Big data and mobility as a service 1st edition haoran zhang - Download the full ebook now to never m

Page 1


https://ebookmass.com/product/big-data-and-mobility-as-a-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Understanding Mobility as a Service (MaaS): Past, Present and Future 1st Edition David A. Hensher

https://ebookmass.com/product/understanding-mobility-as-a-servicemaas-past-present-and-future-1st-edition-david-a-hensher/ ebookmass.com

Big Data Mining for Climate Change Zhihua Zhang

https://ebookmass.com/product/big-data-mining-for-climate-changezhihua-zhang/

ebookmass.com

AI in Marketing, Sales and Service: How Marketers without a Data Science Degree can use AI, Big Data and Bots 1st Edition Peter Gentsch

https://ebookmass.com/product/ai-in-marketing-sales-and-service-howmarketers-without-a-data-science-degree-can-use-ai-big-data-andbots-1st-edition-peter-gentsch/ ebookmass.com

Money and Schools 7th Edition, (Ebook PDF)

https://ebookmass.com/product/money-and-schools-7th-edition-ebook-pdf/

ebookmass.com

A

Nobleman's Guide to Seducing a Scoundrel (The Doomsday Books 2) 1st Edition Kj Charles

https://ebookmass.com/product/a-noblemans-guide-to-seducing-ascoundrel-the-doomsday-books-2-1st-edition-kj-charles/

ebookmass.com

Gender, Sexuality, and Intelligence Studies: The Spy in the Closet 1st ed. Edition Mary Manjikian

https://ebookmass.com/product/gender-sexuality-and-intelligencestudies-the-spy-in-the-closet-1st-ed-edition-mary-manjikian/

ebookmass.com

Intrinsic CSR and Competition: Doing well amongst European SMEs 1st ed. 2020 Edition Walter Wehrmeyer

https://ebookmass.com/product/intrinsic-csr-and-competition-doingwell-amongst-european-smes-1st-ed-2020-edition-walter-wehrmeyer/

ebookmass.com

Kubernetes Secrets Handbook Emmanouil Gkatziouras

https://ebookmass.com/product/kubernetes-secrets-handbook-emmanouilgkatziouras/

ebookmass.com

Olympic Crown: Bellerive Royals Book 1 W Million

https://ebookmass.com/product/olympic-crown-bellerive-royalsbook-1-w-million/

ebookmass.com

Cultural Participation: The perpetuation of middle-class privilege in Dublin, Ireland Kerry Mccall Magan

https://ebookmass.com/product/cultural-participation-the-perpetuationof-middle-class-privilege-in-dublin-ireland-kerry-mccall-magan/

ebookmass.com

BigDataandMobilityasaService

BigDataandMobility asaService

CenterforSpatialInformationScience,TheUniversityofTokyo,Kashiwa, Chiba,Japan

XuanSong

DepartmentofComputerScienceandEngineering,SouthUniversityof ScienceandTechnology,Nanshan,China

CenterforSpatialInformationScience,TheUniversityofTokyo,Kashiwa, Chiba,Japan

RyosukeShibasaki

CenterforSpatialInformationScience,TheUniversityofTokyo,Kashiwa, Chiba,Japan

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,can befoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-90169-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

EditorialProjectManager: HowiM.DeRamos

ProductionProjectManager: PunithavathyGovindaradjane

CoverDesigner:MilesHitchen

TypesetbySTRAIVE,India

Contributorsxi

Introductionxiii

ShreyasBharule,HaoranZhang,andRyosukeShibasaki

1.MaaSsystemdevelopmentandAPPs 1 WenjingLi,RyosukeShibasaki,HaoranZhang,and JinyuChen

1.ThedevelopmenthistoryofMaaS 1 1.1Theconception1 1.2Theearlyapplication1 1.3MaaSalliance2

1.4Development3 1.5Revolutionandinnovation4

2.ThecategoryofMaaSsystem 5

2.1Level0:Nointegration6

2.2Level1:Informationintegration6

2.3Level2:Integrationofbookingandpayment6

2.4Level3:Integrationoftheserviceoffering6 2.5Level4:Integrationofsocietalgoals7

3.Studycase 7 3.1UbiGo10 3.2Whim12 3.3Moovit15 3.4Uber17

4.FuturedevelopmenttrendofMaaSsystem 21 4.1Data-integrated21 4.2Future-oriented22 4.3Sustainable23 References 23

2.Spatio-temporaldatapreprocessingtechnologies 25 JinyuChen,HaoranZhang,WenjingLi,and RyosukeShibasaki

1.Introduction 25 2.RawGPSdataandworkflowofdatapreprocessing 26

3.Keytechnologiesandcorrespondingapplication 27 3.1Outlierremovement27

3.2Staylocationdetection29 3.3Travelsegmentation30

3.4Travelmodedetection31 3.5Mapmatching33 3.6Summary35

4.Casestudy 35

4.1Staylocationdetection:Lifepatternanalysis35

4.2Travelsegmentationandmodedetection:Ride-sharing potentialanalysis48

4.3Mapmatching:EstimationofurbanscalePMemission60

5.Conclusion

3.Travelsimilarityestimationandclustering 77

YuhaoYao,RyosukeShibasaki,andHaoranZhang

2.Trajectorysimilarity 79

2.1Point-to-pointdistancemetric80

2.2Similarityfunctionoftrajectory82 2.3Trajectoryclustering87

3.Travelpatternsimilarity 90 3.1Travelpatternextraction91

3.2Travelpatternexpression92

3.3Travelpatternclustering93

4.Origin-destinationmatrixsimilarity 93

4.1VolumedifferencefocusedODsimilaritymeasure95

4.2Image-basedODsimilaritymeasure96

4.3Transformingdistance-basedODsimilaritymeasure97

4.4ODtableausimilaritymeasure:Mobsimilarity98

5.Casestudy 103

5.1CDR-basedtravelestimationaccuracyanalysis103 5.2Metrousagepatternclustering106

6.Conclusionandfuturedirections 106 References 108

4.DatafusiontechnologiesforMaaS 113

YiSui,HaoranZhang,WenxiaoJiang,RenchengSun, andFengjingShao

1.Introduction 113

2.Dataformula 115

2.1Attributeandeventdata115 2.2Trajectorydata116

2.3Origin-destination(OD)tripdata117 2.4Correlationnetwork117 2.5Environmentaldata118

3.CategoriesofdatafusionmethodsinMaaS 119

4.Datafusionbasedondeeplearning 122

4.1Fundamentalbuildingunitsofdeeplearningnetwork122

4.2Fusionstrategy130

5.Decomposition-basedmethods 135

6.ChallengingproblemsofdatafusioninMaaS 137

6.1Dataquality137

6.2Modelcomplexity137

6.3Datafusionincomparativeanalysis138

7.Conclusions 138 Acknowledgments 138 References 138

5.Data-drivenoptimizationtechnologiesforMaaS 143 HaoningXi

1.Overviewofdata-drivenoptimizationfortheurbanmobility system 143

1.1Data-drivendispatchingmethodsforon-demand ridesharing143

1.2Data-drivenschedulingmethodsforpublictransit147

1.3Data-drivenrebalancingmethodsfor bicycle-sharing148

2.OverviewofthegeneralconceptinMaaSSystem 149

2.1OverviewoftheMaaSsystems149

2.2OverviewofdatainMaaSsystems150

3.MobilityresourceallocationinMaaSsystem 152

3.1MobilityresourceallocationframeworkinMaaS152

3.2Data-drivenonlinestochasticresourceallocation problems157

4.Data-drivenoptimizationtechnologiesforresourceallocation inMaaS 157

4.1Sampleaverageapproximation158

4.2Robustoptimization159

4.3Predictiveanalysisandprescriptiveanalysis161

4.4Machinelearning-basedrobustoptimization162

5.Real-worldapplicationandcasestudy 164

5.1Problemdescription164

5.2Methodology165

5.3Resultsanddiscussion165

6.Conclusions 170 References 171

6.Data-drivenestimationforurbantravel shareability 177

1.Introduction 177

1.1Theemergenceofsharingtransportation177

1.2Thesignificanceofshareabilityestimation178

1.3Chapterorganization178

2.Emergingsharingtransportationmode 179

2.1Bicyclesharing180

2.2Ridesharingandtaxisharing181

2.3Customizedbus182

2.4Characteristicsofsharingtransportationmodes182

3.Backgroundtotraditionaldataandtheirlimitations 183

4.Newandemergingsourceofdata 183

4.1Trackandtracedata184

4.2Geographicinformationdata185

4.3Advantagesanddisadvantagesofnewdatasources186

5.Emergingformofkeytechnologies 187

5.1Agent-basedmodeling187

5.2HowABMcanbeappliedinshareabilityestimation188

6.CasestudyofABMinurbanshareabilityestimation 190

6.1Dynamicelectricfenceforbicyclesharing190

6.2ABMsimulation191

6.3Dataandstudyarea192

6.4Resultofsimulation192

6.5Evaluationoftheresult194

7.Opportunitiesandchallenges 197

7.1Dataacquisition197

7.2Demandprediction198

7.3DesignimprovementofABM198

7.4Accelerationoflarge-scaleABM198

8.Conclusions

7.DataminingtechnologiesforMobility-as-a-Service (MaaS) 203

Wen-LongShang,HaoranZhang,andYiSui

1.IntroductionofdataminingtechnologiesinMaaSsystem 203

2.DataminingtechnologiesinMaaSsystem 204

2.1Whatisdatamining?204

2.2Objectofdatamining205

2.3Classicalstepsofdatamining205

2.4Typesoftransportationdata207

3.MethodologiesofdataminingtechnologiesusedinMaaS system 209

3.1Supportvectormachine209

3.2Linearregression213

3.3Decisiontree216

3.4Clusteringanalysis219

4.CasestudyofdataminingforMaaS:BikesharinginBeijing duringCovid-19pandemic 223

5.Summaryofchapter 227 References 228

8.MaaSandIoT:Concepts,methodologies,and applications

1.Introduction

2.Overviewoftheconcept

2.1Overviewofthegeneralconcept230

2.2ChallengesofIoTapplicationinMaaS231

3.Keytechnologiesandmethodologies 231

3.1Intelligenttransportationequipment231

3.2CommunicationprotocolsfortheInternetofThings232

3.3MicroservicesbasedontheInternetofThings232

3.4CloudcomputingbasedontheInternetofThings234

3.5Edgecomputing235

3.6SecuritytechnologiesfortheInternetofThings236

4.Applicationandcasestudy

5.Conclusionandfuturedirections

9.MaaSsystemvisualization

1.Overviewofthegeneralconcept

2.ThekeyvisualizationtechnologiesinMaaSfordifferent stakeholders

2.1Theperspectiveofdemandersofmobility247

2.2Theperspectiveofsupplieroftransportationservice248

2.3Theperspectiveofcitymanager252

3.Real-worldapplicationandcasestudy 254

3.1Casefordemandersofmobility254

3.2Caseforsupplieroftransportationservice255

3.3Caseforcitymanager257

3.4Open-sourcevisualizationtoolsandlibraries258

4.Conclusionandfuturedirections 261

10.MaaSforsustainableurbandevelopment

1.Introduction

2.MaaSinteractedwithurbantrafficandspace

2.1Urbantrafficstructure267

2.2Urbanspatialstructure269

3.StrategiesforMaaSinurbansustainabledevelopmentat multiplescales 269

3.1Macroscale:Synergybetweenurbanagglomerationsand metropolitanareas270

3.2Mesoscale:Optimizationofinternalresourcesincities271

3.3Microscale:Therefinementofurbanstreets271

4.Casestudy

5.Conclusion

Contributors

Numbersinparenthesisindicatethepagesonwhichtheauthors’contributionsbegin

ShreyasBharule (xiii),LocationMindInc.,Tokyo,Japan

JinyuChen (1,25),CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan

RongGuo (265),KeyLaboratoryofColdRegionUrbanandRuralHumanSettlement EnvironmentScienceandTechnology,MinistryofIndustryandInformation Technology,SchoolofArchitecture,HarbinInstituteofTechnology,Harbin,China

RenheJiang (245),CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan

WenxiaoJiang (113),CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan

WeifengLi (117),KeyLaboratoryofRoadandTrafficEngineeringoftheMinistryof Education,TongjiUniversity,Shanghai,China

WenjingLi (1,25),CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan

Wen-LongShang (203),BeijingKeyLaboratoryofTrafficEngineering,Collegeof MetropolitanTransportation,BeijingUniversityofTechnology,Beijing,China

FengjingShao (113),InstituteofSmartCityandBigDataTechnology,Qingdao,China

RyosukeShibasaki (xiii,1,25,77,245),CenterforSpatialInformationScience,The UniversityofTokyo,Kashiwa,Chiba,Japan

XiaoyaSong (265),KeyLaboratoryofColdRegionUrbanandRuralHumanSettlement EnvironmentScienceandTechnology,MinistryofIndustryandInformation Technology,SchoolofArchitecture,HarbinInstituteofTechnology,Harbin,China

XuanSong (229),DepartmentofComputerScienceandEngineering,SouthUniversity ofScienceandTechnology,Nanshan,China;CenterforSpatialInformationScience, TheUniversityofTokyo,Kashiwa,Chiba,Japan

YiSui (113,203),CollegeofComputerScienceandTechnology,QingdaoUniversity, Qingdao,China;CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan;InstituteofSmartCityandBigDataTechnology,Qingdao, China

RenchengSun (113),CollegeofComputerScienceandTechnology,Qingdao University,Qingdao,China;CenterforSpatialInformationScience,TheUniversity ofTokyo,Kashiwa,Chiba,Japan;InstituteofSmartCityandBigDataTechnology, Qingdao,China

HaoningXi (143),SchoolofCivilandEnvironmentalEngineering,UniversityofNew SouthWales,Sydney;Data61,CSIRO,Canberra,Australia

HongbinXie (229),DepartmentofComputerScienceandEngineering,South UniversityofScienceandTechnology,Nanshan,China

ChuangYang (245),CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan

DongyuanYang (177),KeyLaboratoryofRoadandTrafficEngineeringoftheMinistry ofEducation,TongjiUniversity,Shanghai,China

YuhaoYao (77),CenterforSpatialInformationScience,TheUniversityofTokyo, Kashiwa,Chiba,Japan

QingYu (177),KeyLaboratoryofRoadandTrafficEngineeringoftheMinistryof Education,TongjiUniversity,Shanghai,China

HaoranZhang (xiii,1,25,77,113,203,229,265),CenterforSpatialInformation Science,TheUniversityofTokyo,Kashiwa,Chiba,Japan

Introduction

ShreyasBharulea,HaoranZhangb,andRyosukeShibasakib

aLocationMindInc.,Tokyo,Japan, bCenterforSpatialInformationScience,TheUniversityof Tokyo,Kashiwa,Chiba,Japan

1Background

Datawasoriginallymanual.Transportationdataforthelongesttimewerecollectedthroughclickersatjunctions.However,inthelastdecade,wehaveseena rapidtransformationofthemobilitylandscape.Theconvergenceoftechnologiessuchassmartphones,sensors,theInternetofThings,andappswithin smartphoneshaverevolutionizedhowwelookateveryformoftransportation, particularlytointerpretandpredictthemovementofgoodsandpeopleinreal time.Inrecentyears,mobilityservicessuchasUberfortaxiservice,DHLfor logistics,andothershaveusedvarioustechnologiesthatcollectivelyimpact howwemoveinlong-andshort-haultransportation.

Also,thenumberofsensorsalsousedtocollectdata,bothstationaryand mobile,hasincreasedmultifold.Theyaregeneratingandcollectingrelational datatoexamineissuesandresolvechallenges.Suchaconvergenceoftechnology andtheresultantemergingservicesarechanginghowcitiesrespondtonewer typesofgoodsandpeoplemovementsthroughMobilityasaService(MaaS). Thestatedadvantagesofusingtheseservicesareconvenience,real-timeinformation,andconnectivitytogowhereverthetravelerwantstogo.Thoughsuch possibilitiesaremarketedaslimitless,therearetechnicallimitations.

Bigdata-drivenMaaSdevelopmentisanemergingareabothinacademic andindustrialaspects.Thoughseveralresearchstudiesandtechnicalreports areavailable,aclearlinktounderstandbigdatainMaaSappearsvagueand fragmented.Inthisbook,weaimtofillthisgapbysystematicallysummarizing theknowledgeinthisfield—thechaptersinthebookoutlinetheareastostreamlinetheunderstandingofbigdataanalyticsforMaaS.

2Bigdata:Definition,history,today

Bigdataismadeupoflarger,complexdatasetsthatoriginatefromincreasingly newsourcesofdata.Thesedatasetsaresomassivethattheabilitiesoftraditionaldataprocessingsoftwareareinsufficienttomanagethem.Nevertheless, thesemassivevolumesofdatacanbeusedtoaddressbusinessproblemsthat wouldnothavebeentackledbefore.

Asimpledefinitionofbigdataorganizedaroundbigdata’sthreeVscouldbe large volumes ofdatathatcontainimmense variety andaregeneratedatincreasing velocity.Recently,sixotherVsandoneChavebeenaddedtodefinethe truthfulnessandmeaningfulnessofdataas veracity,infrequencyas validity, extracting value fromthecollecteddata,replicabilityintheformof visualizations, processabilityina virtual cloudplatform,data variability,and complexity,purelyincomputationform.

Thoughtheconceptofbigdataisstillemerging,theoriginsoflargedatasets gobacktothe1970swhentheworldoforganizeddatainthefirstdatacenters wasemerging.Inaddition,thedevelopmentoftherelationaldatabasefurther consolidatedtheconcept.Around2005,researchersidentifiedjusthowmuch datausersgeneratedthroughSNS,videostreamingservices,andotheronline services.Inparalleltothesedevelopments,dataorganizationandstoragesystemsweredevelopedaswell.Hadoop,anopen-sourceframeworkcreatedspecificallytostoreandanalyzelargedatasets,wasdevelopedaroundthesame year.Thisdevelopmentofopen-sourceframeworkssuchasHadoop,Spark, andotherswasessentialforthegrowthofbigdatabecausetheymakedatastoragecheaperandenhancetheeaseofengagingwithbigdatasets.

Nevertheless,thevolumeofbigdatahasbeenatanall-timehigh,asisthe dependencyonitfordecisionmaking.Usersofthesystemarestillgenerating significantamountsofdata.However,itisnotjusthumansthatareengaging withsystems.Evolutioninsmartphoneandsensortechnologynowallows devicestocommunicatethroughtheInternetofThings(IoT)network.Besides, advancementsindevicesandcommunicationnetworksystemshaveeaseddata gatheringforvariousindicatorsanddrawingperformanceinsights.Moreover, theemergenceofartificialintelligenceandmachinelearninghaschurnedout diversityandcross-operabilityacrossvariousplatforms.

Furthermore,cloudcomputinghasexpandedbigdatapossibilitiesintruly elasticscalability.Suchscalabilityisofcriticalimportanceinanalyzingand supportingdemandsinservices.Wefocusonthisaspectofbigdatatosolve challengesthathinderfuturedevelopment,particularlyinunderstandingthe emergingareaof MaaS.

3MaaS:Definition,history,today

MaaSisanewconceptinthetransportsector;itprovidesanewwayofthinking abouthowthedeliveryandconsumptionoftransport(ormobility)aremanaged. Inordertohaveacommonstartingpointwithinthebookprojectgroup,itwas importanttohaveacommondefinitionforMaaS.AlthoughMaaSisregardedas amajorparadigmshiftintransportationtowardmoreenvironmentallyfriendly andefficientlyusedtransportmodes,describingallimportantMaaSfacetsis relevantfordeterminingthemainresearchscope.

Thoughthereisrelativelylittleliteratureontheplanningandconceptsof MaaSsystems,MaaSasaconceptwasfirstdescribedin1996asan“intelligent

informationassistant”fortravelneeds.WedescribeMaaSasashiftawayfrom privatelyownedmodesoftransportationandtowardmobilitysolutionsthatare consumedasaservice.

TheonesignificantapplicationofMaaSistheemergenceofsharedtransportationsystems(STS).STSsareenabledbycombiningtransportationservicesfromperson-to-persontransportationprovidersthroughaunified gatewaythatcreatesandmanagesthetrip.ThekeyconceptbehindSTSisto offertravelersmobilitysolutionsbasedontheirtravelneeds.Forlocalauthoritiesandpolicymakers,thepotentialtouseSTStosourcedataontravelmovementscouldopenthedoortonewtransportmanagementtools,planningfor sustainablegrowth,andmoreefficientuseofcapacity.

UK’sTransportSystemsCatapultpredictedthatbytheendof2020,more than50billionconnecteddeviceswouldcollectmorethan2.3ZBofdataglobally.Inthecomingdecade,thesenumbersareexpectedtoincreaseeachyear. STSleveragesthisopportunityandisanexampleofabusinessmodelsupported bythegrowthinsmartphoneuse.STSisadigital,data-drivenservicethatuses severaltechnologicalcapabilitiesassociatedwithintelligentmobilityandinnovation.Thesystemreliesonbuildinganecosystemofstakeholdersthatagrees tomanagethesupplyanddemandoftheservicesthattravelersdemand.

4BigdataXMaaS

Bigdata-drivenMaaSdevelopmentisanemergingtopicbothinacademicand industrialaspects.Therefore,currentlyallstudiesaboutbigdatainMaaSare fragmented.Noworkhassummarizedthesystemicknowledgeinthisfield. Thisbookisdesignedtofillthisgap.

Thebookorganizescornerstonetechnologiesinthesphereofbigdataand MaaS,focusingonintroducinghowtoscreenandprocessthepotentialvalue fromthe“deluge”ofunverified,noisy,andsometimesincompleteinformation forMaaSdevelopment.Furthermore,chaptersarewrittenintheformofsummariesoffrontiertechnologiesapplicableinMaaS,includingMaaSsystem developmentandAPPs,spatiotemporaldatapreprocessingtechnologies,travel similarityestimationandclustering,datafusiontechnologiesforMaaS,datadrivenoptimizationtechnologiesforMaaS,data-drivenestimationforurban travelshareability,MaaSsystemdataminingtechnologies,IoTtechnologies forMaaS,MaaSsystemvisualization,andMaaSforurbansustainabledevelopment(Fig.1).

WithintheambitofMaaS,thebookoffersdemonstratedanswerstoseveral questions,suchas:

a) Howtoefficientlyextractandeffectivelyutilizekeyfeatureinformationof high-dimensionalcitypeopleflowdata?

b) Howtoefficientlyexpressthemassiveandlarge-scalepeoplemovement andpredictmobilitysharingpotentialatanurbanscale?

c) Whatsolutionscanfacilitateethical,secure,andcontrolledmobilitysharing indifferenttransportationtypes?

d) Howtobuildsharedtransportationservicesbeneficialtocitizens,businesses,andsocietysafelyandresponsibly?

e) Howtoapplynoveltechnologiestosharedtransportationmanagementand MaaSdevelopment?

Furthermore,chaptersinthebookareorganizedtohelpaudiences understand:

a) Asystematicoutlinetodefineandreinventdata-drivenmobilitymodelsby studyingurbandynamics,urbanmobility,transportationbehavior,andsharingpotential.

b) Withinaglobalurbanmobilityframework,howwecancharacterizethe natureofdata-enabledMaaS.

c) UnderstandingtheexistingpositiveandsuccessfulMaaScanbeidentified inthestudieddomainanditcanbedeterminedhowbesttoapplyitforpracticalsuccess.

Collectively,theknowledgeinthisbookisofimmensesignificancefor stakeholdersinMaaSandthoseplanningtoentertheindustry,suchas researchers,engineers,operators,companyadministrators,andpolicymakers inrelatedfields,tocomprehensivelyunderstandcurrenttechnologyinfrastructureknowledgestructuresandlimitations.

FIG.1 Chapteroverviews.

5Summary

EachchapterdealswithonecomponentofbigdataconcerningMaaS.However, theoveralltakeawaysforthereadersofthisbookareseveral.First,thebook outlinesmethodstoassesstheurbanmobilitycharacteristicsaswellasthe potentialtoadoptsharedtransportationandmatchtheirperformanceasconditionsandconstraintsinatransportsystem.Theunderlyingassumptionisthat transportsystemsareundergoingautomationandarehighlydependentonsoftware,navigationsystems,andconnectivity.Second,thebookintroduceshowto designMaaSplatformsforSTSthatadapttotheevolvingmobilityenvironment,newtypesoftransportation,andusersbasedonintegratedsolutionsthat utilizethesensingandcommunicationcapabilitiestotacklethemajorchallengestheMaaSindustryfaces.Finally,thebookaimstodemonstrate:

a) Inadditiontopolicyandmarketfactors,themostsignificantdevelopment bottleneckistechnicallimitation.Thisbooksystematicallysummarizesthe currentfundamentaltechnologiesofMaaStohelppromotethedevelopment oftheMaaSindustry.Inparticular,crowddata’smultimodeurbanand inflow-outflowisofimmensevalueforurbantrafficadministrationand sharedtransportationmanagementtomonitormorediverseaspectsof mobilityandassociatedinformationforpolicyandmarketformulation.

b) TheintroductionoftechnologiesfromatechnicalstandpointcanhelppeopleunderstandthepotentialofMaaSinthefuturecitymoreintuitivelythan theconceptualoverview.Therefore,inthecontextofubiquitousdata analytics-enabledMaaS,whenthereareeffectiveenablingstructuresand processesforstakeholderparticipationandengagement,thegovernance anddecision-makingprocessofsharedtransportationserviceswillbemore effectiveandsustainable.

c) Artificialintelligence(AI),machinelearning,andbigdataareveryhotand popularbutlesser-understoodtopics.Ubiquitousdata-basedservicesbased onmoredisruptivetechnologiessuchasAIandbigdataaremorelikelyto succeedandbesustainedthansharedtransportationservicesbasedonfrugal technologiesandinflexiblemethods.Thus,thisbookiswrittentohelpthe audienceunderstandMaaStechnologiesfromtheperspectivesofAI researchersanddatascientists.

Weorganizethechaptersinthebooktocreateaneasy-to-interprethandbook thatintroducesthefundamentaltechnologiesforutilizinghumanmobilitydata todeveloptheMaaSsystemandcontributetotheliteratureandpolicydialogue aroundbigdataanalyticstoprovideMaaS.

Chapter1

MaaSsystemdevelopment andAPPs

WenjingLi,RyosukeShibasaki,HaoranZhang,andJinyuChen CenterforSpatialInformationScience,TheUniversityofTokyo,Kashiwa,Chiba,Japan

1ThedevelopmenthistoryofMaaS

1.1Theconception

Althoughtheterm“MobilityasaService(MaaS)”hasonlyattractedwidespreadattentioninrecentyears,theconceptofMaaShadappearedalong timeago.

AsimilarconceptofMaaSdatesbackto1996,theENTERConferencein Innsbruck,Austria [1],withtheideaofintegratingtravelservicesintoanintelligentplatform.Atthattime,NicoTschanzandHans-DieterZimmermannen visionedan“intelligentinformationassistant”platformonwhichpeoplecould searchandbooktripwaysanddomanyothertravel-relatedthingslikebooking hotelsandbuyingtickets.ConsideringthattheWorldWideWebjustdeveloped in1990andMicrosoftjustmadeitsfirstwebbrowser,InternetExplorer,toaccess theinternetin1995,oneyearbefore1996,NicoTschanzandHans-DieterZimmermann’sideawaswayaheadoftheirtime.TheirideawouldeventuallyformulateintotheMaaSsystemthatwearemovingtowardimplementingtoday.

1.2Theearlyapplication

Inthefirst15yearsofthe2000s,somediscussionsaboutMaaShaveemerged andsomeforward-lookingcompanieshavealreadystartedtheirexplorationin theMaaSbusiness.

In2006,thestartupBlaBlaCarwassetupinFrance.Itdevelopedalongdistanceride-sharingwebsiteplatformthatconnectsdriversandpassengers whowillsharethecostoflongcarjourneys.In2008,thesecondversionofBlaBlaCarwebsitewaslaunched.Itincludedacommunitymoduleallowingusers toshowtheirprofilesandbiographies,aswellasrecommendtheirpreferences. In2012,anonlinereservationservicewasadded.Althoughtheword“MaaS” BigDataandMobilityasaService. https://doi.org/10.1016/B978-0-323-90169-7.00002-6

hadnotappearedyet,BlaBlaCarhasshowntheMaaScharacteristicthatintegratedthemobilityservices.

AnotherearlyexplorerisZimride(predecessorofLyft),foundedin2007.It startedwiththeideathatmatchesdriversandpassengerswhowanttoshare ridesthroughsocialnetworkservicestoeliminatetheanxietythattheydo notknoweachotherbefore.TheearlyusersofZimrideweremainlyuniversity studentsandcompanyworkers.Zimrideonlyconnectedpeoplewhogotothe samecampusorworkatthesamecompany.

Uber,nowoneofthelargestfirmsofMaaSeconomy,isfoundedin2009.It isdevelopedforreducingtransportationfeesbysharingrides.Thebetaversion waslaunchedin2010.Originally,theapplicationonlyalloweduserstocallfor luxuryvehiclesthatthepricewashigherthanthatofataxi.Until2012,Uber alloweduserstorequestregulartaxisandpersonalvehicleswithbackground checks.

InJune2012,Agrion(the“Energy&SustainableDevelopment”brandofthe EBG,aleadingthink-tankondigitalinnovationinFrance)sponsoredahalf-day conferenceinSanFrancisco,USnamed“E-MobilityasaService.”Thediscussion topicsincludedhowtolinktheprivateautomobileandthepubliclyfundedand operatedtransitsystem,thepotentialoftheintegrationbetweenthesmartphone andsharedvehicles,theimpactofshared-usevehicles,andsoforth.The “E-MobilityasaService,”whichisverysimilartotheconceptofMaaS,highlights adigitallyconnectedseamlessmulti-modaltransportationnetwork.Throughrealtimeconnectivityfromasmartphone,mobilityservicescouldbeubiquitousand seamless.Atthatyearthatthesmartphonesbegantospreadandreplacefeature phones,thisideagavepeopleahugeimaginationofthecommercialprospects.

From2013to2014,anintegratedmobilityserviceexperimentnamedUbiGo launchedinacommercialpilotofGothenburg,Sweden.Itisthefirst-ever developmentofwhattodayiscalledMaaS.Thisprojectaimedtoexplore hownewbusinessmodelscanreducetheuseofprivatecarsandhowthe seamlessnessandmultimodalityuseofinformationtechnologycanpromote sustainabletravel.TheUbiGoachievedthisbycombiningpublictransport, bike-sharing,car-sharing,carrentalservice,taxiallintooneapplicationand oneserviceonasmartphone.Undertheprepaidmonthlysubscription,theusers canaccessallthesetravelservices.Thepublictrialoperatedlastfor6months andinvolved195users.Theservicewaswelcomedbycitizens.However,itwas discontinuedduetothelackofthegovernmentlevelsupportforthird-party on-sellingofpublictransporttickets.

Thoughalittletortuous,theseearlybusinessexplorationsandapplications helpedtodeveloptheMaaSconceptintoafeasiblefuture.

1.3MaaSalliance

InIntelligentTransportationSystem(ITS)Congressheldin2014inHelsinki, Finland,theword“MobilityasaService”wasformallyproposed.In2015,ITS

CongressinBordeaux,France,“MobilityasaService”becamethepopular topicofdiscussion.Atthatcongress,morethan20Europeanorganizations jointlyformedtheworld’sfirstMaaSAlliance.Itsmembersincludetransportationserviceproviders,publictransportationoperators,MaaSserviceoperators,ITsystemproviders,usergroups,governmentorganizations,etc.The foundationofMaaSAllianceisanincrediblysignificanteventthattheMaaS conceptiswidelyconcerned.Amongpeople,skepticismsalsobegantoarise, raisingquestionssuchas“howcoulditwork?”andwhetherornotitwasa “completerevolutionorsimplysomechangestointegrateintothecurrenttravel business”.In2016,ITSCongress,thereweresixsubforumsdedicatedtodiscussingthetechnology,businessmodel,andengineeringapplicationissues facedbyMaaS.

1.4Development

Since2016,explosivedevelopmentsofsmartphonetechnologyhavelifted MaaStoahigherintegrationlevel.

Whimwasreleasedin2016,markingthebeginningofaprototypesystem withahigherintegrationlevel.Thisplatformintegratedpublictransit,bikes,escooters,ferry,taxis,andaffordablerentalcarsinoneapp.Theuserscould searchandchoosethepreferredmodeoftransportontheirsmartphone.Trips couldbepaidontheapppertimeorbyseasonalticketsubscription.

In2017,DIDIChuxing,theMaaSgiantinChina,expandedtheirbusinessoftaxi-hailingandride-sharingtobike-sharingservicesande-bikesharingservices.Carmaintenance,refueling,andrechargingserviceswere alsoprovidedtodriver-partnersan dindependentvehicleownersonthe platform.

2018ITSCongressinCopenhagen,Denmarkprovidedparticipantswiththe useofanexperimentalMaaSprototypesystemMinRejseplan.Itwasasimilar projectbutbuiltonacasefromDenmark.Itofferedusersvarioustraveloptions togetfromAtoB—train,metroferries,sharingservices,andevenaselfdrivingshuttlebus.Electronicticketswithallpublicmodesinincludingspecial discountsforsharingservicesandtaxiswouldshowontheapp.Inadditionto theregularpublictransportservicesalloverDenmark,Rejseplanenalsointegratedseveraldemand-responsiveandsharedmobilityservicessuchasFlextrafik,taxisaswellascarpooling.

InSeptember2019,Berlin’spublictransportauthorityBerlinerVerkehrsbetriebe(BVG)launchedacity-ownedMaaSprojectnamed“Jelbi”,togetherwith aLithuanianmobilitystartupTraffic.Jelbiintegratedbus,metro,bike,motor scooter,ride-sharing,taxiinoneapp.Alltheavailablewaystogettothedestinationwereshowedandcomparedclearlybydurationandpricesothatusers couldbookjustwhattheyneedfortheoccasion,weatherconditions,price,or themood.

1.5Revolutionandinnovation

Meantime,withthedevelopmentofMaaSandtheexplosionintheamountof information,MaaSismorecloselyintegratedwithbigdata.Developmentssuch asIoTTechnologies,artificialintelligencealsopromotethistrend.Massive datawascollectedfromplatformssuchassmartphones,desktops,andotherdigitaldevicestoessentiallyreconstructMaaSservices.Manydata-drivenhightechsolutionsarecomingforthinMaaSsystems.

From2016,UberstartedtoestablishUberAILabs,aresearcharmdedicated tocutting-edgeresearchofMaaSbusinessinartificialintelligenceandmachine learning.Basedonmassiveriderecords,UberusesAIformatchingdriversand riders,routeoptimization,riskassessment,safetyprocesses,andsoforth.

In2017,MoovitlaunchedasuiteofMaaSsolutions,poweredbyAIandbig data,coveringsimulation,real-timeoperations,andoptimization.Itshowspositivesignificanceingrowingridership,increasingoperationalefficiency,and reducingurbancongestion.

In2017,DidiChuxingofficiallylaunchedAILabstoexpanditsbusinesson AI-driveninnovation.In2018,DidiChuxinglaunchedanintegratedsolution forsmartcitytrafficmanagementnamed“DiDiSmartTransportationBrain”. LeveragingcloudcomputingandAI-basedtechnologies,itcombinesvideo cameras,GPSdata,andothersensordatafromDidi’scarswithdatafromgovernmentandotherpartners.Thissmartbraincanhelpimprovetheefficiencyof drivingschedules.Forexample,utilizingreal-timemobilitydataandpredictive algorithms,itanticipatestrafficjamsandroutesitsownridersanddrivers aroundexistingtraffictoalleviatetrafficcongestion.Ride-hailingsupplyand demandindifferentregions,weatherdatesandtimecanalsobeforecasted. Thesmartbraincanalsopromotearangeoftransportationinfrastructure improvements.Forexample,byanalyzingdatafrombillionsofridesofDidi’s drivers,thesystemcouldpredictwhenandwherethetrafficjamislikelytoform andadjusttrafficlightssignaltiming.Congestionduringrushhoursdropped afterapplyingthissolution.

In2018,HaconofSiemensdemonstratedtheMyMobilitypluginfor HAFASapplication.Thispluginenableslearningtheusers’behaviorandhabits fromhistoricalrecordsdatabymachinelearningtechniquestodeliverpersonalizedandproactivemobilityrecommendations.

In2020,anintelligentbackendsystempoweredbyPTVVisumwasintegratedintotheoperationsoftheMaaSserviceofthetrafficcontrolcenterin Hamburg,Germany.Thissoftwareisnowusedforsimulatingandcalculating theimpactoftrafficdisruptions.ThefrontendsystemofROADS,asoftwarefor the coordination ofconstructionmeasuresandanalysisofchangesintraffic flow,willalsobeintegratedintothesystem.Thissystemisnowusedforcongestionforecastingforitslong-termandshort-termtrafficplanningbasedon bigdata.

Alsoin2020,ToyotaMotorCorporationannouncedtosetupanewbusiness alliancewithNTTDATA,aleadingITservicesproviderinJapan.Thisalliance aimstoaccelerateToyota’sMaaSinitiativesbyoperatingitsclouddatacenter forbigdatacollectedfromconnectedcars.

2ThecategoryofMaaSsystem

Indifferentstudies,MaaSsystemcanbecategorizedaccordingtodifferent ways.Forexample,accordingto (1)transportationtype,MaaScanbecategorizedintobike-hailing,ride-sharing,bus-sharing,trainservices,micromobility,etc.;accordingto (2)servicestype,MaaScanbecategorizedinto journeymanagement,journeyplanning,booking,navigation,flexibletransactions,personalizedcustomization,etc.;accordingto (3)solutiontype,MaaS canbecategorizedintotechnologyplatforms,navigationsolutions,payment engines,ticketingsolutions,telecomconnectivityproviders,etc.;according to (4)transportationtype,MaaScanbecategorizedintopublicorprivate; accordingto (5)businessmodel,MaaScanbecategorizedintobusinessto-business,business-to-government,business-to-consumer,andpeer-to-peer; accordingto (6)operatingsystem,MaaScanbecategorizedintoAndroid, iOS,andPC.

Sochor,Arby [2] characterizedMaaSsystemfromLevels0to4ascharacterizedbydifferentlevelsofservicesintegration,thatisnointegration,integrationofinformation,integrationofbookingandpayment,integrationofthe serviceoffer,andintegrationofsocietalgoals(Fig.1).Serviceintegrationis thepreconditionofMaaS.Basedonthisfoundation,theintegrationofinformation,data,platform,etc.arerealized.ThecategorywayofSochor,Arby [2] is representativeandhasbeenwidelyrecognizedbyMaaS-relatedresearch.

FIG.1 SummaryofMaaSintegrationlevel.

2.1Level0:Nointegration

Atthislevel,theservicesproviderprovidesseparateservicesoftransportation mode.Theservicessystemissingle.Itcanprovidematureserviceforcertain travelmodesbutlacksintegrationwithothertravelmodes.Thereisnodata interactionbetweendifferenttransportationmodes.Hellobike(bike-sharing), Hertz(carrental),NipponRent-a-Car(carrental),andSunfleet(car-sharing) areexamplesofservicesprovidersofthislevel.

2.2Level1:Informationintegration

TheMaaSserviceofthislevelhasacentralizedinformationplatformthatcan provideinformationcomparisonandtravelrecommendationsofmultipletransportationmodes.Ithelpsuserstofindthebesttrip.Ittypicallyfocusesonasingletripratherthansinglecustomers.RepresentativeservicesincludeGoogle andAutoNavi.Thestandardizedinformationistypicallyforfreeandeveryuser canuseitsservice.Someinformationsuchaspublictransport,cateringinformation,andreservationinformationwouldbeintegratedintotheservicesplatformofthislevel.However,theplatformoperatoronlyactsasaninformation collectorandaconnectorbetweentheuserandthechosenprovider,ratherthan theservicedirectlyoperator.Theapplicationofthisleveldoesnotreflectthe coreconceptofMaaSandhasnodirecteffectsinpushingtravelerstoabandon privatecarstochoosepublictransport.

2.3Level2:Integrationofbookingandpayment

Applicationofthislevelalsofocusesonasingletrip.Basedonprovidingtravel planningservices,theyprovidetravelerswithsearch,reservation,andpayment servicesofpublictransit,taxi,bike,oranyothertypeoftravelmode.RepresentativeservicesincludeMoovit,HANNOVERmobile,andXiecheng.TheadditionalvalueofLevel2isthatitenablesservicesfrommultipleoperatorseasier tobeaccessedto.Userscanfind,compare,book,andpaywiththesameapp.

Theapplicationofthislevelismainlyresponsibleforticketing,booking, andpurchasebuttheytypicallyarenotdirectlyresponsibleforthepassenger andcargotransportationprocess.Theapplicationofthisleveldoesnotreflect thecoreconceptofMaaStoo.Theyjustprovidetheintegrationofpaymentbut havenodirecteffectsinpushingtravelerstoabandonprivatecarstochoose publictransport.

2.4Level3:Integrationoftheserviceoffering

RepresentativeservicesofthislevelincludeUbiGoandWhim.Applicationof thislevelfocusesontheuser’stotalmobilityneedsratherthanonlysingletrip fromoneplacetoanotherplace.TheMaaSoperatortakestwo-way

responsibilitytobothend-userandsupplier.TheMaaSoperatorbuyservices fromdifferenttransportservicesproviders,thenreorganize,integrate,andsale themtotheend-user.

Thereistwo-sidedataintegrationatthislevel.Ontheonehand,astheMaaS operatortakesresponsibilityfortheservicedeliveredtoitscustomers,theinformationoftheuserside,suchasmobilityneeds,mobilitypreferences,and mobilitypatterns,shouldbecarefullyintegrated.Itisnotonlyforasingleuser butprobablyforthewholefamilyorthewholecommunity.Ontheotherhand, MaaSoperatorsshouldbuildagoodconnectionwiththetransportservicessupplier.Forexample,fortaxi-hailing,theMaaSoperationshouldanalyzethe bookingdatatohelpbettervehiclescheduling.

However,thisdoesnotmeanthatthedataintegrationlevelishigherthan level2.Becausetheservicesofthislevelaretypicallylocal-based,MaaSoperatorneedstofindthebestsupplierofeachmodetodeveloptheservicewith. Duetofewersuppliersandlessinteraction,thecomplexityofthetechnicalintegrationcanbelowerforaLevel3servicethanforaLevel2service.Besides, Level3serviceusuallyneedsmorecooperationwiththeregionalorlocalpublic transportauthoritiestofindpoliticallyacceptablecontractmodels.

2.5Level4:Integrationofsocietalgoals

TheMaaSserviceofthislevelintegrateslocal,regional,nationalpoliciesand goals.Forexample,publictransportationisintegratedintotheMaaScustomizablepackageswithcommercialservices.TheMaaSservicesoperatorcanprovideincentivesfordesiredtravelmodetoinfluencethetravelbehaviorofthe user.Besides,traditionalpublictransportserviceisaone-size-fits-allservice withnon-flexiblebusinessmodels,whileanattractiveMaaSserviceneedsto beunifiedandflexible.

Integrationofsocietalgoalsrequiresthehighintegrationofdata.Itisnot onlyintegratingdatafromtheend-usersideortransportservicessupplierside butalsofrompublicinfrastructure,publicspace,andpublictransportation.The MaaSserviceofthislevelcanhelpreducedprivatecarownership,improvethe transportationefficiencyandpromoteamoresustainableandlivablecity.

3Studycase

ThedevelopmentofMaaShasbroughtnewopportunitiesandchallengesto transportationinvariouscountries.Atpresent,variouscountriesandregions areactivelyinvolvingtheimplementationandapplicationofMaaS.Dozens ofAppserviceshavebeenlaunchedworldwide.Jittrapirom,Caiati [3] summarizedtheprojectsthathavebeenrunorpilotedinthefirstfewyearsofMaaS development.Ontheirbasis,wehaveupdatedtheseprojectsandaddednew applicationresultsinrecentyears. Table1 showsthesummaryofsomeof theintegratedMaaSsystemsaroundtheworld.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.