcepts environmental,economic,andsocial coveringtheaspectsofsustainability.TherecenttrendsinEUpackagingmarketsshowaninterestofmovingtoward whatiscalled “ green ” packaging,i.e.,usingrecyclableandrecycledmaterials,reduced materialusage,andpolymersextractedfrombiomass.Theaccomplishmenthasbeen drivenbyEUdirectivesfortheevolutionofeco-friendlypackagingsolutionsinthe EU(Parker,2008).Someoftheresearchgroupsthathavepursuedpackagingfrom renewablematerialsareSustainPack,SustainComp,FoodBiopackproject,SUNPAP, FlexPakRenew,RenewFunccBarr,andVTT( Johanssonetal.,2012;ShahzadTariq, 2013).

TheFoodBiopackprojectprovidedinformationontheproductionanduseofbiopackagingmaterialsforthefoodindustry,coveringtheentireperspectivefromproperties ofbiomaterialstofoodpackagingconsiderations,lifecycleanalysis,ecologicalimpacts,as wellasmarketissues(Weber,2000a,b).

SustainPackhasdealtwithimprovementsinarangeofpackagingfunctionalities.Selfhealingcoatingsweredevelopedformaintainingthebarrierpropertiesofpackageswhen subjectedtoexternalstress(Anderssonetal.,2009).Otherproblemsthatwereaddressed includedprintedelectronicsforcommunication,nanosizedthintoplayersforimproved barrierperformance,andcellulose fibersforreinforcement(Robertsson,2008;AmbergSchwabandKleebauer,2007;Aucejo,2005).

FlexPakRenewdevelopedenvironmentallyfriendlypaperpackagingfromsustainablerawmaterials.Theobjectivewastosubstitutebarrier filmsobtainedfrompetroleum andtodevelopabiodegradablemultilayerpackagingstructureinwhichtheseparate layerswouldcontributetotheperformanceofthepackaging. “Studywasconducted forimprovingthe flexiblebasepaperbywet-endprocessing,toreinforcedbio-based coatingsforbarriersagainstwatervapor,oxygen,andgreasetotheapplicationofthin nanocoatingstofurtherimprovethebarrierproperties,andtotheinclusionofsustainable materialswithantimicrobialfunctionalitiesforextendedshelflifeoffoodproducts.Life cycleanalysesweremadeforevaluatingthesustainabilityofthe finalproductwith detailedstudyofeverycomponent” ( Johanssonetal.,2012).

RenewFuncBarrprojectfromSwedenaimedatdevelopingcost-effective,sustainable productionofsustainablematerialsforuseinfoodpackaging.Starch,proteins,andwaste productswereused.Conventionalmethodslikecoatingwithwater-baseddispersions andextrusionwereusedalongwithplasmadepositionandelectrospinningmethods forimprovingbarrierfunctionality.

IntheSustainCompproject,sustainablecompositematerialsareaddressed.The SUNPAPprojectfocusesonscalingupproductionofnanoparticlesfordevelopingsustainablepackagingproducts.

TheAgrobarprojectconcentratesonproductsobtainedfromagriculturalrawmaterialsforutilizationinbarriercoatings.

TheEnzycoatandEnzycoatIIprojectsaredevelopingactivepackagingusingoxygen scavengersincludedinbarriercoatingsconsistingofbiomaterials.

Packaginghasalwaysbeenunderdiscussion,criticismandapparentlya “quietrevolution.” Thereisalwaysadebatetoredesignanddiscovernewpackagingmaterials,but theprocessonthewholeisverycomplex.Itinvolvesthealignmentoffourkeyplayers: packagingmanufacturers,fast-movingconsuminggoodscompanies,retailers,andgovernmentandtradebodies.Theultimatepotentialinthissectorisnotrealizedsincethe uncertaintyfacedbyinvestors,duetolegitimacyandlegislationissues,ishighinthese turbulentandvolatileeconomicsituations(StaffanJacobson,2008).

Inspiteoftheseissues,biobasedpackagingisshowingpromiseintermsofpriceand technicalfeasibility.Pricecaneffectivelyimproveifeconomiesofscaleareconsidered. Thiswouldmakebiobasedpackagingcompetent.Thistypeofpackagingappearsto betheappropriatesolutionforplasticwastecollectedintheseas,whichishaving dangerouseffectsonsealifeandaffectinghumanhealth.Earlier,themanufacturingpracticesfocusedonlyonimprovingthemethodsthatcouldhelpinobtainingmorequantitiesbyoptimizationoftheprocessparameters.Butnow,theworldischanging.Critical issuessuchassustainabilityhaveactivatedtheneedformanufacturingpracticesthatare notonlyeconomicallyadvantageousbutalsoadvantageousinthecontextofenvironmentandsociety.Intheworldofplastics,biobasedpackagingmaterialscansolvethe issuesmentionedabove.

Packagingmaterialsprotectandproduceappropriatephysicochemicalconditionsfor productsimportantforachievingalongershelflife.Thepackagingsystem,basedona properselectionofthepackagingmaterialsuppliedwithproperbarrierandmechanical properties,preventsproductspoilageandmaintainsthepackageditem’squalityduring storage.Itisimportantthatthepackagingmaterialshouldbiodegradeinareasonable timeperiodwithoutcreatinganyenvironmentalproblems.Inthisregard,biopackaging materialshaveafewadvantageouspropertiesforimprovingthequalityoffoodand increasingtheshelflifethroughreducingthegrowthofmicroorganismsintheproduct. Theyareabletoserveasbarrierstogases,moisture,watervapor,andsolutesandcanserve ascarriersofsomeactivesubstances(RhimandNg,2007).Biopolymer filmsalsocan functionsimilarlyandaugmentothertypesofpackagingbyincreasingtheshelflifeof foodsandimprovingthequality(Wongetal.,1994).Moreover,these filmscanincorporatedifferentadditives,forinstance,antimicrobials,antioxidants,antifungalproducts, colors,andothernutrients(Han,2000;Baldwin,1994;Wongetal.,1994).Incomparisontosyntheticpolymers,naturalbiopolymersshowmanyadvantagesinthattheyare renewable,edible,andcanbebiodegraded.Buttheirmechanicalpropertiesandbarrier propertiesarerelativelypoor.Thiscausesamainconstraintfortheiruseonacommercial scale.Polysaccharideandprotein filmsusuallyshowgoodoxygenbarrierpropertiesat lowtointermediaterelativehumidityandpossessgoodmechanicalproperties;buttheir watervaporbarrierpropertiesarenotgoodbecausetheyarehydrophilic(Gontardetal., 1994;Avena-BustillosandKrochta,1993;KesterandFennema,1986).Researchand development(R&D)isbeingconductedonmodificationofpropertiesofnatural biopolymer filmsforimprovingtheirmechanicalandbarrierproperties(Rhimand Ng,2007;Rhim,2004;RhimandWeller,2000; Micardetal.,2000;Rhimetal., 1998,1999;2000;Gennadiosetal.,1993,1998;Ghorpadeetal.,1995;Parketal.,1993).

Polymernanocompositematerials,containconstituentshavingdimensionsonthenanometer scale.Thesetopicsareintenselyresearchedinthe fieldofmaterialandpolymerscience,electronics,andbiomedicalscience(SinhaRayandOkamoto,2003a,b;VaiaandGiannelis,1997; Giannelis,1996).Apolymernanocompositeisthehybridmaterial.Itcontainsapolymermatrix

strengthenedwitha fiber,platelet,orparticlehavingonedimensiononthenanometerscale (Pandeyetal.,2005).Becauseofthenanometer-sizeparticlesdispersedinthepolymermatrix, thesenanocompositesshowsignificantlyimprovedpropertieswhencomparedwiththepure polymerorconventionalcomposites.Improvementsmayincludehighermoduli,strengthand heatresistance,andreducedgaspermeabilityand flammabilitywithverylow fillerloading,typically5wt%orlower(AlexandreandDubois,2000).Hence,naturalbiopolymershavebeen filled withlayeredsilicatesforenhancingtheirpropertieswhilemaintainingtheirbiodegradability.The impressiveincreaseofthematerialpropertiesofthenanocomposite filmsincomparisontothe purepolymerscanbeobtainedwithouttherequirementforcost-increasingprocessing.Furthermore,biodegradabilityisstillretained.Onlyinorganic,naturalmineralsremainafterthe final degradation

RhimandNg,2007;SinhaRayetal.,2003a,b,c;Yuetal.,2003;Schmidtetal.,2002

Table1.1 showsthebenefitsofnaturalbiopolymer filmsincomparisontoconventionalplasticmaterials.

Biobasedpackagingmaterialsderivedfromnaturalsourcesshowgreatpotentialfor improvingthequalityoffood,safety,andstabilityasanovelpackagingandprocessing technology.Thedistinctivebenefitsofthenaturalbiobasedpackagingmaydevelop newproducts,likecarriersforfunctionallyactivesubstances,individualpackagingof particulatefoods,andnutritionalsupplements.

Thefoodindustryisactivelyfocusingonusingbiobasedpackagingmaterials(U.S. Congress,1993).Biobasedmaterialspossessspecificcharacteristics,suchasmoresuitable barrierproperties,whichmakethemabetterchoiceincomparisontotraditional

Table1.1 Advantagesofnaturalbiopolymer films.

Lowcostandabundant

Renewableresources

Edible

Biodegradable

Supplementthenutritionalvalueoffoods

Enhancedorganolepticcharacteristicsoffood

Reducedpackagingvolume,weight,andwaste

Incorporatedantimicrobialagentsandantioxidants

Possibleuseinmultilayerfoodpackagingmaterialstogetherwithnonedible films

Extendedshelflifeandimprovedqualityofusuallynonpackageditems

Controloverintercomponentmigrationofmoisture,gases,lipids,andsolutes

Individualpackagingofsmallparticulatefoods

Functionascarriersforantimicrobialandantioxidantagents

Microencapsulationandcontrolledreleaseofactiveingredients

BasedonGennadios,A.,Weller,C.L.,1990.Edible filmsandcoatingsfromwheatandcornproteins.FoodTechnol. 44(10),63 67;HanandGennadios(2005);Krochta,J.M.,2002.Proteinsasrawmaterialsfor filmsandcoatings: definitions,currentstatus,andopportunities.In:Protein-BasedFilmsandCoatings(Gennadios,A.ed.),pp.1 41.CRC Press,BocaRaton,FL;Guilbert,S.,Cuq,B.,Gontard,N.,1997.Recentinnovationsinedibleand/orbiodegradable packagingmaterials.FoodAddit.Contam.14(6 7):741 751.

packagingmaterials.Somebiobasedmaterialsarealsoveryattractiveinappearanceor pleasanttotouch.Thisgeneratesinterestingmarketingopportunities,forexample,for packagingofluxuryproductsorproducingspecialdesigns.Thepriceofthesematerials isgenerallymorestableincomparisontooil-basedplastics,whichisamajorbenefit fortheindustry.

Sofar,toalargeextentpackagingmaterialshavebeenbasedonmaterialsproduced fromnonrenewablesources.Paperandboardarethemostcommonlyusedsustainable packagingmaterials.Thesearebasedoncellulose,whichisthemostabundantlyavailable sustainablepolymer.Seriouseffortsarebeingmadeforidentifyingalternativenonfood usesofagriculturalcropsandtheproductionofpackagingmaterialsfromthepolymers obtainedfromtheserawmaterials,whichmaybecomeamajoruseofthesecrops (CoombsandHall,2000;Mangan,1998).Inactuality,suchalternativebiobasedpackagingmaterialshaveattractedsignificantR&Deffortsforalongtime(Coombs andHall,2000;Mangan,1998).Thematerialsarenowbecomingavailableinthemarket. Thebiologicalbasisofthestartingmaterialsprovidesscientistswithauniqueopportunity toincludeaninterestingfunctionalityintothematerial,whichiscompostability.Dueto thisproperty,thesematerialsdegradeaftercompletionofusefullife. “Sofar,compostabilityhasbeenthemajorfocusforuseofbiobasedpackagingmaterialswhichisthelogical consequenceforthehugeamountofpackagingmaterialsusedandtheproductionof wasteassociatedwithit.Municipalplasticwasteisadifficultmaterialasitcontainsseveral fractionsofwasteandplastictypescontainingcontaminationfromfoodstuffsresultingin laborandenergyintensiverecycling.Tillnow,preventionorincreasedrecoveryof materialshasbeenusedforextendingthelifeoftheavailablenon-renewablematerials. Recoverymethodsincluderecycling,reuse,energyrecovery,compostingandbiomethanisation.Re-useandre-cyclingoffoodpackagingmaterialsisdifficult,because theyusuallycontainmixturesoflayersofdifferentplasticsforobtainingoptimalbarrier propertiesofthematerial.Cautionshouldbealsousedwhenre-usingthefoodcontact materials,astheremightbeanunwantedbuild-upofcontaminantsfromfoodcomponentsmigratedintothepackagingmaterialsafterre-usingforseveraltimes” (documents.mx).

Biomethanizationbycompostingoffersanalternativewastedisposalmethod.Both thefoodpackagingandtheleftoverfoodmaterialarediscarded.Thehindranceinusing organicrecoveryisthedevelopmentofbiobasedcompostablepackaginghavingthe requiredpropertiesforprotectingfoodduringstorage.Also,awasteinfrastructurefor thesecompostablematerialsalongwithlabelingforidentifyingthecompostablepackagingshouldbedeveloped.Tillnow,thecompostabilityofthesematerialshasbeen themainpointofinterestforcommercializationalthoughcompostingisnotthewidely usedmethodfordisposalinmanycountries.But,asthefunctioningofthebiomaterialsis beingimprovedcontinuously,advancedapplicationsarenowgettingwithinthereach.

Thematerialsthatarepresentlybeingusedforfoodpackagingarederivedfrompetroleum.Thesecontainplasticpolymers,metals,glass,paperandboard,orcombinations thereof.Thesematerialsandpolymersareutilizedindifferentcombinationsforproducingmaterialshavingspecialpropertiesensuringsafetyandqualityoffoodfromprocessing andmanufacturingthroughhandlingandstorageand,eventually,toconsumeruse. Theseproductsfulfillanimportanttaskbecauseinsufficientorabsenceofpackaging wouldresultinrapidworseningofqualityandsafety,resultinginsignificantlossesof foodmaterial.Individualfoodproductshavespecificrequirementsforstoragethatthe packagingmaterialsshouldprovide.Whenexaminingthefoodpackagingconcept,the interactionbetweenfood,packagingmaterial,andambientatmospherehastobetaken intoconsideration.Therefore,engineeringofnovelbiobasedfoodpackagingmaterialsis achallengingjobfortheindustry(mis.dost.gov.ph).Thebiobasedmaterialsappeartobe veryinterestingfromasustainabilityangle. “Thequestioniswhethertheymeetthestandardsofthematerialsusedtodayorwhethertheyevenaddvalue” (documents.mx).

Biopolymersareobtainedfrombiomass.Theymaybenatural(e.g.cellulose),orsyntheticpolymersmadefrombiomassmonomers(e.g.PolylacticAcid)orsyntheticpolymersmadefromsyntheticmonomersderivedfrombiomass(e.g.Polythenederivedfrombioethanol).Oxy-degradable plasticsarenotbiopolymers.(www.wrap.org.uk)

Biopolymersmayormaynotbebiodegradable.Inthebiodegradationprocess,the polymergetsconvertedintosmallercompounds.PLAisbiodegradable.Polytheneobtainedfrombioethanolisrenewablebutnotbiodegradable.Compostableimpliesthat abiodegradablepolymerwillbiodegradeunderstandardtestingconditions.Amaterial canbecompostedifitisathin film,butifthesamematerialisthickitmaynotbecomposted.Compostabilityisnotaninherentpropertyofamaterial;itisapropertyofa particularformofamaterial.EN13432isaEuropeanstandardforcompostability. Thispertainstoindustrialcompostingconditionsonly(www.wrap.org.uk).

Developmentofmaterialsfromrenewablerawmaterialsforvariousapplicationshas beenaveryimportanttopicformanyyearsbecauseofenvironmentalissuesandescalating pricesofpetrochemicals(Laineetal.,2013; Farrisetal.,2009a,b; saiapm.ulbsibiu.ro).For naturalproducts,biopolymersenhancingthequalityofproductsareimportantforsatisfyingthebuyerspreferringenvironmentfriendlypackaging.Thisstrategyisplayinga predominantroleinthefoodindustry(Satyanarayanaetal.,2009;Cutter,2006).The useofpolymersfromsustainablerawmaterialsinfoodpackagingisagrowingtrend nowadays(Mensitierietal.,2011). “Toextendtheshelf-lifeoffoodswithincreasing thepreservationandprotectionfromoxidationandmicrobialdamagethetrendisto usemorenaturalcompounds.Theuseofsynthetic filmshasledtoseriousenvironmental problemsbecausethesematerialsarenon-biodegradable.Thenaturalbiopolymersused infoodpackagingareavailablefromrenewableresources,andarebiodegradable” (Gabor andTita,2012;Sabiha-HanimandSiti-Norsafurah,2012).Allthesecharacteristicslead

toecologicalsafety(PrashanthandTharanathan,2007). “Thestructureofmonomerused inpolymerpreparationisdirectlyeffectiveonthepropertiesthatarerequiredindifferent areasofwork,suchas:thermalstability, flexibility,goodbarriertogases,goodbarrierto water,resistancetochemicals,biocompatibility,biodegradability” (G € uneretal.,2006). Polymersobtainedfromnaturalresourcescanbedegradedbythemicrobialactionunder differentenvironmentalconditions(Mensitierietal.,2011).Theclassificationofpolymershasbeendonebasedonthemethodofproductionortheirsource(Ruban, 2009;Nampoothirietal.,2010;Mensitierietal.,2011;Nairetal.,2017).

“Polysaccharidessuchasstarch,andcellulose,arecalledbiopolymers.Thesearenaturalpolymers,foundinnatureduringthegrowthcyclesofallorganisms.Othernatural polymersaretheproteinswhichcanbeusedforproducingbiodegradablematerials. Thesepolymersareoftenchemicallymodifiedwiththeobjectiveformodifyingthe degradationrateandimprovingthemechanicalproperties” (VromanandTighzert, 2009).In Table1.2 polymershavebeenclassifiedonthebasisofchemicalcomposition. Enzymesofbacteria,yeasts,andfungicandegradebiodegradablematerials.Theproductsofthedegradationprocessunderaerobicconditionsarecarbondioxide,water,and biomass.Underanaerobicconditions,hydrocarbons,methaneandbiomassareproduced (DoiandFukuda,1994).Thus,thereisagreatinteresttoreplacesomeoralloftheplastics bybiodegradablematerialsinvariousapplications. “Someofthenaturalpolymers(PHB

Table1.2 Classificationofbiopolymersdependingonthegeneralchemicalcomposition.

Biopolymers

Polymersdirectlyextractedfrom naturalmaterials

Polysaccharides

Starch/Starchderivatives

Potato,rice,corn,wheat

Cellulose/Cellulosederivatives, cotton,wood .

Chitosan

Pectins

Proteins

Animalproteins

Gelatin,casein,collagen

Plantproteins

Wheatgluten,zein

Polymerssynthesizedfrom bioderivedmonomers

Poly(lacticacid) Otherpolyesters

Polymersproducedby microorganismsor bacteria

Polyhydroxyalkanoates Bacterialcellulose

BasedonGabor,D.,Tita,O.,2012.Biopolymersusedinfoodpackaging:areview.ActaUniv.Cibiniensis.Ser.EFood Technol.16(2),3 19;Hu,B.,2014.Biopolymer-basedlightweightmaterialsforpackagingapplications,InLightweight MaterialsFromBiopolymersandBiofibers,Chapter13.ACSSymposiumSeries,vol.1175,pp.239 255. https://doi.org/ 10.1021/bk-2014-1175.ch013

anditscopolymers)(Gilbert,1985)andaliphaticpolyesters(polycaprolactone(Huang etal.,1990),polylacticacid(Jarowenko,1977))arebiodegradable,buttheircost comparedtothatofpetroleum-basedplasticsprohibitstheirlargercommercialutilisation andisbeingusedonlyinnicheareas.Amongthebiomaterialsavailablecommercially,are thoseobtainedfromrenewableresourcessuchasstarchbasedproducts.Thesearethe mostwidelyusedandeconomicbiomaterials.MaterbifromNovamont,ItalyandBiopar fromBiop.Germanyaresomeexamples.Thestarchismixedwithbiodegradable aliphaticpolyesters,suchasEcoflexfromBASFGermanyorBionollefromShowaHighpolymersJapan.” Starchisstoredasareserveinmostplants.Itisasemicrystallinepolymer andiscomprisedof1,4-alpha-Dglucopyranosylunits:amyloseandamylopectin.The amyloseislinear,inwhichtheglucopyranosylunitsarelinkedbyalpha(1 4)linkages; theamylopectinhasanalpha(1 4)-linkedbackboneandca.5%ofalpha(1 6)-linked branches(Garciaetal.,2011).Theamountofamyloseandamylopectinaredependent upontheplantsource.Cornstarchgenerallycontainsabout70%amylopectinand 30%amylose(LambertandPoncelet,1997).Theratiooftheamylaseandamylopectin characterizesmaterialswithverydifferentproperties.Starch-basedmaterialsarereceiving greatattentioninthefoodpackagingsectorbecausetheycostless(lessthanoneeuroper kg)andarebiodegradableandwidelyavailable.Severalstudieshavebeenconductedon starch-basedmaterials(Pelissero,1990).Buttherearesomedrawbackswithstarch.Itis stronglyhydrophilicandthemechanicalpropertiesareinferiorincomparisontotraditionalnonbiodegradableplastic filmsusedinthefoodpackaging(qcm-mazand.com). Nowadays,theuseofnanocompositeconcepthasbeenfoundtobeanattractive approachforimprovingmechanicalandbarrierproperties.

References

Alexandre,M.,Dubois,P.,2000.Polymer-layeredsilicatenanocomposites:preparation,propertiesanduse ofanewclassofmaterials.Mater.Sci.Eng.28,1 63.

Amberg-Schwab,S.,Kleebauer,M.,2007.In:Kleebauer,M.,Sangl,R.(Eds.),MultifunctionalCoatings WithNanoscalePolymers AnOverview,PTSWorkshopInnovativePackaging,p.8.Munich, Germany2007,GV773.

Andersson,C.,Jarnstrom,L.,Fogden,A.,Mira,I.,Voit,W., _ Zywicki,S.,Bartkowiak,A.,2009.Preparation andincorporationofmicrocapsulesinfunctionalcoatingsforself-healingofpackagingboard.Packag. Technol.Sci.22(5),275.

Aucejo,S.,2005.LatestDevelopmentsinFibreBasedCompositeFilms,PiraFirstSustainPackConference, Stockholm,Sweden,December6 7,2005.

Avena-Bustillos,R.J.,Krochta,J.M.,1993.Watervaporpermeabilitycaseinatebasededible filmsasaffected byPH.Calciumcrosslinkingandlipidcontent.J.FoodSci.58,904 907.

Baldwin,E.A.,1994.Ediblecoatingsforfreshfruitsandvegetables:past,presentandfuture.In: Krochta,J.M.,Baldwin,E.A.,Nisperos,M.O.(Eds.),EdibleCoatingsandFilmstoImproveFood Quality.Technomicpublishingcompany,Inc.,Lancaster,PA,pp.25 64. Coombs,J.,Hall,K.,2000.Non-FoodAgro-IndustrialResearchInformation.CD-RomVersion1.2,Issue 3,2000.CPLPublishingServices,Newbury,UK,ISBN1-872691-27-7.ISSN1368-6755.

Cutter,C.N.,2006.Opportunitiesforbio-basedpackagingtechnologiestoimprovethequalityandsafetyof freshandfurtherprocessedmusclefoods.MeatScience74(1),131 142.

DeVlieger,J.J.,2003.Greenplasticsforfoodpackaging.In:Ahvenainen,R.(Ed.),NovelFoodPackaging Techniques.WoodheadPublishingLtd.,Cambridge,UK,pp.519 534.

Doi,Y.,Fukuda,K.(Eds.),1994.BiodegradablePlasticsandPolymers.Elsevier,Amsterdam,pp.479 497.

Farris,S.,Schaich,K.M.,Liu,L.S.,Piergiovanni,L.,Yam,K.L.,2009a.Developmentofpolyion-complex hydrogelsasanalternativeapproachfortheproductionofbio-basedpolymersforfoodpackagingapplications:areview.TrendsFoodSci.Technol.20(8),316 332.

Farris,S.,Introzzi,L.,Piergiovanni,L.,2009b.Evaluationofabio-coatingasasolutiontoimprovebarrier, frictionandopticalpropertiesofplastic films.Packag.Technol.Sci.22(2),69 83.

Franz,R.,Welle,F.,2003.Recyclingpackagingmaterials.In:Ahvenainen,R.(Ed.),NovelFoodPackaging Techniques.WoodheadPublishingLtd.,Cambridge,UK,pp.497 518.

Gabor,D.,Tita,O.,2012.Biopolymersusedinfoodpackaging:areview.ActaUniv.Cibiniensis.Ser.E FoodTechnol.16(2),3 19.

Garcia,N.L.,Ribba,L.,Dufresne,A.,Aranguren,M.,Goyanes,S.,2011.Effectofglycerolonthe morphologyofnanocompositesmadefromthermoplasticstarchandstarchnanocrystals.Carbohydr. Polym.84(1),203 210,11.

Gennadios,A.,Weller,C.L.,1990.Edible filmsandcoatingsfromwheatandcornproteins.FoodTechnol. 44(10),63 67.

Gennadios,A.,Brandenburg,A.H.,Weller,C.L.,Testin,R.F.,1993.EffectofpHonpropertiesofwheat glutenandsoyproteinisolate films.J.Agric.FoodChem.41,1835 1839.

Gennadios,A.,Rhim,J.W.,Handa,A.,Weller,C.L.,Hanna,M.A.,1998.Ultravioletradiationaffectsphysicalandmolecularpropertiesofsoy.Protein films.J.FoodSci.63,225 228.

Ghorpade,V.M.,Li,H.,Gennadios,A.,Hanna,M.A.,1995.Chemicallymodifiedsoyprotein films.Trans. Am.Soc.Agric.Eng.38,1805 1808.

Giannelis,E.P.,1996.Polymerlayeredsilicatenanocomposites.Adv.Mater.8,29 35. Gilbert,S.G.,1985.Food/packagecompatibility.FoodTechnol.39,54 56. GlobalPackagingAlliance- http://www.global-packaging-alliance.com/ . Gontard,N.,Duchez,C.,Cuq,J.L.,Guilbert,S.,1994.Ediblecomposite filmsofwheatglutenandlipids: watervaporpermeabilityandotherphysicalproperties.Int.J.FoodSci.Technol.29,39 50. Guilbert,S.,Cuq,B.,Gontard,N.,1997.Recentinnovationsinedibleand/orbiodegradablepackaging materials.FoodAddit.Contam.14(6 7),741 751.

G € uner,F.,Yagci,Y.,Erciyes,A.T.,2006.Polymersfromtriglycerideoils.Prog.Polym.Sci.31(7), 633 670.

Gustafsson,M.,Stoor,R.,Tsvetkova,A.,2011.SustainableBio-economy:Potential,Challengesand OpportunitiesinFinland.PBIResearchInstitute. Han,J.H.,2000.Antimicrobialfoodpackaging.FoodTechnol.54(3),56 65.

Han,J.H.,Gennadios,A.,2005.Edible filmsandcoatings:Areview.In:Han,J.H.(Ed.),Innovationsin FoodPackaging.Elsevier,London,UK,pp.239 262.

Hohenthal,C.,Veuro,S.,2011.In:TheRoleofLCAinGuidingProjects,FlexPakRenewWorkshop, Lyon,France,May10,2011,No.3.

Hu,B.,2014.Biopolymer-basedlightweightmaterialsforpackagingapplications.In:LightweightMaterials fromBiopolymersandBiofibers,Chapter13.ACSSymposiumSeries,vol.1175,pp.239 255. https:// doi.org/10.1021/bk-2014-1175.ch013

Huang,J.C.,Shetty,A.S.,Wang,M.S.,1990.Biodegradableplastics:areview.Adv.Polym.Technol.10, 23 30.

Jacobsson,S.,2008.Theemergenceandtroubledgrowthofabio-powerinnovationsysteminSweden. EnergyPolicy36,1491 1497.

Jarowenko,W.,1977.EncyclopediaofPolymerScienceandTechnology,vol.12.Interscience,NewYork. Jelse,K.,Eriksson,E.,Einarson,E.,2011.LifeCycleAssessmentofConsumerPackagingforLiquidFood. IVL,SwedishEnvironmentalResearchInstitute. www.tetrapak.com

Johansson,C.,Bras,J.,Mondragon,I.,Nechita,P.,Plackett,D.,Simon,P.,Svetec,D.G.,Virtanen,S., Baschetti,M.G.,Breen,C.,Clegg,F.,Aucejo,S.,2012.Renewable fibersandbio-basedmaterials forpackagingapplications areviewofrecentdevelopments.BioResour.7(2),2506 2552. Kester,J.,Fennema,O.,1986.Edible filmsandcoatings:areview.FoodTechnol.40(12),47 59.

Krochta,J.M.,2002.Proteinsasrawmaterialsfor filmsandcoatings:definitions,currentstatus,and opportunities.In:Gennadios,A.(Ed.),Protein-BasedFilmsandCoatings.CRCPress,BocaRaton, FL,pp.1 41.

Laine,C.,Harlin,A.,Hartman,J.,Hyv€arinen,S.,Kammiovirta,K.,Krogerus,B.,Pajari,H.,Rautkoski,H., Set€al€a,H.,Siev€anen,J.,Uotila,J.,V€ah€a-Nissi,M.,2013.Hydroxyalkylatedxylans theirsynthesisand applicationincoatingsforpackagingandpaper.Ind.CropsProd.44,692 704. Lambert,J.F.,Poncelet,G.,1997.Acidityinpillaredclays:originandcatalyticmanifestations.Top.Catal.4, 43 56.

Mangan,C.(Ed.),1998.TheGreenChemicalandPolymersChain.EuropeanCommission,DG12,DG6, Luxenbourg.OfficeforOfficialPublicationsoftheEuropeanUnion,Belgium,ISBN92-828-6116-3. Mensitieri,G.,DiMaio,E.,Buonocore,G.G.,Nedi,I.,Oliviero,M.,Sansone,L.,Iannace,S.,2011.Processingandshelflifeissuesofselectedfoodpackagingmaterialsandstructuresfromrenewableresources. TrendsFoodSci.Technol.22(2 3),72 80.

Micard,V.,Belamri,R.,Morel,M.H.,Guilbert,S.,2000.Propertiesofchemicallyandphysicallytreated wheatgluten films.J.Agric.FoodChem.48,2948 2953. Nair,N.R.,Sekhar,V.C.,Nampoothiri,K.M.,Pandey,A.,2017.Biodegradationofbiopolymers.In: CurrentDevelopmentsinBiotechnologyandBioengineering,Chapter32.ElsevierBV,p.739. Nampoothiri,M.K.,Nair,N.R.,Rojan,P.J.,2010.Anoverviewoftherecentdevelopmentsinpolylactide (PLA)research.Bioresour.Technol.101(22),8493 8501. Pandey,J.K.,Kumar,A.P.,Misra,M.,Mohanty,A.K.,Drzal,L.T.,Singh,R.P.,2005.Recentadvancesin biodegradablenanocomposites.J.Nanosci.Nanotechnol.5,497 526. Park,H.,Weller,C.,Vergano,P.,Testin,R.,1993.Permeabilityandmechanicalpropertiesofcellulose basededible films.J.FoodSci.58(6),1361 1364.

Parker,G.,2008.Measuringtheenvironmentalperformanceoffoodpackaging:lifecycleassessment.In: Chiellini,E.(Ed.),EnvironmentallyCompatibleFoodPackaging.WoodheadPublishingLtd., Cambridge,UK,pp.211 237.

Pelissero,A.(Ed.),1990.Lematerieplasticheelambiente.AIM,Bologna,pp.129 138.

Prashanth,K.V.H.,Tharanathan,R.N.,2007.Chitin/chitosan:modificationsandtheirunlimitedapplicationpotential anoverview.TrendsFoodSci.Technol.18(3),117 131.

Rhim,J.W.,2004.Physicalandmechanicalpropertiesofwaterresistantsodiumalginate films.Lebensm. Wiss.Technol.37,323 330.

Rhim,J.W.,Ng,P.K.,2007.Naturalbiopolymer-basednanocomposite filmsforpackagingapplications. Crit.Rev.FoodSci.Nutr.47(4),411 433.

Rhim,J.W.,Gennadios,A.,Weller,C.L.,Cezeirat,C.,Hanna,M.A.,1998.Soyproteinisolate-dialdehyde starch films.Ind.CropsProd.8,195 203.

Rhim,J.W.,Gennadios,A.,Dejing,F.,Weller,C.L.,Hanna,M.A.,1999.Propertiesofultravioletirradiated protein films.Lebensm.Wiss.Technol.32,129 133.

Rhim,J.,Gennadios,A.,Handa,A.,Weller,C.,Hanna,M.,2000.Solubility,tensile,andcolorpropertiesof modifiedsoyproteinisolate films.J.Agric.FoodChem.48(10),4937 4941.

Rhim,J.W.,Weller,C.L.,2000.Propertiesofformaldehydeadsorbedsoyproteinisolate films.FoodSci. Biotechnol.9,228 233.

Robertson,G.,2008.State-of-the-artbiobasedfoodpackagingmaterials.In:Chiellini,E.(Ed.),EnvironmentallyCompatibleFoodPackaging.WoodheadPublishingLtd.,Cambridge,UK,pp.3 28. Ruban,S.W.,2009.Biobasedpackaging applicationinmeatindustry.Vet.World2(2),79 82. Sabiha-Hanim,S.,Siti-Norsafurah,A.M.,2012.Physicalpropertiesofhemicellulose filmsfromsugarcane bagasse.ProcediaEng.42,1390 1395.August.

Satyanarayana,K.G.,Arizaga,G.G.C.,Wypych,F.,2009.Biodegradablecompositesbasedonlignocellulosic fibers anoverview.Prog.Polym.Sci.34(9),982 1021. Schmidt,D.,Shah,D.,Giannelis,E.P.,2002.Newadvancesinpolymer/layeredSilicatenanocomposites. Curr.Opin.SolidStateMater.Sci.6,205 212. SinhaRay,S.,Okamoto,M.,2003a.Polymer/layeredsilicatenanocomposites:areviewfrompreparationto processing.Prog.Polym.Sci.28(11),1539 1641.

SinhaRay,S.,Okamoto,M.,2003b.Biodegradablepolylactideanditsnanocomposites:openinganew dimensionforplasticsandcomposites.Macromol.RapidCommun.24,815 840.

SinhaRay,S.,Yamada,K.,Okamoto,M.,Ueda,K.,2003a.Biodegradablepolylactide/montmorillonite nanocomposites.J.Nanosci.Nanotechnol.3,503 510.

SinhaRay,S.,Yamada,K.,Okamoto,M.,Ogami,A.,Ueda,K.,2003b.Newpolylactide/layeredsilicate nanocomposites.PartII:concurrentimprovementsofmaterialproperties,biodegradabilityandmelt rheology.Polymer44,857 866.

SinhaRay,S.,Yamada,K.,Okamoto,M.,Fujimoto,Y.,Ogami,A.,Ueda,K.,2003c.Newpolylactide/ layeredsilicatenanocompositespartIII:high-performancebiodegradablematerials.Chem.Mater.15, 1456 1465.

Tariq,S.,2013.SuccessFactorsfortheAdoptionofBio-BasedPackaginginEUFoodIndustry.Masterof ScienceThesis.Stockholm,Sweden2013.

U.S.Congress,OfficeofTechnologyAssessment,1993.Biopolymers:MakingMaterialsNature’sWayBackgroundPaper.OTA-BP-E-102.U.S.GovernmentPrintingOffice,Washington,DC.

Vaia,R.A.,Gianelis,E.P.,1997.Latticemodelofpolymermeltintercalationinorganically-modi fiedlayered silicates.Macromolecules30,7990 7999.

Vroman,I.,Tighzert,L.,2009.Biodegradablepolymers.Materials2(2),307 344.

Weber,C.(Ed.),2000a.TheFoodBiopackConferenceProceedings,Copenhagen,Denmark,August 27 29,2000.TheRoyalVeterinaryandAgriculturalUniversity,Frederiksberg,Denmark,ISBN 87-90504-09-7.

Weber,C.(Ed.),2000b.BiobasedPackagingMaterialsfortheFoodIndustry,StatusandPerspectives.The RoyalVeterinaryandAgriculturalUniversity,Frederiksberg,Denmark,ISBN87-90504-07-0. Wellenreuther,F.,vonFalkenstein,E.,Detzel,A.,2010.Comparativelifecycleassessmentofbeveragecartonscb3andcb3EcoPlusforUHTmilk,ifeu-institutfurEnergie-undUmwetforschungHeidelberg GmbH. www.sig.biz

Wong,W.S.,Camirand,W.P.,Pavlath,A.E.,1994.Developmentofediblecoatingsforminimallyprocessed fruitandvegetables.In:Krochta,J.M.,Baldwin,E.A.,Nisperos-Carriedo,M.O.(Eds.),EdibleCoatings andFilmstoImproveFoodQuality.TechnomicPub.Co,Lancaster,PA,pp.65 88. www. sustainabledevelopment2015.org/AdvocacyToolkit/.../92-our-common-future . Yu,Y.H.,Lin,C.Y.,Yeh,J.M.,Lin,W.H.,2003.Preparationandpropertiesofpoly(vinylalcohol)-clay nanocompositematerials.Polymer44(12),3553 3560.

Relevantwebsites

www.sustainabledevelopment2015.org/AdvocacyToolkit/.../92-our-common-future mis.dost.gov.ph qcm-mazand.com saiapm.ulbsibiu.ro. www.wrap.org.uk. documents.mx.

Descriptionofbiobasedpolymers

Biobasedpolymersaresustainablepolymersproducedfromrenewableresourcessuchasbiomass insteadoftheconventionalfossilresourcessuchaspetroleumandnaturalgas,preferablybased onbiologicalandbiochemicalprocesses.Theyarecharacterizedbythenatureofcarbonneutral orcarbonoffsetinwhichtheatmosphericcarbondioxideconcentrationdoesnotincreaseeven aftertheirincineration

MasutaniandKimura,2015

Globalproductioncapacityforbiopolymersincreasedby4% 6.6milliontonnesfrom2015to 2016.Thisrepresentsashareof2%oftheglobalpolymermarket.Theturnoverofbio-basedpolymerwasabout Vuro13billionworldwidein2016comparedto Vuro11billionin2014.Productioncapacityofbio-basedpolymersisforecastedtoincrease8.5milliontonnesby2021.In2016,it was6.6milliontonnes(http://news.bio-based.eu/bio-based-polymers-worldwide-ongoinggrowth-despite-difficult-market-environment; www.mdpi.com)

Alltypesofbiopolymersarenotbiodegradable,butsomeare.Examplesarestarch blends,polyhydroxyalkanoates(PHAs)andpolylacticacid(PLA).Themostimportant developmentisenvisagedforPHA. “Thisbelongstothelargefamilyofdifferentpolymers.PHAproductioncapacitywassmallin2016andisexpectedtoincreasethreetimes by2021.Anotherimportantdevelopmentispredictedforpolyamides(PA);itsproductioncapacityisexpectedtoincreasetwotimesby2021.Biodrop-inPETandbioPLA areshowingabout10%annualgrowthrates” (http://news.biobased.eu/biobasedpolymers-worldwide-ongoing-growth-despite-difficult-market-environment).

Severaldefinitionsareusedforbiopolymersinthepolymer,packaging,andcompositeareas.Theterm “bio” isusedfordesignatingabiodegradablematerial,andalsoused fordesignatingmaterialsfromsustainablerawmaterials.TheEuropeanBioplasticsAssociationusesabroaderdefinitionreferringtodifferenttypesofbioplastics(Table2.1) ( Johanssonetal.,2012).

Criteriausedforsortingbiopolymersarepresentedin Table2.2.

BiobasedPolymers ISBN978-0-12-818404-2, https://doi.org/10.1016/B978-0-12-818404-2.00002-3

Table2.1 Bioplastics(EuropeanBioplasticsAssociation).

1. Bioderivedandbiodegradable/compostable polylactides,polyhydroxyalkanoates

2. Fossilfuel derivedandbiodegradable polycaprolactone

3. Bioderivedandnonbiodegradable Biopolyethylene(bio-PE)andbiopolyethyleneterephthalate(bio-PET).Abioderived polymersuchasbio-PEischemicallyidenticaltoPEderivedfromoil,andthereforehasthe samechemicalandphysicalcharacteristics.

BasedonJohansson,C.,Bras,J.,Mondragon,I.,Nechita,P.,Plackett,D.,Simon,P.,Svetec,D.G.,Virtanen,S.,Baschetti, M.G.,Breen,C.,Clegg,F.,Aucejo,S.2012.Renewable fibersandbio-basedmaterialsforpackagingapplications a reviewofrecentdevelopments.BioResour.7(2),2506 2552.

Table2.2 Criteriausedforsortingbiopolymers.

Chemicalcomposition

Methodofsynthesis

Methodofprocessing Economicimportance Applicationareas

BasedonJohansson,C.,Bras,J.,Mondragon,I.,Nechita,P., Plackett,D.,Simon,P.,Svetec,D.G.,Virtanen,S.,Baschetti, M.G.,Breen,C.,Clegg,F.,Aucejo,S.2012.Renewable fibersand bio-basedmaterialsforpackagingapplications areviewofrecent developments.BioResour.7(2),2506 2552.

Biopolymerscanbegroupedintothreecategoriesaccordingtotheirorigin(Petersen etal.,1999):

1. Polymersproducedfromnaturalproductssuchaspolysaccharides

2. Polymersproducedbytraditionalchemicalsynthesisfromsustainablebiomonomers (examplePLA)

3. Polymersproducedbymicroorganismsorgeneticallymodifiedbacteria.Examplesare PHAs.Thesecomprisepolyhydroxybutyrate(PHB)andcopolymersofhydroxybutyrateandhydroxyvalerate).

Polysaccharides celluloseandstarch arecalledbiopolymers.Thesearenatural polymersfoundinnatureduringthegrowthofallorganisms.Othernaturallyoccurring polymersaretheproteinsthatcanbeusedforproducingmaterialsthatcanbebiodegraded(U.S.Congress,1993).Thesepolymersareusuallychemicallymodifiedwith anobjectiveformodifyingthedegradationrateandimprovingthemechanicalproperties (VromanandTighzert,2009).

Naturalpolymersarebeingusedasbarriercoatingsinpaperpackagingmaterials. Thesecanreplacesyntheticpapercoatingsbeingcurrentlyused,suchaspolyethylene, polyvinylalcohol,rubberlatex,and fluorocarboninfoodpackaging(ChanandKrochta, 2001a,b). “Agriculturallyderivedproductstosyntheticpapercoatingsprovidean

opportunityforstrengtheningtheagriculturaleconomyandreducingimportofpetroleumanditsderivatives” (Khwaldiaetal.,2010).

Anumberofcompanieshaveintroduceddifferenttypesofbiopolymers. Table2.3 liststheirmanufacturers,brands,andmainpackagingapplications. Accordingtothematerialstheyaremanufacturedfrom,thesebiopolymerscanalsobe classifiedasstarchpolymers(e.g.,Mater-Bi),cellulosic(e.g.,cellophane),aliphaticpolyesters(e.g.,PLA),biobasedpolyethylene(bio-PE),andmicrobialsynthesizedpolyhydroxyalkanoates(e.g.,PHB).

Instudyingthebiodegradationofpolymersanimportantdifferenceshouldbemadebetween degradationandbiodegradation.Usually,materialsexposedtoweathering,aging,and/or buryingwillundergochemical,mechanicalandthermaltransformations.Theseconditionsresult inthechangeofstructureofpolymersanditsproperties,andcanbeanimportantfactorininitiatingthebiodegradationprocess.Instancesofcompression,tension,shear,andotherforcesmay leadtothemechanicaldegradationofamaterial.Thesefactorsdonotplayapredominantrole inthebiodegradationprocessbutcanstimulateorsustainit Panetal.,2013;Khosravi-DaraniandBucci,2015

Table2.3 Manufacturersofbiopolymers.

PolymersManufacturersBrandApplications

StarchDuPontBiomaxLoose fill,bags, films,trays, wrap fi lm

BiotecBioplast

NovamontMater-Bi CellulosicsInnovia fi lmsNature flexFlexible fi lm

Eastman Chemical Tenite

FKuRBiograde

SateriSateri

Polylacticacid(PLA)BASFEcovioRigidcontainers, fi lms, barriers NatureWorksIngeo CargilldowEcoPLA

Biobasedpolyethylene terephthalate(PET)

SynbraBiofoam

DuPontBiomaxBottles,trays, fi lms

Biobasedpolyethylene(PE)BraskemBioPERigidcontainers, fi lmwrap, barriercoatings

Polyhydroxyalkanoates (PHAs)and polyhydroxybutyrate (PHB)

MonsantoBiopolFilms,barriercoatings,trays BiomerBiomer

BasedonHu,B.,2014.Biopolymer-basedlightweightmaterialsforpackagingapplications.InLightweightMaterialsfrom BiopolymersandBiofibers,Chapter13.ACSSymposiumSeries,vol.1175,pp.239 255. https://doi.org/10.1021/bk2014-1175.ch013.Mohanty,A.K.,Misra,M.,Hinrichsen,G.,2000.Biofibres,biodegradablepolymersandbiocomposites anoverview.Macromol.Mater.Eng.,276 277,1 24,Mohanty,A.K.,Misra,M.,Drzal,L.T.,2002.Sustainablebiocompositesfromrenewableresourcesopportunitiesandchallengesinthegreenmaterialsworld.J.Polym.Environ.10, 19 26.

Variouspolymersthatareabletobiodegradecanbeusedinpackaging;somebiodegradablepolymersarealreadybeingused.Cellophaneisthecommonlyusedcellulosebasedbiopolymerandisusedinfoodpackaging(Luetal.,2014;Panetal.,2013). Starch-basedpolymershavethetendencytoswell.Thesepolymerswhenexposedto moisturegetdeformed.OtherinterestingbiopolymersarePLAs,PHA,PHB,anda copolymerofPHBandvalericacid(MarshandBugusu,2007).But,inferiormechanical properties,higherhydrophilicnature,andrestrictedabilitytobeprocessedarelimiting theiruse(Wangetal.,2015).

Assustainablesolutionstoourfuturerequirementsforenergyandmaterialsarein focus,therenewabilityofbiopolymersisanimportantissueinoursociety( Johansson etal.,2012).Thebiodegradabilityofcertaintypesofpolymerswillbeimportantfor somematerialapplications.Biodegradabilityisanidealaspectforasustainablematerial tokeeptheloopof cradletograve closedforplasticsused(Shenetal.,2009;Natureworks, 2009;Weissetal.,2007).

Ecofriendlyandbiodegradablepolymersarebeingdevelopedbecauseofenvironmentalissuesandstudiesofend-of-lifeofmaterialspresentlyusedinpackagingandother fields(Oksmanetal.,2006;Pandeyetal.,2005;ShahzadTariq2013;Abdul-Muhmin, 2007;Leeetal.,2008;Ballesterosetal.,2018).Problemsofwastedisposalassociatedwith plasticsderivedfrompetroleumarereducedbytheuseofbiodegradablepolymers (Mohantyetal.,2000).Despitethefactthattotallyreplacingthetraditionalplasticsby biodegradablematerialsdoesnotlookfeasibleatthemoment,therearecertainapplicationsforwhichsuchareplacementappearstobeuseful.Theterm biodegradation hasnot beenusedconsistently(vanderZee,2005).Biodegradationmeansfragmentation,reductionofmechanicalproperties,orsometimesdegradationbythemicrobesforplasticsthat aredegradable.Severalinternationalorganizationsandgroupshavedevelopedmethods fordeterminingbiodegradabilityandcompostabilityunderdifferentenvironmentalconditions(Mohantyetal.,2000).Therearemanyreasonswhytheuseofasingledefinition hasnotbeeneasy(vanderZee,2005).Someofwhicharepresentedbelow( Johansson etal.,2012):

• Thevariationofthedefinitionsbecauseofthedifferencesintheenvironmentin whichthematerialisintroduced

• Differentviewpointsrelatedtobiodegradability

• Differentviewpointsonthepolicyimplicationsofthedifferentdefinitions

Severalexcellentreviewsandbookshavebeenpublishedonpolymers(Petersenetal., 1999;ChandraandRustgi,1998;Witt;etal.,1997;Guilbertetal.,1996;Krochtaand Mulder-Johnston,1997;GaborandTita,2012;Babuetal.,2013).

AccordingtoASTM D883-00,biodegradablepolymersgothroughsubstantial changesintheirchemicalstructureundercertainconditions( Johanssonetal.,2012). Thisresultsinalossofphysicalandmechanicalproperties.Biodegradablepolymers

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Biobased polymers: properties and applications in packaging pratima bajpai - Download the ebook with by Education Libraries - Issuu