Artificial intelligence in urban planning and design: technologies, implementation, and impacts 1st

Page 1


https://ebookmass.com/product/artificial-intelligence-in-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Smart Cities and Artificial Intelligence: Convergent Systems for Planning, Design, and Operations 1st Edition

Christopher Grant Kirwan

https://ebookmass.com/product/smart-cities-and-artificialintelligence-convergent-systems-for-planning-design-andoperations-1st-edition-christopher-grant-kirwan/ ebookmass.com

Planning and Urban Design Standards 2nd Edition

https://ebookmass.com/product/planning-and-urban-design-standards-2ndedition/

ebookmass.com

Artificial Intelligence, Game Theory and Mechanism Design in International Politics Tshilidzi Marwala

https://ebookmass.com/product/artificial-intelligence-game-theory-andmechanism-design-in-international-politics-tshilidzi-marwala/ ebookmass.com

Possessed by the Virgin: Hinduism, Roman Catholicism, and Marian possession in South India Bloomer

https://ebookmass.com/product/possessed-by-the-virgin-hinduism-romancatholicism-and-marian-possession-in-south-india-bloomer/

ebookmass.com

Indiana Jones and Philosophy: Why Did it Have to be Socrates? Dean A. Kowalski

https://ebookmass.com/product/indiana-jones-and-philosophy-why-did-ithave-to-be-socrates-dean-a-kowalski/

ebookmass.com

Israel and the Cyber Threat: How the Startup Nation Became a Global Cyber Power Charles D. Freilich

https://ebookmass.com/product/israel-and-the-cyber-threat-how-thestartup-nation-became-a-global-cyber-power-charles-d-freilich/

ebookmass.com

Programming for Game Design: A Hands-On Guide with Godot 1st Edition Wallace Wang

https://ebookmass.com/product/programming-for-game-design-a-hands-onguide-with-godot-1st-edition-wallace-wang/

ebookmass.com

Trading

For

Dummies 5th Edition Lita Epstein

https://ebookmass.com/product/trading-for-dummies-5th-edition-litaepstein-2/

ebookmass.com

The Hate Next Door: Undercover within the New Face of White Supremacy Matson Browning

https://ebookmass.com/product/the-hate-next-door-undercover-withinthe-new-face-of-white-supremacy-matson-browning/

ebookmass.com

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems 1st Edition Alagarsamy Pandikumar

https://ebookmass.com/product/nanostructured-functional-and-flexiblematerials-for-energy-conversion-and-storage-systems-1st-editionalagarsamy-pandikumar/ ebookmass.com

ARTIFICIALINTELLIGENCEINURBAN PLANNINGANDDESIGN

ARTIFICIAL INTELLIGENCE INURBANPLANNING ANDDESIGN

Technologies,Implementation, andImpacts

IMDAT AS

FacultyofArchitecture,IstanbulTechnicalUniversity,Istanbul,Turkey

PRITHWISH BASU

NetworkandCyberTechnologies,RaytheonBBN,Cambridge,MA,UnitedStates

PRATAP TALWAR ThompsonDesignGroup,Boston,MA,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-823941-4

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JosephP.Hayton

AcquisitionsEditor: KathrynEryilmaz

EditorialProjectManager: SaraValentino

ProductionProjectManager: MariaBernard

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

Contents

Contributorsix

Prefacexi

Acknowledgmentsxv

1

Theoreticalfoundations

1.AnewagendaforAI-basedurban designandplanning

MarkBurry

EmbracingAItorecalibratethemasterplan3

Thefutureofwork:AIandthedisruption ofplanningandurbandesignpractice4

Unpackingartificialintelligenceforplannersand urbandesigners5

FundamentalAIcomponentsfordisrupting planningandurbandesignpractice6

AIenhancingtraditionalplanningandurban designservicesworkflow15

AIandthechallengestoexpertise18

Acknowledgment19

References19

2.AIandthelimitsofhumancreativity inurbanplanninganddesign

NeilLeach

Introduction21

Architecturallessons25

Thelimitsofhumancreativity32

References36

3.Complexityscienceforurbansolutions

AnjanaaDeviSinthalapadiSrikanth,BennyChinWeiChien, RolandBouffanais,andThomasSchroepfer

Introduction39

Artificialintelligence(AI)inthebuilt environment40

Complexityscienceandurbansystems42

Keyaspectsofspatialnetworkanalysis43

ComputationalsocialscienceanditsAI applications52

Summary55

Acknowledgments55

References55

2

AItoolsandtechniques

4.ClassesofAItools,techniques, andmethods

GeoffKimm

Introduction61

AworkingdefinitionofAIinurbanplanning anddesign62

Tools:Algorithmiccladesinurbanplanning anddesign64

Techniques:Amachine’s-eyeviewofthecity66

Methods:Asnapshotfromthepractitioner’s desktop71

Conclusions80

Acknowledgments81 References81

5.Urbanformanalysisthrough morphometryandmachinelearning

JinmoRhee

Urbanform—Abasicdefinition86

Urbanmorphometry88

Context-richurbananalysisandgenerationusing machinelearning89

Urbanmorphometrywithadvancedstatistics96 References99

6.AI-drivenBIMonthecloud

WanyuHe,JackieYongLeongShong,andChuyuWang

Introduction101

Background101

AI-drivenbuildinginformationmodel onthecloud105

Casestudies109

Conclusions116 References116

3

AIinurbanscaleresearch

7.Deeplearninginurbananalysis forhealth

DavidWilliamNewton

Introduction121

Urbanmorphologyandhealth123

Deeplearninginurbananalysisforhealth123

Applicationsofdiscriminativedeeplearning inurbanhealthanalysis124

Applicationsofgenerativedeeplearningforurban healthanalysis131

Challenges,opportunities,andnextsteps135 References137

8.Spatialdesignofenergyself-sufficient communities

MinaRahimian,LisaIulo,andJosePintoDuarte

Citiesandenergyresiliency139

Designingforenergyself-sufficienturban settlements141

Urbanformandenergyconsumptionin communities143

Interpretingtheblackbox153 Closure158

Acknowledgments160 References160

Furtherreading162

9.Theimageofthecitythroughtheeyes ofmachinereasoning

ElcinSari,CengizErbas,andImdatAs

Introduction163 Background164 Methods,tools,andtechniques166 Casestudy168 Conclusions176 Acknowledgment178 References178

10.Optimizingurbangridlayouts usingproximitymetrics

FernandoLima,NathanC.Brown,andJosePintoDuarte

Introduction181 Materialsandmethods183 Casestudy187 Results191 Discussion198 Acknowledgments199 References199

4 Casestudiesinurbandesign andplanning

11.Imageanalyticsforurbanplanning: ThecaseoftheBarcelona Superblock

AldoSollazzo

Theurgencyforanewurbanism203 Novelmethodsforimageanalytics207

Conclusions213

Acknowledgment214 References214

12.Complexityscience-basedspatial performanceanalysesofUNStudio/DP

Architects’SUTDCampusand WOHA’sKampungAdmiralty

AnjanaaDeviSinthalapadiSrikanth,BennyChinWeiChien, RolandBouffanais,andThomasSchroepfer

Introduction217

Analysesoftwoverticallyintegratedspatial networks218

Methodologyandresearchphases219

Conclusions242

Acknowledgment243 References243

13.Understandingurbanleisurewalking behavior:Correlationsbetween neighborhoodfeaturesandfitness trackingdata

€ OzgunBalaban

Introduction245 Leisurewalk247

Methodologyanddata248 Results252 Destinations255

Conclusionandfuturework258 References260

14.Spacemaker.Ai:UsingAIin developingurbanblockvariations

JeffreyLandes

Generativedesign263 ToolsatSpacemaker266 Casestudy269 Conclusion286

15.M€ obiusevolver:Competitive explorationofurbanmassingstrategies

PatrickJanssen,TungDoPhuongBui,andLikaiWang

Introduction293 Competitiveevolutionarydesignexploration295

Demonstration302

Discussion315

Conclusions318

Acknowledgment319 References319

16.Adaptivemasterplans:Flexible modulardesignstrategies

MartinBielik,ReinhardKoenig,andSvenSchneider

Introduction323

Background324 Methods324 Applications330

Conclusions335 Notes335 References336

17.SASAKI:Fillingthedesigngap—Urban impressionswithAI

ThiyagarajanAdiRaman,JustinKollar,andScottPenman

Introduction339

Background341

Identifyinga“goodenough”tool342 UsingGANstogenerateurban impressions345 Keytakeaways353 Towardasketchtoolprototype359 Conclusions361 References362

18.KPF:Aretrospectiveviewonurban planningAIfor2020

SnoweriaZhang,KateRingo,RichardChou,BrandonPachuca, EricPietraszkiewicz,andLucWilson

Preamble363 Crisesandinventions364 Evolutionoftools365 Conclusions379 References380

Index381

Contributors

ImdatAs TUBITAKInternationalFellow, IstanbulTechnicalUniversity,Istanbul,Turkey

€ Ozg € unBalaban ChairofDesignInformatics, FacultyofArchitectureandtheBuilt Environment,DelftUniversityofTechnology, Delft,TheNetherlands

MartinBielik Bauhaus-UniversityWeimar, ChairofComputerScienceinArchitecture andSpatialPlanning,Weimar,Germany

RolandBouffanais UniversityofOttawa, Ottawa,ON,Canada

NathanC.Brown DepartmentofArchitectural Engineering,CollegeofEngineering,ThePennsylvaniaStateUniversity,UniversityPark,PA, UnitedStates

TungDoPhuongBui Departmentof Architecture,NationalUniversityof Singapore,Singapore

MarkBurry SwinburneUniversityof Technology,Melbourne,VIC,Australia

BennyChinWeiChien SingaporeUniversityof TechnologyandDesign,Singapore,Singapore

RichardChou KohnPedersenFox(KPF), NewYork,NY,UnitedStates

JosePintoDuarte StuckemanSchoolofArchitectureandLandscapeArchitecture,College ofArtsandArchitecture,DepartmentofArchitecturalEngineering,SchoolofEngineering Design,TechnologyandProfessionalPrograms,CollegeofEngineering,ThePennsylvaniaStateUniversity,UniversityPark,PA, UnitedStates

CengizErbas TUBITAKInternationalFellow, HacettepeUniversity,Ankara,Turkey

WanyuHe FloridaInternationalUniversity,The CollegeofCommunication,Architecture+The Arts,Miami,FL,UnitedStates;ShenzhenXkool TechnologyCo.,Ltd.,Shenzhen,China

LisaIulo StuckemanSchoolofArchitecture andLandscapeArchitecture,CollegeofArts andArchitecture,DepartmentofArchitectural Engineering,SchoolofEngineeringDesign, TechnologyandProfessionalPrograms, CollegeofEngineering,ThePennsylvania StateUniversity,UniversityPark,PA, UnitedStates

PatrickJanssen DepartmentofArchitecture, NationalUniversityofSingapore,Singapore

GeoffKimm SwinburneUniversityof Technology,ResearchFellow,SmartCities ResearchInstitute,Melbourne,VIC,Australia

ReinhardKoenig AITAustrianInstituteof Technology,DigitalandResilientCities, Vienna,Austria;Bauhaus-UniversityWeimar, ProfessorshipforComputationalArchitecture, Weimar,Germany

JustinKollar DepartmentofUrbanStudiesand Planning,MassachusettsInstituteof Technology,MA,UnitedStates

JeffreyLandes AutodeskSpacemaker.ai, Cambridge,MA,UnitedStates

NeilLeach FloridaInternationalUniversity, Miami,FL,UnitedStates;TongjiUniversity, Shanghai,China;TheEuropeanGraduate School,Visp,Switzerland

FernandoLima DepartmentofArchitecture, StuckemanSchoolofArchitectureandLandscapeArchitecture,CollegeofArtsandArchitecture,ThePennsylvaniaStateUniversity, UniversityPark,PA,UnitedStates

DavidWilliamNewton CollegeofArchitecture, UniversityofNebraska-Lincoln,Lincoln,NE, UnitedStates

BrandonPachuca KohnPedersenFox(KPF), NewYork,NY,UnitedStates

ScottPenman Sasaki,Boston,MA,UnitedStates

Contributors

EricPietraszkiewicz KohnPedersenFox(KPF), NewYork,NY,UnitedStates

MinaRahimian StuckemanSchoolofArchitectureandLandscapeArchitecture,CollegeofArts andArchitecture,DepartmentofArchitectural Engineering,SchoolofEngineeringDesign, TechnologyandProfessionalPrograms,College ofEngineering,ThePennsylvaniaStateUniversity,UniversityPark,PA,UnitedStates

ThiyagarajanAdiRaman Sasaki,Boston,MA, UnitedStates

JinmoRhee CarnegieMellonUniversity, Codelab,SchoolofArchitecture,Pittsburgh, PA,UnitedStates

KateRingo KohnPedersenFox(KPF), NewYork,NY,UnitedStates

ElcinSari MiddleEastTechnicalUniversity, DepartmentofCityandRegionalPlanning, Ankara,Turkey

SvenSchneider Bauhaus-UniversityWeimar, ChairofComputerScienceinArchitecture andSpatialPlanning,Weimar,Germany

ThomasSchroepfer SingaporeUniversityof TechnologyandDesign,Singapore,Singapore

JackieYongLeongShong FloridaInternational University,TheCollegeofCommunication, Architecture+TheArts,Miami,FL,United States;ShenzhenXkoolTechnologyCo.,Ltd., Shenzhen,China

AldoSollazzo IAAC,Barcelona,Spain; Noumena,Barcelona,Spain

AnjanaaDeviSinthalapadiSrikanth Singapore UniversityofTechnologyandDesign, Singapore,Singapore

ChuyuWang ShenzhenXkoolTechnologyCo., Ltd.,Shenzhen,China

LikaiWang DepartmentofArchitecture, NationalUniversityofSingapore,Singapore

LucWilson KohnPedersenFox(KPF), NewYork,NY,UnitedStates

SnoweriaZhang KohnPedersenFox(KPF), NewYork,NY,UnitedStates

Preface

Urbanplanninganddesignisacomplex fieldofstudythatcombinesawidevariety ofdisciplines.Cityplanners,urbandesigners, architects,andlandscapearchitectswork togethertosolvedemandingurbanissues. Theyhavetostudythecityatarangeofscales fromzoninglawstotransportationandinfrastructurenetworks,tobuildings,streetfurniture,andlighting.Therangeofman-made urbaninterventioncanbeclusteredintothree mainlayers:firstly,houses,shops,factories, etc.,secondly,overgroundinfrastructure, e.g.,roadnetworks,railways,lightpolls, etc.,andfinally,undergroundtechnicalinfrastructure,e.g.,sewage,waterworks,heat,gas, electricity,etc.Engineerscontributetodevelopingandmaintainingthiscomplexgridof urbanconstructionandinfrastructure.Besidestheactorswhoworkwiththephysical tissueofthecity,othersstudyintangible forces.Economists,scientists,operationsresearchers,andsociologistsstudytheorganization,growth,anddeclineofcities—the flowofgoodsandservices,aspectsofmarket forces—andtheeffectsoftheurbanenvironmentsuchasclimatechangeonhumanbehavior—evolvingsocialvalues,human interactions,andtheexodusandmigration ofindividualsandgroups.

Thus,thefieldofurbandesignandplanningreliestraditionallyheavilyonlarge amountsofdata.Plannersusespreadsheets tocomeupwithspatialanalysis,evaluate projections,assumptions,andmakeestimatesandpredictions.Inthelatterhalfof the20thcentury,geographicinformation systems(GIS)toolswereintroducedtothe

fieldthatcouldintegrategeographicinformationwithlayersofdata,andtranslate themintotables,graphs,andmaps—inorder tomakeiteasiertogather,manage,andanalyzethem.Inparallel,groundbreakingdevelopmentsinartificialintelligence(AI) revolutionizedmanyfieldsofdata-drivenresearchincomputerscienceapplications.The familiarityofutilizingurbandatatodevelop urbandesignandplanningsolutionsnaturallylentitselftotheintroductionofAIto thefield.

Overthelastdecades,thefieldofAIwent throughthreewavesofdevelopment, transitioningfromsymbolicorrule-based AI,e.g.,expertsystems,geneticalgorithms, swarmintelligence,etc.,tostatisticalreasoning,e.g.,supportvectormachines,Bayesian reasoning,andartificialneuralnetworks,to ahybridofbothapproaches,e.g.,robotics. AIresearchbroadlyconsistsofsupervised andunsupervisedlearning,generativealgorithms,andreinforcementlearning.Supervisedlearningapproachestrainonlabeled dataandperformclassificationandpredictiontasks,whereasunsupervisedlearning trainsonunlabeleddataanddetectssignificantpatterns.Ontheotherhand,generative algorithmstrainortransformagenerative modeltocreateunprecedentedsamples. Andfinally,reinforcementlearninginteracts withstochasticenvironmentstogathertrainingdataandlearnsamodelthatmakes utility-optimizingdecisions.

Inthelastdecade,AIcapturedthepublic imaginationthankstodevelopmentsindeep learning—abranchofAIthatusesartificial

neuralnetworksthatlooselymimictheinner workingsofthehumanbrain.Adeepneural network(DNN)consistsoflayersofartificial neuronsthatarestackedontopofeachother. WhenaDNNistrainedwithenoughdata samples,itcandiscoverinternalrepresentationsofobjects,e.g.,thesystemcanbe trainedwithcatimagesandcanidentifycats innewimagesthatithasnotseenbefore. Deeplearningsystemsdiscoverlatentpatternsandrelationshipsinbigdatathatareoftennotapparenttohumans.Theyarebeing usedinavarietyofeverydayapplications, fromimage,voice,andvideorecognition systems,toself-drivingcars,languagetranslation,andonlinerecommendationsystems.

Inthisbook,weexplorethepromisinguse ofAIasitrelatestourbanplanninganddesign,illustratevarioustechnologiesthathave cometofruition,showcasetheirimplementationopportunitiesandchallenges,anddiscusstheirimpactonourbuiltenvironment. Organizedintofourparts:real-worldprojects,thisbookprovidesabroadoverview: (1)theoreticalandhistoricalbackground, (2)AI-basedtools,methods,andtechnologies,(3)AIinurbanplanninganddesign research,and(4)casestudiesofAIusedin real-worldprojects.Itcontains18illustrated contributionsexaminingAI-basedurban planninganddesignworkfromaroundthe world,includingtheUnitedStates,Europe, andAsia. Content

InPart1ofthebook,wesituateAIwithin theoverallcontextofurbanplanninganddesign,anddiscusshowAIapproachesdiffer andrelatetothetraditionaltoolkitofurban plannersanddesigners.Intheopening chapter,MarkBurryoffersanewagenda forAI-basedurbanplanninganddesign.

NealLeachsewsconnectionsbetweenthe seminalmomentofDeepMind’sAI-AlphaGo softwarebeatingaprofessionalhumanGo player,withthelimitsitexposesvis-a-vishumancreativityindevelopingurbanplanning anddesignsolutions.ThomasSchroepfer, laysoutthefundamentalsofcomplexityscience,toformthebasistodealwiththenature ofcomplexandmultiobjectiveproblemsets inalmostanyurbanchallenge.

InPart2,wepresentasurveyofstate-ofthe-artAI-basedtools,methods,andtechnologies.Wehighlighttheonesthathavebeen particularlyexploredinurbanplanning anddesign—withexamplesofwhereand howtheyhavebeenused.GeoffKimmgives aclassification,overview,andevaluationof variousnovelAItools.JinmoRheeoffers analternativeapproachtourbanformanalysisthroughmorphometryandmachine learning.WanyuHeetal.,ofXKool,awellknownChinesestart-up,demonstratesa noveltool,wherebuildinginformation modeling(BIM)isaugmentedwithadditionalAI-baseddatasetsonthecloud,and illustratesitsuseinvariousurbanscale projects.

InPart3,weofferaninsightintotheapplicationofAIinurbanscaleresearch.David Newtoncorrelateshealth-relatedproblems, e.g.,variousdiseases,withurbanformbyanalyzingsatelliteimagerythroughAI.Mina Rahimianetal.usedeeplearningtounearth theintertwinedrelationshipbetweenurban formandenergydemandinSanDiego, California,toachieveenergyself-sufficient communities.ElcinSarietal,illustratea novelmachinereasoning(MR)toolthatcan discoversignificanturbancomponents(ala KevinLynch)fromvariouscitylayoutsthat arehighlyrankedinsomequality-of-lifeindexes,andFernandoLimaetal.employed anevolutionarymultiobjectiveoptimization methoddrivenbyproximitymetricstogeneratenovelurbangridlayouts.

InPart4,weshowcasetheuseofAIinvariouscapacitiesinreal-worldurbandesign andplanningprojects.Westructuredthis partintothreecategories:ThefirstsetofcontributorspresentAIasan analysis toolwhere theygivenovelinsightsintothecomplex problemsetsofurbanchallenges.Thesecond setofcontributorsexamineAIasan assistant inurbandesignandplanningprocesses,e.g., inoptimizingvariousaspectsoflanduse, orientation,climate,etc.,andthelastsetof contributorsexploreAIasa generator thatdirectlyoffersactionableideaitems,e.g.,to generateunprecedentedurbanblockswithin aboundaryconditioninafreemanner.Inthe firstsection,AldoSolazzousesimageanalyticstocollectandanalyzedatainordertounderstandhowpeoplearelivingandusing urbanspacesintherenownedBarcelona Superblocks.ThomasSchropfershowsus howtousecomplexitysciencetoanalyze UNStudio&DPArchitect’sSingaporeUniversityofTechnologyandDesign(SUTD) campusandWOHA’sKampungAdmiralty Buildings;andOzgunBalabanpresentsa casestudywhereheanalyzesUrbanSingaporethroughfitnesstracking.Inthesecond section,JeffreyLandesofSpacemaker.ai demonstrateshowonecanuseAItooptimize3Durbanlayoutsforagivensitein Istanbul.PatrickJanssenetal.demonstrate theMobiusEvolverthatusesanevolutionaryalgorithmwhereoneurbanmassingsolutioncompetesagainstanother.Reinhard Koenigetal.usedigitaladaptivemaster

plans(AMPs)todevelopcitylayoutsin EthiopiaandSingapore.AMPsareparametricallycontrolledthree-dimensionalurban designmodelsthatcanautomaticallyadapt todifferentboundaryconditionsandplanningrequirements.Inthethirdsection, ThiyagarajanAdiRamanetal.ofSASAKI usegenerativeadversarialnetworks(GANs) todevelopnovelimpressionisticaerialimagery(alsoknownasurbanimpressions)to “sketchout”earlyideasforurbandesign. Finally,SnoweriaZhangetal.ofKohn, Petersen,andFox(KPF)showcasethreecase studiesthatofferanAI-basedspeculative narrativeframeworktoanalyzeanddevelop ideasinregardstoconventionalurbandesignworkflows.

AIresearchisconstantlyevolving,andits applicationsinurbandesignandplanning willsurelymatureovertime.Wehopethat thiscollectionofarticleswillofferanexciting andinformativeintroductiontothisfascinatingtopictoplannersanddesigners,architects,AIresearchers,andengineersinvolved inurbanplanninganddesignprojects.

Anyopinions,findings,andconclusions orrecommendationsexpressedinthis materialarethoseoftheauthor(s)anddo notnecessarilyreflecttheviewsofRaytheon BBN.Thisbookdoesnotcontaintechnology ortechnicaldatacontrolledundereither theU.S.InternationalTrafficinArms RegulationortheU.S.ExportAdministrationRegulations.

Acknowledgments

Weareindebtedtomanypeopleand institutionswhogenerouslygavetheirtime, offeredencouragement,andprovidedsupport.WearegratefultoIstanbulTechnical UniversityandRaytheonBBNfortheirsupportduringtheexecutionofthisbook,which allowedustoshapeourthinkingaboutthe specifictopicsofAIinurbanplanninganddesign.WealsothanktheScientificandTechnologicalResearchCouncilofTurkey (TUBITAK)forsupportingtheformationof theCityDevelopmentthroughDesignIntelligence(CIDDI)LabatIstanbulTechnicalUniversity,whichgaveusphysicalandhuman resourcestodealwithpressingissuesonthe “futurecity.”InMay2021,weorganizeda “FutureCitySummit”togetherwith

BIM4Turkey,andcontributorsofthisbook presentedtheirworkatthisconference.The worldwideparticipationinthisevent exceededourexpectations.Weareverygratefultoallthosewhoparticipated,andtoall thosewhoorganizedthisexcitingsummit withus,especiallyMehmetSakin,Furkan Filiz,thecofoundersofBIM4Turkey,and manyoftheircolleagues,whoworkeddiligentlytoputthiseventtogether.Wealso thankourpublishers,BrianRomer,Sara Valentino,andIveeIndelibleatElsevier,for theirpatienceandattentivehelpinthese difficulttimesofthepandemic,andlastly wethankAnaBatistaforgivingherfeedback andguidanceincompletingthisbook.

PART1

Theoreticalfoundations

AnewagendaforAI-basedurban designandplanning

MarkBurry

SwinburneUniversityofTechnology,Melbourne,VIC,Australia

EmbracingAItorecalibratethemasterplan

Lookingdownfromthewindowseatinacirclingjetatthe newworld’s suburbansprawl andthe developingworld’s informaldevelopments,howconfrontingthesetraffic-engineered tractsare,bereftofanysenseofjoyfulandinspiringurbanity.Theyareuncivilexpressionsof entirelylogicalorinformallyderivedarrangementsofhousing,schools,shops,parksand sportsfields,articulatedwithcongestedhighways.Theymayormaynotmeeteconomic,social,planningandbuildingcodes,standards,andconstraintsbuttheyprovidelittleelse— certainlynotculturalenrichment.Wherearetheboulevardsandthetownsquares?Where aretheretirees,younglovers,parentswithprams,anddog-walkerssupposedtostroll? Nottomentionchildrenknockingaboutwithafootball,theneighborhoodgossips,matchmakers,andbuskers!

Entirelynewcreativeavenuesbeckonforsteeringtowardsustainableurbantransformation,strivingtoboostsocialequityandcivicamenityalongtheroute.Byplacingthecitizenat thehelmofateamofmultidisciplinaryexpertsforcodesigningresponsestourbandensification,wecouldtackleakeychallenge:howwillfuturecitiesandprecinctsbedesigned with peopleratherthan forpeople?Aworthygoalistoenablethecommunityidentifymore acutelywhatisimportanttothemtowardestablishingviablealternativepathwaystoaccommodateinevitablechange.HowcanwesubsumetheNIMBY(NotInMyBackYard)mindset withamorepositiveYIMBYoutlook—wherethe“Y”ofYIMBYstandsfor“Yes!”(Lake, 1993)?Howcanthevariousnational,state,andlocalurbandevelopmentplanning,design, construction,andmanagementsectorscometogetherinanewkindofconversation?How mightwecooptAIalongwithemergingandmaturinginformationandcommunicationtechnologies(ICT)tocentralizethecitizenvoiceawayfrom consultation closerto activeparticipation?Whataretheoptimalsocialcreative,economic,andtechnologicalcriterianeededto

constructadigitalizationframeworkforinnovativeapproachestoplanningandurban design?Howmightsuchaplatformprovidethepeoplemostaffectedbytheexpert’sdecisionsthenecessaryagencytohelpformulatepositivetransformationstobackyards:denser precinctsyetgreateramenity?

Themasterplanand,bydefinition,itstwo-dimensionalphysicalcharacterization(“the plan”)isanotherkeyissue:howdowecooptrapidlydevelopingAItechnologiestomove fromconventionalplanningtomultidimensionalmasterplanning?Afundamentalparadigm shiftbeckonsplanningandurbandesignprofessionalstoengagefullywithtoday’ssmartsto anticipatefutureurbanexigenciesmoreeffectivelyandwithgreaterconfidencethanhasbeen possibletodate.HowmightAIrenderurbansustainabilitychallengesvisibleandintelligible tothecommunitiessubjectedtothepressuresofurbangrowth?CanAItoolsbecreatedto assistplanningandurbandesignprofessionalsincodesigningimprovedcivicamenityfor ourcitiesandregionswiththecitizens?Whatistheevolvingroleforplanningandurban designprofessionalsinthenewdigitalecosystemofdatacollection,dataanalytics,data visualization,artificial,augmentedreality(AR)andvirtualreality(VR),gamechangersto thewaywemasterplan,design,build,andmanageourcities?Whowillspecifyandbuild theurbanfuturesdigitalworkbenchtoserveasasharedresearchplatformandcollaborative designframework,capturingandcementingthepublic’scontributionstohelpshapesustainableurbangrowthandacceptingincreasedpopulationdensity?

Thefutureofwork:AIandthedisruptionofplanningandurbandesignpractice

Perpetuallyunfinishedbusiness

Ascitieschange,sodoessociety,convulsingwiththeimplementationofeverytechnologicalshiftasitoccurs,disruptingurbandesign,construction,andcitymanagementsystems andservicesinitswake(Burry,2020).In"TheRiseandFallofAmericanGrowth"socialeconomistRobertJGordonnotesthatsincethe1850scivilsocietyhasevolvedfromanalmost universalconditionofhavingnoaccesstoanyofthefacilitiesandmodernconveniences thatwetakeforgrantedtodayregardlessoftheirpositioninsociety(Gordon,2017).These includenothavingindoorsanitation,centralheatingandcooling,gettingaroundthecity otherthanbyfootorhorse,artificiallightingbeyondcandlesandlamps,electricitytopower domesticappliances,andnowidercommunicationwiththeworldatlargeotherthanbyletter.Nevertheless,thespeedofchangeanditsensuingcomplexityhavebeendemonstrablyat apacebeyondourhumancapabilitytostayastepahead:wehavebecomeusedtoadaptingto human-initiatedchangeandacceptingtheunintendednegativeconsequencesasinevitable, throughbeingunabletokeepupwiththepace.

Whatissodifferenttodaythanadecadeago,forinstance?

Alwayscomplexsystems,citieshavebecomecomplexadaptivesystems(Karakiewicz, 2020).Rapiddigitalizationduringthelastthreedecadeshasseenatechnologicalshiftpermeatingalmosteveryaspectofurbanlife.Thedigitalizationofthecityfabricandassociated systemsyieldsthe smartcity. Thesmartcitycombinesthe InternetofThings (IoT)—thedata collectingsensorsconnectedtoelectronicdevicesenabledby informationcommunicationtechnology (ICT)tohelpurbandesigners,constructioncompanies,andcitysystemsandservices managersdomoreforthecitizenwithless(MoraandDeakin,2019).Theglobalsmartcity

movementispredicatedonICTbeingthegreatestsustainabilitychangeagentattheexperts’ disposal.Butthesameblossomingpersonaltechnologyisalsoincreasinglyinthehandsofthe nonexperturbandwellers:the“smartcitizen,”withaccesstoradicallydifferentfacilitiesto influenceplanningandurbandesigndecision-making,suchasAustralia’s NationalUrbanResearch&DevelopmentPlatform (iHUB),anurbanobservatorydesignedtogazedeepintopossibleurbanfuturesanddescribedlaterinthechapter.

Aperennialproblemforalldesignersistheclientbeinglimitednaturallyto whattheyknow, withalimitedappetitetoexperimentonsomethingwhollyunfamiliartothem,howeverpotentiallyenrichingitmightbe.ExploitingthecombinationofArtificialIntelligencewithgames technologies,forexample,couldhelpendusersascertaintheirfundamentalneedsandresponsibilitiesforthemselves.IndeferencetoCarlFreyandMichaelHammer,AIcanbeharnessedto augmentextanthumancreativeability,andnotnecessarilysupplantit(Hammer,1990; Frey, 2019).Frey,however,inhis2019bookalsowarnsofare-emergenceoftheeponymous “technologytrap”thus:

Onereasoneconomicgrowthwasstagnantformillenniaisthattheworldwascaughtinatechnologytrap, inwhichlabor-replacingtechnologywasconsistentlyandvigorouslyresistedforfearofitsdestabilizingforce. CouldcountriesintheindustrialWestexperienceareturnofthetechnologytrapinthetwenty-firstcentury?

Proposalstotaxrobotsinordertoslowdownthepaceofautomationnowfeatureinthepublicdebateonboth sidesoftheAtlantic.AndunlikethesituationinthedaysoftheIndustrialRevolution,workersinthedevelopedworldtodayhavemorepoliticalpowerthantheLudditesdid.InAmerica,whereAndrewYang[2020 USAPresidentialhopeful]isalreadytappingintogrowinganxietyaboutautomation,anoverwhelmingmajoritynowfavorpoliciestorestrictit.Thedisruptiveforceoftechnology,Yangfears,couldcauseanotherwave ofLudditeuprisings:“Allyouneedisself-drivingcarstodestabilizesociety. [W]e’regoingtohaveamillion truckdriversoutofworkwhoare94percentmale,withanaveragelevelofeducationofhighschooloroneyear ofcollege.Thatoneinnovationwillbeenoughtocreateriotsinthestreet.Andwe’reabouttodothesamething toretailworkers,callcenterworkers,fast-foodworkers,insurancecompanies,accountingfirms.”

Unpackingartificialintelligenceforplannersandurbandesigners

Forplannersandurbandesignerswhoareawareofartificialintelligence’spolepositionin digitallydisruptingtheirpracticesbutwhollyunfamiliarwithitscomponents,thissection peeksunderthebonnet.Thisisalooseandinformaltaxonomygroupedincategoriesthatspan between“fundamental”and“littleimmediaterelevance.”Itisbynomeanscomprehensive, andnaturallytherewillbedisagreementaroundbothmyplainEnglishdefinitionsandassessmentofrelativeutility.Theintentionisnottoprovideatextbookapproachhere;the26AIcomponentsdescribedbelow,someofwhichareonlysubtlydifferentfromeachother,togetherlay outthefieldandthepotentialforAItoenhanceplanningandurbandesignpracticevery significantly—ifnotpreventedfromdoingsobytheNeo-LudditesFreywarnsusof(Fig.1.1). Intermsofthe futureofwork,itseemsthatweareatacrossroadswherethosepractitioners disinclinedtotakeuptheopportunitiesAIoffersthemcouldbeleftintheslowlane,as ThomasSiebelalertsusto:

Thecomingtwodecadeswillbringmoreinformationtechnologyinnovationthanthatofthepasthalfcentury.Theintersectionofartificialintelligenceandtheinternetofthingschangeseverything.Thisrepresentsan entirereplacementmarketforallenterpriseapplicationandconsumersoftware.Newbusinessmodelswill

1.AnewagendaforAI-basedurbandesignandplanning

FIG.1.1 126componentsofartificialintelligencethatcurrentlyimpactplanningandurbandesignpractice.They arerankedbetween“fundamental”(identifiedinred,grayinprintversion)clockwiseto“currentlyleastrelevant” (identifiedinpalegray). NoPermissionRequired.

emerge.Productsandservicesunimaginabletodaywillbeubiquitous.Newopportunitieswillabound.Butthe greatmajorityofcorporationsandinstitutionsthatfailtoseizethismomentwillbecomefootnotesinhistory. (Siebel,2019)

Inthefastlane—fastbecauseattheveryleastAIaffordsmorespeedandefficiency—will bepractitionersskilledinmakingAIcomponentsworkforthemand,regrettably,newly mintedsubprofessionalsenfranchisedthroughAItooffernewandmanifestlyvaluableservicessuchasurbananalytics,applicationsofsmarttechnology,andvisualization.Thedanger comesfromtheelevationofanindividualwithsplinterskillsgifted,say,incomputer graphicsbutinexperiencedinassayingthesignificanceofwhattheyareshowingandhow itisbeingpresented—thetalentedignoramus.ThebriefdiscussiononAIandexpertiseat theconclusionofthischapterwillconsiderthisoutlookalittlemorefully.

FundamentalAIcomponentsfordisruptingplanningandurbandesignpractice

1.Machinelearning(ML) usesartificialintelligencetoenablesystemstoself-learn,adapt, andimprovefromexperiencewithouthavingbeenexplicitlyprogrammedthroughprior experience.ComputerprogramswithMLaccessdataandsiftthroughitinordertolearn

1.Theoreticalfoundations

fromtheinsightsthatemergeintheprocess.Rawdata,observation,directexperience,or instructioninitiatesthelearningprocessenablingpatternstoemergefromthedata,thereby facilitatingmoreeffectivedecision-making.MLfacilitatescomputers’automaticlearning withouthumaninputenablingvastpoolsofdatatobeprocessedwithfargreaterspeed andprecision.

ClassicMLalgorithmsconsideredtextasasequenceofkeywordsmigratingtosemantic analysismimickinghumanabilitytocomprehendthetext’smeaning.

PlannersandurbandesignersdisposedtoproducingdesignsoftwareMLcouldtrackthe designers’decisionsandbegintoautomateroutinedecisions.Softwareproducedforclients couldbeenabledtoinnatelytracktheirchoicesandlearnfromthem,guidingtheclient towardanimprovedunderstandingofwhatisatstake.

2.NeuralNetworks(NNs) arepredicatedonmachinelearningandareatthecoreofdeep learningalgorithms(seeSection3below).Theirnameisderivedfromthestructureofthe humanbrain,inthesenseofmatchingtheconceptderivedfromourunderstandingofthe waythebrain’sneuronsintercommunicate.Artificialneuralnetworks(ANNs)consistof nodelayers,oneormorelayersbelow,andanoutputlayer.Eachnodeisconceivedasan artificialneuronconnectingtoaneighborwithanassociatedweightandthreshold.Only whenanodehasanoutputthatexceedsagiventhresholdvaluewillitactivateandtransmit datatothenextnetworklayerorelseitsimplyremainsinactiveanddoesnottransmit.

Generativeadversarialnetworks(GANs)areaclassofmachinelearninginwhichtwo competingNeuralNetworks—onethegeneratorandtheotherthediscriminatorarepitted againsteachotherinacooperativezero-sumgame:oneside’sgainistheother’sloss,from whichtolearn.Effectively,GANscreatetheirowntrainingdatasets.Thegenerator’srole istoartificiallyproduceoutputsthatcouldbemistakenforrealdata.Thediscriminator’sgoal istoidentifywhichoftheoutputsitreceiveshavebeencreatedartificially.TheGANlearnsto generatenewdatawiththesamestatisticsasthetrainingset.TrainingaGANusingarangeof photographs,forexample,newphotographscanbegeneratedthatlookatleastsuperficially authentictothehumaneyehavingabsorbedmanykeycharacteristicsextractedfromthe trainingset.

Neuralnetworksareusedextensivelytoproblemsolveandseekoptions.Theirextended useoffersdesignersandplannersunprecedentedopportunitiestominedataforthepurposes ofattainingdeeperinsightsandsituationalawarenessasinputstodecision-makinganddesign.ForthoseseekingtoaugmenthumancreativeskillsetswithAIGANsofferatreasuretroveofpossibilities.Asetofimagesfromarenownedarchitect,forinstancewillleadto creativebutdissimilatingapparentlyauthenticoutcomes.

3.Deeplearning isasubsetofmachinelearningbeinganeuralnetworkwithatleastthree layers.Neuralnetworksaredesignedtomimicbutnotimitatethehumanbrainintermsof learningfromthebigdatasourcesittrawlsthrough.Asingleneuralnetworkcansignificantly zeroinonandmakepredictions,whiletheadditionalsublayerscanassistwithoptimization, refinement,andultimatelyaccuracy.

Deeplearningisfundamentaltoanyartificialintelligenceapplicationaimedatimproving automationandautonomousanalyticalorpracticaltasksindependentofdirecthuman involvement.Thetechnologysupportingdeeplearningcanbefoundtodayinfamiliarproductsandservicesincludingdigitalassistantsandchatbots,financialfrauddetection,voicecontrolledpersonalassistantssuchasApple’sSiriandAmazon’sAlexis,anddriverless vehicles.

WithMachinelearningembeddedintodesignsoftwareaswellassoftwareintendedto helptheclientproduceabetter-informedbriefbydrawingouttheclient’slessobvious priorities,deeplearningoffersrichdividends.

4.Autonomoussystems canchangetheirbehaviorduringoperationinresponsetounanticipatedinputs.Inbuilt“intelligence”liesatthecoreofsuchsystems.Theirintegration enablesthesystemtoperceive,process,recall,learn,anddecideonappropriatecoursesof actionautonomously.Examplesincludecomputationthatcanimprovehumanperformance atgamessuchasChessandGo,facilitatingdronesandrobotstoadapttheirflightpathsand tasksaccordingtoinformationreceivedwhileinaction,self-drivingvehicles,andadvanced manufacturing.

Fortheurbandesignerandplanner,theopportunitiesarenotimmediatelyobvious. Designsoftwarecouldbegintolearnfromthedesigner’sdecisionsandmakesuggestions. Softwareforclientscouldtracktheirpredilectionsand,workinginconjunctionwiththe designer’sinbuiltconstraints,beguidedtowardtheiroptimaloption.

5.Patternrecognition comesfromcomputeralgorithmsusingmachinelearningtodetect patternsotherwiseinvisiblewithindatasets.Inrepresentingpatternsasknowledgeorstatisticalinformation,thedatacanbeclassified.

Patternrecognitionsystemsaretrainedusinglabeledtrainingdata.Lookingfor unknown knowns isachievedfromlabelsattachedtospecificinputvaluesleadingtoapattern-based output.Withoutlabeleddatabeingavailable, unknownunknowns aresoughtandmoresophisticatedcomputeralgorithmsaredeployed,therebytakingtheartbeyondthatwhichispracticallypossibleusingthehumanbrainunaided.

AHolyGrailfordesignersandplannersisaccessingtheunknownunknownsthatpotentiallyleadtodifferentsetsofdecisionsandultimatelyoutcomesthanwouldbemadebased ontraditionaldataanalysis.PatternRecognitionhasthepotentialtorevealtheseunknowns, butdesignersneverthelessrequirenewskillstoseevalueinterritoryunfamiliartothem.

6.Simulationmodeling enablesresearchthatrequiresavirtualenvironmenttosimulate physicalsystemsinoperationfromwhichusefulinsightscanbedrawn.SimulationModeling typicallylooksatsystemsinoperationsuchaspopulationdynamics,airports,cargofleets, andtrafficsystems.

Simulationmodelingisaprototypingenvironmentwherechangestoasystemcanbesafely testedandassessed,idealformulticriteriainputs,decisionsupport,andriskmitigation.

Thethreeprincipalframeworkstosimulationmodelingarediscreteeventsimulation (DES),systemdynamics(SD),andagent-basedmodeling(ABM).

Simulationmodelingisfundamentalandinprideofplaceforbothurbandesignersand plannerswhenenhancedbyvariouscategoriesofAI.AlongwithARandVRleapsinfunctionality,theopportunitiestosimulateandtestfuturescenariosareanextraordinaryasset.At thetimeofthewriting,“digitaltwins”arecenterstage;themoretheycanbeenrichedthrough AI,thegreatercapabilitywewillhavetobemoreaccurateinpredictingthefuture,andplanninganddesigningabetterone.AI-enhancedsimulationwillhelpplannersandurbandesignersanticipateandavoidwhatmighthavebeenunanticipatedconsequencesfrompoor decision-making.

7.Socialnetworkanalysis unpacksthebehaviorofindividualsatthemicrolevel,thenetworkstructurefromthepatternofrelationshipsatthemacrolevel,andhowthetwointeract. Socialnetworksbothformandconstrainopportunitiesforindividualchoicewhile

individualscansimultaneouslyinitiate,build,sustain,anddismantlerelationshipsdeterminingthenetwork’sglobalstructurealongtheway.

Theinstrumentalvalueoftherelationshipsunderinvestigationdetermineswhichnetwork structuresandpositionsgeneraterobustopportunitiesor,conversely,sturdyconstraints. Socialrelationshipscreatesocialcapitalasanopportunitystructure.Manymeasuresfor characterizingandcomparingnetworkstructuresandpositionswithinnetworkscanbe derivedthroughsocialnetworkanalysis.

Whensocialnetworkanalysisisdirectlyharnessedbytheplannersandurbandesignersas partoftheirdigitalworkbench,professionalpracticewillfundamentallychangeinresponse. Notably,thesocialcapitalbehindplanninganddesigndecisionswillhaveafarhigherlevelof participationandthereforeamoreinfluentialrole.

8.TheInternetofthings(IoT) describesanetworkofconnectabledevicesincluding computers,sensors,digitalandmechanical,andICT-enabledobjects.Withattachedunique identifiers(UIDs),animalsandpeoplecanbepartofthenetworkcapableofdatatransferover anelectronicnetworkindependentfromdirecthuman-to-humanorhuman-to-computer communication.

AnyIoTnetworkcanbeconceivedofasanecosystemofInternet-enabledsmartdevices withembeddedsystemswhichincorporateprocessors,sensors,andcommunicationhardware.Thenetworkcancollectdatafromtheirenvironments,processit,andtransmititback toanIoTgatewayeitheranalyzedlocallyorsenttothecloudtobeanalyzedremotely.IoT devicescancommunicatewitheachotherandactaccordinglyontheinformationtheyreceive andprocess,mostlywithouttheinterventionofhumansbeyondsettingthemupandprovidingthemwithinstructionsandaccessingthedata.

WhileplannersandurbandesignersarenotdirectlyinvolvedwithIoT,theimpactithas hadalreadyinthesmartcity—evenatthetriviallevelofsmartcarparking—willincreasingly influencethewayourcitiesoperate.Ascensorsproliferateandvastdatasetsbecomeever vaster,theprofessionswillhaveafardeeperinsightintohowcitiesoperateinstrumentally, andhowhumanswork,recreate,anddwell.Accessingthedataanddrawingfreshinsights fromitwillincreasinglyneedtoinvolvetheplanneranddesignerdirectlylestothersmore agiletochangestepin(andon)theirshoes.

9.Imageanalytics,alsoknownas computervision or imagerecognition,canpullinformation automaticallyfromasingleoravastcollectionofimages.AIisincorporatedasalgorithms thatcanautomaticallyextractspecifiedorunspecifieddatafromanimageorsetofimages andprocessit.

Logicalanalysisisthecoretoimageanalyticsfacilitatingtheinterpretationofinformation fromnontextualmaterialincludingdiagramsandgraphicsandisnotlimitedtophotographs. Significanttimewillbesavedasplannersandurbandesignersembraceimageanalytics.It isnotsimplyamatterofavoidingtediouswork;justasdermatologistsnowhavemoresuccessinspottingskincancersthroughAIandimagerecognition,sotoowillurbanprofessionalsbeabletospototherwiseimperceptabledifferences.Imagerecognitionappliedto satelliteimagesfromdifferenttimeperiodswillspotchangesandprovidemeasurements moreaccuratelyandinlesstimethanhumansarecapableof,evenwithanabundanceoftime thattheysimplydonothave.

10.Graphanalytics isappliedtostructured,unstructured,numeric,orvisualdatato derivedecisioninfluencinginsights.ItisarelativelynewapplicationofAIandisusedto

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.