Applied power quality: analysis, modelling, design and implementation of power quality monitoring sy

Page 1


https://ebookmass.com/product/applied-power-quality-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Active power line conditioners : design, simulation and implementation for improving power quality 1st Edition Litrán

https://ebookmass.com/product/active-power-line-conditioners-designsimulation-and-implementation-for-improving-power-quality-1st-editionlitran/

ebookmass.com

Solar Photovoltaic System Modelling and Analysis: Design and Estimation (River Publishers Series in Power) 1st Edition Mariprasath

https://ebookmass.com/product/solar-photovoltaic-system-modelling-andanalysis-design-and-estimation-river-publishers-series-in-power-1stedition-mariprasath/ ebookmass.com

Predictive Modelling for Energy Management and Power Systems Engineering Ravinesh Deo

https://ebookmass.com/product/predictive-modelling-for-energymanagement-and-power-systems-engineering-ravinesh-deo/

ebookmass.com

(eBook PDF) Communicating in Groups: Applications and Skills 11th Edition

https://ebookmass.com/product/ebook-pdf-communicating-in-groupsapplications-and-skills-11th-edition/

ebookmass.com

Manual Of Structural Kinesiology 21st Edition R .T. Floyd

https://ebookmass.com/product/manual-of-structural-kinesiology-21stedition-r-t-floyd/

ebookmass.com

EACVI Handbook of Cardiovascular CT Oliver Gaemperli

https://ebookmass.com/product/eacvi-handbook-of-cardiovascular-ctoliver-gaemperli/

ebookmass.com

Sexy Book of Sexy Sex Schaal

https://ebookmass.com/product/sexy-book-of-sexy-sex-schaal/

ebookmass.com

Living in Time: The Philosophy of Henri Bergson Barry Allen

https://ebookmass.com/product/living-in-time-the-philosophy-of-henribergson-barry-allen/

ebookmass.com

Smith's Recognizable Patterns of Human Malformation 8th Edition Kenneth Lyons Jones

https://ebookmass.com/product/smiths-recognizable-patterns-of-humanmalformation-8th-edition-kenneth-lyons-jones/

ebookmass.com

International Law and Development in the Global South Emeka Duruigbo

https://ebookmass.com/product/international-law-and-development-inthe-global-south-emeka-duruigbo/

ebookmass.com

AppliedPower Quality

AppliedPower Quality

SARATHPERERA

AustralianPowerQualityandReliabilityCentre,UniversityofWollongong, Wollongong,NSW,Australia

SEANELPHICK

AustralianPowerQualityandReliabilityCentre,UniversityofWollongong, Wollongong,NSW,Australia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85467-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

AcquisitionsEditor: RachelPomery

EditorialProjectManager: AleksandraPackowska

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: VickyPearsonEsser

TypesetbySTRAIVE,India

Contents Acknowledgementsvii

1.Introductiontopowerqualityinmodernpowersystems1

1.1 Introduction1

1.2 Whatispowerquality?3

1.3 Powerqualitymanagementphilosophy11

1.4 Overviewofcontents15 References17

2.Steady-statevoltageinlowvoltagenetworks19

2.1 Introduction19

2.2 Voltagestandards20

2.3 Equipmentresponsetovoltagemagnitude21

2.4 Causesofsteady-statevoltagevariation32

2.5 PrinciplesofvoltageregulationinLVfeeders33

2.6 Techniquesforimprovingvoltageregulation41 References48

3.Impactandmanagementofpowersystemvoltage unbalance49

3.1 Introduction49

3.2 Commonlyuseddefinitions50

3.3 Measurementofvoltageunbalance51

3.4 Impactofvoltageunbalance52

3.5 Managementofvoltageunbalanceinpowersystems54 References68

4.Impactandmanagementofpowersystemharmonics71

4.1 Introduction71

4.2 Definitionofwaveform(harmonic)distortion71

4.3 Measurementandanalysisofharmonicdistortion77

4.4 Sourcesofharmonicdistortion80

4.5 Impactofharmonicdistortion92

4.6 Managementofharmonicdistortioninelectricitysupplynetworks100

4.7 Mitigationofharmonicdistortion126 References128

5.Impactandmanagementofvoltagefluctuations,flickerand rapidvoltagechanges131

5.1 Introduction131

5.2 Effectsofvoltagefluctuations133

5.3 Powerqualityparametersassociatedwithvoltagefluctuations134

5.4 Managementofvoltagefluctuationsandflickerandtheir measurementandnetworkplanninglevels143 References145

6.Impactandmanagementofpowersystemvoltagesags147

6.1 Introduction147

6.2 Definitionofvoltagesags147

6.3 Causesofvoltagesags150

6.4 Empiricalcharacteristicsofvoltagesags151

6.5 Factorsinfluencingvoltagesagseverity153

6.6 Impactofvoltagesags155

6.7 Mitigationofvoltagesags163

6.8 Assessmentandreportingofvoltagesags174 References182

7.Implicationsofequipmentbehaviouronpowerquality185

7.1 Introduction185

7.2 Powerelectronicconverters185

7.3 Motorloads195

7.4 Capacitorbanks197

7.5 Arcingloads207

7.6 Transformers207

7.7 Loadbehaviour215

7.8 Impactofvariationsinsupplyvoltageonapplianceperformance246

7.9 Powerqualitystandardsforequipmentperformance254 References257

8.Powerqualitymonitoring,dataanalysisandreporting259

8.1 Introduction259

8.2 Standardsforpowerqualitymonitoring264

8.3 PQdisturbancesandtheircharacterisation269

8.4 Powerqualityinstruments274

8.5 Transducers282

8.6 Motivationforpowerqualitymonitoring294

8.7 Reportingofpowerqualitydata304 References312

Acknowledgements

IwishtoacknowledgemypastandpresentcolleaguesattheAustralian PowerQualityandReliabilityCentre(APQRC)whohaveinspiredme todelveintothequitefruitfulsubjectofpowerquality.Inparticular, IwishtothankEmeritusProfessorVicGosbellinthatregard.Ihavebeen veryfortunatetohavebrilliantpostgraduatestudentswhowentalong exploratorypathswhichhelpedmetoopennewwaysoflookingatpower qualityphenomenaassociatedwithvoltagefluctuationsandvoltageunbalance.Iwishtoacknowledgethesupportofmycolleaguesfromanumberof CIGREworkinggroupswhohaveacknowledgedtheworkcarriedout atAPQRC.

Ihavetremendousadmirationofmylong-standingcolleague,Sean Elphick,whohasbeenabackboneofAPQRC.Ialsowishtoacknowledge thesupportandinsightfulknowledgeofmycolleaguesthelateAssociate ProfessorPhilCiufo,AssociateProfessorDuaneRobinson,JasonDavid andGerardDruryofAPQRC.

SarathPerera

Firstly,Iwouldliketothankmycolleagues(pastandpresent)atthe AustralianPowerQualityandReliabilityCentre,specificallyandinnoparticularorder:ProfessorVicGosbell,AssociateProfessorDuaneRobinson, AssociateProfessorPhilCiufo,DrVicSmith,JasonDavid,GerrardDrury andAminRajabi.Ihavebeenfortunateinmycareertohavebeenableto workwithsuchfinementorsandcolleagues.

I’dalsoliketothankmyco-authorProfessorSarathPererawhohasbeen amentortomeforalongperiodoftime.

Finally,Ithankmyfamilywhohavesupportedmethroughtheprocessof compilingthisbookandperhapshavehadtoputupwithafewtoomany weekendsofdadinthestudyworkingonhisbook. SeanElphick

CHAPTER1

Introductiontopowerquality inmodernpowersystems

1.1Introduction

Inindustrialisedcountries,electricitysupplyreliability,asmeasuredbythe frequencyanddurationofelectricitysupplyinterruptions,isnowveryhigh. Whilstreliability,orwhetherornotanylevelofvoltageispresent,may strictlybeconsideredpartoftheumbrellaofdisturbancesincludedinthe broaddefinitionofpowerquality,thefactthatmanagementofreliability iswellunderstoodandthatreliabilityisofahighstandardmeansthatreliabilityandpowerqualityareoftenconsideredtobeseparatetopics.Given theaforementionedhighlevelsofreliability,focushasmovedtootherareas ofpowerqualitywhereimprovementscanbemade.Whilstmanypower qualityconceptshaveexistedformanyyears,inrecenttimestherehavebeen someverysignificantchangestothenatureoftheloadsandgeneratorsthat areconnectingtoelectricitysupplynetworks.Whilstthesenewloadsand generatorsarenotproducinganynewpowerqualitydisturbances,their characteristicsandthemethodsbywhichtheyarebeingintegratedintonetworkshaveresultedinpowerqualitychallengesandcontinuedemphasison theoverallmanagementofpowerqualityfrombothatechnicalandregulatoryperspective.Examplesofrecentpowersystemchangesthatare directlyrelevanttopowerqualityperformanceareasfollows:

•Therehasbeenaproliferationofsmall-scalesolarphotovoltaic(PV)generationbeingintegratedintolowvoltage(LV)networks.Themajority ofthesesystemsareinstalledonhouseholdrooftops.Asanexample, Fig.1.1 showsthetrendoftotalinstalledcapacityofsolarPVinAustralia overthepast20years.Thefigureshowsthattake-upincreasedrapidly from2010onwardandcontinuestoincreaserapidly.Integrationofthese distributedsolarPVgeneratorsintolowvoltageelectricitydistribution networkshasresultedinpowerqualitychallengesrelatedtovoltageregulation,voltageandcurrentunbalanceandtoalesserextentharmonic distortion.

Fig.1.1 TrendofinstalledsolarPVcapacityinAustralia. (DatafromAustralianPV Institute(APVI),SolarMap,FundedbytheAustralianRenewableEnergyAgency, Webpage(LastAccessed7April2021).)

•Solarinvertersand/orassociatedmonitoringsystemsprovideanindicationofnetworkvoltagelevelsandinsomecases,invertersystemsaredisconnectingfromthenetworkduetoovervoltageprotectionsettings. Thishasincreasedconsumerawarenessandvisibilityofnetworkpower qualityandinturnresultedinarequirementforelectricitynetwork operatorstotakeactiontoimprovepowerquality.

•Therehasbeenasignificantincreaseinthenumberoflargerenewable generators.Thesegeneratorspresentpowerqualitymanagementchallengesforthefollowingreasons:

Thelocationoftherenewableenergyresourcesthattheycaptureis ofteninremotelocations,andassuch,thereislimitedtransmission orsubtransmissioninfrastructure.Consequently,manyofthesegeneratorsarebeingconnectedtoweakerpartsofnetworksmaking managementofpowerqualitymoredifficult. Thetechnologiesusedtointegratethesegeneratorswithelectricity transmissionanddistributionnetworkshaveperformanceandcharacteristicsthataredifferenttomoretraditionalloadsandgenerators. Forexample,invertersforlargesolarfarmsmayinjectharmonic orderswhichareatypical.

•Therehasbeenacontinualshiftinthecharacteristicsofconsumerappliancestowardsalldevicesbeingsuppliedbypowerelectronics.Themain reasonforthisshiftisenergyefficiency.Manydeviceswhichincorporate inductionmotors,forexample,airconditioners,washingmachinesand

refrigerators,whichoncemayhavebeendirect-onlinestart,arenow moreandmorelikelytoincludeaninverterastheinterfacebetween thesupplyandthemotor.Inthecaseofairconditioners,itisnowdifficulttofindamodelthatisnotoftheinvertertype.

•Thecharacteristicsoflightingsystemshavecompletelychangedoverthe pastdecade.Inmanycountries,incandescentlamps,whicharealinear loadwithfewpowerqualityimplications,arebeingphasedout.Thisis againforreasonsofenergyefficiency.Inthefirstinstance,incandescent lampswerereplacedwithcompactfluorescentlamps(CFL);however, thesehavebeenreplacedinturnbyLEDlightingsystems.Whilstthere isnoargumentthatCFLsandLEDsuselessenergythanequivalentincandescentlamps,theyareelectronicdeviceswhichdoemitharmonicdistortion.Theseelectroniclightingsystemshavealsobeenobservedtobe moresusceptibletopowerqualitydisturbancesthanincandescentlamps. Inadditiontothechangestoloadsandgeneratorsspecifiedabove,itishighly likelythatthenumberofelectricvehiclesandbatteryenergystoragesystems willincreaseoverthecomingyears.Bothofthesetechnologiesareinterfacedwiththewiderelectricitysupplynetworkthroughelectronicsand assuchhavethepotentialtobothimpactnetworkpowerqualitylevels and/orbesusceptibletopowerqualitydisturbances.Dependingontheir implementation,thesetechnologiesalsohavethepotentialtoimprove powerquality.

1.2Whatispowerquality?

Therearemanydefinitionsforpowerquality.TheInternationalElectrotechnicalCommission(IEC)definespowerqualityas“characteristicsof theelectricityatagivenpointonanelectricalsystem,evaluatedagainsta setofreferencetechnicalparameters” [1] whilsttheInstituteforElectrical andElectronicsEngineers(IEEE)definespowerqualityas“theconcept ofpoweringandgroundingelectronicequipmentinamannerthatissuitable totheoperationofthatequipmentandcompatiblewiththepremisewiring systemandotherconnectedequipment” [2].

Insimpleterms,anydeviationsfromasinusoidalwaveformofnominal voltageandfrequencymaybeconsideredasamanifestationofapowerqualitydisturbance.Powerqualitycoversawiderangeofphenomenathatmay beobservedinpowersystems.Theimpactsofpowerqualityrangefromrelativelybenigntocatastrophic.Bywayofterminology,powerqualityphenomenaareoftencalleddisturbances;however,theIECalsotermspower

qualityphenomenaparameters.Forthepurposesofthisbook,thetermdisturbancehasbeenadopted.

Powerqualitydisturbancescanmanifestineithervoltageorcurrent.In manycases,voltagedisturbancesarearesultoftheinteractionbetweencurrentandnetworkimpedance.Forexample,harmonicvoltagedistortionis causedbytheinteractionbetweenthedistortedcurrentdrawnbynonlinear loadsandnetworkimpedancewhilstvoltagesagsarecausedbytheinteractionbetweenfaultcurrentandnetworkimpedance.Asageneralprinciple, particularlyundertheIECpowerqualitymanagementphilosophy,network operatorsareresponsibleformaintainingacceptablepowerqualitylevelsin voltagewaveformswhilstcustomersareresponsibleformanagingtheir powerqualityemissionsatalevelwherebytheydonothaveanunacceptable impactonvoltage.

1.2.1Mainpowerqualitydisturbances

Thissectionprovidesabriefoverviewofthedefinitionandimpactofthe mainpowerqualitydisturbances.Acomprehensivedefinitionofeachpower qualitydisturbanceisprovidedintheindividualchaptersdedicatedtoeach disturbance.

1.2.1.1Steady-statevoltagevariation

Voltagevariationmaybeconsideredtobethemostbasicofpowerquality disturbances.Thesteady-statevoltagemagnitudeisgenerallyacceptedtobe theroot-mean-square(RMS)valueofthevoltagewaveform.Thisvoltage magnitudewillvaryovertimeduetoarangeoffactorsincludingloadingand networkoperation(e.g.transformertapchangerpositions,connectionor disconnectionofcapacitorbanks).

Themagnitudeofthesupplyvoltageisakeyparameterforequipment operation.Ifvoltagemagnitudesaretoolow,equipmentmaynotoperateas intendedoratall.Ifvoltagemagnitudesaretoohigh,equipmentmayexperiencelossoflife,consumeadditionalenergyormayfail.

1.2.1.2Steady-statefrequencyvariation

Frequencyisanotherbasicnetworkoperationparameter.Inlargeinterconnectednetworks,frequencyisgenerallyboundwithintightlimitsandcontrolledthroughcomplexcontrolstrategiesforgenerators.Withtheincrease innonsynchronousgenerationaswellasmovementtowardshighernumbers ofstand-alonepowersupplies,maintenanceofverytightfrequencylimitsis becomingmorechallenging.

Themainimpactofvariationinfrequencyappearstobeimplicationsfor deviceswhichcountzerocrossings.Forthesedevices,variationinfrequency cancauseclockstorunfastorslowdependingonwhetherthefrequencyis aboveorbelowthenominalvalue.

1.2.1.3Unbalance

Unbalance,alsotermedimbalance,isdefinedbytheIECasa“conditionina polyphasesysteminwhichthermsvaluesofthelinevoltages(fundamental component),and/orthephaseanglesbetweenconsecutivelinevoltages,are notallequal”[1]. Fig.1.2 showsavisualisationofunbalance.

Theimpactofunbalanceismainlyonthree-phasedevices.Perhapsthe bestknownimpactisthatofvoltageunbalanceinducingcounter-rotating magneticfieldsininductionmotorsleadingtoadditionalheatingwhich sometimesrequiresderatingofthemotor.Voltageunbalancemayalsocause three-phasedevicestoemitatypicalharmonicdistortion.Inthree-phase supplynetworks,unbalancewillcausecurrenttoflowintheneutralconductor.Insomecases,beforeunbalancewaswellunderstood,thiswasanissueif theneutralconductorwasnotsizedappropriately.However,thisissueis nowwellunderstoodandwiringrulesensurethattheneutralconductor isnowappropriatelysized.

1.2.1.4Harmonicdistortion

Harmonicsaresinusoidalwaveformcomponentswithfrequenciesthatare integermultiplesofthefundamentalfrequency.Whenharmonicsarecombinedwiththefundamentalfrequencytheoutcomeisadistortedwaveform. Harmonicsdistortthevoltageorcurrentwaveformidenticallyforeach cycle.Sometypesofequipment(e.g.powerelectronicconverters)will intrinsicallydrawdistortedcurrentmadeupofharmonics.Theinteraction

Fig.1.2 Visualisationofunbalance.

Fig.1.3 Exampleofwaveformcontainingharmonicdistortion.

betweenthisdistortedcurrentandnetworkimpedanceisthecauseofdistortedvoltagewaveformsandvoltageharmonics. Fig.1.3 showsanexample ofawaveformcontainingharmonicdistortion.

Interharmonicsarewaveformswithfrequencycomponentsthatarenot integermultiplesofthefundamentalfrequencyandoriginatefromdevices suchasstaticfrequencyconverters,cycloconvertersandarcfurnaces.The waveformdistortiontheyproduceisdifferentforeachhalf-cycle.Interharmonicsaregenerallynotofsufficientmagnitudetobeofconcern. Fig.1.4 showsanexampleofawaveformcontaininginterharmonicdistortion.

Theimpactofharmonicdistortioncanbequitewideandvariedand includes

•Additionalheatingandlossesinequipmentandsupplynetworks.

•Interferencewithcontrolandcommunicationsystems.

•Catastrophicfailureofequipment.

Fig.1.4 Exampleofwaveformwithinterharmonicdistortion.

1.2.1.5Voltagefluctuationsandflicker

Voltagefluctuationsandflickerareoftengroupedtogether;however,they arenotequivalent.Voltagefluctuationsarerapidchangesinthemagnitude ofthevoltagewhilstflickerisanongoingmodulationoftheamplitudeofthe voltagewaveformenvelope.Inasimplesense,voltagefluctuationsmaybe thoughtofasthesourceandflickertheoutcome;however,notallvoltage fluctuationsleadtoproblematicflicker.Themainimpactofvoltagefluctuationsinisolationisdimmingoflightsandpotentialtrippingofequipment. Theimpactofvoltagefluctuationsonequipmentlifespanremainsanarea requiringfurtherresearch.Isolatedvoltagefluctuationswillnotcauseflicker; however,ongoingperiodicvoltagefluctuationsarethesourceofflicker.

Ongoingvoltagefluctuationscancauserhythmicchangesintheoutput (flickering)ofsomelightingsystemsandthisisthephenomenaknownas flicker.TheIECdefinesflickeras“impressionofunsteadinessofvisualsensationinducedbyalightstimuluswhoseluminanceorspectraldistribution fluctuateswithtime” [3].Themainimpactofflickerisonhumanswherethe ongoingchangesinlightoutputcancausearangeofdeleterioushealth impacts,rangingfrominabilitytoconcentratethroughtoseizuresinextreme cases. Fig.1.5 showsavisualisationoftheperiodicamplitudemodulationof thevoltagewaveformenvelopethatistherootcauseofflicker.

Fig.1.5 Visualisationoftheperiodicamplitudemodulationofthevoltagewaveform envelopethatcausesflicker.

1.2.1.6Voltagesags

Avoltagesag,alsoknownasavoltagedip,isashort-termreductionofthe voltagemagnitude.Voltagesagsareidentifiedbythresholdvaluesofvoltage

magnitude.Thereisnoconsistentinternationaldefinitionofthevoltage magnitudeortimeperiodthatdefinesavoltagesag.TheIEEEdefinesa sagas“adecreaseinrmsvoltagetobetween0.1and0.9pufordurationsfrom 0.5cyclesto1min” [4].TheIECismuchlessprescriptivewithrespecttothe magnitudeofvoltageanddurationthatapplytovoltagesags,specifyinga voltagedip(sag)asa“temporaryreductionofthevoltagemagnitudeata pointintheelectricalsystembelowathreshold” [5]. Fig.1.6 showsanexampleofavoltagesag.

Voltagesagsmaywellbethepowerqualitydisturbancewiththegreatest economicimpact.Voltagesagscancauseequipmenttotrip(ceaseoperating).Thistrippingcauseslostproductivityandcanleadtosignificantloss ofproductionandrawmaterialsinindustrialplants.

1.2.1.7Voltageswells

Avoltageswellisashort-termincreaseinthevoltagemagnitude.Insimple terms,voltageswellsmaybethoughtofastheoppositeofvoltagesags.However,measurement,analysisandreportingofvoltageswellsarenotnearlyas welladvancedasthatseenforvoltagesags.Thismaybeduetothefactthat voltageswellsaremuchrarerthanvoltagesagsanddonothavethesame economicimpacts.

Voltageswellsareidentifiedbythresholdvaluesofvoltagemagnitude. Similartothecaseforvoltagesags,thereisnoconsistentinternationaldefinitionofthevoltagemagnitudeortimeperiodthatdefinesavoltageswell. TheIEEEdefinesaswellas“aswellisanincreaseinrmsvoltageabove1.1pu fordurationsfrom0.5cycleto1min” [4].Onceagain,theIECislessprescriptivewithrespecttothemagnitudeofvoltageanddurationthatapplyto voltageswells,specifyingavoltageswellasa“temporaryincreaseofthevoltagemagnitudeatapointintheelectricalsystemaboveathreshold” [5] Fig.1.7 showsanexampleofavoltageswell.

Fig.1.6 Voltagesag.

1.2.1.8Transients

Atransientisaveryshortterm,oftensubcycle,disturbanceintheACwaveformthatisevidencedbyasharp,briefdiscontinuityofthewaveform.Transientsarealsoknownasspikesorsurgesandnormallyareonthelineforonly 1/1000thofasecondorless(lessthan1millisecond).Theycanbefromafew to10,000volts-peakaboveorbelowthevoltagesinewaveordatalinesignal. Theimpactoftransientscanrangefromtrippingofequipmentanddisruptionofcontrolsystemsthroughtocatastrophicfailure.

Therearetwotypesoftransients,namely,oscillatoryorimpulsive.Oscillatorytransientsaregenerallycausedbyenergisationofloadswithcapacitor bankenergisationbeingawell-knowncause.Oscillatorytransientsarecharacterisedbybidirectionalexcursionsinthewaveformfollowedbyoscillation orringing. Fig.1.8 showsanexampleofanoscillatorytransient.

Impulsivetransientsaregenerallycausedbylightning.Thesetransients arecharacterisedbyveryshorttermandoftenverylargeunidirectional excursionsofthewaveform. Fig.1.9 showsanexampleofanimpulsive transient.

Fig.1.7 Voltageswell.
Fig.1.8 Oscillatorytransient.

1.2.1.9Characterisingpowerqualitydisturbances

Whenconsideringmonitoring,analysisandreportingofpowerqualitydisturbancelevels,itiscommontocharacterisepowerqualitydisturbancesas eithercontinuousordiscretephenomena.

Note:TheIECdoesnotusethetermcontinuousdisturbanceinstead adoptingthetermquasisteady-stateparameter;however,thetermcontinuousdisturbanceisusedinthisbook.

Continuousdisturbancesarethosewhicharealwayspresenttosome degree.Discretedisturbancesoccurasisolateddisturbancesoverafewcycles potentiallywithalongintervalbeforetheyarerepeated.Theconceptof ‘steadystate’isnotapplicabletothesedisturbancessince,ifthetermwas tomeananything,itwouldbethattheyareabsent. Table1.1 presents thecontinuousordiscreteclassificationforthemostcommonpowerquality disturbances.

Thephilosophyformanagement,monitoringandanalysisofcontinuous anddiscretedisturbancesisverydifferent,andassuch,eachdisturbanceclassificationneedstobeaddressedindividually.

Table1.1 Continuousanddiscretedisturbanceclassification.

Continuousdisturbances(present everycycle)

Voltagevariation Unbalance Harmonicdistortion

Voltagefluctuations/flicker

Discretedisturbances(presentinasmall fractionofcycles)

Sag/interruption Swell Transient

Fig.1.9 Impulsivetransient.

1.3Powerqualityman agementphilosophy

Theoverallaimsofmanagingpowerqualitydisturbancelevelswithinelectricitysupplynetworksareasfollows:

•Toensureasafeandsecureelectricitysupply.

•Toensurethatallequipmentconnectedtotheelectricitynetworkoperatesasexpected.

•Tofullyutilisetheabsorptioncapacityoftheelectricitynetworkensuringtheoptimumeconomicoutcomesforconsumersandnetwork operators.

Managementofpowerqualitylevelsinelectricitynetworkstoensure thatalloftheearliermentionedobjectivesaremetisachievedthrougha combinationofequipmentdesignguidelinesalongwithmeasuresundertakentolimitthemagnitudeofdisturbancespresentinelectricity.Inmost cases,therearestandardsand/orregulationsthatspecifythemethodsthat networkoperatorsshouldusetoimplementapowerqualitymanagement philosophy.

Intermsofequipmentdesigntherearestandardswhichdefineacompatibilitylevel.TheIECdefinescompatibilitylevelas“thespecifiedelectromagneticdisturbancelevelusedasareferencelevelforco-ordinationin thesettingofemissionandimmunitylimits.”Thecompatibilitylevelis effectivelythehighestlevelofanydisturbancethatshouldbepresentin theelectricitysupplynetwork.Equipmentmanufacturersusethecompatibilityleveltodesignequipmentsuchthattheequipmentimmunitylevelis greaterthanthecompatibilitylevel,thusensuringthatequipmentshould operateasexpectedforanypowerqualitydisturbancelevellikelytobepresentinthesupplyvoltage.

Oncecompatibilitylevelshavebeenestablishedelectricitynetwork planningmethodologiesmustbeimplementedtoensurethatpowerquality disturbancemagnitudespresentinelectricitynetworksdonotexceedthe compatibilitylevel.Therearetwoaspectstothisplanningmethodology:

1. Specificationofplanninglevels—TheIECdefinesplanninglevelas “levelofaparticulardisturbanceinaparticularenvironment,adopted asareferencevalueforthelimitstobesetfortheemissionsfromthe installationsinaparticularsystem,inordertoco-ordinatethoselimits withallthelimitsadoptedforequipmentandinstallationsintendedto beconnectedtothepowersupplysystem.”Theplanningleveleffectivelyidentifiesthemaximumdisturbancemagnitudethatshouldbepresentataparticularlocation.

2. Allocationofemissionlevelstolargeloads—Emissionlevelisdefinedby theIECas“levelofagivenelectromagneticdisturbanceemittedfroma particulardevice,equipment,systemordisturbinginstallationasawhole, assessedandmeasuredinaspecifiedmanner.”Forlargeinstallationsconnectingtomediumvoltagenetworksandabove,itistypicaltoundertake anemissionallocationprocessinordertolimittheoverallcontributionthat anyparticularinstallation(loadorgenerator)maymaketooverallpower qualitydisturbancelevelsthroughtheirpowerqualityemissions.Forlow voltagenetworks,thepowerqualityemissionsofequipmentandinstallationsaregenerallycontrolledthroughstandardswhichlimitthemagnitude ofemissionfromindividualpiecesofequipmentanditislesscommon foremissionallocationstobeprovidedforlowvoltageinstallations.

Basedonthephilosophiesdescribedbefore, Fig.1.10 providesvisualisation oftheprocessforimplementingapowerqualitymanagementphilosophy.

Fig.1.11 providesvisualisationoftheoverallpowerqualitymanagement philosophy,thatis,howcompatibilitylevels,planninglevelsandequipment immunityworktogetherinordertoensureappropriatepowerquality outcomesforallstakeholders.Networkdisturbancelevelsareduetothe

Fig.1.10 Flowchartforimplementationofapowerqualitymanagementphilosophy.
Fig.1.11

Fig.1.12 Visualisationofoverlappingresponsibilitiesfornetworkoperators,equipment suppliersandinstallationsforpowerqualitymanagement.

cumulativeimpactofallequipmentconnectedtothenetworkwhilstequipmentimmunitylevelsaredeterminedthroughtypetesting.

Inorderfortheentirepowerqualitymanagementphilosophytobe effective,aholisticapproachmustbeadoptedwhichlinkscompatibility levelswithplanninglevelsandtheemissionallocationstrategy.Eachofthese aspectsmustbewellunderstoodbythekeystakeholders,namely,thenetworkoperator,equipmentsuppliersandinstallations. Fig.1.12 provides visualisationoftheoverlappingresponsibilitiesrequiredforeffectivemanagementofpowerquality.

1.3.1Powerqualitystandards

Whilstbespokepowerqualitymanagementphilosophyandstandardsexist forindividualcountriesandevenindividualorganisations,thepredominant powerqualitymanagementmethodologyandstandardsusedoradoptedin mostlocationsareeitherthoseproducedbytheIECortheIEEE.

1.3.1.1IECstandards

TheIEChasahighlystructuredsuiteofpowerqualitystandardsforpower qualitywhicharecontainedwithintheumbrellaofElectromagneticCompatibility(EMC)andspecificallythe61000series.TheIEC61000seriesof standardsispublishedinseparatepartsaccordingtothefollowingstructure:

1. General:fundamentalprinciples,definitions

2. Environment:descriptionandclassificationoftheelectromagneticenvironment,compatibilitylevels

3. Limits:emissionandimmunitylimits

4. Testingandmeasurementtechniques:e.g.forassessingequipment immunityandforassessingdisturbancelevels

5. Installationandmitigationguidelines

6. Genericstandards:generalproceduresfortestingequipment

7. Miscellaneous

Thenomenclatureforthe61000seriesofIECstandardsis61000.Part Number.StandardNumber.Forexample,instrumentationstandardsare thereforenumberedintheformIEC61000.4.xwhilstlimitsfornetwork operators,installationsandequipmentarenumberedIEC61000.3.x. Whilstthecatch-alltermstandardsareoftenappliedtoIECdocuments, theIECactuallyhasthreetiersofdocumentasfollows:

•InternationalStandard(IS)—Aninternationalstandardisadocument thathasbeendevelopedthroughtheconsensusofexpertsfrommany countriesandisapprovedandpublishedbyagloballyrecognisedbody. Itcomprisesrules,guidelines,processesorcharacteristicsthatallowusers toachievethesameoutcometimeandtimeagain.

•TechnicalSpecification(TS)—Atechnicalspecificationapproachesan internationalstandardintermsofdetailandcompletenessbuthasnot yetpassedthroughallapprovalstages,eitherbecauseconsensushas notbeenreachedorbecausestandardisationisseentobepremature.

•TechnicalReports(TR)—Technicalreportsfocusonaparticularsubjectandcontain,forexample,data,measurementtechniques,test approaches,casestudies,methodologiesandothertypesofinformation thatareusefulforstandardsdevelopersandotheraudiences.Theyare nevernormative.Technicalreportstypicallyhavenotachievedtheconsensusrequiredforpublicationasaninternationalstandard.

1.3.1.2IEEEstandards

TheIEEEhasasomewhatlessstructuredapproachtostandardisationthan theIEC.IEEEstandardsalsotendtoincludemuchmore‘tutorial’orinformativetypeinformationthanIECstandards.TheIEEEstandardformanagementofharmonicsisIEEEStd519“IEEERecommendedPractices andRequirementsforHarmonicControlinElectricalPowerSystems.” IEEEStd1159is“IEEERecommendedPracticeforMonitoringElectric PowerQuality”providesrecommendationsformonitoringofpower quality.

IEEEcolourbookseriesalsoprovideusefulguidanceformanagementof powerquality,especiallythefollowing:

•IEEEStd142-2007“IEEERecommendedPracticeforGroundingof IndustrialandCommercialPowerSystems,”alsoknownasthe GreenBook.

•IEEEStd1100-2005“IEEERecommendedPracticeforPoweringand GroundingSensitiveElectronicEquipment,”alsoknownasthe EmeraldBook.

•IEEEStd446-1995“IEEERecommendedPracticeforEmergencyand StandbySystemsforIndustrialandCommercialApplications,”also knownastheOrangeBook.

1.4Overviewofcontents

Thisbookhasbeenwrittentospecificallyassistpractitionersworkingin powerquality;however,arangeofindividualsworkingintheelectricalsupplyindustrymayfindaspectsofthebookuseful.Thebookisdesignedto assistreaderstohaveabetterunderstandingofpowerqualityandtoexplain andsimplifycomplexaspectsoftheirjobs.Thecontentpresentedhasbeen collatedtoprovideaone-stopguidetobroadmanagementofpowerquality fromequipmentbehaviourthroughtonetworkoperationandplanning. Evaluationoftheperformanceandtrendsinmodernequipmentareprovided.Whererelevant,comprehensiveguidanceonthestandardsapplicable tomanagementofpowerqualityisalsoprovided.Thetheoreticalmaterial presentedinthebookissupportedbythelatestresearchaswellaslaboratory andfieldmeasurementsofequipmentandnetworkdata.Thebookmayalso beusefulinassistingwiththedesignofpowerqualityallocation,monitoring andassessmentsystems.Thisbookisorganisedasfollows:

1.4.1 Chapter2:Steady-statevoltageinlowvoltagenetworks

Thischapterdiscussestherelevanceofmanagingsteady-statevoltagemagnitudesinlowvoltagenetworks.Thechapterdetailstheimpactoftheproliferationofsmall-scalerenewableenergydevicesonvoltageandthe strategiesthatcanbeusedtomanagevoltageregulation.Thechapteralso examinestheimpactofsupplyvoltageonequipmentperformance,includingfindingsrelatedtolossofequipmentlife.

1.4.2 Chapter3:Impactandmanagementofpowersystem

voltageunbalance

Thischapterdiscussesvoltageunbalanceincludingitscausesandeffects includingimpactonequipmentbehaviour.Thechaptercontainsoutcomes ofthelatestresearchintotheimpactofunbalanceoninductionmotorperformance.Thechapteralsoprovidessomedetailsoftheeconomicimpactof voltageunbalanceonconsumers.

1.4.3Chapter4:Impactandmanagementofpowersystem harmonics

Thischapterdescribespowersystemharmonicsincludingtheircauses(with thefocusbeingonmodernequipment)andeffectsincludingimpacton equipmentbehaviour.Thechapteralsoprovidesanin-depthexplanation ofthecomplexIECguidelineswhichareusedformanagementofharmonics,includingapplicationofthestandardstolargerenewableenergy generators(currentlyatopicofmuchconjecture).Thelimitationsassociated withtheexistingapproachesusedtostudyharmoniccomplianceinnetworksarealsoaddressed.

Thischapteralsoexaminesthetopicalsubjectofhigh-frequencyharmonicemissionsfromsmall-scalerenewablegenerators.

1.4.4Chapter5:Impactandmanagementofpowersystem voltagefluctuations,flickerandrapidvoltagechanges

Thischapterdetailsthecausesandeffectsofvoltagefluctuations,flickerand rapidvoltagechanges,includingimpactonequipmentbehaviour.The chapteralsoexaminestheIECguidelinesthatareapplicabletovoltagefluctuationsandflicker,includingexplanationandsimplificationoftheemission allocationforflickerandrapidvoltagechanges.

1.4.5 Chapter6:Impactandmanagementofpowersystem voltagesags

Thischapterexaminesthecausesandimpactsofvoltagesags,includingthe economicimpactofvoltagesagsonconsumers.Modernmethodsoflimiting andmanagingvoltagesagbehaviourarealsoexamined.

1.4.6 Chapter7:Implicationsofequipmentbehaviouron powerquality

Thischapterinvestigatesthebehaviourofmodernequipmentasitpertains topowerquality.Inthepastdecadetherehavebeensignificantchangesto theoperatingcharacteristicsofdevicesconnectedtoelectricitydistribution systems.Majorchangesincludethemovementtohighefficiencylighting loads(i.e.LEDlamps),themovetowardspowerelectronicfrontendson mosthouseholdappliances(e.g.washingmachinesandrefrigerators)and theproliferationofrenewableenergytechnologiesatbothsmallandlarge scale.Thechapterwillhighlightthemajordifferencesbetweenperformance

ofmodernequipmentcomparedtotraditionalconceptswithrespectto equipmentperformance.

1.4.7

Chapter8:Powerqualitymonitoring,dataanalysis andreporting

Thischapterfocusesonpowerqualitymonitoring,dataanalysisandreporting.Methodologiesforbothreactive(i.e.inresponsetocomplaintsorfaults) andproactive(i.e.continuousmonitoringtoestablishbaselineperformance) willbediscussed.Topicsdiscussedinthechapterinclude

•RationaleforPQmonitoring.

•PQmonitoringinstruments.

•Analysisandreportingmethodologiesincludingindices.

•Standardsforpowerqualitymonitoring.

•Transducersforpowerqualitymonitoring.

References

[1]IEC,IEC60050,InternationalElectrotechnicalVocabulary(IEV),1990.

[2]IEEE,IEEE100™,TheAuthoritativeDictionaryofIEEEStandardsTerms,seventhed., 2000.

[3] IEC,Electromagneticcompatibility(EMC)—Part3-7:Limits—Assessmentofemission limitsfortheconnectionoffluctuatinginstallationstoMV,HVandEHVpowersystems, IECTR61000-3-7,2008.

[4] IEEERecommendedPracticeforMonitoringElectricPowerQuality,IEEEStd 1159-2019(RevisionofIEEEStd1159-2009),2019,pp.1–98.

[5] IEC,ElectromagneticCompatibility(EMC)—Part4-30:TestingandMeasurement Techniques—PowerQualityMeasurementMethods,2008.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.