Bio-BasedNanomaterials:SynthesisProtocols, MechanismsandApplicationsAjayKumarMishra
https://ebookmass.com/product/bio-based-nanomaterialssynthesis-protocols-mechanisms-and-applications-ajay-kumarmishra/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Bio-Based Nanomaterials: Synthesis Protocols, Mechanisms and Applications Ajay Kumar Mishra
https://ebookmass.com/product/bio-based-nanomaterials-synthesisprotocols-mechanisms-and-applications-ajay-kumar-mishra/
ebookmass.com
Nanomaterials Synthesis: Design, Fabrication and Applications Yasir Beeran Pottathara
https://ebookmass.com/product/nanomaterials-synthesis-designfabrication-and-applications-yasir-beeran-pottathara/
ebookmass.com
Advanced nanomaterials for catalysis and energy: synthesis, characterization and applications Sadykov
https://ebookmass.com/product/advanced-nanomaterials-for-catalysisand-energy-synthesis-characterization-and-applications-sadykov/ ebookmass.com
Prestressed Concrete 5th Edition Warner Foster
https://ebookmass.com/product/prestressed-concrete-5th-edition-warnerfoster/
ebookmass.com
Clinical Immunology Nima Rezaei https://ebookmass.com/product/clinical-immunology-nima-rezaei/
ebookmass.com
Nutrition Counseling and Education Skills: A Guide for Professionals
https://ebookmass.com/product/nutrition-counseling-and-educationskills-a-guide-for-professionals/
ebookmass.com
(eTextbook PDF) for Wastewater Treatment Process Modeling, Second Edition 2nd Edition
https://ebookmass.com/product/etextbook-pdf-for-wastewater-treatmentprocess-modeling-second-edition-2nd-edition/
ebookmass.com
How to Cowboy Jennie Marts https://ebookmass.com/product/how-to-cowboy-jennie-marts-4/
ebookmass.com
Java: The Complete Reference, Twelfth Edition Schildt https://ebookmass.com/product/java-the-complete-reference-twelfthedition-schildt/
ebookmass.com
Talent Makers : How the Best Organizations Win through Structured and Inclusive Hiring 1st Edition Daniel Chait
https://ebookmass.com/product/talent-makers-how-the-bestorganizations-win-through-structured-and-inclusive-hiring-1st-editiondaniel-chait/
ebookmass.com
Bio-BasedNanomaterials Thispageintentionallyleftblank
Bio-BasedNanomaterials SynthesisProtocols,Mechanismsand Applications Editedby
AJAYKUMARMISHRA AcademyofNanotechnologyandWasteWaterInnovations, Johannesburg,SouthAfrica
CHAUDHERYMUSTANSARHUSSAIN DepartmentofChemistryandEnvironmentalScience,NewJersey InstituteofTechnology,Newark,NJ,UnitedStates
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions .
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-323-85148-0
ForInformationonallElsevierpublications
visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: SabrinaWebber
EditorialProjectManager: MarianaKuhl
ProductionProjectManager: PoulouseJoseph
CoverDesigner: ChristianBilbow
TypesetbyMPSLimited,Chennai,India
Listofcontributors xi
1.Cellulose-basednanomaterialsfortextileapplications1 BapunBarik,BanalataMaji,DebasishSarkar,AjayKumarMishraandPriyabratDash
1.1 Introduction 1
1.2 Biomaterialsanditssources3
1.3 Chitosan,cellulose,banana,andjutefiberderivativesandtheiradvantages4
1.4 Nanochitosan,nanocellulose,andnaturalfibers5
1.5 Applicationsofbiobasednanomaterials7
1.5.1 Textileapplicationsofnanochitosan8
1.5.2 Textileapplicationsofnanocellulose10
1.5.3 Textileapplicationsofbananafiber13
1.5.4 Textileapplicationsofjutefiber14
1.6 Conclusionandfutureperspectives14 References 15
2.Strategiesforsustainablesynthesisprocessesofnanocarbonsfrombiomass21 AnaL.CukiermanandPabloR.Bonelli
2.1 Introduction 21
2.2 Biomassandcarbonnanostructures22
2.2.1 Biomasschemistry22
2.2.2 Carbonnanostructurescharacteristics26
2.3 Synthesisprocessesofbiomass-basednanocarbonmaterials29
2.3.1 Graphene30
2.3.2 Graphenequantumdots36
2.3.3 Carbonnanotubes41
2.4 Summaryandoutlook46 Acknowledgment 47 References 47
3.Productionofbiopolymer-basednanoparticles53 GeetanjaliandRamSingh
3.1 Introduction 53
3.2 Briefsofbiopolymers54
3.3 Synthesisofbiopolymer-basednanoparticles55
3.3.1 Cellulose-basednanoparticles55
3.3.2 Lignin-basednanoparticles58
3.3.3 Pectin-basednanoparticles60
3.4 Summaryandfutureaspects61 References 61
4.Bio-basednanomaterialsforpropertiesandapplications67 NaveenBunekarandTsungYenTsai
4.1 Introduction 67
4.2 Preparationandapplicationsofbio-basednanomaterials68
4.3 Futureprospectsandconclusion69
Acknowledgments70 References 71
5.Enhanceddyerecoveryfromtextileeffluentsbymeansofbiobased nanomaterials/polymerloosenanofiltrationmembranes73
DerrickS.Dlamini,GcinaD.Vilakati,ChristineMatindi,AjayK.Mishra, JusticeM.Thwala,BhekieB.MambaandJianxinLi
5.1 Introduction 73
5.2 Materialsandmethods74
5.2.1 Materials74
5.2.2 Membranefabrication74
5.2.3 Membranecharacterization75
5.2.4 Membraneperformancetestsandsolutetransport76
5.3 Resultsanddiscussion77
5.3.1 Scanningelectronmicroscopy77
5.3.2 Membranewettability80
5.3.3 Zetapotential84
5.3.4 Membraneporosityandporesize85
5.3.5 Membraneperformance86
5.4 Conclusions 89 Acknowledgments90
90
6.Biodegradationandwaterabsorptionstudiesofnaturalgum rosin-basedhydrogel93
RachnaSharma,RajeevJindal,BalbirSinghKaith,VaneetKumar,Saruchi, AjayMishraandShivaniMishra
6.1 Biodegradationofhydrogels93
6.2 Methodsofbiodegradation94
6.2.1 Chemicalprocess94
6.2.2 Hydrolysisprocess94
6.2.3 Microbial/enzymaticprocess95
6.3 Water-absorptionstudies97
6.4 Resultsanddiscussion97
6.4.1 Compostingmethodofbiodegradation97
6.4.2 Soilburialmethodofbiodegradation97
6.4.3 Evidencesofbiodegradation100
6.5 Waterabsorptionpropertiesofhydrogelinsoilsamples103
6.6 Impactofbiodegradationofsynthesizedsamplesonsoil104
6.7 Conclusion 105 References 105
7.Nanobiochar agreencatalystforwastewaterremediation109 ShivaniGoswami,AnamikaKushwaha,LalitGoswami,NidhiRaniGupta, VinitKumar,UdayBhan,BezawadaSridharReddyandKumudMalikaTripathi
7.1 Introduction109
7.2 Modificationofsurfacepropertiesofbiochar112
7.2.1 Tuningofsurfacefunctionalitiesofbiochar112
7.2.2 Surfacecompositionengineering115
7.2.3 Porestructuretailoring118
7.3 Propertiesintricateinreactivespeciesandradicalgeneration119
7.3.1 Abundantoxygenfunctionalgroups119
7.3.2 Developmentofenvironmentalpersistentfreeradicals119
7.3.3 Redoxproperties120
7.4 Biochar-basedcatalystsforwastewatertreatment120
7.4.1 Applicationofbiocharinredoxsystem120
7.4.2 InFenton-likesystem122
7.4.3 Applicationofbiochar-basedcatalystsinsonocatalyticsystem125
7.4.4 Applicationofbiochar-basedcatalystsinphotocatalysis126
7.5 Conclusions 127 References 128
8.Polyhydroxyalkanoatesbasedsystems:thefutureofdrugdelivery andtissueengineeringdevices133
BenediniLuciano
8.1 Introduction133
8.2 Biosyntesis,mainfeatures,chemicalmodifications,degradation,andgeneral applicationsofpolyhydroxyalkanoates136
8.2.1 Biosynthesisofpolyhydroxyalkanoates136
8.2.2 Harvestandmainfeaturesofpolyhydroxyalkanoates138
8.2.3 Chemicalmodificationsofpolyhydroxyalkanoates140
8.2.4 Degradationofpolyhydroxyalkanoates140
8.2.5 Applicationofpolyhydroxyalkanoates141
8.3 Polyhydroxyalkanoatesfordrugdeliverysystemsdesign142
8.3.1 Drugdeliverysystems142
8.3.2 Drugdeliverysystemsbasedonpolyhydroxyalkanoates144
8.4 Polyhydroxyalkanoatesastissueengineeringmaterials153
8.5 Perspectivesandchallenges159
8.6 Conclusion 160 Acknowledgments160 References 160
9.Advancedapplicationsofbiomassforenergystorage171 KwadwoMensah-Darkwa,StefaniaAkromahandRamK.Gupta
9.1 Introduction171
9.1.1 Renewableenergysources172
9.1.2 Energystoragemechanisms173
9.2 Materialsusedforenergystoragedevices174
9.2.1 Carbonaceousmaterials175
9.2.2 Biomass-derivedcarbons176
9.3 Energystoragemechanismincarbon-basedmaterials178
9.3.1 Storagemechanismincarbonelectrodes179
9.3.2 Storagemechanismsinhybridelectrodes179
9.4 Biomass-derivedcarbonforenergystorageapplications180
9.4.1 Biomass-derivedcarbonforsupercapacitors182
9.4.2 Biomass-derivedcarbonforbatteries196
9.5 Summaryandoutlook203
References 203
10.Sericin-basednanomaterialsandtheirapplicationsindrugdelivery211 SathishSundarDhilipKumarandHeidiAbrahamse
10.1 Introduction211
10.2 Propertiesofsericin213
10.3 Sericin-basedbiomaterialsandtheirbiomedicalapplications214
10.4 Therapeuticpotentialofsericin-basednanomaterialsindrugdelivery219
10.5 Clinicalapplicationofsericin-basedbiomaterials220
10.6 Futureperspectivesandconclusions220 Authorcontributions226
Conflictsofinterest226
Acknowledgments226
References 226
11.Bonetissuerestorationbynanoscalefeaturesofbiomaterials231
A.NoelGravina,NoeliaL.D’Elía,JavierSartuquiandPaulaV.Messina 11.1 Introduction231
11.1.1 Bonetissue:structureandcomposition231
11.1.2 Currentconceptsandmechanismofperi-implantboneregeneration232
11.1.3 Importanceofnanoscalesurfacesonbonehealinginduction235
11.2 Formationofabloodclotonabiomaterialduringbonehealing235
11.2.1 Bloodcoagulationcascadeactivationonbiomaterials236
11.2.2 Fibrinclotformationonthebiomaterialsurface237
11.2.3 Plateletsadhesionandactivation238
11.3 Osteogenicdifferentiationofstemcellsinducedbybiomaterials:mechanismand pathways 239
11.3.1 Functionalizationofmaterials239
11.3.2 Thebindingeffectoftheimplantsurface/extracellularmatrixinteraction andanchorageproteins240
11.3.3 Processesaftercellattachment241
11.4 Neovascularizationduringbonehealing243
11.4.1 Biomaterialsandadditives244
11.4.2 Endothelialcellsandneovascularization245
11.4.3 Increasingcomplexity:cocultureofcells246
11.4.4 Miscellaneous:differentapproaches247
11.5 Boneappositionstimulationinducedbysurfacepropertiesofbiomaterials248
11.6 Newtrendsinbiomaterialsdevelopment:bioinspiredstratifiedscaffolds252
11.7 Outlooksandperspectives254
Acknowledgments256
References 256
12.Toxicologicaleffectofbiopolymersandtheirapplications265 GagandeepKaur,VaneetKumar,Saruchi,AjayKumarMishraandShivaniMishra
12.1 Introduction265
12.2 Classificationofbiopolymers266
12.3 Propertiesofbiopolymers267
12.4 Relativeproperties267
12.5 Synthesizingproperties268
12.6 Componentproperties268
12.7 Synthesisofbiopolymers268
12.8 Starch
12.9 Cellulose
12.10 ChitinandChitosan270
12.11 Gelatin
12.12 Polylacticacid272
12.13 Poly(vinylalcohol)273
12.14 Polyurethanes273
12.15 Poly(hydroxyalkanoates)274
12.16 Poly(ε-caprolactone)274
12.17 Toxicologicaleffectofbiopolymers275
12.18 Applicationsofbiopolymers275
12.19 Synthesisofnanomaterials276
12.20 Synthesisofnanocarriers277
12.21 Biomedicalfield278
12.22 Adsorbentsforenvironmentalremediation278
12.23 Agriculturaldomain279
12.24 Foodindustry279
12.25 Conclusion280
Listofcontributors HeidiAbrahamse
LaserResearchCentre,UniversityofJohannesburg,Johannesburg,SouthAfrica
StefaniaAkromah
DepartmentofMaterialsEngineering,CollegeofEngineering,KwameNkrumah,University ofScienceandTechnology,Kumasi,Ghana
BapunBarik
DepartmentofChemistry,NationalInstituteofTechnology,Rourkela,India
UdayBhan
DepartmentofPetroleumEngineeringandEarthSciences,UniversityofPetroleumand EnergyStudies,Bidholi,Dehradun,India
PabloR.Bonelli
UniversityofBuenosAires,FacultyofExactandNaturalSciences,DepartmentofIndustries, InstituteofFoodTechnologyandChemicalProcesses,NationalCouncilforScientificand TechnicalResearch,UniversityCity,BuenosAires,Argentina
NaveenBunekar
DepartmentofChemistry,ChungYuanChristianUniversity,TaoyuanCity,Taiwan
AnaL.Cukierman
UniversityofBuenosAires,FacultyofExactandNaturalSciences,DepartmentofIndustries, InstituteofFoodTechnologyandChemicalProcesses,NationalCouncilforScientificand TechnicalResearch,UniversityCity,BuenosAires,Argentina;UniversityofBuenosAires, FacultyofPharmacyandBiochemistry,DepartmentofPharmaceuticalTechnology,Buenos Aires,Argentina
PriyabratDash
DepartmentofChemistry,NationalInstituteofTechnology,Rourkela,India;Centerfor Nanomaterials,NationalInstituteofTechnology,Rourkela,India
SathishSundarDhilipKumar
LaserResearchCentre,UniversityofJohannesburg,Johannesburg,SouthAfrica
DerrickS.Dlamini
StateKeyLaboratoryofSeparationMembranesandMembraneProcesses/NationalCenterfor InternationalJointResearchonMembraneScienceandTechnology,Tianjin,P.R.China; SchoolofMaterialsScienceandEngineering,TianjinPolytechnicUniversity,Tianjin, P.R.China;AcademyofNanotechnologyandWasteWaterInnovations,Johannesburg,South Africa
NoeliaL.D’Elía
INQUISUR-CONICET,DepartmentofChemistry,UniversidadNacionaldelSur, B8000CPB,BahíaBlanca,Argentina
Geetanjali
DepartmentofChemistry,KiroriMalCollege,UniversityofDelhi,Delhi,India
LalitGoswami
CenterfortheEnvironment,IndianInstituteofTechnologyGuwahati,Guwahati,India
ShivaniGoswami
DepartmentofBiotechnology,BrahmanandCollege,ChhatrapatiShahuJiMaharajUniversity, Kanpur,India
A.NoelGravina
INQUISUR-CONICET,DepartmentofChemistry,UniversidadNacionaldelSur, B8000CPB,BahíaBlanca,Argentina
NidhiRaniGupta
DepartmentofChemistry,MultaniMalModiCollege,Patiala,India
RamK.Gupta
DepartmentofChemistry,KansasPolymerResearchCenter,PittsburgStateUniversity, Pittsburg,KSUnitedStates
RajeevJindal
DepartmentofChemistry,Dr.BRAmbedkarNationalInstituteofTechnology,Jalandhar, India
BalbirSinghKaith
DepartmentofChemistry,Dr.BRAmbedkarNationalInstituteofTechnology,Jalandhar, India
GagandeepKaur
DepartmentofChemistry,SriGuruTegBahadurKhalsaCollege,SriAnandpurSahib, India
VaneetKumar
DepartmentofAppliedSciences,C.T.InstituteofEngineering,ManagementandTechnology, Jalandhar,India
VinitKumar
DepartmentofElectricalandElectronicEngineering,VisvesvarayaTechnologyUniversity, Belgaum,India
AnamikaKushwaha
DepartmentofBiotechnology,MotilalNehruNationalInstituteofTechnologyAllahabad, Prayagraj,India
JianxinLi
StateKeyLaboratoryofSeparationMembranesandMembraneProcesses/NationalCenterfor InternationalJointResearchonMembraneScienceandTechnology,Tianjin,P.R.China; SchoolofMaterialsScienceandEngineering,TianjinPolytechnicUniversity,Tianjin, P.R.China;AcademyofNanotechnologyandWasteWaterInnovations,Johannesburg,South Africa
BenediniLuciano
INQUISUR-UNS,NationalUniversityoftheSouth,BuenosAires,Argentina;Department ofBiology,BiochemistryandPharmacy,NationalUniversityoftheSouth,BuenosAires, Argentina
BanalataMaji
DepartmentofChemistry,NationalInstituteofTechnology,Rourkela,India
BhekieB.Mamba
StateKeyLaboratoryofSeparationMembranesandMembraneProcesses/NationalCenterfor InternationalJointResearchonMembraneScienceandTechnology,Tianjin,P.R.China; SchoolofMaterialsScienceandEngineering,Tianjin PolytechnicUniversity,Tianjin,P.R.China; AcademyofNanotechnologyandWasteWater Innovations,Johannesburg,SouthAfrica
ChristineMatindi
StateKeyLaboratoryofSeparationMembranesandMembraneProcesses/NationalCenterfor InternationalJointResearchonMembraneScienceandTechnology,Tianjin,P.R.China;School ofMaterialsScienceandEngineering,Tianjin PolytechnicUniversity,Tianjin,P.R.China
KwadwoMensah-Darkwa
DepartmentofMaterialsEngineering,CollegeofEngineering,KwameNkrumah,University ofScienceandTechnology,Kumasi,Ghana
PaulaV.Messina
INQUISUR-CONICET,DepartmentofChemistry,UniversidadNacionaldelSur, B8000CPB,BahíaBlanca,Argentina
AjayKumarMishra
AcademyofNanotechnologyandWasteWaterInnovations,Johannesburg,SouthAfrica
ShivaniMishra
AcademyofNanotechnologyandWasteWaterInnovations,Johannesburg,SouthAfrica
BezawadaSridharReddy
DepartmentofChemistry,IndianInstituteofPetroleumandEnergy,Visakhapatnam,India
DebasishSarkar
DepartmentofCeramicEngineering,NationalInstituteofTechnology,Rourkela,India; CenterforNanomaterials,NationalInstituteofTechnology,Rourkela,India
JavierSartuqui
INQUISUR-CONICET,DepartmentofChemistry,UniversidadNacionaldelSur, B8000CPB,BahíaBlanca,Argentina
Saruchi
DepartmentofBiotechnology,C.T.InstituteofEngineering,ManagementandTechnology, Jalandhar,India
RachnaSharma
DepartmentofChemistry,Dr.BRAmbedkarNationalInstituteofTechnology,Jalandhar, India
RamSingh
DepartmentofAppliedChemistry,DelhiTechnologicalUniversity,Delhi,India
JusticeM.Thwala
DepartmentofChemistry,FacultyofScienceandEngineering,UniversityofEswatini, Kwaluseni,KingdomofEswatini
KumudMalikaTripathi
DepartmentofChemistry,IndianInstituteofPetroleumandEnergy,Visakhapatnam,India
TsungYenTsai
MasterPrograminNanotechnology&CenterforNanotechnology,ChungYuanChristian University,TaoyuanCity,Taiwan
GcinaD.Vilakati
DepartmentofChemistry,FacultyofScienceandEngineering,UniversityofEswatini, Kwaluseni,KingdomofEswatini
Cellulose-basednanomaterialsfor textileapplications BapunBarik1,BanalataMaji1,DebasishSarkar2,3,AjayKumarMishra4 and PriyabratDash1,3
1DepartmentofChemistry,NationalInstituteofTechnology,Rourkela,India
2DepartmentofCeramicEngineering,NationalInstituteofTechnology,Rourkela,India
3CenterforNanomaterials,NationalInstituteofTechnology,Rourkela,India
4AcademyofNanotechnologyandWasteWaterInnovations,Johannesburg,SouthAfrica
1.1Introduction Developmentofqualitytextilethreadtowardmanufacturinghighvalue-addedclothesand fabricshasbeenaprominentresearchfieldforseveralyears(Mishraetal.,2018;Stokke etal.,2013).Textileindustryplaysasignificantroleintheeconomicdevelopmentofa countrybyenhancinggrossproductionindomesticlevel(Khalijietal.,2013).Textile industriesdemandseveralfabricmaterials,whichincludewoolen,cotton,andsynthetic fibers(Haraguchietal.,2017).Conversely,thesetextileindustriesgeneratehugeamount ofwastewater,whichcausesenvironmentalpollutionaggressively.Thetextileprocesses likedyeing,bleaching,printingetc.generatehighvolumeoftoxicwastewithheavy nitrogencontent,acidity,suspendedsolids,heavymetals,dyesetc.Generally,thesetextile contaminantscancauseseverehealthimpact inhuman,animals,andplantsbydegrading waterqualitiesinaquaticecosystem(Ütebayetal.,2019).Consequently,materialswith leastbyproductgenerationhavealwaysindemandintextileindustries.So,tomeetthe heavydemandofconsumersforlow-weightandenergy-efficientaswellassustainable materials,largescaleindustrieshaveextensivelyfocusedondevelopingnovelmaterials derivedfromthenaturalrenewableresources(Yousefetal.,2020).Materialssatisfying environmentalsafetyandreusabilitywithenhancedactivityhavealsoresultedinan enhancedinterest.Noticeably,therequirementtoexplorealternativesmaterialsofnonrenewableresourcesismajorlyfocusedonproducingadvancedproductsfromvariousbioderivedmaterialssuchascellulose,chitosan,nature-derivedpolymericfibersetc.(Väisänen etal.,2017).Celluloseandchitosanareimmenselypopularforthesynthesisofmodified nanostructureswithenhancedpotentialapplications.Chitosanisadeacetylatedformof chitin,whichisabiodegradable,biocompatible,nontoxic,andrenewableaminefunctionalizedpolysaccharide(Kumar,2000).It’suniquestructuralintegration,multidimensional properties,andextensiveheteroatomfunctionalizationhavemadeitapreferablecandidate
Bio-BasedNanomaterials DOI: https://doi.org/10.1016/B978-0-323-85148-0.00009-9
asasurface-basedactivematerial.Onasimilarnote,celluloseisanotherbiopolymerabundantlyavailableinnatureandalsousedasanovelandsustainablepolymericmaterialfor severaldomesticandindustrialapplications(Royetal.,2009). Fig.1.1 showsthevarious potentialapplicationsofbio-basednanomaterials.Itpossessessustainablestructural, mechanical,andopticalproperties.Moreover,improvedfunctionality,highstrength,and biocompatibilityfurtherbenefitbothchitosanandcellulose-basedmaterialsinpractical applications.Butlimitationslikelowadsorptioncapacityandhydrophilicnaturerestrict themfromlargescaleandindividualapplication.
Inthisdirection,derivativesofcelluloseandchitosanfamilies,nanocelluloseand nanochitosan(NCH)weresynthesizedviacontrolledacidhydrolysis(Siróand Plackett,2010;Yuetal.,2020).Theyhaveemergedasmostpreferablebiobased nanomaterialsduetotheirtunablesize,uniformmorphology,higherdispersibility, superiorsurfacechemistry,andimprovedphysicochemicalproperties.Thehigh surface-to-volumeratioandthermalstabilitymakebothNanochitosan(NCS)and NCHnanomaterialappropriatecandidateforlarge-scaleapplications(Mishraetal., 2018b).Theresearchcommunitieshaveextensivelystudiedaboutnaturalfibersfor theirwiderangeapplicationsandfuturepotentialsofthesebiobasednanomaterialsand theirderivatives.Naturalfibersarebiobasednanomaterialsderiveddirectlyfromthe agriculturalsources.Forexample,naturalfibersarederivedfromjute,banana,hemp, bamboo,woodetc.Thesenaturalfibersprovidenumerousadvantagessuchaslow density,biodegradabilityandcost-effectiveness.Additionally,theyhavelowtoxicity, highertensilestrength,improvedelasticity,betterperformanceandenhancedenergy consumptioncapacity(Ramamoorthyetal.,2015).
Recently,severalNCSandNCH-basednanofibersaredesignedfortextileapplications.Inthischapter,wewillprovideadetailedoverviewoftherecentprogressin
thefieldofbiobasednanomaterialsfortextileapplicationwithanobleviewpointof restorationofaquaticecosystem.
1.2Biomaterialsanditssources Theproductionofbiobasednanomaterialshasincreasedrapidlyasamoreefficient, renewable,andenvironmentfriendlysustainablematerial.Withduecredittothe nanoscience,nanostructuresoftherawbioderivedmaterialsarealsofabricatedandutilized. Celluloseandchitosanaretwoveryabundantbiopolymersreadilyavailableinnature. Cellulosecanbeisolatedfromvariousnaturalsourcessuchaswoods,aquaticanimals,biomass,agriculturalcropandfruitwaste,fungi,andalgae(Rajinipriyaetal.,2018).The compositionandstabilityofcellulosearehighlydependentontheirsource.Ingeneral, celluloseisknownasanaturalpolysaccharidefirstderivedfromwoodin1838bytreatmentwithHNO3.Naturally,itcontainsmicrofibrilsofdiameterrangingfrom3to35 nmowingtoitssource.Itsstructureiscomprisedoflinearpolymericchainswithmonomerscalled β-1,4-D-glucose.Theaveragedegreeofpolymerizationforcelluloseisupto 20,000whereasforwood,itisapprox.10,000units.Withincreasingdemandofecofriendlymaterials,cellulosederivedfromagriculturalcropsandfruitsaremorepreferred (Sinquefieldetal.,2020).Thisisbecausegenerationofrawcellulosebecomeseasier,environmentalfriendlywithlowcost.Agriculturalsourcesofcelluloseareatremendous resourceastheyareecofriendly,inexpensive,easilyavailable,reusable,andhavetunable mechanicalproperties.Moreover,thisagriculturalsourcedcellulosecanproduceabundant amountofnaturalfibers.Agriculturewastefiberscanbeobtainedfromcottonstalk,pineappleleaf,bananaleaf,ricestraw,jute,hemp,crophusk,garlicstraw,vegetablepeel,fruit skin,etc.(Esaetal.,2014).So,agriculturalcellulosehasmultitudeapplicationsinvarious industrialsectorssuchastextiles,paper,compositefabrication,architecture,furniture,and medicine.
Similarly,chitosanisanotherbioderivednaturalbiopolymer,whichisderivedfrom chitin.Skeletonofshrimpwastesandfungusbiomassaregenerallythemostpreferred sourceofchitosan(Kumaretal.,2004).Deacetylationofchitininalkalinemediumproducesthebiopolyaminosaccaridechitosan.Chitinisamajorbiopolymerfoundincrab, shrimp,lobster,jellyfish,coral,someyeasts, andinthecellwallsoffungi.Inrecentyears, researchonchitosanhasenhancedduetoitsbiocompatibility,biodegradability,andenvironmentalsafety(Banoetal.,2017).Ithashighlyinfluentialantimicrobialactivity,film formationcapacity,chelating,andsurfaceadsorptioncharacteristics.Chitosaniscomposed ofpoly-(1,4)-2-amino-2-deoxyD-glucopyranosewithextensiveaminoandhydroxyl functionalizationasactivesites(Islametal.,2017).Chitosanutilizationinvariousapplicationsisdependentonitsviscosityandmolecularweight.Inareport,Shimojohandhis coworkersreportedthathighmolecularweight chitosanhasbetteractivityasfoodadditive comparedtothatwithlowmolecularweightchitosan(Seyfarthetal.,2008).Additionally,
thepolycationicnatureofchitosanmakesitmoresuitableasflocculatingagentaswellas chelatingagentforheavymetals.Thecrustaceousindustrywastesaretheprimesourceof chitosanandcanbeobtainedwithminimumexpenditure.OthersourceslikeFilamentous fungicanprovidebothchitosanandchitinat largescalewhichcanbesynthesizedunder controlledenvironment(Ghormadeetal.,2017).Allthesourcesofchitosancanbecomparedbutallpropertiesofchitosandependonthedegreeofacetylation,homogeneityof molecularweight,viscosityandamountofchargedistribution.Optimizationofthebasic structureofchitosancanexploretheopportunityoffindingnewclassofchitosanderivativeswithabroadrangeimprovedproperties andapplications.Amongthem,designingof nanostructureswithbioderivedchitosanforpotentialapplicationsinseverallargescale industriesisthemostadvancedformofit. Chitosanhasbeenprovedasanontoxicfor consumptioneitherasfoodordrugsectors(Ghormadeetal.,2017).So,researchersare moreinterestedintheproductionofnanochitosan.Moreover,theirantimicrobialproperty furtherincreasesitsdemandinthefabricationofhigh-qualitynanofibersandcomposites fordiversifiedapplications.
1.3Chitosan,cellulose,banana,andjutefiberderivativesandtheir
advantages Totacklethemanmadeclimaticdisasters,biopolymermaterialsarebestalternativematerialsforgreenerworld.Extractedfromliving organisms,thepolymericbiomoleculeshave significantenvironmentalsuitability.Amongallbiopolymers,celluloseandchitosanalong withtheirderivativeshavethemostinteresting multipurposecharacteristics,whichgained significantinterestamongtheresearchersinpresenttime(Oliveraetal.,2016).Celluloseis themostabundantorganicpolymeronEarth.Celluloseisanorganiccompoundwithformula(C6H10O5)n.Itisapolysaccharideconsistingofalinearchainofhundredtomany thousandsof β (1-4)linkedD-glucoseunitsAsanimportantstructuralcomponentof primarycellwallofgreenplants,cellulosehasgaineditsreputation(CichoszandMasek, 2019).Likecellulose,chitosanisthesecondmostabundantorganicpolymerfoundon Earth.Chitosanisacopolymerof2-glucosamineandN-acetyl-2-glucosamine.Itis obtainedbydeacetylationofchitininhotalkali(Kurita,1998).Tilldate,thesehavebeen provedasasuccessfulmaterialasbiologicaladhesive,biofilm,Antioxidant,Foodpackaging,Antibacterial,coating,biosensors,surfaceconditioner,bioadsorbentandcatalyst.But therisinginterestincelluloseandchitosannanofibersinthetextileindustryisundeniable whichmaybeduetoitssuperiorsustainabilityandlow-costmechanicalproperties. Naturalfibersareobtainedfromvarioussourcesbutagriculturalsourcesarebestasthey aremadeupof60% 70%purecellulose,10% 20%hemicellulose,5% 15%ligninand around2%ofwaxesandpectin(Muthukumaretal.,2020).Bananafiberisanaturalfruit fiberextractedfromthesuperimposedleavesofbananaplantwhichhasverylimiteduse exceptasacattlefeed.Itisfrom Musa family(Pothanetal.,2003).CanaryIslandsof
Europearethemajorproducerofbanana.Theverypreciousbananafibersaregenerally isolatedfromthepseudo-stemsofbananaplantafterripeningofthefruit.So,oneofthe primebenefitsofthesefibersincomparedwithnaturallyobtainedfibersistheiragricultural sourceisalwayseco-friendly.Bananafiberspossessleasttoxicitytohumans,instruments andtheenvironment,whichcanberealisticalternativesofotherlessfavoredsynthetic fibers.Severalstudieshavealsobeendoneforthefabricationofbananafibers,someof themwithlongfibersandothersarewovenfibers(VenkateshwaranandElayaperumal, 2010).Thesestudiesshowthatspecificmechanicalpropertiesofbananafibercomposites aresimilartothosereinforcedwithglassfiber,althoughmechanicalpropertiesunder humidconditionsshowanimportantdecreaseforthenaturalfibercompositesbecauseof theirwatervaporabsorption.Anothercellulosebasedfibersourceisjutewhosecomposite materialsaregainingattentionforduetotheireasyavailabilityandcheapproductioncost (Alvesetal.,2010).Jutetakesonly2 3monthstogrowwithaheightof12 15ftinthe rettingprocess,theinnerandouterstemgetseparated.Theouterpartiskeptseparatelyto formfiber.Thesejutefibersarefurtherprocessedtomanufacturehighqualitylifestyleproducts(MishraandBiswas,2013).However,thesebioderivedfibershavehighmechanical strength,excellentthermalstability,renewabilityetc.
1.4Nanochitosan,nanocellulose,andnaturalfibers Inlate1950s,firsttimeacolloidalsuspensionofcellulosewasreportedbyRanbyandhis group(Habibietal.,2010).Theyobtaineditbycontrolledandpreciseadditionof H2SO4 tofabricatecellulosenanofibers.Inanotherwork,Nickesonetal.observedthat thecellulosenanofibersaredegradedtoa maximumlimitafterwhichthevolumeof nanofibersremainsconstant.Whenfurthercharacterized byTransmissionelectronmicroscopetheyrevealedthepresenceofaggregatedneedleshapedparticlesofcrystalline nature(Miaoetal.,2016).Consequently,commercializationofNCSwasachievedby largescalesynthesisviahydrochloricacidassisteddegradationofcelluloseobtainedfrom woodenpulpsfollowedbyultrasonication.Chemicalinactivity,ultrastability,andphysiologicalinertnessalongwithtremendoussurfacebindingproperties,NCSbroughtasignificantchanceformultipurposeapplicationsSinceitsdiscovery,severalimprovementsin themechanicalaswellassurfacepropertiesofnanomaterialswithNCSandNCSderivativeshavebeenpartofsubstantialresearchduetothegrowinginterestinfabrication materialsderivedfromrenewableresources.NCSsarealsoreferredasnanocrystals,nanowhiskers,nanoparticles,andnanofibers(Meloetal.,2020).Butnanofibershavethemost versatileandwiderangeofapplications.MethodsforseparationofCNsandtheir morphologies,characterization,modification,self-assembly,andapplicationswillbe reviewed.Inbasicprocessofisolationof cellulosefibersincludeacidhydrolysis. Preferentially,moredisorderedandleast-crystallinepartsoftherawcellulosearehydrolyzedwhereasthehighercrystallinepartsremainintactduetomoreresistancetoacid
attack.Theacidtreatmentremovesthemicrofibrilsattheloosedefectsandfiberlike nanocellulosestructuresareproduced.Generally,acidhydrolysisinducesminimizesthe degreeofpolymerizationwhichisdirectlyrelatedtothenanofibersizealongthelongitudinaldirectionofcellulosechain.Thisconceptofhypothesiswassupposedasthedisorderedorparacrystallinedomainsofcellulose aregenerallyspreadthroughthemicrofibers leadingtomoresusceptibleacidattack.Thisprocessresultsintheformationofhomogeneouscrystallinenanofibersafteracidhydrolysis. Table1.1 showsthecomparisondataof differentbiobasedcompositeswithvarioussyntheticprocedure.Moreover,allthesespeculationswerefurtherconfirmedfromseveralcharacterizationtoolssuchasX-raydiffraction(XRD)study,electronmicroscopy,smallangleXRDandneutrondiffraction analysis(Sunetal.,2016).Inrecenttime,anotherbiopolymericabundantpolysaccharide chitosanhavebeenintroducedandvastlystudied.Chitosancanbeusedinseveralaspects suchassupportforforeignnanoparticles,enhancingcompositestabilityandactivityand metalbinder.Buttheinherentsoleuseofchitosanhasbeenrestrictedduetoitslackof efficiencyandthermalstability.So,nanoformofchitosanhasbeendevelopedwhichcan bemoreeffectivefordesiredapplicationsdue totheirenhancedsurfacearea,nanosized, uniformdistribution,biodegradability,andhigherfunctionalitydistribution(Huangetal., 2009).Thesepropertiesfavornanochitosaninnumerousapplications,includingsensors, carrierforproteinmolecules,drugdeliverysystems,textile,adsorption,degradation,and catalysis.ThereareseveralmethodsadoptedbyseveralresearchersforfabricationofNCS (Yangetal.,2010).Amongthemmethodslikecoagulation/precipitation,emulsiondropletcoalescencemethod,cross-linkingviacovalentbonds,andionicbondsaremore favored.ButNCHmanufacturedbyionotropic-gelationmethodaremorestable,nontoxic,andsolventfree.NCHpossessalltheinherentproperties ofchitosanalongwith generalcharacteristicsofnanosizedfiberssuchassurfaceactivityeffect,grainsizeeffect
Table1.1 Biobasedcompositessynthesisprocedure.
MaterialSynthesisprocessReference
ChitosanEnzymatic deproteinization
Younesetal.(2012)
NanofibrillatedcelluloseEnzymehydrolysis Pääkköetal.(2007)
CellulosenanofibrilsTEMPO-mediated oxidation JiangandHsieh(2013)
CellulosefibersHigh-intensity ultrasonication
WangandCheng(2009)
CellulosenanofibrilsMicrofluidization Leeetal.(2009) Chitosan/magneticmaghemite (γ-Fe2O3)nanoparticles Solutioncastingmethod PratiwiandPutri(2019)
ZnO/Ce-ZnObased nanoflowers/chitosan
Microwave-irradiation method Saadetal.(2020)
andquantumsizeeffect(ChenandHsieh,2011).Also,ithastremendousphysicochemicalandbioactiveproperties.Ionic-gelationprocessincludesthedeacetylationofrawchitosanwith2%aceticacidsolutionfollowedbytheadditionoftripolyphosphateor ammoniumheptamolybdatetoformawhitesolution.Again,bymultipleringingwith distilledwater,excesstripolyphosphateorammoniumheptamolybdatewereeliminated andthedesiredNCHwasobtainedbyvigorous centrifugationat16,000rpmfollowed bydryinginCO2 atmosphere(Nguyenetal.,2017).Again,BertholdandhisgrouppreparedNCHusingNa2SO4 asaprecipitationagent.Theprocessincludestheadditionof Tween80withrawchitosaninCH3COOFsolutiondropwisefollowedbyultrasonication.Similarly,inanothermethodTianetal.improvisedthemethodofprecipitationandfoundchitosannanoparticlesof600 800-nm.Ohyaetal.cross-linkedthe aminogroupsofchitosanwithglutaraldehydeandemulsifieditwithwater-in-oilemulsifierwhichresultedinsynthesisof5-fluorouracilchitosanparticlesofaverageparticlesize 0.8 0.1mm(Houetal.,2011).NCHhasbeenveryfrequentlyusedforcontrolled releaseofdrugforgenetransferinhumanandanimalorgans(Huangetal.,2009). Moreover,ithasawidevarietyofapplicationintextileindustrywhichcanenhancethe fabricstrengthandwashabilityofthetextile withanadditionalbenefitofantibacterial ability.
1.5Applicationsofbiobasednanomaterials Theprogressofbiobasednanomaterialshasmarkedanessentialmilestoneinmodern civilization.Afterinventionandgainingpopularity,biobasednanoparticlesandnanofibersareconsideredastheneweramaterialsforouradvancedtechnology-basedhuman society.Therapidandunprecedentedprogressinmaterialworldisgreatlydependenton thedesignofbioderivedmaterialswithhigheractivityandphasestability.Batteries, machines,computers,vehicles,memorydevices,displaypanels,solarcells,andsensory devicesarethefundamentalpartofourdailylife,whicharemadeupofadvanced metals,ceramics,orplastics.Theadvancementoftechnologyhasbroughtrevolutionary conversiontotheenvironmentandhumans.Consequently,thisresultsinseriousenvironmentandhealthhazardsduetoproductionofenormousamountofsecondarywaste. Theevolutionoftechnologyhassuggestedthatthebioderivedmaterialssuchascellulose,chitosanandothernaturalfibersarethemostpreferredalternativesfortheceramic, metallicandplasticmaterials.Thesebiobasedmaterialsprovideuniquecombination propertiessuchassurfacechemistry,transparency,highelasticity,anisotropy,andlow thermalexpansion.Thebiobasedmaterialshavebeenaddressedformanymultipurpose applicationssuchasfuelconversion,energystorage,catalysis,biomedicine,pharmaceutical,environmentalapplicationandindustrialapplications.Amongthem,industrialapplicationsofbiobasedmaterialshavebeenstudiedforlongtimeperiodandstillgaining moreattention.Here,wewillbediscussingparticularlythetextileapplicationsofmost
popularnanosizedcelluloseandchitosan.Owingtotherequirementofhighqualityand antibacterialpropertyoftextilefabrics,thesebioderivednanoformsofchitosanandcellulosecansatisfythepurposeinbestway.Moreover,theenvironmentfriendlinessand nontoxicitytohumanskinhavefurtherproveditssuitabilityfortextileindustry.
1.5.1Textileapplicationsofnanochitosan Chitosanisapolycationicnaturalpolysaccharide,whichpossessesmanybeneficialpropertieslikeantifungal,antibacterial,antiacid,nontoxicandtotalbiodegradableandsuperb filmformingcapacity.Thenanoformofchitosaniscomprisedofalltheseinherentpropertiesalongwithnanosizedeffectandquantumsizeeffect.Inthisprospective,nanochitosanhasbeenusedforseveralapplicationssuchascosmetics,food,biomedical,paper, wastewatertreatment,agriculture,andindustries.Also,theseuniquecharacteristicsare veryadvantageousfortextileapplications. Fig.1.2 Showsthepotentialusageofbiobased nanomaterialsfortextileapplications.Intextileindustriesnanochitosancanbeusedas fibersandintheprocessofdyeingaswellasfinishing.Recently,nanochitosanhave demonstratedversatileapplicationintextilestoenhancethefunctionalcoatingswhich meansdurability,softnessoffabrics,UVprotection,breathability,fireandwaterresistance,antimicrobial,antifungal,self-cleaningpropertiesoffabrics,yarnandfiber. Chitosanhasalargeimpactonproductionoftextilewithantimicrobial,hemostatic, moisturecontrolling,nonallergic,deodorizing,andantithrombogenicpropertiestoward wounddressingbandages,fabricswithscents,activedrugcarrier,andsutures.Thesurfacequalityandmorphologyofthefiberwasanalyzedwithscanningelectron
Figure1.2 Schematicillustrationoftextileapplicationsofbiobasednanomaterials.
microscope.Duringthedyeingprocessintextileindustries,numeroustoxiccoloring agentslikedirect,anionic,reactive,andazoicdyesareutilized.Theconventionaldyeing processproducelargeamountofwastewaterwhichcandegradetheaquaticlifeaswell asenvironmentbycontaminatingwithtoxicchemicalsandmacromolecules.Inthis direction,Iqhrammullahetal.reportedthePb(II)adsorptionpropertiesofNCHcombinedpolyurethane-polypropyleneglycolfromtextileeffluents(Iqhrammullahetal., 2020).Thekineticandbatchadsorptionstudiesrevealedthattheternaryblendwas foundtobethermallystableandcrystallineinnaturewhichishighlyefficienttoremove metalionsfromtextilewastewater.Hadavifarandhiscoworkerspreparednanochitosan fromshrimpshellsandincorporateditwithsodiumtriphosphatetoremovemalachite greendyefromaqueouswastewater.Themaximumadsorptioncapacitywasfoundto be317.73mgg 1 fromLangmuirisotherm(Salamatetal.,2019).Theadsorbentwas suitableforindustrialwastewaterbecauseofthelowcost,ecofriendlynatureandminimizedsecondarycontaminationpossibility.Nanochitosanwithexcellentchelationpropertycanbeusedintheprocessingofwatertechnologyinthefiltrationprocess.Chitosan helpsinremovingheavymetals,oils,andphosphorousfromtheaqueousmedium. Moreover,chitosancanminimizetheturbidityofwaterupto99%whenemployed alongwithsandfiltrationprocess(ThakurandThakur,2016).
Severalstudieswerereportedrevealingthesuitabilityofnanochitosanontheevolutionofcottonfabric.Chattopadhyayetal.analyzedthenanochitosantreatedcotton fibersviascanningelectronmicroscopewhichfoundthenonglossyandswollensurface morphology(ChattopadhyayandInamdar,2013).Theyalsooptimizedthesurface propertiesbychangingtheparticlesizes.Agreaterextentofpenetrationintothefiber structurewasachievedwithsmallersizenanochitosanparticles.Thearticlealso reportedtheenhancedfabricstrengthduetoincorporationofnanochitosanwhichfurtherincreasedwithdecreaseinparticlesizes.Furthermore,theextensive functionalization-NH2 and OHofchitosancancrosslinkwiththefibermoleculesto improvethestrengthofcompositefiber.Theauthorsconcludedthatsmallerparticle sizesofnanochitosanprovidehighersurfaceareaandfabricqualityduetobettercrosslinking.Again,theabsorbencyofthenanochitosanwasfoundtobegreatlyminimized duetoreductioninparticlesize.Thenanochitosanparticlesformathinlayeroverand belowthefabricsurfacewhichcanrolloutthewaterdropletslikelotusleaf.Results alsodepictedthatconventionaldyeuptakecapacityofcottoncanbeimprovedby combiningitwithnanochitosan.Thenanochitosanwithenhancedsurfaceareaand smallerparticlesizeprovidehighernumberofactivesitetothedyemoleculesto attach.Inacidicmediumtheaminogroupsgetprotonatedandthecationicsurface weresuitableforanionicgroupsofdirectdyes.Also,thisbringsbetterfiber-dyecomplexformationimprovingthefastnesstowashing(ThakurandThakur,2016).
Nanochitosanalsoprovidesenhancedantimicrobialpropertiestocottonfibers. Nanochitosanmodifiedwithsilvernanoparticlescanbeveryeffectivetofurther
Table1.2 Nanochitosan-basedcompositesforTextileapplication.
Sl.noMaterialSynthesisprocessApplicationReference
1Chitosan-basedhydrogels/ HCPpolymer
Modified Davankov procedure
2NanochitosanLow-molecularweight chitosan treatment
3Chitosan-methacrylicacid nanoparticles
4Nanochitosan-reinforced unfoldedsoyprotein
5Manganese-peroxidase immobilized glutaraldehydeactivated chitosanbeads
6Ethylene-diamine modifiedchitosan
7O-acrylamidomethyl-N[(2-hydroxy-3trimethylammonium) propyl]chitosan chloride
8Chitosan-poly (Nisopropylamide) particles
Polymerization process
Ultrasonic treatment
Crosslinking method
Dropwise addition method
Pad-dry-cure method
Removalofdye deLunaetal., (2017)
Usedaswoolfabric finishingtreatment Yangetal. (2010)
Antibacterialactivity oftreatedcotton fabrics
Hebeishetal. (2013)
Usedasasustainable textilebioadhesive forindustry. Xuetal. (2020)
Detoxificationand decolorizationof textileeffluent Bilaletal. (2016)
Removalofanionic dyeeosin
Huangetal. (2011)
Usedasdurable antimicrobial textilefinish Limand Hudson (2004)
Pad-dry-cure method
Durableantibacterial finishoncotton fabric Yeetal. (2006)
improvetheantimicrobialaswellastheantifungalnatureofthecottonfiber.Ata verylowerconcentration,silvernanoparticlesareprovedtobebetterantibacterial agentsthanotherpopularmetals(lead,mercury,copper,etc.)(Alietal.,2011).So, thefabriccanbeefficientlytreatedwithnanochitosaninitiallyfollowedbylownanosilvertreatmentintwobathprocess.Thenanochitosanandsilvertreatedsamplesof cottonalsopossesshigherfabricstrength.Acomparisondataofdifferentnanochitosan basedcompositeswithdifferentsyntheticprocedurefortextileapplicationsisdisplayed in Table1.2.
1.5.2Textileapplicationsofnanocellulose Thegreatinterestofdesigningmoresustainableandenvironmentalfriendlytextilematerialshasfocusedmoreonrenewableresources.In thiscontext,nanocellulosehasattracted greatdealofattentionduetoitslowthermal expansion,cheapness,lowweight,tensile
stiffness(2 6GPa),andstringmodulus(140 150GPa).Ithasbeenderivedfromseveral agriculturalandindustrialwasteslike,ricestraw,husk,bagasseofsugarcaneetc.Ingeneral, textileindustriesnaturalfibersarewidelyusedasmoderntextilematerialsduetovariation instaplelength.Chattopadhyayetal.isolatedcellulosenanowhiskersfromindustrial byproductrayonfiber.Theyanalyzedthesizedependentthermalandphysicalproperties ofpolyesterfabricappliedwithnanocelluloseparticles(ChattopadhyayandPatel,2016). Furthermore,theyshowcasedthehighercolorstrengthintermsof K/S value(23.84)of thenanocelluloseanchoredfabricstowarddyeingwithdirectdye.Theimprovedcolor strengthalongwithsuperiorresistancetowardsoapingisachievedduetotwopathcoating withnanocellulose.Finally,theauthorsdemonstratedtheimprovedabsorbencyandair permeabilityofthepolyesterfabricduetocoatingwithnanocellulose.Liyanapathiranage etal.demonstratednanofibrillatedcellulose dyeingmethodtotackletheincreasingenvironmentalpollutionresultedby currenttextiledyeingprocess(Liyanapathiranageetal., 2020).Theposttreatmentprocesswithpolycarbxylicacidformscross-linkednanofibrillated cellulosefibersbyesterificationoverthecottonfabric.Theincorporationofnanofibrillated celluloseenhancedthedyefixationby30%andalsominimizesthefastnessduetowashing upto60%.Notably,theyimprovedthefabricqualitywithoutdisturbingthestiffnessand breathabilityoftheinherent fabric.Additionally,theytestedthemoderntextilemethod foraseriesofreactivedyecoveringtheentirevisiblespectrum.Anotherreportsuggested byShaheenandhiscoworkerspresentednanocellulose-polypyrrolecompositefordevelopmentofanovelconductivetextilematerialthroughcoating overcottonfabric (Hebeishetal.,2016).Itwasrevealedinthestudythattheincorporationof nanocellulose-polypyrrolecompositeboostedthemechanicalandelectricalpropertiesof thecottonfabric.Theyalsosuggestedthatwithincreaseinthedoseofnanocellulosesignificantlyaffectsthemechanicalpropertieswhereasincreaseinpolypyrroleamount enhancedtheconductivityofthecottonfabric.Theconductivefabricwasdesignedfor thepurposeoffiltering,de-electrifyingclothes,ceilingmaterials,anddust/bacteriafree clothes.In2016Minkoetal.filedapatentwhereheshowedtheutilizationofnanocellulosefibersfortextiledyeing application.Theyfoundthatthedyednanocellulosegelpreparedfromwoodpulpcanbeappliedoverfabricsortextileseliminatingtherequirement ofwater(Minkoetal.,2016).Inthiscase,nanocellulose hasbeenemployedasabinding agentaswellasacarrierfordyemolecules.Thebindingcapacityofthedyestotextiles throughnanosizedcelluloseparticleswasveryhighcomparedtothewetprocessusedfor dyeing.Theycreditedthelargesurfacearea andextensiveamountofsurfacefunctional groupsofnanocellulosebehindthestronginteractionwithdyemolecules.Saremietal. studiedtheadhesivepropertiesandstabilityofnanocellulosewhencoatedoverpolymer fabricssuchascotton,polyethyleneterephthalate(PET)andnylon6,6(Saremietal., 2020).Theauthorsdepositedcellulosenanofibersandnanoparticlesoverthesurfaceofthe polymerictextiles.Thesampleswerecharacterizedwithellipsometry,atomicforcemicroscopy,andT-peeladhesiontests.Bothwetanddrytestrevealedthehigheradhesionof