
AppliedHierarchicalModelinginEcology.Analysis ofdistribution,abundanceandspeciesrichnessin RandBUGS:Volume1:PreludeandStaticModels 1stEditionKéry
https://ebookmass.com/product/applied-hierarchical-modelingin-ecology-analysis-of-distribution-abundance-and-speciesrichness-in-r-and-bugs-volume-1-prelude-and-staticmodels-1st-edition-kery/

Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Applied Modeling Techniques and Data Analysis 2: Financial, Demographic, Stochastic and Statistical Models and Methods, Volume 8 Yannis Dimotikalis
https://ebookmass.com/product/applied-modeling-techniques-and-dataanalysis-2-financial-demographic-stochastic-and-statistical-modelsand-methods-volume-8-yannis-dimotikalis/ ebookmass.com
Applied Data Analysis and Modeling for Energy Engineers and Scientists
https://ebookmass.com/product/applied-data-analysis-and-modeling-forenergy-engineers-and-scientists/
ebookmass.com
Predictive Modeling in Biomedical Data Mining and Analysis
Sudipta Roy
https://ebookmass.com/product/predictive-modeling-in-biomedical-datamining-and-analysis-sudipta-roy/
ebookmass.com
(eBook PDF) Business and Society: A Strategic Approach to Social Responsibility & Ethics, 7th edition
https://ebookmass.com/product/ebook-pdf-business-and-society-astrategic-approach-to-social-responsibility-ethics-7th-edition/
ebookmass.com




https://ebookmass.com/product/to-the-gates-of-hell-david-nix-2/

ebookmass.com
Conceptions of Giftedness and Talent Robert J. Sternberg
https://ebookmass.com/product/conceptions-of-giftedness-and-talentrobert-j-sternberg/
ebookmass.com
Application of Machine Learning in Agriculture Khan

https://ebookmass.com/product/application-of-machine-learning-inagriculture-khan/
ebookmass.com
Militarized Cultural Encounters in the Long Nineteenth Century: Making War, Mapping Europe 1st ed. Edition Joseph Clarke
https://ebookmass.com/product/militarized-cultural-encounters-in-thelong-nineteenth-century-making-war-mapping-europe-1st-ed-editionjoseph-clarke/
ebookmass.com
The Analysis of Irregular Shaped Structures: Wood Diaphragms and Shear Walls, 2nd Edition Terry R. Malone
https://ebookmass.com/product/the-analysis-of-irregular-shapedstructures-wood-diaphragms-and-shear-walls-2nd-edition-terry-r-malone/
ebookmass.com



https://ebookmass.com/product/lunchtime-chronicles-mai-tai-amarieavant-lunchtime-chronicles/
ebookmass.com

AcademicPressisanimprintofElsevier
125LondonWall,LondonEC2Y5AS,UK
525BStreet,Suite1800,SanDiego,CA92101-4495,USA
225WymanStreet,Waltham,MA02451,USA
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK
Copyright © 2016ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.
ISBN:978-0-12-801378-6
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheLibraryofCongress
ForinformationonallAcademicPresspublications visitourwebsiteat http://store.elsevier.com/
J.A.Roylewastheprincipalauthorofchapters2,7,8,9.Useofproductnamesdoesnotconstitute endorsementbytheU.S.Government.
ForJimNichols,whochangedthewayinwhichwethinkaboutEcology
Foreword
Istartedgraduateschoolin2003workingonasimpleprojecttounderstandhowforestmanagement practicesaffectbirdpopulationsintheWhiteMountainNationalForestinNewHampshire,USA.As withmanyprojectsofitskind,wecollectedpointcountdatatocharacterizeabundanceatacollection ofsitesthathadreceiveddifferentmanagementactions.Knowingthatwewouldfailtodetectmanyof theindividualspresentatseveralsites,andthatdetectionprobabilitymightcovarywithhabitatvariables,myadviserDavidKingrecommendedthatwesurveyeachsitemultipletimesandrecordthe distancetoeachindividualdetected.Whenthefieldseasoncametoanend,Ihadmydatainhand andwasreadytoknockoutaquickanalysis.Thatiswhenthedifficultiesbegan.ThefirstthingItried wasamultipleregression,butIwasimmediatelystumpedastowhattheappropriateresponsevariable was.Shoulditbethemeannumberofindividualsdetectedateachsite,themaximumnumberdetected, orperhapsthemedian?Differentauthoritiesrecommendeddifferentstrategies,andtomydismay,the resultsdifferedwitheachapproach.Inadditiontothisproblem,itwasapparentthatthemodelmadeno distinctionbetweentheexplanatoryvariablesthatIhadcollectedtodescribevariationinabundance andthevariablesthatIhadcollectedtoexplainvariationindetection.Asaresult,Icouldusemymodel topredicttheeffectofmanagementonobservedcounts,butnotonabundance,thestatevariablethatI wasactuallyinterestedin.
Isoonabandonedtheregressionapproachandturnedmyattentiontodistancesamplingmethods. Hereagain,IwasquicklysurprisedtofindthatalthoughIcouldpoolmydatatoaccountfortheeffect ofdistanceondetectionprobability,Icouldn’tdirectlymodeltheeffectsofmanagementvariables (someofwhichwerecontinuous)onabundance.Eventhetwo-stageapproachesthatwererecommendedatthetimewerenotpossiblebecauseofthesparsenessofmydata,whichincludedmanysiteswith nodetections.Moreover,evenifIhadbeenabletocorrectfordetectionandthenmodelmyestimates, itwouldhavebeenverydifficulttoproperlyaccountforthecovarianceoftheestimates.AsIsearched forsolutionstotheseproblems,mydespaircontinuedtogrowasIreadseveraldistancesampling papersproclaimingthatthedataIhadworkedsohardtocollectmightbeimpossibletouseformy purpose.Theonlyoptionseemedtobetostudysomethingelse!
Andthenin2004,AndyRoyleandcolleaguespublishedtwopapersthatseemedtohavebeenwrittenwithexactlymyprobleminmind.Royle(2004b, Biometrics)demonstratedhowrepeatedcount datacouldbeusedtomodelspatialvariationinabundancewhileaccountingforvariousfactorsinfluencingdetectionprobability,andRoyleetal.(2004, Ecology)explainedhowspatialvariationinabundancecouldbemodeledusingdistancedatacollectedusingstandardpointcountsurveymethods. UnlikeallothermethodsIhadseen,therewasnoneedtodoatwo-stageanalysis,anditwasstraightforwardtomodelcovariatesofbothabundanceanddetection.Herewerehierarchicalmodelsthatnot onlyprovidedconceptualclarity,butallowedmetomakefulluseofmydatasothatIcouldtestthe hypothesesIwasinterestedin.
TherewasonlyoneproblemwiththeexcitingmodelsthatIwasreadingabout Ihadnoclue howtofitthemtomydata.Ihadtakenacoupleofstatisticscourses,butIhadneverheardofmarginallikelihood,andIcertainlyhadnoideahowto writecodetomaximizeanintegratedlikelihood function.Theverynextyear,however,MarcKe ´ ry,AndyRoyle,andHansSchmidpublishedapaper in EcologicalApplications thatprovidedadditiona ldetailsaboutthesemodels,andthepaper includedanappendixwithashortRscriptthatd emonstratedhowtoobtainmaximumlikelihood
estimates.It’snoexaggerationtosaythatIlearnedmoreaboutstatisticsandprogrammingby tryingtounderstandthisonebitofcodethanId idfromanyformaleducationuptothatpoint. Fromthere,Iquicklybeganmodifyingthecodetomakeitmoregeneralandtodealwithother typesofdatathatIhadgathered.Thiseventuallyledmetodevelopsomegeneralfunctions,which werecomingtogetherjustasIlearnedaboutanRpackagebeingdevelopedbyIanFisketofitthis classofmodels.Iofferedtohelp,andeventhoughInevermetIaninperson,wehadac oupleof goodyearsofcollaborationthatresultedintheRpackage unmarked
ThereasonforconveyingthisbitofpersonalhistoryisnotjusttomakethepointthatMarcand Andyhavehadahugeimpactonmyowncareer,buttoconveyastorythatIknowappliedecologists aroundtheworldcanrelateto.Simplepracticalproblemsturnouttoposeseriouschallengeswhenwe areunabletodirectlyobservetheprocessesofinterest.Indicesofabundanceandpopulationtrendsare nearlyuselesswhenwe’reconcernedaboutabsoluteslikeextinctionriskorharvestlimits.Applied ecologistshaverecognizedtheseproblemsforalongtime,andhierarchicalmodelsprovideasolution byenablingresearcherstodirectlymodeltheecologicalprocess,ratherthansomepoorlydefinedindex,whilealsomodelingtheobservationprocess.Moreover,thesemodelsallowpractitionerstosolve problemsinsuchawaythattheresultscanbeclearlycommunicatedtomanagersandpolicymakers. Butwhydidittakesolongforthesemethods,thefoundationsofwhichweredevelopedalongtime ago,tomaketheirwayintothehandsofpractitioners?Inmyopinion,thepowerofhierarchicalmodels wouldneverhavebeenrealizedhaditnotbeenforresearcherslikeMarcandAndy,whohavedeliberatelyworkedtomakethesetoolsaccessibletothoseofuslackingadvanceddegreesinstatistics.This bookisaphenomenalsynthesisofthateffort.Unlikemanybooksonstatisticalmodelingthatseemto havebeenwrittenbystatisticiansforstatisticians,themainaudienceofthisvolumeisclearlythepracticingecologist.Thewritingstyleisclearandengaging,andforvirtuallyeverytechnicalproblem, workedexamplesandcodeareprovided.Thisaccomplishment,ofdistillingadvancedmodelingtechniquesintoanaccessibleformat,isinmyviewoneofthetwogreatcontributionsofthisworktoecologyandrelatedenvironmentalsciences.
Thesecondgreatcontributionofthisworkliesoutsidethecontextofappliedresearch.Thehierarchicalmodelingapproachthathasbeendevelopedandillustratedhereispartofanemergingtrend, onethatisfarmoregeneralandinsomewaysfarmoreconsequentialforecologyasascience.The methodscoveredinthisbookprovideaframeworkforadvancingknowledgeofecologicalsystems bynarrowingthechasmbetweentheoreticalandstatisticalmodels.Ithasalwaysstruckmeastroublingthatthemathematicalmodelscoveredinecologytextbooksoftenfallbythewaysidewhen wegetourhandsondata.Assoonasthedataarefacingusonthecomputer,theinstinctarisesto turntowardthelatestdevelopmentinstatisticsandleavetheorybehind.Forexample,wehave >100yearsoftheoryonthefactorslimitingspeciesdistributions factorssuchascompetition,Allee effects,andphysiologicalconstraints yetwecramdata,oftencollectedforotherpurposes,intospeciesdistributionmodelsthatignoredemographicprocessesandbioticinteractions,nottomentionthe observationprocessesthatwillcauseseverebiasifignored.Or,weoftenhavedatafrommetapopulationsthatwerunthroughamachinelearningalgorithmortowhichwefitsomesortofGAMwithloads ofrandomeffects.Thetoolsdescribedinthisbookprovideanalternative.Theyofferaframework thatallowsonetofitmetapopulationmodelstometapopulationdata,toestimatethestrengthofbiotic interactions,andtotestforeffectsofabioticcovariatesonabundance,occurrence,orpopulation growthrates.Thisisthepowerofhierarchicalmodeling:thatwecantailorourstatisticalmodelsto thescientificquestionathandandnottheotherwayaround.
Thisisnottosaythatthisbookisfulloftheory.Rather,itprovidesthetoolsnecessarytobuild hierarchicalmodelsbasedontheoryinsteadofrelyingonpurelyphenomenologicalapproaches. Whyisthissoimportantatthispointintime,whenfocusisincreasinglyshiftingtoprediction? Whydon’twejusthireateamofNetflixdataminerstoforecastthefutureofecologicalsystems? Inmyview,predictionwithoutmechanismfallswelloutsidetherealmofscience.Forinstance,we knowthatwecandevelopgoodpredictivemodelsbysimplymodelingspatialandtemporalautocorrelation.Abundanceatonelocationcanoftenbeaccuratelypredictedasafunctionofabundanceatan adjacentlocation,justasvotinghabitsinonecountycanbepredictedfromthebehaviorofneighboring counties,andjustastheweathertodayoftentellsussomethingabouttheweathertomorrow.Butwhat islearnedabouttheunderlyingprocessesfromfittingmodelslackingmechanism?Verylittle,inmy estimation,whichiswhyI’mhappytohavethisnewbookthatpresentssuchapowerfulalternative.
Asgreatasthehierarchicalmodelingframeworkis,Ithinkitisimportanttoemphasizethatitisnot meanttobeanalternativetoclassicalmethodsofexperimentaldesignandanalysis.Infact,Iwould suggestthatitisonlyviamanipulativeexperimentsthatcanweachievetheultimategoalofcausal inference.Theproblemswefaceinecology,however,arethatweoftencannotbringoursystem intothelab,andwecan’talwaysmanipulateonecomponentwhileholdingtheothersconstant.To complicatemattersfurther,processesthatholdatonepointinspaceandtimemayoperatedifferently atanother.Wearethereforeforcedtocombineexperimentalapproacheswithobservationalonesifwe wishtoadvanceknowledgeandinformconservationefforts.Onceagain,themethodspresentedinthis bookprovideaformalwayofbuildingmechanismsintoourmodelssothatwecanunifytheinsights gainedfromexperimentalstudieswiththeinformationcontainedinfielddata.Itisthisunified approachthatIthinkoffersthegreatestpromiseforadvancingourfield,anditisexcitingtobeworking inatimewhenwefinallyhavethetoolsavailableforthetask.SoitiswithgreatpleasurethatIcongratulateMarcandAndyonafantasticbook,onethat,aslargeasitis,isjustthebeginning.I’llbelooking forwardtothenextvolumeandalltheexcellentworkthatissuretobenefitfromit.
RichardChandler UniversityofGeorgia
Preface
Thisisvolume1ofournewbookontheappliedhierarchicalmodelingofthethreecentralquantitiesin ecology abundance,ordensity,occurrence,andspeciesrichness aswellasofparametersgoverning theirchangeovertime,especiallysurvivalandrecruitment.Hierarchicalmodelingisagrowthindustryin ecology.Inthelast10yearstherehavebeenadozenormorebooksfocusedonhierarchicalmodelingin ecologyincludingBanerjeeetal.(2004),ClarkandGelfand(2006),Clark(2007),GelmanandHill (2007),McCarthy(2007),RoyleandDorazio(2008),Kingetal.(2009),LinkandBarker(2010),Ke ´ ry andSchaub(2012),HobbsandHooten(2015),etc.Howcanwepossiblyadd700þ morepages(and perhaps1500ifyoucountvolume2)towhatisknownonthistopic?That’sagoodquestion!
Inthisbookwecoverseveralclassesofmodelsthathavepreviouslyreceivedonlycursoryorno treatmentatallinthehierarchicalmodelingliterature,andyettheyareextremelyimportantinecology (e.g.,distancesampling).Moreover,wegivecompleterecipesforanalyzingthesemodelsandall otherscoveredinthebook,usingprogramRingeneralandtheRpackage unmarked inparticular,and veryextensivelyusingthegenericBayesianmodelingsoftwareBUGS.Theuseof unmarked is completelynovelcomparedtotheseotherbooks.Somemodelsthatwecoverhereandespeciallyin volume2weresimplyunimaginableacoupleyearsago,e.g.,theopenhierarchicaldistancesampling models,themetacommunityabundancemodelsandmodelswithexplicitpopulationdynamics(i.e., thefamousmodelofDailandMadsen,2011),whichcanbefittocountsandrelateddata,including evendistancesamplingdata.Muchofthismaterialisextremelynew,andsomehasonlyjustappeared intheliteratureinthelastyearorso.Thus,thisbookrepresentsatimelysynthesisandextensionofthe stateofhierarchicalmodelinginecologythatbuildsonpreviousefforts,butcoversmuchnewand importantterritory,andprovidesimplementationsusingboththelikelihood(unmarked)andBayesian (BUGS)frameworks.
ABOOKOFMONOGRAPHS
Inasense, AppliedHierarchicalModelingforEcologists (AHM)isabookofbooks,ora bookof monographs.Volume1containsthefirsttwoparts,aprelude,whichintroducesthenecessaryconcepts andtechniquesinfivechapters,followedbysixchaptersthatdealwithstaticdemographicmodelsof distribution,abundance,andspeciesrichnessandotherdescriptorsofcommunitiesandmetacommunities.Volume2willcontaintwofurtherpartsondynamicmodelsandonadvanced demographicmodelsforpopulationsandcommunities;seebelowformoreinformationonthedivision oftopicsbetweenvolumes1and2of AHM andonthecontentthatweenvisionforvolume2.
Lookingbackatvolume1now,atthetimeofwritingofthispreface,wefeelasifwehave packagedalmostadozenindependentbooksintothisonebook.Therearegeneral,introductory “monographs”ontheconceptsofdistribution,abundance,andspeciesrichnessandtheirmeasurement andmodelinginpractice(Chapter1),onhierarchicalmodelsandtheiranalysis(Chapter2),onlinear, generalizedlinear,andmixedmodels(Chapter3),ondatasimulationinR(Chapter4),andonthe celebratedBUGSlanguageandsoftware(Chapter5).Afterthat,therearesixcomprehensive monographsondemographicmodelsfordistribution,abundance,andspeciesrichnessinthecontextof whatwecalla“meta-populationdesign,”thatis,theextremelycommonsituationwhereyoumeasure somethinginapopulationoracommunityatmorethanasinglepointinspace.
Intheprelude,andfollowingtheintroductoryChapter1,wehaveonemonographtocoverhierarchicalmodels(HMs)andtheirBayesianand frequentistanalyses(Chapter2).Thenext xiii
monograph(Chapter3)providesahighlyaccessiblereviewofthat“heart”ofappliedstatistics: linearmodels,generalizedlinearmodels(GLMs),andsimplemixedmodels,allofthemillustrated inthecontextofoneextremelysimpleecological dataset.Datasimulationisoneofthedefining featuresofthisbookbecauseitprovidessuchimmensebenefitsfortheworkofecologists(andalso forstatisticians).Hence,thenex tmonograph(Chapter4)isdedicatedtothisessentialtopicand walksyouthroughtheRcodenecessaryforthegenerationofonesimpletypeofdatasetthatis fundamentaltotheclassesofmodelscoveredinthisbook:thecasewhereonegoesoutandcounts birds(oranyotherspecies)atmultipleplaces(e.g.,20,100,or267)andrepeatsthesecountsateach sitemultipletimes(e.g.,2or3).
TheBUGSmodeldefinitionlanguageisimplementedinthreecurrentlyusedBUGSenginesfor Bayesianinference:WinBUGS(Lunnetal.,2000),OpenBUGS(Thomasetal.,2006),andJAGS (Plummer,2003).IthasalsojustbeenadoptedintheexcitingnewRpackageNIMBLE(NIMBLE DevelopmentTeam,2015;deValpineetal.,inreview),whichisageneralmodelfittingsoftwarethat usesandextendstheBUGSlanguageforflexiblespecificationofHMsandallowsanalysisofHMs withbothmaximumlikelihoodandBayesianposteriorinference.
Overthefirst25yearsofitsexistence,BUGShasbeeninstrumentalinthesurgeofBayesian statisticsinallkindsofsciencesincludingecology(Lunnetal.,2009).Ithasgrownbyfarintothemost importantgeneral,Bayesianmodelinglanguage,anditsuserpopulationkeepsgrowingatarapidrate (andofcoursewehopetoincreasethatrateevenmorewiththisbook).BUGSisuniqueingivingyou asanonstatisticianamodelingfreedomthatletsyoudevelop,test,andfitmodelsthatyouwouldn’t evenhavedaredtodreamofinthepre-BUGSeraofecologicalmodeling(whichwemightcallthe ecologicalStoneAge;.).AlthoughtherearenowmanyusefulintroductorybooksonBUGS(e.g., McCarthy,2007;Ke ´ ry,2010;Lunnetal.,2013;Korner-Nievergeltetal.,2015),wehavedecidedto writeyetanotherpracticalBUGSintroductionandpackageitintoChapter5.Itisourlatestandbest attemptatcoveringasmuchaspossibleonthistopicandincludingsomeofthelatesttricksinBUGS modelinginamere70bookpages,illustratingtheuseofallthreeBUGSenginesandfocusingonthe modelscoveredinChapter3,i.e.,linearmodels,GLMs,andsimplemixedmodels.Byintroducing BUGSforexactlythekindsofmodelsthatyouarelikelytobefamiliarwithalready,wehopetomake itespeciallyeasyforyoutograsptheBayesiansideoftheanalysisandtheimplementationofthese essentialmodelsintheBUGSlanguage.
Inthesecondpartofthebook,wepresentsixmonographsthatcontainacomprehensivetreatment ofimportantclassesofmodelsforinferenceaboutdistribution,abundance,andspeciesrichness,and relateddemographicpopulationorcommunitymetricsinso-called“meta-populationdesigns”(Royle, 2004a;Ke ´ ryandRoyle,2010),i.e.,forthefrequentcasewhereyouareinterestedinthesethingsnotat asingleplacebuthavestudiedthematmultiplesites.Specifically,inChapter6wecoverbinomial mixture,or N-mixture,models(Royle,2004b),whichareauniquetypeofmodelforcountdataon unmarkedindividuals(thatis,youdonotneedtokeeptrackofwhichindividualiswhichacrossthe repeatedmeasurementsofabundanceatasite)andthatcontainsanexplicitmeasurementerrormodel, whichcorrectsyourinferencesforthebiasesthatwouldotherwisebecausedbyundercountingdueto imperfectdetectionprobability.Chapter7coversa“sister-type”ofmodel,themultinomialmixture model(Royle,2004a;Dorazioetal.,2005),whichonlydiffersfrombinomialmixturemodelsinthe typeofdatatowhichitisfitted:typicallyyouneedindividualrecognition,thatis,youhavecapturerecapture-typeofdata,butagaincollectednotatasinglesitebutatmultipleplaces.Bothtypesof mixturemodelshavebeenaroundforabout10yearsnowandpreviouslytheyhavebeenfeaturedin
someoftheabove-citedhierarchicalmodelingbooks(mostlyinRoyleandDorazio,2008),butnever beforehavetheybeencoveredinsuchdetailand,especially,inamannerthatmakesthemsoaccessible toyouasanecologist.
Chapters8and9arespecialinthattheyprovideperhapsthefirstlarge,andyetpracticaland applied,synthesisindistancesamplingmorethan10yearsafterthetwoclassicsbyBucklandetal. (2001,2004a)werepublished.Inourtwodistancesamplingmonographs,weprovideafresh,newlook atdistancesamplinginthecontextofhierarchicalmodelsinanessentiallybook-lengthtreatment.We hopethatthiswillhelptomakethisimportanttypeofmodelevenmorewidelyunderstoodandusedby ecologists.Whilewecovermainlystaticmodelsinvolume1andthencoverdynamicmodelsinmore detailinvolume2of AHM,wehavedeviatedslightlyfromthisruleinChapters8and9,wherewehave preferredtopicalunityoverconceptualunitybykeepingallofdistancesampling(closedandopen) together.Nevertheless,weplantocoverseveralmorecutting-edgeopenandothernovelextensionsof hierarchicaldistancesampling(HDS)modelsinvolume2.
Thesetwomonographs,andmorespecificallythewealthofmaterialonhierarchicaldistance sampling,areperhapsthosewithmostnoveltyinourbook.Thoughagaininventedjustover10years ago(around2004),HDShasrecentlyexperiencedaboostwiththewidespreadrealizationthatthistype ofspecificationofdistancesamplingmodelsenablesextremelyflexiblemodelingofspatiallyor temporallyreplicateddistancesamplingdataorcombinedanalysesofdatasetscollectedunder differingprotocols(“integratedmodels”),whichwasthoughtimpossiblebeforeoratleastwasnever achieved.Forinstance,itisperfectlydoable(oreventrivial)tomodelpopulationdynamics(Sollmann etal.,2015)orcommunitysizeandcomposition(Sollmannetal.,inpress)fromdistancesampling datawithinthecontextofhierarchicalmodels.And,thepowerofBUGSnowadaysmakesthe implementationofsuchmodelspossibleevenforecologists,sincereallysuchmodelsdifferinonly relativelyminorwaysfromsimilarmodelsforotherdatatypes(e.g.,ofthecapture-recapturetype).
Hence,wehopethatwecontributetochangeyourviewof“capture-recapture”and“distance sampling”asbeingtwowidelyseparatedfieldstoanewwayofseeingthemasreallyrelativelyminor variationsontheoverarchingthemeofhierarchicalmodels,whichhaveonemodelcomponentfor abundance,ordensity,andinanothermodelcomponentdescribethemeasurementerrorthatinduces imperfectdetectionandthereforeundercounting(Borchersetal.,2015).Theonlythingthatchanges whenyoumovefromacapture-recapturetoadistancesamplingmodelisthespecificparameterization ofthemeasurementerrorunderlyingtheobserveddataandofcoursethetypeofdatathatyouneedto estimatetheparametersofthatmeasurementerrormodel.Thiswonderful,unifyingpowerof describingstatisticalmodelsinahierarchicalwayletsyoumuchbettergraspthesimilaritiesamong largenumbersofmodelsthatwereoftenthoughtastotallydistincthitherto.Itisoneofthemain themesofthisbookandoneonwhichwewillsaymuchmorethroughoutthebook.Forinstance,we hopethatyouwillrecognizethattherearereallyonlyquiteminordifferencesbetweenabinomial mixturemodelforcountsofunmarkedindividuals,amultinomialmixturemodelforcapture-recapture data,andahierarchicaldistancesamplingmodel theonlydifferenceisagainthemeasurementerror model,whilethestatemodel,thatis,thedescriptionoftheessentialbiologicalquantity(abundanceor density),isexactlythesameinallthreetypesofmodels.
Thepenultimatemonograph(Chapter10)isonoccupancymodeling(MacKenzieetal.,2002;Tyre etal.,2003).Thispowerfultypeofmodelforoccurrenceordistributioncomeswithanexplicit measurementerrorcomponentmodelforbothfalse-negativesandfalse-positives(modelsbyRoyle andLink,2006;Aingetal.,2011;Milleretal.,2011,2013b;Sutherlandetal.,2013;Chambertetal.,
2015)orwithameasurementerrormodelforfalsenegativesonly(allothertypesofoccupancy models).Occupancymodelshavebecomehugeinecologyandhaveexperiencedasteepgrowthcurve inboththenumberofpapersthatfurtherdevelopthetheoryofthesemodelsandespeciallyalsoin studiesthatapplythisdesignandtheassociatedmodels.(Wehaveevenheardrumorsthatthevigorous growthofthefieldhas“scared”someecologyjournaleditorssothattheyputacaponthenumberof occupancypaperstheyaccept astrangewayofstiflingprogressonewouldthink.)Occupancy modelshavereceivedonebook-lengthtreatisesofar(MacKenzieetal.,2006),withasecondedition thatisinpreparation,andseveralcustomizedsoftwareproductsthatspecializeinthem,especially PRESENCE(Hines,2006)andMARK(WhiteandBurnham,1999;CoochandWhite,2014).Inthis first AHM volume,wedealwithsingle-speciesoccupancymodelsingreatdetailandcoversometopics (e.g.,somemodelsfordatacollectedalongspaceortime“transects”)thathaven’tbeencoveredinany bookbefore.Involume2,wewilladdseveralmoremonographsonalargevarietyofoccupancymodel types;seebelow.
Thefinalmonographinvolume1coverscommunitymodels,thatis,communityormultispecies variantsofallthepreviousmodels.Specifically,wecoverthecommunityvariantofanoccupancy model(Chapter10)andthecommunityvariantofabinomial N-mixturemodel(Chapter6).These powerfulhierarchicalmodelsenableinferencesatmultiplescales,thatoftheindividualspecies,thatof alocalcommunity,andthatofanentiremetacommunity.Asalwaysinthisbook,bothcomewithan explicitmeasurementerrormodelforthedesiredstateofinference,presence/absence,orabundanceof eachindividualspeciesateverysiteinthe“meta-population.”Thesemodelshaveexperiencedmuch increasedattentionintheveryrecentpast(Iknayanetal.,2014;Yamauraetal.,2012,inpress),andwe provideamuchneeded,comprehensiveandyetsupremelypracticalmonographonboththeabundance andontheoccupancy-basedcommunitymodels.
Ofcourse,apartfromservingasastandaloneintroductiontothislargerangeofpowerfulanduseful hierarchicalmodels,thematerialinvolume1alsolaysthegroundworkformoremodelsandmore advancedmaterialinvolume2.Seebelowformoreaboutthedivisionofcontentbetweenthetwo volumes.
UNIFYINGTHEMES
AHM isnotjustahodgepodgeofmodelsthathavenotpreviouslybeencoveredindetailoratall. Rather,ourdevelopmentandorganizationofthesemodelshasanumberofunifyingthemesthatwe emphasizethroughoutthebook:
•hierarchicalmodeling
•datasimulation
•measurementerrormodels
•dualinferenceparadigmapproach(Bayesianismandfrequentism)
•accessibleandgentlestyle(includinghierarchicallikelihoodconstructionanddatasimulation)
•“cookbookrecipes”
•predictions
One,weadvocate hierarchicalmodeling asaunifyingconceptandoverarchingprinciplein modelingandalsoconceptually;aswehaveemphasizedbefore,whenseenasHMsallthesemodels almostlookthesame(orverysimilar)anditisquitetrivialtomovefromonetoanother,e.g.,froma capture-recapturemodeltoadistancesamplingmodeltoanoccupancymodeloreventoacommunity
ormetacommunitymodel.Wededicateanentirechaptertointroduceandexplainthecrucialconcept ofHMs,whichpermeateseverysectionofthisbook.
Two,weuse datasimulation throughoutthebook,becausethisissotremendouslyimportantin practice,forstatisticians,butmuchmoresostillforecologists.Thisisdoneinhardlyanyotherbook weknowof,exceptfortwoofourearlierbooks(Ke ´ ry,2010;Ke ´ ryandSchaub,2012).Thoughquite frequentlydonebystatisticiansandalsobyecologistsinmanydifferentmodes,webelievethatdata simulationshouldbedone much morewidelystill.Wededicateanentirechaptertodatasimulation (Chapter4)andthereinexplainthemajoradvantagesforyouwhenyoustartdoingthisroutinelyfor yourwork.Amongthem,perhapsthetwomostimportantbenefitsofdatasimulationare,first,thatit enforcesonyouacompleteunderstandingofyourmodel.Ifyoudon’tunderstandyourmodel,youwill notbeabletowriteRcodetosimulatedataunderthatmodel it’sassimpleasthat.Wewouldevengo asfarassayingthatadatasimulationalgorithmprovidesacompletedescriptionofastatisticalmodel. Indeed,throughoutthebookweusedatasimulationinRinacompletelynovelfashion toexplaina statisticalmodel!
Thesecondmajorbenefitofdatasimulationisthatitservesanimportantroletovalidatebothyour MCMCalgorithm(whetherwrittenbyyourselforproducedbyanMCMCblackboxsuchasBUGS) andtovalidateyourmodelcode.FormostmodelclassesinthebookweprovideRfunctionsto simulatedataundervarioustypesofmodels.Wehopethatthesewillbewidelyusedinthemany differentmodesofdatasimulation(asperChapter4).orperhapssometimessimplytomarvelatthe prettyandhighlyvariablegraphicaloutputtheyproduce.
Three,onedefiningfeatureofallmainclassesofmodelsinourbookisthepresenceofasubmodel thatcontainsanexplicitdescriptionofthe measurementerror processunderlyingalldataonthe distributionandabundanceofindividualspeciesandevenmoreperhapswhenyoustudytheminentire communitiesormetacommunities.Unlikethetypesofmeasurementerrorforcontinuousvariables (suchasbodylength)towhichyoumayhavebeenexposed,themeasurementerrorfordiscrete measurements(e.g.,countsandpresence/absencemeasurements)isofaradicallydifferentnatureand comesinexactlytwotypes:false-positiveandfalse-negativemeasurementerror,withthecomplement ofthelattertypicallybeingcalleddetectionorencounterprobability,ordetectabilityforshort.These areverydifferenttypesofmeasurementerror,whichyoucannotexpecttocanceloutinthemeanover severalmeasurements.Hence,unlessyouaccountfortheminyourmodelsfordistribution,abundance, andspeciesrichness,badlybiasedinferencesmayresult.Our AHM bookisan“estimationistbook”in linewitharapidlyincreasingnumberofpreviousworksthatemphasizethemeasurementerrorprocessesinecologicalmodelsfordistributionandabundanceinecology,suchasOtisetal.(1978),Seber (1982),Bucklandetal.(2001),Borchersetal.(2002),Williamsetal.(2002),Bucklandetal.(2004a), Amstrupetal.(2005),MacKenzieetal.(2006),RoyleandDorazio(2008),Kingetal.(2009),Ke ´ ry andSchaub(2012),McCreaandMorgan(2014),andRoyleetal.(2014).
Four,weareneitherpurebredBayesiansnorhardcorefrequentists,rather,wearebigfansofa dual inferenceparadigmapproach,i.e.,theuseofBayesianism and frequentismalongside,asitseems especiallyusefulfortheparticularcase.Whileperhapsbothofushaveaslightpersonalslanttoward Bayesianism,thereareadvantagesanddisadvantagesofbothBayesianismandfrequentism,andthese maycomeintoplaymoreorlessforanygivendatasetorscientificquestion(Little,2006;deValpine, 2009,2011).Inaddition,thechoiceofwhetheraBayesianorafrequentistanalysisismostappropriate willalsobeaffectedbytheavailabilityofawell-trainedanalystand/orafastcomputer,withBayesian solutionsoftenrequiringmorestatisticalandprogrammingexperienceandfastercomputers.Thus,we
arefirmbelieversinthevalueofadualinferenceparadigmapproach,andthisisapervasivethemeof ourbookaswell.Thedualinferenceparadigmapproachappearsinallbutonechaptersofthisbook. Thisapproachhasbeendonealittlebitinsomepreviousbooks(especiallyinRoyleandDorazio, 2008)butnevertoourknowledgeinsuchacompletelyintegratedwayasinthisbook.Everytopical chapterinPart2coversaclassofmodelsusingbothinferenceparadigmsandemphasizesthingsthat areeasierorhardertodoonewayortheother(theexceptionbeingChapter11,whereitisveryhardto doanon-Bayesiananalysisoftheseparameter-richmodels).
Five,wehavestriventomakethisbook gentleandaccessibleinstyleandeasytoread.This meansthatwedoofcoursepresentformulaeande quations,butperhapsfewerthaninmanyother comparablestatisticsbooks.Manyecologistscannotreadevenmoderatelycomplexlikelihood expressions.Thisisperhapsnotagoodstateofaffairs,butitisasimplefactoflifethatisunlikelyto changeanytimesoon.Webelievethatthehierarchi calconstructionofthelikelihood,asaseriesof conditionalprobabilitystatementsasineverytopicalchapterinthisbook(andaswenaturallydo whenspecifyingthesemodelsintheBUGSlanguage),isperhapsthe only wayinwhichafairlylarge proportionofecologistshaveanychanceofbeingabletoreadandunderstandthelikelihoodofa somewhatcomplexmodel.Inadditiontoalgebra, weuseespeciallydatasimulation(andhenceR code)todescribeourmodelsthroughoutthebook.WefindthatRcodefordatasimulationisan extremelyclearandtransparent wayofimplicitlydescribingthelik elihoodofamodel.Thisseemsto beacompletelynovelideathathasneverbeenexpressedexplicitlybefore.
Six,weillustrateanalysesofeachclassofmodelsusingacompletesetofstepsthatyouwoulduse inyourwork(“cookbookrecipes”).Thisincludesnotjustfittingthemodelsbutproducingsummary analysessuchasresponsecurvesandprediction,andespeciallyillustratingmapsofabundanceand occurrence,andalsoassessingthegoodness-of-fitofmodels.Webelievethatprovidingcookbook recipesisfrowneduponbymanystatisticiansbecausethereisafeelingthatthisencouragespeopleto dothingsthattheydon’tunderstand.Weareconvincedthatthissentimentismostlyunfounded.First, andmostimportantly,foranybutanextremelytrivialanalysis,thepractitionerwillstillhavetounderstandthemodelandtheanalysisinordertonotmakeanyofamyriadoftrivialerrorsthatwillmake theBUGSprogramcrash.Second,withoutatleastsomeunderstanding,hewillprobablynotbeableto describetheresultsinanintelligiblewayintheresultssectionofhispaperortoexplainthemtoher supervisor,advisor,orcolleague.Ontheotherhand,evensomeofthemostbasicofstatisticalanalyses,namelylinearmodelswithfactorlevels,areextremelywidelymisunderstood,i.e.,peopledon’t understandwhattheinterceptmeansandwhatthetreatmentcontrastparametersare.Hence,some abuseistobeexpectedwith any kindofstatisticalmodelforwhicheasy-to-usecodeismadewidely available.Inaddition,incomplexmodelsinthisandsimilarbooks,sometimesevenverybasicsteps suchasformattingthedataintoathree-orfour-dimensionalarraycanbeacompletestumblingblock toanRnovice,eventhoughhemayhaveadecentconceptualgraspofamodel.Inthiscase,the availabilityofcookbookanalysiscodeisessential.Finally,itistheexperienceofatleastoneofthe authorsthatonlyfittingamodelandlookingattheestimatesmaysometimesreallyletoneunderstand whattheseparametersmean.Ofcourse,thislattereffectmaybemagnifiedstillwhenyoufitthemodel tosimulateddata,whereyouknowwhatyouinputintoyourdatasetandthereforewhatballpark estimatesyoucanexpect.Insummary,webelievethatitisnoteviltohandoutcookbookrecipesbut ratherthatthey ought tobegivenmuchmorewidely,andwedoexactlythisthroughoutourbook.
Seven,andfinally,oneoftheexamplesofusgivingamplecoderecipesisfor prediction,i.e.,for thecomputationoftheexpectedvalueofsomequan tity(e.g.,theresponseorsomeparameter)fora
rangeofvaluesforoneormorecovariates.Formingsuchpredictionsisextremelyimportantforyou intwoways:toevenunderstandwhatthemodelistellingyouabouttheformofsomecovariate relationshipwhenyouhavelog,logistic,orsimilar linkfunctions,polynomialterms,orinteractions; andsecondtopresenttheresultsofyouranalysis,e.g.,inafigureinyourpaper.Weemphasize predictionthroughoutthebook,especiallypredictionsingeographicspace,leadingtomapsof speciesabundanceandoccurrence(theassociatedmodelsarethencalled“speciesdistribution models”);thisisaveryhottopicnowadays.Theformingofpredictions,andhowtoputthese predictionsonamap,isthefocusofeverysinglemonographinthesecondpartofthebookandalso appearsextensivelyinthepreludechapters.
Althoughthisbookisespeciallygearedtoward ecologists,itpresentsthecuttingedgeofthe currentstateandunderstandingofallofthemodelspresented.Atseveralplaces,wewerenotshyto layopenourpartiallackofunderstandingabouts ometopics,inthehopetoemphasizetheneedfor furtherresearch;thisincludesgoodness-of-fitinthesemodels(andprobablyinmanyotherclassesof hierarchicalmodelsingeneral),thegoodfitversusbadpredictiondilemmawithsomenegative binomial N-mixturemodelsinChapter6,ortheuseofspatialinsteadoftemporalreplicationfor obtaininginformationaboutmeasurementerrorin occupancymodelsinChapter10.Clearly,ouraim inwritingthisbookisnottoshowoffhowmuchweknowbuttohelpyoutolearnthesemodelsto understandandapplythem.Thisi ncludesarecognitionofwheretheirlimitsorthegenerallimitsof ourunderstandingaboutthemareandwhereyoucouldthereforemakeacontributiontotheprogress inthisfield.
THE unmarked PACKAGE
Somebodyoncesaidthathe(orshe)didnottrustanyRpackageunlessithasabookwrittenaboutit. SonowyoucanfinallytrusttheRpackage unmarked (FiskeandChandler,2011)becausethisisalsoa bookabout unmarked.The unmarked packageisfullygeneral,andaspartoftheRprogramming environment,itallowsyoutoembedyouranalysesseamlesslyintoyourRprogramming.Thisisa greathelpwhenrunningsimulations,fordataprocessingandformatting,runninganalysesinbatch mode(e.g.,loopingovermanyspecies,years,sites),documentingyourdataprocessingandanalysis steps,andwhenanalyzingresultstoproduceplots,summaryanalyses,fitassessments,andmodel selection.
The unmarked packagepermitsyoutofitalargevarietyofclosedandopenhierarchicalmodelsand, tothebestofourknowledge,itistheonlypackageforlikelihoodestimationof(almost)allclassesof modelswecoverinthisbook,althoughPRESENCE(Hines,2006),MARK(WhiteandBurnham, 1999;CoochandWhite,2014),andE-SURGE(Choquetetal.,2009b;Gimenezetal.,2014)fitoccupancymodels,andtheformertwoalsoRoyle-Nicholsandbinomial N-mixturemodels.Oneofthe benefitsofusing unmarked foranalyzingthesevarioushierarchicalmodelsisthatitstreamlinesand standardizestheworkflowacrossmodels.Ananalysisofanyclassofhierarchicalmodelin unmarked hasafewbasicsteps,whichinclude:(1)processingandpackagingthedataintoan“unmarked frame” usingstandardconstructorfunctionsthatensuredataareintheproperformat;(2)utilizationofa standardmodelfittingfunctionthatproducesparameterestimates,standarderrors,AIC,andother summarystatistics;(3)summaryanalysesthatincludeproducingmodelselectiontables,goodness-offitanalyses(e.g.,usingparametricbootstrapping),andplottingpredictionsorfittedvalues.Eachof thesesummaryanalysesissupportedbystandardfunctionsthatarepartofthe unmarked package.
The unmarked packageissupportedbyanactiveandmostofthetimeveryfriendlye-mailuser group(groups.google.com/forum/#!forum/unmarked),whichyoucansubscribetoforfollowing developmentsandbugreports,orforrequestingassistance.Finally, unmarked isanopensource softwaredevelopmentproject.Thesourcecodeisreadilyavailableandcanbeeasilymodifiedand extendedbyanyone.Weencourageyoutoparticipateinthe unmarked community.
COMPUTING1
Inasensethisisabookaboutecologicalcomputing.Whileweemphasizetheformulationandanalysis ofmodels,avastmajorityoftheefforttodosorequiresprogrammingintheRlanguageandrunning variousfunctionsin unmarked andinWinBUGSorJAGS.ForBayesiananalysisweadoptthe implementationsoftheBUGSlanguageusingWinBUGSandJAGS(andcouldequallywellhaveused OpenBUGSorNIMBLE).TheseareusedalmostequivalentlywiththehelpoftheRpackages R2WinBUGS and jagsUI,andthereareonlyaverysmallnumberofminordifferencesbetweentheJAGS andWinBUGSimplementationsoftheBUGSlanguage(seetheJAGSmanual,availableonthe Internet,andLunnetal.,2013).
Interestingly,theuseofBUGSisoftenfrowneduponbystatisticiansassomekindofinferior approachtothings,ascomparedtowritingyourownMCMCalgorithm,andrelianceonBUGSis readilycriticizedinreviewsofpapersandconferencepresentations(especiallythosethatarewidely attendedbystatisticians).Theacademicstatistician’sviewisoftenthatyoushouldbewritingyour ownMCMCbecausethenyouunderstandwhat’sgoingonunderthehood.Wedisagreewiththisview. Now,andwethinkeven20yearsintothefuture,thevastmajorityofecologistswillnotbeableto writetheirownMCMCnorevenwillmostecologistswanttodothat.Indeed,manystatisticianscan’t dothateither.Ontheotherhand,BUGSmakesaccessibletoecologiststheextremelyconvenientand usefultechniqueofMCMCandconsequentlytheabilitytodescribemodelsandanalyzethemwithout havingtohaveaPhDstatisticianhelpingthemout.Wethereforestronglyadvocatefortheuseofthe BUGSlanguageinwhateverimplementationisconvenient(WinBUGS,JAGS,OpenBUGS, NIMBLE,orsomefutureimplementation).Tobesure,customMCMCalgorithmsmaybe much more efficientforanyparticularmodelorapplication.However,thetimetoproducecustomalgorithms reallyrendersthatapproachimpracticalformostsituationsandformostpeople.Moreover,perhaps thegreatestthingabouttheBUGSprogramsistheBUGSmodeldefinitionlanguage.Thishasproved tobesupremelyeasytounderstandforstatisticiansandnonstatisticiansalikeintheirattemptsto formulate,withconfidence,evenverycomplexstatisticalandsimulationmodels.Therefore,wefeel thattheBUGS language isheretostay.Theremaybesomeinefficiencytothecurrentimplementations,butwho’stosaythatamoreefficientimplementationwon’tbeinventedinthefuture? And,ofcoursecomputingpowerisalwaysimprovingandwillcontinuetodoso.Inparticular, computerswillcertainlyhavemanymorecores,andthereforemulticoreprocessingwillimprovethe runtimeofmanymodels.
AstothediffusefearsofsomewhenusingacomputationalMCMCblackboxsuchasBUGS, wehavearguedbeforethatdatasimulationhasanimportantroletoplayinmodernecological modeling.Analyzingsimulateddatacangiveyoumuchconfidenceaboutthegoodorbadbehavior ofacomputationalprocedure ofcoursenotforeverysingleparticularcase(butyoucan’thave
1UseofproductnamesdoesnotimplyendorsementbytheUSgovernment.
thisanyway,e.g.,yourlikelihoodmaximizationalgorithmmayalwaysgetstuckatalocal maximumoralongsomeflatridge),butonaverage ,andthatiswhatreallycounts.Forinstance, overtheyearswehaveusedBUGStofitmodelstolite rallymanythousandsofsimulateddatasets forthetypesofmodelspresentedinthisbook.Andwehaveonlyexceedinglyrarelyexperienced caseswherethealgorithmconvergedtoaplacein parameterspacethatwasnotclosetoorrightat thecorrectvalue,i.e.,thevalueusedtosimulatethedataset.Thus,wearenotatallmadenervous bytheoccasionalclaimsheardabouthowterriblyd ifficultitistoachievechainconvergenceinan MCMCanalysis.
ORGANIZATION
Whenwestarted AHM wedidnotthinkofitascomprisingtwovolumes.Butthenwerealizedthe wealthofmaterialwehadatourhands,andsonow AHM comesintwovolumes.Asplannednow,there are25chaptersthataregroupedinfourparts,withtwopartspervolume(see Table1).Asalready explained,thesplitofthewhole AHM projectintotwovolumeshasintroductorymaterialincluding basicconceptsofstatisticalmodelingandinferenceanddatasimulation(PartI)andthensingle-and multispeciesmodelsofabundanceandoccurrenceinstaticsystems(PartII)involume1(withthe slightexceptionmentionedfordistancesamplinginChapter9).Volume2ofthebookwillfocuson dynamicandspatialmodelsandother“advanced”topics.
WHOSHOULDREADTHISBOOK?
Thisbookhastwotargetaudiences:first,ecologistsandscientistsandmanagersinrelateddisciplines, wherethedemographicanalysisofpopulations,meta-populations,communities,andmetacommunities isafocusofinterest.Andsecond,statisticians,especiallythosehithertounacquaintedwiththeseclasses ofHMs,whicharehardlyevertaughtinstandardmethodologyclassesorintypicalclassicalapplied statisticstexts.Fortheformergroup,thebookrepresentsapracticalhow-toguideforeachclassof modelsandthusshouldbeaccessibletoanyonewithbasicRprogrammingknowledge.UseoftheBUGS languageisneededalso,butwehopeyoucangathertherequisiteskillsbyreadingtheearlierchaptersof thebook(3–5)orelseyoumayconsultanintroductoryBUGSbooksuchasMcCarthy(2007),Ke ´ ry (2010),Lunnetal.(2013),orKorner-Nievergeltetal.(2015).BecauseRprogrammingisthestandard nowinmanyuniversitycurricula,wethinkthebookshouldbeidealforagraduatelevelclasson quantitativemethods,eitherasacompletesemesterlongcourseorpartofacoursecoveringspecific modelssuchashierarchicalmodelingofabundanceusing N-mixturemodels,onoccupancymodels,and onhierarchicaldistancesampling.
BOOKWEBSITEANDUSERGROUPE-MAILLIST
Foreveryanalysisinthebookweprovidethecompleteinstructionsfororganizingthedata,fitting themodel,andsummarizingther esults.Mostofthecommandsaregivendirectlyinthebook, althoughourcompanionWebsite( http://www.mbr-pwrc.usgs.gov/pubanalysis/keryroylebook/ )also providesthescriptsforreadydownload.Inaddition,youfindother informationthere,notablythe solutiontoexercises,alistoferrataaswefindthem(or,morelikely,youdetectandreportthem tous),etc.
Table1Outlineofvolume1andvolume2oftheBook AppliedHierarchicalModelinginEcology (AHM).
AHM volume1:Preludeandstaticmodels
Preface
Part1:Prelude
01.Distribution,abundance,andspeciesrichnessinecology
02.Whatarehierarchicalmodelsandhowdoweanalyzethem?
03.Linearmodels,generalizedlinearmodels(GLMs),andrandomeffects:thecomponentsofhierarchicalmodels
04.Introductiontodatasimulation
05.TheBayesianmodelingsoftwareBUGSandJAGS
Part2:Modelsforstaticsystems
6.Modelingabundanceusingbinomial N-mixturemodels
7.Modelingabundanceusingmultinomial N-mixturemodels
8.Modelingabundanceusinghierarchicaldistancesampling
9.Advancedhierarchicaldistancesampling
10.Modelingdistributionandoccurrenceusingsite-occupancymodels
11.Communitymodels
AHM volume2:Dynamicandadvancedmodels
Part3:Modelsfordynamicsystems
12.ModelingpopulationdynamicswithPoissongeneralizedlinearmixedmodels(GLMMs)andsomeextensions
13.Modelingpopulationdynamicswithreplicatecountswithinaseason
14.Modelingpopulationdynamicswithdistancesamplingdata
15.Hierarchicalmodelsofsurvival
16.Modelingspeciesdistributionandrangedynamicsusingdynamicoccupancymodels
17.Modelingmetacommunitydynamicsusingdynamiccommunitymodels
Part4:Advancedmodels
18.Multistateoccupancymodels
19.Modelingfalse-positives
20.Modelsforspeciesinteractions
21.SpatialmodelsI
22.SpatialmodelsII
23.Combinationapproaches/Integratedmodels
24.Spatialdistancesamplingandspatialcapture-recapture
25.Conclusions
The AHM book(orindeedourlarger“hierarchicalmodelingenterprise”)hasanassociatede-mail usergroup(http://groups.google.com/forum/?hl¼en#!forum/hmecology),whichyoucansubscribeto forfollowingdevelopmentsandbugreports,orforrequestingassistance.Thereissomeoverlapwith the unmarked e-mailusergroup,butthehierarchicalmodelingusergroupismoregeneraland,in particular,istheonlyonespecificallyforquestionsaboutBUGSsoftwareinecologicalmodeling.We wouldagainencourageyoutobecomeanactivememberofthatcommunity.