Artificial intelligence for future generation robotics rabindra nath shaw - The ebook in PDF/DOCX fo

Page 1


https://ebookmass.com/product/artificial-intelligence-forfuture-generation-robotics-rabindra-nath-shaw/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Artificial Intelligence for Neurological Disorders Abraham

https://ebookmass.com/product/artificial-intelligence-forneurological-disorders-abraham/

ebookmass.com

Artificial Intelligence for Dummies 2nd Edition John Paul Mueller & Luca Massaron

https://ebookmass.com/product/artificial-intelligence-for-dummies-2ndedition-john-paul-mueller-luca-massaron/

ebookmass.com

Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics Arnaldo Leal-Junior

https://ebookmass.com/product/optical-fiber-sensors-for-the-nextgeneration-of-rehabilitation-robotics-arnaldo-leal-junior/

ebookmass.com

So Wrong, It's Wright: a billionaire romance collection Megan Wade

https://ebookmass.com/product/so-wrong-its-wright-a-billionaireromance-collection-megan-wade/

ebookmass.com

eTextbook 978-0323354097 Understanding Pathophysiology 6th Edition

https://ebookmass.com/product/etextbook-978-0323354097-understandingpathophysiology-6th-edition/

ebookmass.com

The Regulator 03 All the Queen's Men Ethan J. Wolfe

https://ebookmass.com/product/the-regulator-03-all-the-queens-menethan-j-wolfe/

ebookmass.com

Diabetes Drug Notes (Sep 19, 2022)_(1119785006)_(WileyBlackwell).pdf Miles Fisher

https://ebookmass.com/product/diabetes-drug-notessep-19-2022_1119785006_wiley-blackwell-pdf-miles-fisher/

ebookmass.com

Schemeringen 04 - Waarheid in het licht Hannah Hill

https://ebookmass.com/product/schemeringen-04-waarheid-in-het-lichthannah-hill/

ebookmass.com

Chemistry & Chemical Reactivity 10th Edition John C Kotz

https://ebookmass.com/product/chemistry-chemical-reactivity-10thedition-john-c-kotz/

ebookmass.com

Creating Social Change Through Creativity: Anti-Oppressive Arts-Based Research Methodologies 1st Edition Moshoula Capous-Desyllas

https://ebookmass.com/product/creating-social-change-throughcreativity-anti-oppressive-arts-based-research-methodologies-1stedition-moshoula-capous-desyllas/

ebookmass.com

ARTIFICIAL INTELLIGENCEFOR FUTURE GENERATION ROBOTICS

ARTIFICIAL INTELLIGENCEFOR FUTURE GENERATION ROBOTICS

RABINDRANATHSHAW

DepartmentofElectrical,Electronics&Communication Engineering,GalgotiasUniversity,GreaterNoida,India

ANKUSHGHOSH

SchoolofEngineeringandAppliedSciences,TheNeotia University,Kolkata,India

VALENTINAE.BALAS

DepartmentandAppliedSoftware,AurelVlaicuUniversity ofArad,Arad,Romania

MONICABIANCHINI

DepartmentofInformationEngineeringandMathematics, UniversityofSiena,Siena,Italy

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-323-85498-6

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: GlynJones

EditorialProjectManager: FernandaA.Oliveira

ProductionProjectManager: KameshRamajogi

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

1.Roboticprocessautomationwithincreasingproductivityand improvingproductqualityusingartificialintelligenceand machinelearning1

AnandSinghRajawat,RomilRawat,KanishkBarhanpurkar, RabindraNathShawandAnkushGhosh

1.1 Introduction1

1.2 Relatedwork3

1.3 Proposedwork3

1.4 Proposedmodel6

1.4.1 Systemcomponent7

1.4.2 Effectivecollaboration7

1.5 Manufacturingsystems8

1.6 Resultsanalysis10

1.7 Conclusionsandfuturework11 References12

2.Inversekinematicsanalysisof7-degreeoffreedomweldingand drillingrobotusingartificialintelligencetechniques15

SwetChandan,JyotiShah,TarunPratapSingh, RabindraNathShawandAnkushGhosh

2.1 Introduction15

2.2 Literaturereview16

2.3 Modelinganddesign17

2.3.1 Fitnessfunction17

2.3.2 Particleswarmoptimization19

2.3.3 Fireflyalgorithm19

2.3.4 Proposedalgorithm20

2.4 Resultsanddiscussions20

2.5 Conclusionsandfuturework21 References22

3.Vibration-baseddiagnosisofdefectembeddedininnerraceway ofballbearingusing1Dconvolutionalneuralnetwork25

PragyaSharma,SwetChandan,RabindraNathShawandAnkushGhosh

3.1 Introduction25

3.2 2DCNN abriefintroduction26

3.3 1Dconvolutionalneuralnetwork27

3.4 Statisticalparametersforfeatureextraction30

3.5 Datasetused31

3.6 Results31

3.7 Conclusion35 References35

4.Singleshotdetectionfordetectingreal-timeflyingobjectsfor unmannedaerialvehicle37

SampurnaMandal,SkMdBasharatMones,ArshaveeDas, ValentinaE.Balas,RabindraNathShawandAnkushGhosh

4.1 Introduction37

4.2 Relatedwork39

4.2.1 Appearance-basedmethods39

4.2.2 Motion-basedmethods40

4.2.3 Hybridmethods40

4.2.4 Single-stepdetectors41

4.2.5 Two-stepdetectors/region-baseddetectors41

4.3 Methodology42

4.3.1 Modeltraining42

4.3.2 Evaluationmetric43

4.4 Resultsanddiscussions44

4.4.1 Forreal-timeflyingobjectsfromvideo44

4.5 Conclusion51 References51

5.DepressiondetectionforelderlypeopleusingAIrobotic systemsleveragingtheNelder MeadMethod55

AnandSinghRajawat,RomilRawat,KanishkBarhanpurkar, RabindraNathShawandAnkushGhosh

5.1 Introduction55

5.2 Background56

5.3 Relatedwork57

5.4 Elderlypeopledetectdepressionsignsandsymptoms59

5.4.1 Causesofdepressioninolderadults59

5.4.2 Medicalconditionsthatcancauseelderlydepression60

5.4.3 Elderlydepressionassideeffectofmedication60

5.4.4 Self-helpforelderlydepression60

5.5 Proposedmethodology60

5.5.1 Proposedalgorithm61

5.5.2 Persistentmonitoringfordepressiondetection63

5.5.3 Emergencymonitoring64

5.5.4 Personalizedmonitoring65

5.5.5 Featureextraction65

5.6 Resultanalysis66 References68

6.Dataheterogeneitymitigationinhealthcareroboticsystems leveragingtheNelder Meadmethod71 PritamKhan,PriyeshRanjanandSudhirKumar

6.1 Introduction71

6.1.1 Relatedwork71

6.1.2 Contributions72

6.2 Dataheterogeneitymitigation73

6.2.1 Datapreprocessing73

6.2.2 Nelder Meadmethodformitigatingdataheterogeneity73

6.3 LSTM-basedclassificationofdata76

6.4 Experimentsandresults78

6.4.1 DataheterogeneitymitigationusingNelder Meadmethod78

6.4.2 LSTM-basedclassificationofdata80

6.5 Conclusionandfuturework81 Acknowledgment81 References82

7.Advancemachinelearningandartificialintelligence applicationsinservicerobot83 SanjoyDas,IndraniDas,RabindraNathShawandAnkushGhosh

7.1 Introduction83

7.2 Literaturereviews84

7.2.1 Homeservicerobot84

7.3 Usesofartificialintelligenceandmachinelearninginrobotics85

7.3.1 Artificialintelligenceapplicationsinrobotics[6]85

7.3.2 Machinelearningapplicationsinrobotics[10]87

7.4 Conclusion89

7.5 Futurescope90 References90

8.Integrateddeeplearningforself-drivingroboticcars93 TadGonsalvesandJaychandUpadhyay

8.1 Introduction93

8.2 Self-drivingprogrammodel96

8.2.1 Humandrivingcycle96

8.2.2 Integrationofsupervisedlearningandreinforcementlearning97

8.3 Self-drivingalgorithm99

8.3.1 Fundamentaldrivingfunctions99

8.3.2 Signals101

8.3.3 Hazards104

8.3.4 Warningsystems108

8.4 Deepreinforcementlearning110

8.4.1 DeepQlearning110

8.4.2 DeepQNetwork111

8.4.3 DeepQNetworkexperimentalresults112

8.4.4 Verificationusingrobocar113

8.5 Conclusion114 References115 Furtherreading117

9.Lyft3Dobjectdetectionforautonomousvehicles119 SampurnaMandal,SwagatamBiswas,ValentinaE.Balas, RabindraNathShawandAnkushGhosh

9.1 Introduction119

9.2 Relatedwork120

9.2.1 Perceptiondatasets121

9.3 Datasetdistribution123

9.4 Methodology124

9.4.1 Models125

9.5 Result132

9.6 Conclusions135 References136

10.Recenttrendsinpedestriandetectionforroboticvision usingdeeplearningtechniques137

10.1 Introduction137

10.2 Datasetsandartificialintelligenceenabledplatforms138

10.3 AI-basedroboticvision139

10.4 Applicationsofroboticvisiontowardpedestriandetection141

10.4.1 Smarthomesandcities141

10.4.2 Autonomousdriving142

10.4.3 Tracking143

10.4.4 Reidentification144

10.4.5 Anomalydetection144

10.5 Majorchallengesinpedestriandetection145

10.5.1 Illuminationconditions145

10.5.2 Instancesize146

10.5.3 Occlusion146

10.5.4 Scenespecificdata147

10.6 AdvancedAIalgorithmsforroboticvision148

10.7 Discussion152

10.8 Conclusions153 References154 Furtherreading157 Index 159

Listofcontributors

ValentinaE.Balas

DepartmentofAutomaticsandAppliedSoftware,AurelVlaicuUniversityofArad,Arad, Romania;DepartmentandAppliedSoftware,AurelVlaicuUniversityofArad,AradRomania

KanishkBarhanpurkar

DepartmentofComputerScienceandEngineering,SambhramInstituteofTechnology, Bengaluru,India

SwagatamBiswas

SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India

SwetChandan

GalgotiasUniversity,GreaterNoida,India

ArshaveeDas

SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India

IndraniDas

DepartmentofComputerScience,AssamUniversity,Silchar,India

SanjoyDas

DepartmentofComputerScience,IndiraGandhiNationalTribalUniversity,Regional CampusManipur,Imphal,Manipur

AnkushGhosh

SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India

TadGonsalves

DepartmentofInformationandCommunicationSciences,SophiaUniversity,Tokyo, Japan

SuraiyaJabin

DepartmentofComputerScience,FacultyofNaturalSciences,JamiaMilliaIslamia, NewDelhi,India

PritamKhan

DepartmentofElectricalEngineering,IndianInstituteofTechnologyPatna,India

SudhirKumar

DepartmentofElectricalEngineering,IndianInstituteofTechnologyPatna,India

SampurnaMandal

SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India

SarthakMishra

DepartmentofComputerScience,FacultyofNaturalSciences,JamiaMilliaIslamia, NewDelhi,India

SkMdBasharatMones

SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India

AnandSinghRajawat

DepartmentofComputerScienceEngineering,ShriVaishnavVidyapeeth Vishwavidyalaya,Indore,India

PriyeshRanjan

DepartmentofElectricalEngineering,IndianInstituteofTechnologyPatna,India

RomilRawat

DepartmentofComputerScienceEngineering,ShriVaishnavVidyapeeth Vishwavidyalaya,Indore,India

JyotiShah

GalgotiasUniversity,GreaterNoida,India

PragyaSharma

G.B.PantUniversityofAgricultureandTechnology,Pantnagar,India

RabindraNathShaw

DepartmentofElectrical,Electronics&CommunicationEngineering,Galgotias University,GreaterNoida,India

TarunPratapSingh

AligarhCollegeofEngineering,Aligarh,India

JaychandUpadhyay

XavierInstituteofEngineering,Mumbai,India

Abouttheeditors

RabindraNathShaw isaseniormemberofIEEE(USA),currently holdingthepostofDirector,InternationalRelations,Galgotias University,India.HeisanalumnusoftheAppliedPhysicsDepartment, UniversityofCalcutta,India.Hehasmorethan11yearsofteaching experienceinleadinginstituteslikeMotilalNehruNationalInstituteof TechnologyAllahabad,India,JadavpurUniversity,andothersatUGand PGlevel.Hehassuccessfullyorganizedmorethan15internationalconferencesasConferenceChair,PublicationChair,andEditor.Hehaspublishedmorethan50Scopus/WoS/ISIindexedresearchpapersin internationaljournalsandconferenceproceedings.HeistheeditorofseveralSpringerandElsevierbooks.Hisprimaryareaofresearchisoptimizationalgorithmsandmachinelearningtechniquesforpowersystem,IoT application,renewableenergy,andpowerelectronicsconverters.Hehas alsoworkedasaUniversityExaminationCoordinator,University MOOC’sCoordinator,UniversityConferenceCoordinator,andFaculty InCharge,CentreofExcellenceforPowerEngineeringandClean EnergyIntegration.

AnkushGhosh ispresentlyworkingasanassociateprofessorinthe SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity, India.Hehasmorethan15yearsofexperienceinteaching,research,and industry.Hehasoutstandingresearchexperienceandhaspublishedmore than80researchpapersininternationaljournalsandconferences.Hewas aresearchfellowoftheAdvancedTechnologyCell DRDO,Govt.of India.HewasawardedNationalScholarshipbyHRD,Govt.ofIndia.He receivedhisPhD(Engg.)DegreefromJadavpurUniversityin2010.His UGandPGteachingassignmentsincludemicroprocessorsandmicrocontrollers,AI,IoT,embeddedandrealtimesystems.Hehasdelivered invitedlecturestoanumberofinternationalseminar/conferences, refresherscourses,andFDPs.HehasguidedalargenumberofMTech andPhDstudents.Heisaneditorialboardmemberofseveralinternationaljournals.

ValentinaE.Balas iscurrentlyfullprofessorintheDepartmentof AutomaticsandAppliedSoftwareattheFacultyofEngineering, “Aurel Vlaicu” UniversityofArad,Romania.SheholdsaPhDinApplied ElectronicsandTelecommunicationsfromPolytechnicUniversityof Timisoara.Dr.Balasistheauthorofmorethan300researchpapersin refereedjournalsandInternationalConferences.Herresearchinterestsare inintelligentsystems,fuzzycontrol,softcomputing,smartsensors,informationfusion,modelingandsimulation.SheistheEditor-inChiefofthe InternationalJournalofAdvancedIntelligenceParadigms (IJAIP)andthe InternationalJournalofComputationalSystemsEngineering (IJCSysE),aneditorialboardmemberofseveralnationalandinternationaljournals,andis anevaluatorexpertfornationalandinternationalprojectsandPhDtheses.

MonicaBianchini receivedaLaureacumlaudeinMathematicsanda PhDdegreeinComputerSciencefromtheUniversityofFlorence,Italy, in1989and1995,respectively.AfterreceivingtheLaurea,for2yearsshe wasinvolvedinajointprojectofBullHNItaliaandtheDepartmentof Mathematics(UniversityofFlorence),aimedatdesigningparallelsoftware forsolvingdifferentialequations.From1992to1998shewasaPhDstudentandPostdocFellowwiththeComputerScienceDepartmentofthe UniversityofFlorence.Since1999shehasbeenwiththeUniversityof Siena,wheresheiscurrentlyAssociateProfessorattheInformation EngineeringandMathematicsDepartment.Hermainresearchinterestis inthefieldofartificialintelligenceandapplications,andmachinelearning, withanemphasisonneuralnetworksforstructureddataanddeeplearning,approximationtheory,informationretrieval,bioinformatics,and imageprocessing.M.Bianchinihasauthoredmorethan70papersandhas beentheeditorofbooksandspecialissuesoninternationaljournalsinher researchfield.Shehasbeenaparticipantinmanyresearchprojectsfocused onmachinelearningandpatternrecognition,foundedbyboththeItalian MinistryofEducation(MIUR)andUniversityofSiena(PARscheme), andshehasbeeninvolvedintheorganizationofseveralscientificevents, includingtheNATOAdvancedWorkshoponLimitationsandFuture TrendsinNeuralComputation(2001),the8thAI IAConference(2002), GIRPR2012,the25thInternationalSymposiumonLogicBased ProgramSynthesisandTransformation,andtheACMInternational ConferenceonComputingFrontiers2017.Prof.Bianchiniservedas AssociateEditorfor IEEETransactionsonNeuralNetworks (2003 2009), Neurocomputing (from2002),and InternationalJournalofComputersin Healthcare (from2010).Sheisapermanentmemberoftheeditorialboard ofIJCNN,ICANN,CPR,ICPRAM,ESANN,ANNPR,andKES.

Preface

Artificialintelligence(AI)isoneofthemostprevalenttopicsintoday’ s world.However,theapplicationofAIweseetodayisjustatipofthe iceberg.TheAIrevolutionhasjuststartedtorollout.Itisbecomingan integralpartofallmodernelectronicdevices.Applicationsinautomation areaslikeautomotive,securityandsurveillance,augmentedreality,smart homes,retailautomation,andhealthcarearesomeexamples.Roboticsis alsorisingtodominatetheautomatedworld.Thefutureapplicationsof AIintheroboticsareaarestillundiscoveredtomostpeople.Weare, therefore,puttinganefforttowritethiseditedbookonthefutureapplicationsofAIonsmartroboticswhereseveralapplicationshavebeen includedinseparatechapters.Thecontentofthebookistechnical.Ithas triedtocoversomeofthemostadvancedapplicationareasofrobotics usingAI.

Thisbookwillprovideafuturevisionoftheunexploredareasof applicationsofroboticsusingAI.Theideastobepresentedinthisbook arebackedupbyoriginalresearchresults.Thechaptersprovideanindepthlookwithallthenecessarytheoryandmathematicalcalculations. Thisbookisperfectforresearchersanddeveloperstoformanargument forwhatAIcouldachieveinthefuture,andthoselookingfornewavenuesanduse-casesincombiningAIwithsmartroboticsandtherebyprovidingbenefitsformankind.

Roboticprocessautomationwith increasingproductivityand improvingproductqualityusing artificialintelligenceandmachine learning

AnandSinghRajawat1,RomilRawat1,KanishkBarhanpurkar2, RabindraNathShaw3 andAnkushGhosh4

1DepartmentofComputerScienceEngineering,ShriVaishnavVidyapeethVishwavidyalaya,Indore,India

2DepartmentofComputerScienceandEngineering,SambhramInstituteofTechnology,Bengaluru,India

3DepartmentofElectrical,Electronics&CommunicationEngineering,GalgotiasUniversity, GreaterNoida,India

4SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India

1.1Introduction

Thegrowthinartificialintelligence(AI)androboticshascontributedtoexpandedspeculationonartificialintellectualsandstartups,more prominentjournalcoverageabouthowthistechnologyistransforming theworld,andagrowingsurgeinempiricalstudiesintotheeffectthese developmentshaveonbusinesses,staff,andeconomies [1].Theyalsohave asubstantialimprovementinresults.Inthischapter,wedefinethemain principles,reviewcurrentliterature,discussrepercussionsfororganizationaldesign,andexplainprospectsformarketanalystsandstrategyscientists.Muchworkinthisfieldhasbeenfocusedonhoweconomic developmentandlabormarketsareimpactedbyroboticuseandthe implementationofAItechnology.Despitethemajorconsequencesfor socialwelfare,thisisalsoanimportantareaforfuturestudy.Inaddition, thelackofdetailedevidenceontheimplementationanduseofAIand roboticsensuresthatmuchofthecurrentworkisnotobservationalbut dependsonexpertorcrowd-sourcedviews [2].Inthefuture,enhanced datacollectionandorganizationwouldfacilitatemoreconcretescientific researchandencourageresearcherstoexploreadjacentissueslikeperformance

DOI: https://doi.org/10.1016/B978-0-323-85498-6.00007-1

discrepanciesandlabormarketimpactsonvariousformsofroboticsand technologyforAI [3] .Weneedstudiesfocusedondataonhowthe effectofAIongrowth,jobs,andcompensationinbusinessesandonhow artificialinsightcaninfluenceeconomicresults,suchascreativity,dynamism,andinequalities,anddistributionaleffects.Organizationalanalysts andpolicyscientistshavemanytoolstohelpusconsiderhownewdevelopmentsimpactourculture.Wefocusinparticularontheseissuesas theyareespeciallyappropriateforoperationalandstrategicscientists (Fig.1.1).

Themodelshouldbecapableofansweringthefollowingquestions withrespecttoRoboticProcessAutomation(RPA):

• WhatkindsofbusinesseswillimplementrobotictechnologyandAI?

• Doanymanagementtypesorhierarchicalstructuresexistthatcanbe implementedveryquickly?

• Arethebusinessconditionsaffectingthedecisiononadoption?

• IsthereariseorareductioninAIandroboticsinprofessions,businesses,orregions?

• Areanymeasuresofmanagementorcontrolcapableofreducingor exacerbatingtheadverseeffectsofrobotics?

• HowdoestheimplementationofAIandrobotictechnologiesaffectits producers,manufacturersupstream,andconsumersinthesamesector ormarket?

• Inwhichsituationsdopotentialcompetitorscontendwithtraditional incumbentsbyusingmachinelearning(ML)orrobotics? [4]

• HowdoestheessenceofworkimpactMLandrobotics?

• Whatistherelativevalueofskillsandactivitiesrequiredforawork modifiedbyAIandrobotics?

• HowdoMLandrobotsimpacthowhumanemployeesworkonthe job?

• WhatoperationalwordsreplaceorsupplementAIandroboticsfor work?

Figure1.1 Operationalwork-flowmodelofroboticdesktopautomation.

Table1.1 Comparativetablefordifferentapplicationsandtypeoftechniqueused. StudyreferenceApplicationTypeoftechnique used

Asatianietal. [5] RoboticautomationMachinelearning

LangmannandTuri [6] BusinessprocessmanagementDeeplearning

HuangandVasarhelyi [7] AuditingMachinelearning

QiuandXiao [8] Costmanagement optimization Machinelearning

KokinaandBlanchette [9] AccountingDeeplearning

Cernatetal. [10] UItestautomationMachinelearning

1.2Relatedwork

Chakrabortyetal. [11] explainedthemosttrendingdevelopments inAIwhicharerapidlychangingthebusinessprocesses.Trappeyetal. [12] showsauniqueintelligentpatentsystemwhichprovidesapatent summarywhichwillprovideverynecessaryinsightsintoaparticularpatentandhelpinbusinessautomation.RPAincreasestheoverallefficiency ofthebusinesssystem.RPAsystemsareenabledwith “bots” functionality,whichwillinteractwithsoftwaresystemssothatitwillmanagethe humanworkload [3].Inthecontinuousprocessoftheinformationsystemsdomain,advancementinthefieldofBlockchainandIntelligentsystemsalsoplaysanimportantroleindevelopmentofRPAwhichwilllead toimprovementinproductquality [13].Aftertheinitialdevelopment, severalstepshavebeentakentoimprovetheRPAlifecycle.Auser-log systemhasbeenproposedwhichworksontheknowledgeofthebackofficesystemandcollectsdataintheformofperiodicorderofimagesand user-drivenevents.Additionally,RPAisusedtoincreaseproductivity fromthetoptobottomlevelsofmanagement(Table1.1).

1.3Proposedwork

Therobotsystemsaresignificantlygrowinginindustrialautomation andwillincreaseinagrowingrangeofsituations,drivenbyasustained needforexpandedefficiencyandbetterproductquality [14].Progressin

depthandscopeisrapidlyexpandingroboticsystemsforindustrialautomation.Therelentlesspursuitinroboticdevicesisusuallyforsaferoperatingperformance,accuracy,andreliability.Toexecuteincreasingly complicatedtasksandnavigatebroaderanddiverseworlds,highintelligenceandautonomyareimportant.Thisfocusedsegmentsearchesout state-of-the-artcontributionstosolvebasicproblemsandrealisticconcerns inallareasofindustrialautomationroboticsystems(Williametal.,2019) (Fig.1.2).

Industrialautomationincludesprototypes,preparation,andcontrol [15].Threesectionsareaccepted:schemeplanningandregulation,which seektoenhanceroboticautomation’sperformance;precision;andsolidity [16].Thearchitectureoftherobotwasoftenabigproblemforimproving robotperformance.Forparticulartasks,arobotthatcommunicateswith objectsandenvironmentsinevitablyrequiremotionplanningandreliable power.Theproposedsystemimplementsacompletemovementdesign andcontrolsystemforensuringadualarmmovement(Fig.1.3).

Figure1.2 Interactionofroboticprocessautomationandintelligentsystems.
Figure1.3 Workingprocessofroboticautomation.

Yanetal. [18] suggestedusinganeuralnetworks(NNs)algorithmfor theoptimizationofalgorithmpredictionsystemparametersinamicropositioningsystemfortheprecisemotionmonitoringofamicropositioning system.Incontrastwithtraditionalapproaches,ourproposedapproach, theControlStrategy,makestheprecisionmotionmonitoringofamicropositioningdevicecleverandmoreflexible.Byintegratingvisualinterpretation,pointcloudmechanismandawarenessrepresentation,findings indicatethatthemethodsuggestedwillachieveverystrongoutputawarenessoftheenvironment.Amovingtargetismostcommonlyseenin manyprogrammingsituations,butforroboticmanipulation,itisverydifficult.Throughfixingeachother’sfaultsconstantly,thecombinedtrackers willdecreasetheirfaults.Oncheckingframesinarequireddatabaseof maingoalistomonitorindifferentlocations,experimentalstudiesreveal that,althoughoperatingseparately.Robotscanachievegoodadaptability forperformingflexibletasksandhavehighinteractivitywithpeopleduringthelearningprocess(Fig.1.4).

Thischapterdescribestheassemblystrategyofexplorationandtransfersskillsbetweenthetasks.Thechapterwilldescribeenvironmental dynamicswithGaussianMethodduringpolicytraininginawaythat decreasessamplinguncertaintyandincreasestrainingperformance.To enhancetargetvalueestimationandtoproducevirtualdatafortransformationstudies,thetraineddynamicmodelisused.Experimentalstudies suggestthatthesuggestedsystemincreasestrainingperformanceby31% andcanbeappliedtonewactivitiestoacceleratepreparationundernew policies.Simulationsindicatethatthesuggestedapproachhasconsiderable efficacy.Insuchacomplex,dynamicsystem,differentmanipulationtasks aresuccessfullyaccomplishedandeveninasparseincentiveenvironment, sampleperformanceisincreasedastheresearchtimeisconsiderably reduced.Learningthedesiredhumandirectionormotionisacrucialyet commontopicinthephysicalcontactbetweenpersonandrobot.Itisa tailoredapproachtomaximizehumanuseonmundanejobs,asopposed

Figure1.4 Keypointsofautomationsystems [17].

totheunpopularnotionofthe “reductioninworkforce.” Aprojectfor processautomationrequiresprocessmodelingasapreconditionsinceit servesasaplanfortheproject.Theproposedmodeloffersacomprehensivebusinessprocessframeworkthatallowstheestimationofvariableslike efficiency,complexity,andfulltimeequivalentsavingsfromaspecific process.Differentcriteriaaretakenintoaccount,suchasfrequencyof transition,diversecognitiveabilityetc. [19].Wedetermineifitisappropriateforautomationbyusingthesevariablesandcriteria.Theproposed modelisstrongerthanthestandardmodelsinceitincludesmoreparametersforindividualparameters.Theproposedmodelalsoanalyzesthe mechanismfromalmosteverypossibleangletogiveamoreaccurate detaileddescription,whereasthetypicalmodel’sanalysisisincomplete andonedimensional.Ournexttasksarerefiningthemodelbytaking intoaccountfurtherdimensionsandvariables,suchascostestimates,paybacks,andadvantages,increasingthismodeltoservefurthermarketpatterns,andincreasingtheprocessmodel’sanalyticalbase.AI-based solutionstoproblemsrelevanttoroboticcommunicationareasfollows:

• Firstwespeakabouthowrobotsunderstandtheworldandtakeaction usingInternetofThingsandMLtosupporttheecosystem.

• MorediscussionwillbeofferedonthewayMLtechniquesareusedin datacollectionandroboticpartnershipsthatcontributetothedevelopmentofrobotcommunication.

• WestudythekeystrategiesandapproachestotheapplicationofML inroboticcommunicationforeffectiveandreliabletaskperformance.

• Thefuturecourseofscienceandproblemsareeventuallyunderlined.

1.4Proposedmodel

Ahugechallengeforbusinessesistounderstandhowadvantageous thisreorganizationisandhowthemoderntechnologynotesthesignificanceofweighing “depression” inactualexpressionthatimpairstheefficacyofface-to-facecontactrelativetovirtualinteraction.Likewise,new technologywouldpossiblychangetheskillsandtasksinvolvedinmany careers.Newinnovationsalonewouldreformorganizationsandpush businessestotakenewdevelopmentsintoaccount.Boundariesbetween careerswithinbusinesseswillpossiblyadjustasmanyactivitiesareautomatedandpeoplewithinorganizationswhowanttoutilizethese

technologieswilldefinitelybemoreexposedtodigitaltechnologies [20] Inaddition,theworkermakeupwilladjusttothelatestandwidely respectedvarietyofskills.Theseimprovementsareoftenlikelytobemirroredinthecorporatearchitecturewhentheyaimtoachievethehighest benefitfromtheirhumanresources.Interfirmlimitationswouldalso evolvewiththeincreasinglycommonapplicationofroboticsandAItechnology [21].Theroboticstechnologieswillminimizecostsdramatically withinbusinesses,eventuallyresultinginfewersalesinthemarket [22] Taskswhichhadbeencontractedtootherentitieseithercanbemoved in-house,orcorporationsmayfindthatotherorganizationswithbetter accessandcapabilitytothesetechnologieswillexecutemoreeasilytasks thathavepreviouslybeenperformedwithinanenterprise.Furthermore,if thetechnologyisveryuniquetotheorganizationandifthecompany facesthepossibilityofholdingbackanopportunisticdownstreamclienta companymaynotimplementemerginginnovations,suchasrobotics.No matterhowtheresulthappens,theliteratureonstrategyfrequentlyshows thatthecurrentbusinessescopewithtechnicaladvances.Despitethe obstaclesfacedbytechnologicaldisruption,incumbentswillprosperif theyare “preadapted,” withtheabilitytoexploittheirtraditionalpower andassetstobenefitfromtheemergingtechnologies,thusdemonstrating thatitwouldbeeasierforbusinessestobeagileandrespondtomodern, “smarter” robotictechnologiesifroboticrollusersweretobein-house andwithaccesstotechnicalexpertise.Ifthisresultisgeneralizable,businessescanconsiderusingindividualswithtechnologicalexpertiseand extendingtheirtechnicalknowledgefacilitytomakethemostofthepossibleadvantagesofadoption.

1.4.1Systemcomponent

Traditionally,theaerospaceengineeringindustryismanualandrobotic. Theassemblingofpartsandtheirvariouselementsisoneofthemostroutineactivities.Intensivemanuallabor,jigs,andspecialequipmentare neededforthisphase.

1.4.2Effectivecollaboration

Intheexistingproductionmethods,implementinghuman robotcooperationwouldcutcostsprimarilybyreducingspecificequipmentandtimes. Theproblemofthecriteriaforallocatingtasksbetweenpeopleandrobots iscriticalinthiscollaborativeprocess [23].Therobotexecutesrepeated

andpreciseactivitiestomaximizeitsoperatingperformance,whilethe humanbeingprovidesversatility.Theworkerexecutesamanualprocess thatisdifficulttoplan,whiletherobotcompletestheprocesswhereprecisionisrequired.Inordertoensuretheexactnessandthehuman robotic relationshipforsecurecontroldevicecoordinationthesolutionsuggested requiresadditionalcomponentsareasfollows(Fig.1.5):

• Metrologicalsensors.Forenhancingtheprecisionoftherobot,externalsensorsareused.Therobotmotionshavehighpositioningdiscrepanciesandpoordirectionreplicability.Therobotmotionscanbe fixedtoachievemoreprecisioninpositioningbyincorporatingametrologicaldevice.Afurtherargumentisthatthekeycomponentmay beplacedontheworkbenchwithnodetaileduseofametrological device.

• Safetyfunctionalities.Therobotrespondssimilarlytohumanbehavior. Sincenoobstaclesremain,protectionfunctionsneedtobeconnected totherobotdevice.Bysupplyingtechnologicaldetails,therobotassists theworkerandtheworkercontrolstherobotthroughthetouch screenregardlessofhis/herskillorability.High-levelcontactwould allowtherobottoorganizebehaviorswithnonexpertusers.

1.5Manufacturingsystems

Enhancedqualitystandardsarenecessaryforthesustainedmarket performanceofgoods.Theconsequenceoftheabsenceofcertainquality

Figure.1.5 Controlofincreasingproductivityandimprovingproductqualityusing machinelearning [24].

levelswillresultinoutputflowinterruptionsorgoodsthatdonotfulfill thecustomer’srequirements.Foreachcommodity,consistencyis describeddifferently.Inlasercutting,weightorsurfaceruggednessofthe fabricarethecharacteristicsofthefabricatedpartthatdeterminetheconsistency.Withregardtotheentirephaseofmanufacturing,thisconsistencyconceptmaybeexpandedtoincludeconsiderationsofproduction, forexample,theusageofrawmaterials,theamountoftimeneededfor production,ortheworkersnecessarytofinishthecomponent. Manufacturingprocessesrequiredtomaximizecertaincollectionsofoutputfactorsarefacedwiththechallengeoflearningagreatdealaboutthe manufacturingprocess.Whereexistingsystemsaredesignedfortheexact executionofsettingcriteria,theoutputconsistencyneedstobeoptimized byself-optimizingsystems [25–27].Thiscanonlybeunderstoodifthere isembeddedprofessionalknowledgeofthemechanismandboundary conditionswhichexecuteeachstepintheproductionchain.Examples includemetalmilling,clothsewing,platewelding,injectionmodelingof plasticpieces,orlaserradiationcuttingofmetalsheet.Itisnormalfor themtoprocesscontenttogiveitnewcapabilities.Witheverygeneration ofmachinesandtheircontroltechnologies,efficiencyandreliabilityof thoseproductionsystemsimprove.Suppliersrelyonmoredurablematerials,andwherepossibleaddfasteractuators.Fasterbussystemswithsensor areimplementedtoimprovecircuitcontrolandallowforquickercoordinationwiththeunit(Figs.1.6and1.7).

Figure1.6 Comparisonofaccuracyforseveralmachinelearningalgorithms.

1.6Resultsanalysis

Resultsdemonstratethatthesymbiotichuman robotcollaboration solutionproposedenhancesefficiencyandimprovessafetyinassembly processesforaerospacedevelopment.Thestrengthandrepeatabilityofthe robotswassuccessfullypairedwithhumandurability,resultingin decreasedmanuallabor,decreasedspecializedequipment,andreduced time.Themethodsuggestedshowsthattheimplementationofroboticsis practical,cost-effective,andstableinthehistoricallymanualindustries. Withthestatedmodulararchitectureforhuman robotcommunication, complextaskscanbesemiautomated.Thereforethesefindingsarealso likelytobeappliedtoboosttheproductionprocessesofotherrobotreluctantsectors.Thefollowinghardwareisusedforboththedeployment andexperiments:12GBRAM,i53.6GHzCPU,4TBharddrive,and 8GBNVIDIAgraphicscard.TotraintheNNadatasetisrequired. Thereisnodatasetonuserinterfacesasfarasoursearchwasconcerned. Thusduringthecreationofthisresearchworkthedatasetwasselfgenerated.Incomparison,thedatasetcomprisesthreemajorgroups:preparation(70%),validation(15%),andtest(15%).Labelingisperformed manually,withtheassistanceofourstudycommunity.Usingagraphical imageclassificationprogram,thisroleisachievedimagebyimage.The outputisshownthroughthexmlformatcontaininglabeledsynchronizationandresults.Torepresenttheannotationin JavaScript Object Notation(JSON)formatweconvertedtheComma-SeparatedValue (CSV)fileintotheformofscriptandtraineditthroughtheYOLOv3 algorithmforalllabelmappings.Also, Fig.1.8 showstheanalysisofthe

Support Vector Machine (SVM)
Ar ficial Neural Network (ANN)
K-MeansK-Nearest Neighbor (KNN) Convolu onal Neural Network (CNN)
Figure1.7 Comparisonofprecisionscoreforseveralmachinelearningalgorithms.

RPAanalysisofduration2016 19. RPA,RoboticProcessAutomation.

Table1.2 Comparisonofdifferentalgorithmsused. AlgorithmAccuracyPrecisionscore

Supportvectormachine95.010.89

Artificialneuralnetwork89.480.83 K-means78.730.79

K-nearestneighbor69.980.82

Convolutionalneuralnetwork97.010.94

numberofusers(inmillions)ofRPAoverthespanof3years.The y-axis containsthenumberofusersandthe x-axisrepresentsthetimestamp (Table1.2).

1.7Conclusionsandfuturework

Inmanufacturingindustries,robotshavebeenusedforalongtime, operatingsecurelyalongsideandlearningfromhumans,butfortechnologicalandeconomicpurposessomeindustriesarerobot-reluctant.For modernservicesandmorecomplicatedroles,roboticshasdevelopedand hasawidervarietyofcapabilitiesthanthoseuseduptonow.Itiseasier toincorporateperipheraltechnology.Thearchitectureofthemodular frameworkwasdescribedforthecurrentcollaborativeassemblyprocess, includingpower,protection,andinterfacemodules,wherepeopleand robotswillsharethefieldofworkatthesametimewithoutphysicalseparation.Potentialusescanbeseeninarangeofplaceslikesomerobotrelatedsectors.Inthiscontext,thenextstepsinthisworkwillconcentrate onincorporatingspecialRPAtechniquesaswellaspracticalapplications forotherbusinesses,amongothers.Therobot-reluctantsectors,suchas

Figure1.8

theaerospaceindustry,willnowincorporatecooperationbetween humansandrobotstomaximizeefficiency,saveresourcesandelectricity, andboostoperators’ workingconditions.Fortheexistingandfuture manufacturingmarket,robotsareacentralfeature.

References

[1]C.DiFrancescomarino,R.Dijkman,U.Zdun(Eds.),BusinessProcessManagement Workshops.LectureNotesinBusinessInformationProcessing,2019.Availablefrom: https://doi.org/10.1007/978-3-030-37453-2 .

[2]W.M.P.VanderAalst,M.Bichler,A.Heinzl,Roboticprocessautomation,Bus.Inf. Syst.Eng.60(4)(2018)269 272.Availablefrom: https://doi.org/10.1007/s12599018-0542-4

[3] R.Syed,S.Suriadi,M.Adams,W.Bandara,S.J.J.Leemans,C.Ouyang,etal., RoboticProcessAutomation:contemporarythemesandchallenges,Comput.Ind. 115(2020)103162.

[4]S.Doltsinis,M.Krestenitis,Z.Doulgeri,Amachinelearningframeworkforrealtimeidentificationofsuccessfulsnap-fitassemblies,IEEETrans.Autom.Sci.Eng. (2019)1 11.Availablefrom: https://doi.org/10.1109/tase.2019.2932834

[5]A.Asatiani,J.M.GarcÃa,N.Helander,A.JimÃrnez-RamÃrez,A.Koschmider, J.Mendling,etal.,[LectureNotesinBusinessInformationProcessing]Business ProcessManagement:BlockchainandRoboticProcessAutomationForumVolume 393(BPM2020BlockchainandRPAForum,Seville,Spain,September13 18, 2020,Proceedings)||FromRoboticProcessAutomationtoÂIntelligentProcess Automation.,2020,10.1007/978-3-030-58779-6(Chapter15),215 228.Available from: https://doi.org/10.1007/978-3-030-58779-6_15 .

[6]C.Langmann,D.Turi,RoboticProcessAutomation(RPA)-Digitalisierungund AutomatisierungvonProzessen,2020.Availablefrom: https://doi.org/10.1007/9783-658-28299-8

[7]F.Huang,M.A.Vasarhelyi,Applyingroboticprocessautomation(RPA)inauditing: aframework,Int.J.Account.Inf.Syst.(2019)100433.Availablefrom: https://doi. org/10.1016/j.accinf.2019.100433

[8] Y.L.Qiu,G.F.Xiao,Researchoncostmanagementoptimizationoffinancialsharing centerbasedonRPA,ProcediaComput.Sci.166(2020)115 119.

[9]J.Kokina,S.Blanchette,Earlyevidenceofdigitallaborinaccounting:innovation withRoboticProcessAutomation,Int.J.Account.Inf.Syst.35(2019)100431. Availablefrom: https://doi.org/10.1016/j.accinf.2019.100431

[10]M.Cernat,A.N.Staicu,A.Stefanescu,ImprovingUITestAutomationUsing RoboticProcessAutomation.260 267,2020.Availablefrom: https://doi.org/ 10.5220/0009911202600267

[11] T.Chakraborty,I.Ghosh,Real-timeforecastsandriskassessmentofnovelcoronavirus(COVID-19)cases:Adata-drivenanalysis,Chaos,Solitons&Fractals135(2020) 109850.

[12] A.J.C.Trappey,etal.,Intelligentcompilationofpatentsummariesusingmachine learningandnaturallanguageprocessingtechniques,AdvancedEngineering Informatics43(2020)101027.

[13]C.DiCiccio,R.Gabryelczyk,L.García-Bañuelos,T.Hernaus,R.Hull,M.Indihar ˇ Stemberger,etal.(Eds.),BusinessProcessManagement:BlockchainandCentraland EasternEuropeForum.LectureNotesinBusinessInformationProcessing,2019. Availablefrom: https://doi.org/10.1007/978-3-030-30429-4 .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Artificial intelligence for future generation robotics rabindra nath shaw - The ebook in PDF/DOCX fo by Education Libraries - Issuu