Applications of nanovesicular drug delivery amit kumar nayak - The full ebook with all chapters is a

Page 1


https://ebookmass.com/product/applications-of-nanovesicular-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biological Macromolecules: Bioactivity and Biomedical Applications Amit Kumar Nayak

https://ebookmass.com/product/biological-macromolecules-bioactivityand-biomedical-applications-amit-kumar-nayak/

ebookmass.com

Applications of Nanotechnology in Drug Discovery and Delivery Chukwuebuka Egbuna

https://ebookmass.com/product/applications-of-nanotechnology-in-drugdiscovery-and-delivery-chukwuebuka-egbuna/

ebookmass.com

Applications of Polymers in Drug Delivery 2nd Edition Ambikanandan Misra (Editor)

https://ebookmass.com/product/applications-of-polymers-in-drugdelivery-2nd-edition-ambikanandan-misra-editor/

ebookmass.com

The Girl with the Dragonfruit Tattoo (Trouble in Paradise! 3) Carrie Doyle

https://ebookmass.com/product/the-girl-with-the-dragonfruit-tattootrouble-in-paradise-3-carrie-doyle/

ebookmass.com

Lion Brothers: Menage Sci-Fi Romance (Lion Pride Book 2)

Lilly Wilder

https://ebookmass.com/product/lion-brothers-menage-sci-fi-romancelion-pride-book-2-lilly-wilder/

ebookmass.com

The New Institutionalist Economic History of Douglass C. North: A Critical Interpretation 1st Edition Matthijs Krul

https://ebookmass.com/product/the-new-institutionalist-economichistory-of-douglass-c-north-a-critical-interpretation-1st-editionmatthijs-krul/

ebookmass.com

What Lies Adventure Mystery 02 What Lies in the Hills

Steve Kittner

https://ebookmass.com/product/what-lies-adventure-mystery-02-whatlies-in-the-hills-steve-kittner/

ebookmass.com

Test

Your Vocabulary 1 Peter Watcyn-Jones

https://ebookmass.com/product/test-your-vocabulary-1-peter-watcynjones/

ebookmass.com

Invertebrate Histology 1st Edition Elise E.B. Ladouceur (Editor)

https://ebookmass.com/product/invertebrate-histology-1st-editionelise-e-b-ladouceur-editor/

ebookmass.com

The All-Consuming Nation: Chasing the American Dream Since World War II

https://ebookmass.com/product/the-all-consuming-nation-chasing-theamerican-dream-since-world-war-ii-lytle/

ebookmass.com

ApplicationsofNanovesicularDrugDelivery

Applicationsof NanovesicularDrug Delivery

Editedby

AmitKumarNayak DepartmentofPharmaceutics,SeemantaInstituteofPharmaceuticalSciences, Mayurbhanj,Odisha,India

MdSaquibHasnain DepartmentofPharmacy,PalamauInstituteofPharmacy, Daltonganj,Jharkhand,India

TejrajM.Aminabhavi

SchoolofAdvancedSciences,KLETechnologicalUniversity, Hubballi,Karnataka,India

VladimirP.Torchilin CenterforPharmaceuticalBiotechnologyandNanomedicine,NortheasternUniversity, Boston,MA,UnitedStates

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91865-7

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MicaH.Haley

AcquisitionsEditor: AndreG.Wolff

EditorialProjectManager: PatGonzalez

ProductionProjectManager: PunithavathyGovindaradjane

CoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

1.Targetingcellularandmolecular mechanismsofnanovesicularsystems forthetreatmentofdifferentdiseases1

NatassaPippa,HectorKatifelis,MariaGazouli andStergiosPispas

1.1Introduction1

1.2Lipidnanovesicularsystems2

1.2.1Liposomes2

1.2.2Elasticliposomes:ethosomesand transferosomes2

1.2.3Niosomes5

1.2.4Ufasomes5

1.3Polymernanovesicularsystems5

1.3.1Polymersomes/polymervesicles5

1.3.2Nanovesicularsystemsfortargetingto cellularmechanisms7

1.3.3Nanovesicularsystemsfortargeting molecularmechanismsandtheeraof CRISPR/CAS910

1.3.4Nanovesicularsystemsforthe treatmentofdifferentdiseases11

1.4Conclusions13 References14

2.Nanovesiclesfordrugcodelivery21

NafiuAminu

2.1Introduction21

2.2Combinationdrugtherapy22

2.3Generaloverviewofnanovesicles23

2.3.1Liposomes24

2.3.2Niosomes25

2.3.3Exosomes26

2.3.4Spanlastics26

2.4Designandpreparationtechniquesof codeliverynanovesicles26

2.4.1Mechanicaldispersion/filmhydration method26

2.4.2Ultrasonicationmethod26

2.4.3Self-assembling27

2.4.4Solventdispersionmethods27

2.4.5Detergentremovalmethod27

2.4.6Microfluidizationmethod27

2.4.7Handjani Vilamethod28

2.5Nanodrugcodeliverysystems28

2.5.1Nanovesicles-hydrogelsfor codeliveryofdrugs28

2.5.2Nanovesiclesforcodeliveryof anticancerdrugs31

2.5.3Nanovesiclesforcodeliveryof cardiovasculardrugs33

2.5.4Nanovesiclesforcodeliveryof antibacterial/antiinflammatorydrugs33

2.6Conclusion34 References34

3.Theranosticnanovesicles39

ArnabDe,ShilpaDas,SantanuGhosh, BhaskarDas,SonalinandiniSamanta, BolayBhattacharyaandAmaleshSamanta

3.1Introduction39

3.2Imagingstrategies40

3.2.1Opticalimaging41

3.2.2Magneticresonanceimaging41

3.2.3Radionuclide-basedimaging41

3.2.4Computedtomography41

3.2.5Ultrasound42

3.3Differentnanovesiclesusedastheranostic system42

3.3.1Liposomes42

3.3.2Ethosomes44

3.3.3Transferosomes45

3.3.4Niosomes45

3.3.5Polymersomes47

3.4Conclusion48 References48

4.Nanovesiclesforoculardrugdelivery53

SophiaG.AntimisiarisandEvangelosNatsaridis

4.1Introduction53

4.2Physiology,routesofdrugadministration andocularbarriersfordrugpenetration53

4.2.1Physiologyoftheeye53

4.2.2Routesofdrugadministrationto theeyeandcorrespondingocular barriers54

4.3Oculardiseases57

4.3.1Anteriorsegmentdiseases57

4.3.2Posteriorsegmentdiseases58

4.4Nanovesiclesforoculardrugdelivery59

4.4.1Preclinicalstudies61

4.4.2Clinicalstudiesandapproved products74

4.5Conclusionsandfutureperspectives77 Acknowledgmentsandfunding77 References77

5.Nanovesiclesfornasaldrugdelivery81 GouravPaudwal,NagmaBanjareand PremN.Gupta

5.1Introduction81

5.2Intranasaldrugdeliverysystem82

5.3Dosageformsandabsorption enhancers82

5.3.1Nasaldrops82

5.3.2Nasalspray83

5.3.3Nasalgel83

5.3.4Nasalpowders83

5.4Benefitsofintranasaldrugdelivery83

5.5Barriersinnasaldistribution84

5.5.1Poorbioavailability84

5.5.2Biliaryclearance84

5.5.3Enzymedegradation84

5.6Needforintranasaldrugdelivery system85

5.7Anatomyandphysiologyofnasal route85

5.8Mechanismofabsorptionofdrugsvia nasalroute86

5.8.1Intracellularpathway86

5.8.2Transcellulartransport86

5.9Nasaldevices87

5.10Roleofnanotechnologyintranasaldrug delivery87

5.11Nanovesiclesforintranasaldrugdelivery88

5.11.1Lipidbasednanovesicles88

5.11.2Nonionicsurfactantbased nanovesicles91

5.11.3Biologicallyderivednanovesicles92

5.12Applicationsofnanovesicularintranasal deliverysystem92

5.12.1Viralinfection92

5.12.2Osteoclasticboneresorption93

5.12.3Centralnervoussystemdisorders93

5.12.4Migraine93

5.12.5Hypertension93

5.12.6Anxietydisorders93

5.12.7Antinociceptive94

5.12.8Oxytocinandinsulindelivery94

5.12.9Cancer94

5.12.10Neurodegenerative/brain inflammatorydisease94

5.12.11Cerebralarteriosclerosis, thrombosis,andvertigo disorders94

5.13Conclusion96 References96

6.Nanovesiclesfortransdermaldrug delivery103

HongdaZhu,ChaoboYangandKaiMa

6.1Introduction103

6.1.1Themechanismsofinteractions betweennanovesiclesystemsand skin104

6.2Lipid-basedvesicularnanostructuresfor transdermaldrugdelivery104

6.2.1Traditionalliposomesasskindrug deliverysystems104

6.2.2Transfersomes104

6.2.3Ethosomes107

6.2.4Invasome108

6.2.5Glycerosomes109

6.2.6Hyalurosomes110

6.3Nanovesiclesformedbynonlipidbuilding blocks110

6.3.1Niosomesastransdermaldrug deliverysystems110

6.3.2Polymersomesastransdermal drugdeliverysystems111

6.4Conclusionandfutureperspective111 References112

7.Nanovesiclesforintravenousdrug delivery115

HazalEzgiGu ¨ ltekin,EzgiOner,Miray Ilhan andMerveKarpuz

7.1Introduction115

7.2Intravenousdrugadministration116

7.3Nanovesicularsystems121

7.3.1Liposomes121

7.3.2Niosomes124

7.3.3Polymersomes125

7.3.4Transfersomes126

7.3.5Ethosomesandethosomal nanovesicles127

7.3.6Phytosomes127

7.3.7Extracellularvesicles128

7.4Intravenousnanovesiclesforimaging128

7.5Intraveneousnanovesiclesfortherapy133

7.5.1Tumortargetingandcancertherapy133

7.5.2Fungalinfections134

7.5.3Painmanagementandinflammatory diseases134

7.5.4Others134

7.6Intravenousnanovesiclesforgenetherapy135

7.6.1Intravenousnanovesicularsystems developedforgeneaugmentation136

7.6.2Intravenousnanovesicularsystems developedforgenesilencing (suppression)136

7.6.3Intravenousnanovesicularsystems developedforgenomeediting136

7.7Intravenousnanovesiclesfortheranostic136

7.8Conclusion138 References139

8.Nanovesiclesfortargetspecificdrug delivery149

AmnaZafar,Asim-ur-Rehmanand NaveedAhmed

8.1Introduction149

8.2Liposomesasdrugdeliveryvesicles150

8.2.1Typesofliposomes150

8.2.2Applications151

8.3Polymericmicellesasdrugdelivery vehicles152

8.3.1Applications153

8.4Exosomesasdrugdeliveryvesicles153

8.4.1Applications155

8.5Niosomes—drugdeliveryvesicles155

8.5.1Applications155

8.6Neweraofvesiculardrugdeliverysystems155

8.6.1Transferosomes155

8.6.2Ethosomes157

8.6.3Sphingosomes157

8.6.4Cubosomes157

8.6.5Ufasomes158

8.6.6Colloidosomes158

8.6.7Aquasomes159

8.6.8Polymerosomes159

8.6.9Emulsomes159

8.6.10Virosomes160

8.6.11Enzymosomes160

8.6.12Pharmacosomes160

8.7Conclusions163 References163

9.Blood brainbarrierandnanovesicles forbrain-targetingdrugdelivery167 YadollahOmidi,HosseinOmidian, YoungKwonandAnaCastejon

9.1Introduction167

9.2Neurovascularunit169

9.2.1Blood brainbarrierandbloodcerebrospinalfluidbarrierroles169

9.2.2Immunosurveillancein neurovascularunit170

9.2.3Tightjunctionalmolecular machinery170

9.2.4Blood brainbarriermodels170

9.2.5Blood brainbarriertransport machinery172

9.2.6Endocytosis,transcytosis,and vesiculartrafficking172

9.2.7Nanovesiclesdeliverymechanisms174

9.3Issueswiththetargetedtherapyofbrain diseases174

9.4Nanoscalebrain-targetingdelivery systems176

9.5Nanovesicles176

9.5.1Lipid-basednanovesiclesforbrain targeting177

9.5.2Translationofbrain-targeting lipid-basednanovesicles185

9.5.3Polymer-basednanovesicles188 9.6Concludingremarks190 References190

10.Nanovesiclesforhepatic-targeted drugdelivery201

ManishKumar,AbhishekJha,KanchanBharti andBrahmeshwarMishra

10.1Introduction201

10.2Nanovesicularsystemsfordrugdelivery toliver201

10.3Mechanismofnanovesicles-targeted delivery202

10.3.1Passivetargeting202

10.3.2Activetargeting202

10.4Roleinimprovingthedrugdistribution andpharmacokineticparameters205 10.5Applications205

10.5.1Nanovesiclesforhepatocellular carcinoma205

10.5.2Nanovesiclesforhepatic infections211

10.5.3Nanovesiclesforhepatoprotective effect211

10.6Conclusion213

References214

11.Nanovesiclesfortumor-targeted drugdelivery219

MerveKarpuz,Miray ˙ Ilhan, HazalEzgiGultekin,EmreOzgenc, Zeynep¸Senyi ˘ gitandEvrenAtlihan-Gundogdu

11.1Introduction219

11.2Nanovesicles221

11.2.1Liposomes222

11.2.2Niosomes223

11.2.3Phytosomes224

11.2.4Ethosomes224

11.2.5Polymersomes225

11.2.6Exosomes225

11.2.7Transfersomes226

11.3Targetingmechanismsofnanovesicles fortumor226

11.3.1Passivetargeting226

11.3.2Activetargeting228

11.4Nanovesiclesfortumorimaging232

11.4.1Magneticresonanceimaging232

11.4.2Computedtomographyimaging232

11.4.3Nuclearmedicineimaging233

11.5Nanovesiclesfortumortreatment233

11.6Nanovesiclesfortheranosticapproach234

11.7Conclusion235 References236

12.Tumormicroenvironment-responsive nanovesiculardrugdeliverysystems245

MoniraGhoniem,KholoudK.Arafaand IbrahimM.El-Sherbiny

12.1Introduction245

12.1.1Doxorubicin-basednanovesiculars246

12.1.2Paclitaxel-basednanovesiculars246

12.1.3Physiologicaltumor microenvironmentcharacteristics247

12.1.4Tumorbiochemicalcharacteristics247

12.1.5Immunemicroenvironment characteristics250

12.2Conclusion251 References251

13.Nanovesiclesforcolon-targeted drugdelivery253

PoojaDasBidla,PritishK.Panda,AmitVerma, SarjanaRaikwarandSanjayK.Jain

13.1Introduction253

13.2Factorsaffectingcolonicdrugdelivery253

13.3Advantagesandlimitationsof colon-targeteddrugdeliverysystems255

13.4Applicationofnanocarriersotherthan nanovesiclesforcolon-targeteddrug delivery256

13.5Applicationsofnanovesiclesforthe treatmentofcolonicdisease257 13.5.1Liposomes257 13.5.2Niosomes259 13.5.3Phytosomes260 13.5.4Cubosomes260 13.5.5Emulsosome260

13.6Applicationsofnanovesiclesinthe detectionofcolonicdisease262

13.7Conclusionandfutureprospects263 References263

14.Nanovesiclesfordeliveryof anticancerdrugs267

JithuJoseph

14.1Introduction267

14.2Classificationanddevelopmentofthe nanovesicles267 14.2.1Classificationofthe nanovesicles267

14.3Applicationsofthenanovesiclesforthe deliveryofanticancerdrugs269

14.4Conclusionandfutureprospects278 References278

15.Nanovesiclesforthetreatmentof skindisorders285

AyeshaWaheed,AbdulAhad, DipakKumarGupta,Mohd.Aqil, FahadI.Al-Jenoobiand AbdullahM.Al-Mohizea

15.1Introduction285

15.1.1Skinpermeationpathways285 15.2Typesofnanovesicles286 15.2.1Liposomes288 15.2.2Ethosomes288 15.2.3Niosomes289 15.2.4Transfersomes289 15.2.5Cubosomes290 15.2.6Solidlipidnanoparticles290 15.2.7Nanostructuredlipidcarriers290 15.2.8Nanoemulsion290 15.2.9Polymericnanoparticles290 15.2.10Nanofibers290 15.2.11Dendrimers291

15.3Skindisorders291

15.3.1Skincancer291

15.3.2Psoriasis292

15.3.3Acne293

15.3.4Alopecia295

15.3.5Fungalinfections295

15.3.6Atopicdermatitis296

15.4Conclusion297 References297

16.Nanovesiclesforthedeliveryof nonsteroidalanti-inflammatorydrugs303

ShohrehFahimirad

16.1Introductionofnonsteroidal anti-inflammatorydrug303

16.2Nonsteroidalanti-inflammatoryagents303

16.3Nanotechnologyandnonsteroidal anti-inflammatorydrugsdelivery304

16.4Liposomes305

16.5Nonliposomallipid-basednanovesicles306

16.5.1Niosomes306

16.5.2Transfersomes306

16.5.3Ethosomes306

16.5.4Sphingosomes306

16.5.5Ufasomes307

16.5.6Pharmacosomes307

16.5.7Virosomes307

16.5.8Quatsomes307

16.6Methodsofpreparation307

16.6.1Conventionalpreparation methods307

16.6.2Thinlipidfilmhydrationmethod308

16.6.3Solventinjectiontechnique311

16.7Novelpreparationmethods311

16.7.1Supercriticalfluidsmethods311

16.7.2Recentapplicationof nanovesiclesfordeliveryof nonsteroidalanti-inflammatory drugs311

16.8Conclusion311 References311

17.Nanovesiclesfordeliveryofcentral nervoussystemdrugs315

ReshuVirmani,TarunVirmaniandKamlaPathak

17.1Introduction315

17.2Nanovesicles315

17.3Categoriesofnanovesicles315

17.3.1Liposomes315

17.3.2Virosomes316

17.3.3Niosomes316

17.3.4Proniosomes316

17.3.5Transferosomes316

17.3.6Proteasomes317 17.3.7Sphingosomes317

17.3.8Archaesomes317 17.3.9Ethosomes317 17.3.10Polymersomes317 17.4Nanovesiclesforcentralnervous systemdisorders317 17.4.1NanovesiclesforAlzheimer’s disease317 17.4.2NanovesiclesforParkinson’s disease320

17.4.3Nanovesiclesformigraine321 17.4.4Nanovesiclesforepilepsy322 17.4.5Nanovesiclesforpsychosis324 17.4.6Nanovesiclesforcentralnervous systeminfection325 17.4.7Nanovesiclesfordepression326 17.4.8Nanovesiclesforbraintumors327 17.4.9Nanovesiclesforneuroprotection328 17.4.10Nanovesiclesformultiplesclerosis andamyotrophiclateralsclerosis330 17.4.11Nanovesiclesforcerebral ischemia331 17.5Currentchallengesandfutureprospects333 17.6Conclusion334 Conflictsofinterest334 References335

18.Nanovesiclesforthedeliveryof cardiovasculardrugs341

DomenicoMarson,SuzanaAulic, AliceFermeglia,ErikLauriniandSabrinaPricl

18.1Introduction341

18.2Aprimerofcardiovasculardiseases342 18.2.1Atherosclerosisand hyperlipidemia342

18.2.2Venousthromboembolism343

18.2.3Acutemyocardialinfarction343 18.2.4Hypertension344

18.2.5Pulmonaryhypertension344 18.2.6Stroke345

18.3Nanovesiclesforthedeliveryof cardiovasculardrugs345

18.3.1Nanovesiclesforthetreatmentof atherosclerosisand hyperlipidemia345

18.3.2Nanovesiclesforthetreatmentof venousthromboembolism349

18.3.3Nanovesiclesforthetreatmentof hypertension351

18.3.4Nanovesiclesforthetreatmentof pulmonaryhypertension353

18.3.5Nanovesiclesforthetreatmentof acutemyocardialinfarction355

18.3.6Nanovesiclesforthetreatmentof stroke358

18.4Futureoutlook361 Acknowledgments362 References362

19.Nanovesiclesforthedeliveryof antibiotics371

Quratulain,NazimHussain, SyedAwaisAttiqueandMuhammadBilal

19.1Introduction371

19.2Nanovesiclesaspotentialantibioticdrug deliveryand/ortargetingsystems371

19.3Nanoparticlebacterialresistance372

19.4Antimicrobialresistancemechanisms372

19.5Theimpactofnanoparticleson microbialstrength373

19.5.1Treatmenttechniquesasan effectivedefenseagainst microbialresistance373

19.5.2Overcomingthecurrent mechanismsofantibiotic resistance373

19.6Usingnumerouswaystocombat microorganismsatthesametime373

19.7Assistinginthetransportofantibiotics373

19.8Negativeside:asadrugresistance promoter374

19.9Nanoparticlesantibacterialapplication375

19.10Dressingsofwound375

19.11Bonefortification375

19.12Dentalequipment375

19.13Themechanismfordrugdelivery376

19.14Typesofnanovesiclesusedforthe drugdelivery376

19.15Efficiencyofdifferentnanovesiclesfor drugdeliverysystem376

19.16Roleofnanovesiclesinthedeliveryof antibiotics378

19.17Summaryandfutureperspectives380 Acknowledgment380 Disclosurestatement380 References380

20.Nanovesiclesfordeliveryof antifungaldrugs383

BiswarupDas,AmitKumarNayakand SubrataMallick

20.1Introduction383

20.2Vesiculardeliverysystems384 20.2.1Liposomes384 20.2.2Niosomes386 20.2.3Transfersomes388 20.2.4Ethosomes390 20.2.5Transethosomes392 20.2.6Cubosomes392 20.3Conclusion392 References393

21.Nanovesiclesinantiviraldrug delivery399

MehvishMumtaz,ZulqarnainBaqar, NazimHussainandMuhammadBilal

21.1Introduction399 21.2Whatarenanovesicles?400 21.3Compositionofnanovesicles400 21.4Developmentofnanovesicles401 21.4.1Thinfilmhydration401 21.4.2Nonshakenmethod402 21.4.3Proliposomes402 21.4.4Methodoffreeze-drying402 21.4.5Ethanolinjectionmethod402 21.4.6Etherinjectionmethod402 21.4.7Hotmethod402 21.4.8Coldmethod402 21.4.9Reverse-phaseevaporation technique403

21.4.10Ultrasonication403 21.5Nanovesiclescharacterization403 21.5.1Efficiencyofentrapment403 21.5.2Visualrepresentationof morphology403

21.5.3Zetapotentialandvesiclesize403 21.5.4Temperatureoftransition404 21.5.5Evaluationofsurfacetension behavior404

21.5.6Sustainabilityofvesicles404 21.5.7Deformabilityorelasticity research404

21.5.8Drugcontent404 21.5.9Drugrelease404 21.5.10Permeabilityandabsorption research404

21.6Applicationofnanovesicles404 21.6.1Challengesofnanovesicles404 21.7Antiviraldrugs405 21.8Medicalapplicationsofantiviral drugs405

21.9Designingofantiviraldrugs406 21.9.1Targetingantivirals406 21.9.2Methodologiesbasedonthe pointofthevirus’slifephase406

21.9.3Priortoenteringintoacell406

21.9.4Inhibitorofentry407

21.9.5Inhibitorofuncoating407

21.9.6Asduringthepropagationof viral407

21.9.7Reversetranscription407

21.9.8Integrase407

21.9.9Translation/antisense408

21.9.10Translation/ribozymes408

21.9.11Proteintargetingand processing408

21.9.12Inhibitorsofproteases408

21.9.13LongdsRNAhelixtargeting408

21.9.14Structure409

21.9.15Stepofrelease409

21.10Approvedantiviraldrugs409

21.10.1Acyclovir409

21.10.2Valacyclovir410

21.10.3Ganciclovir410

21.10.4Penciclovir410

21.10.5Famciclovir411

21.10.6Foscarnet411

21.10.7Ribavirin411

21.10.8Lamivudine411

21.10.9Amantadineand Rimantadine411

21.10.10Interferonalfa412

21.11Nanovesiclesinantiviraldrugdelivery412

21.11.1Liposomes412

21.11.2Solidlipidnanovesicles412

21.11.3Nanoemulsions412

21.11.4Self-nanoemulsifydrugdelivery systems413

21.11.5Lipidbasednanovesiclesfor smallinterferingRNAdelivery413

21.11.6Polymer-basednanovesicles413

21.11.7Nanovesiclesmadeof polymers414

21.12Conclusion414 References414 Furtherreading419

22.Nanovesiclesfortargeting autoimmunediseases421

RahatAndleeb,MuhammadUmarIjaz, AsmaAshraf,RidaRafi,DeryaKarata¸sYeni, ShabanaNaz,TayyabaAliand MuhammadAsadSajid

22.1Introduction421

22.2Sourcesofextracellularnanovesicles423

22.2.1Tumorcells423

22.2.2Redbloodcells423

22.2.3Dendriticcells423 22.2.4Mesenchymalstemcells423 22.2.5Milk423

22.2.6Plant424 22.3Biologicalfunctions424 22.4Immunesystemresponsetogeneric nanovesicles424 22.4.1T/Bcellsformationand nanovesicles425 22.5Nanovesicleproduction,cellular communication,andautoimmunity425 22.6Nanovesiclesandautoimmune diseases426

22.6.1Systemiclupuserythematosus426 22.6.2Diabetes427 22.6.3Rheumatoidarthritis428 22.6.4Vitiligo428 22.6.5Preeclampsia429 22.6.6Multiplesclerosis429 22.6.7Sjogren’ssyndrome429 22.6.8Autoimmunethyroiddisease430 22.7Nanovesicle-facilitatedautoimmune diseasetreatmenttherapies430 22.7.1Autoimmunediseasestreatment formesenchymalstem cell-derivednanovesicles430 22.7.2Autoimmunediseasetherapyfor dendriticcell-derived nanovesicles430

22.8Modificationsforthetargeted deliveryofextracellularnanovesicles431 22.8.1Nanovesicledonorcells manipulation431

22.8.2Extracellularnanovesiclesdirect surfacemodification431

22.9Utilizationofnanovesiclesin autoimmuneclinicaltrials432 22.10Conclusionandfutureoutlook433 References433

23.Nanovesicularsystemsforprotein andpeptidedelivery441

TheodoreSentoukas,AthanasiosSkandalis andStergiosPispas

23.1Introduction441

23.2Liposomes442

23.3Polymersomes444

23.4Exosomes447

23.5Nonionicvesicles(niosomes)448

23.6Organic inorganichybridnanovesicles449 23.7Conclusions451 References451

24.Nanovesiclesforthedeliveryof siRNA457

AdedayoAdeyanju

24.1Introduction457

24.2Preparationofnanovesiclesandsmall interferingRNA-loadednanovesicles459

24.2.1Nanovesiclepreparation459

24.2.2Loadingnanovesicleswith smallinterferingRNAs459

24.2.3Preparingawesternblot459

24.2.4SmallinterferingRNA quantification460

24.2.5Sizeandzetapotential measurementofnanovesicles460

24.2.6ShortharpinRNAtransduction, PKH67labelingandnanovesicleuptake460

24.2.7Invitrotreatmentofnanovesicles inhumanumbilicalvein endothelialcellsand λ820cells460

24.2.8Thequantitativerealtime-PCR kitfornanovesicle-smallinterfering RNAsgenedetection/recognition461

24.2.9Cellcountandproliferation assays461

24.3Someapplicationsofnanovesiclesfor thedeliveryofsmallinterferingRNA intargetcells/drugdelivery462

24.4Conclusion463 References464

25.Clinicaltrialsofnanovesiclesfor drugdeliveryapplications467 MourelatouElena,GalatouEleftheria, SarigiannisYiannis,ZachariaC.Lefteris, PlioukasMichael,AislaitnerGeorgiosand PetrouC.Christos

25.1Introduction467

25.2Thelegalframeworkforclinicaltrials467 25.3Regulatorychallengesinclinicaltrials inthefieldofnanovesicles468

25.4Liposomes469

25.5Peptide-basednanovesicles476

25.6Exosomes480

25.7Phytosomes482

25.8Niosomes483

25.9Conclusions484 References484

Index487

Listofcontributors

AdedayoAdeyanju DepartmentofChemical Engineering,CovenantUniversity,Ota,OgunState, Nigeria

AbdulAhad DepartmentofPharmaceutics,Collegeof Pharmacy,KingSaudUniversity,Riyadh,SaudiArabia

NaveedAhmed DepartmentofPharmacy,Facultyof BiologicalSciences,Quaid-i-AzamUniversity, Islamabad,Pakistan

TayyabaAli DepartmentofZoology,Government CollegeUniversityFaisalabad,Faisalabad,Pakistan

FahadI.Al-Jenoobi DepartmentofPharmaceutics, CollegeofPharmacy,KingSaudUniversity,Riyadh, SaudiArabia

AbdullahM.Al-Mohizea DepartmentofPharmaceutics, CollegeofPharmacy,KingSaudUniversity,Riyadh, SaudiArabia

NafiuAminu DepartmentofPharmaceuticsand PharmaceuticalMicrobiology,Facultyof PharmaceuticalSciences,UsmanuDanfodiyo University,Sokoto,Nigeria

RahatAndleeb DepartmentofZoology,Government CollegeUniversityFaisalabad,Faisalabad,Pakistan

SophiaG.Antimisiaris LaboratoryofPharmaceutical Technology,DepartmentofPharmacy,Schoolof HealthSciences,UniversityofPatras,RioPatras, Greece;InstituteofChemicalEngineeringSciences, FoundationforResearchandTechnologyHellas (FORTH/ICE-HT),RioPatras,Greece

Mohd.Aqil DepartmentofPharmaceutics,Schoolof PharmaceuticalEducationandResearch,Jamia Hamdard(DeemedUniversity),NewDelhi,India

KholoudK.Arafa NanomedicineResearch Laboratories,CenterforMaterialsScience,Zewail CityofScienceandTechnology,Giza,Egypt

AsmaAshraf DepartmentofZoology,Government CollegeUniversityFaisalabad,Faisalabad,Pakistan

Asim-ur-Rehman DepartmentofPharmacy,Facultyof BiologicalSciences,Quaid-i-AzamUniversity, Islamabad,Pakistan

EvrenAtlihan-Gundogdu DepartmentofRadiopharmacy, FacultyofPharmacy,EgeUniversity,I ˙ zmir,Turkey

SyedAwaisAttique SchoolofInterdisciplinary Engineering&Science(SINES),NUST,Islamabad, Pakistan

SuzanaAulic MolecularBiologyandNanotechnology Laboratory(MolBNL@UniTS)—DEA,Universityof Trieste,Trieste,Italy

NagmaBanjare PK-PDTox&FormulationDivision, CSIR-IndianInstituteofIntegrativeMedicine,Jammu, JammuandKashmir,India;AcademyofScientific andInnovativeResearch(AcSIR),Ghaziabad,Uttar Pradesh,India

ZulqarnainBaqar CentreforAppliedMolecular Biology(CAMB),UniversityofthePunjab,Lahore, Pakistan

KanchanBharti DepartmentofPharmaceutical Engineering&Technology,IndianInstituteof Technology(BHU),Varanasi,UttarPradesh,India

BolayBhattacharya SchoolofPharmacy,Sister NiveditaUniversity,Kolkata,WestBengal,India

MuhammadBilal SchoolofLifeScienceandFood Engineering,HuaiyinInstituteofTechnology,Huaian, China

AnaCastejon DepartmentofPharmaceuticalSciences, CollegeofPharmacy,NovaSoutheasternUniversity, FortLauderdale,FL,UnitedStates

PetrouC.Christos DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus

BhaskarDas DirectorateofDrugsControl,Department ofHealth&FamilyWelfare,GovernmentofWest Bengal,Kolkata,WestBengal,India

BiswarupDas DepartmentofPharmaceutics,Seemanta InstituteofPharmaceuticalSciences,Mayurbhanj, Odisha,India

ShilpaDas DepartmentofPharmaceuticalTechnology, JadavpurUniversity,Kolkata,WestBengal,India

PoojaDasBidla PharmaceuticsResearchProjects Laboratory,DepartmentofPharmaceuticalSciences,

Dr.HarisinghGourVishwavidyalaya,Sagar,Madhya Pradesh,India

ArnabDe SchoolofPharmacy,SisterNivedita University,Kolkata,WestBengal,India

GalatouEleftheria DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus

MourelatouElena DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus

IbrahimM.El-Sherbiny NanomedicineResearch Laboratories,CenterforMaterialsScience,Zewail CityofScienceandTechnology,Giza,Egypt

ShohrehFahimirad MolecularandMedicineResearch Center,ArakUniversityofMedicalSciences,Arak, Iran

IfiFavour DepartmentofChemicalEngineering, CovenantUniversity,Ota,OgunState,Nigeria

AliceFermeglia MolecularBiologyandNanotechnology Laboratory(MolBNL@UniTS)—DEA,Universityof Trieste,Trieste,Italy

MariaGazouli SchoolofMedicine,Laboratoryof Biology,DepartmentofBasicMedicalScience, NationalandKapodistrianUniversityofAthens, Athens,Greece;SchoolofMedicine,2ndDepartment ofRadiology,NationalandKapodistrianUniversityof Athens,Athens,Greece

AislaitnerGeorgios DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus; FederalInstituteforDrugsandMedicalDevices (BfArM),Bonn,Germany

MoniraGhoniem DepartmentofChemistry,Collegeof Science,ImamMohammadIbnSaudIslamic University(IMSIU),Riyadh,SaudiArabia

SantanuGhosh DepartmentofPharmaceutical Technology,JISUniversity,Kolkata,WestBengal, India

HazalEzgiGultekin DepartmentofPharmaceutical Technology,FacultyofPharmacy,IzmirKatipC¸elebi University,Izmir,Turkey

DipakKumarGupta DepartmentofPharmaceutics, SchoolofPharmaceuticalEducationandResearch, JamiaHamdard(DeemedUniversity),NewDelhi, India

PremN.Gupta PK-PDTox&FormulationDivision, CSIR-IndianInstituteofIntegrativeMedicine,Jammu, JammuandKashmir,India;AcademyofScientific andInnovativeResearch(AcSIR),Ghaziabad,Uttar Pradesh,India

NazimHussain CentreforAppliedMolecularBiology (CAMB),UniversityofthePunjab,Lahore,Pakistan

MuhammadUmarIjaz DepartmentofZoology, WildlifeandFisheries,UniversityofAgriculture, Faisalabad,Pakistan

MirayI ˙ lhan DepartmentofPharmaceuticalTechnology, FacultyofPharmacy,IzmirKatipC¸elebiUniversity, Izmir,Turkey;DepartmentofPharmaceutical Technology,FacultyofPharmacy,DuzceUniversity, Du ¨ zce,Turkey

SanjayK.Jain PharmaceuticsResearchProjects Laboratory,DepartmentofPharmaceuticalSciences, Dr.HarisinghGourVishwavidyalaya,Sagar,Madhya Pradesh,India

AbhishekJha DepartmentofPharmaceutical Engineering&Technology,IndianInstituteof Technology(BHU),Varanasi,UttarPradesh,India

JithuJoseph DepartmentofAppliedChemistry,Cochin UniversityofScienceandTechnology,Kochi,Kerala, India

MerveKarpuz DepartmentofRadiopharmacy,Faculty ofPharmacy,IzmirKatipC¸elebiUniversity,Izmir, Turkey

HectorKatifelis SchoolofMedicine,Laboratoryof Biology,DepartmentofBasicMedicalScience, NationalandKapodistrianUniversityofAthens, Athens,Greece

ManishKumar DepartmentofPharmaceutical Engineering&Technology,IndianInstituteof Technology(BHU),Varanasi,UttarPradesh,India

YoungKwon DepartmentofPharmaceuticalSciences, CollegeofPharmacy,NovaSoutheasternUniversity, FortLauderdale,FL,UnitedStates

ErikLaurini MolecularBiologyandNanotechnology Laboratory(MolBNL@UniTS)—DEA,Universityof Trieste,Trieste,Italy

ZachariaC.Lefteris DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus

KaiMa DepartmentofPharmaceuticalEngineering, HubeiUniversityofTechnology,Wuhan,China

SubrataMallick DepartmentofPharmaceutics,School ofPharmaceuticalSciences,Siksha“O”Anusandhan (DeemedtobeUniversity),Bhubaneswar,Odisha, India

DomenicoMarson MolecularBiologyand NanotechnologyLaboratory(MolBNL@UniTS)— DEA,UniversityofTrieste,Trieste,Italy

PlioukasMichael DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus

BrahmeshwarMishra DepartmentofPharmaceutical Engineering&Technology,IndianInstituteof Technology(BHU),Varanasi,UttarPradesh,India

MehvishMumtaz CentreforAppliedMolecular Biology(CAMB),UniversityofthePunjab,Lahore, Pakistan

EvangelosNatsaridis LaboratoryofPharmaceutical Technology,DepartmentofPharmacy,Schoolof HealthSciences,UniversityofPatras,RioPatras, Greece;InstituteofChemicalEngineeringSciences, FoundationforResearchandTechnologyHellas (FORTH/ICE-HT),RioPatras,Greece

AmitKumarNayak DepartmentofPharmaceutics, SeemantaInstituteofPharmaceuticalSciences, Mayurbhanj,Odisha,India

ShabanaNaz DepartmentofZoology,Government CollegeUniversityFaisalabad,Faisalabad,Pakistan

YadollahOmidi DepartmentofPharmaceutical Sciences,CollegeofPharmacy,NovaSoutheastern University,FortLauderdale,FL,UnitedStates

HosseinOmidian DepartmentofPharmaceutical Sciences,CollegeofPharmacy,NovaSoutheastern University,FortLauderdale,FL,UnitedStates

EzgiOner DepartmentofPharmaceuticalBiotechnology, FacultyofPharmacy,IzmirKatipC¸elebiUniversity, I ˙ zmir,Turkey

EmreOzgenc DepartmentofRadiopharmacy,Facultyof Pharmacy,EgeUniversity,Izmir,Turkey

PritishK.Panda PharmaceuticsResearchProjects Laboratory,DepartmentofPharmaceuticalSciences, Dr.HarisinghGourVishwavidyalaya,Sagar,Madhya Pradesh,India

KamlaPathak FacultyofPharmacy,UttarPradesh UniversityofMedicalSciences,Etawah,Uttar Pradesh,India

GouravPaudwal PK-PDTox&FormulationDivision, CSIR-IndianInstituteofIntegrativeMedicine,Jammu, JammuandKashmir,India;AcademyofScientific andInnovativeResearch(AcSIR),Ghaziabad,Uttar Pradesh,India

NatassaPippa FacultyofPharmacy,Departmentof PharmaceuticalTechnology,Nationaland KapodistrianUniversityofAthens,Athens,Greece; TheoreticalandPhysicalChemistryInstitute,National HellenicResearchFoundation,Athens,Greece

StergiosPispas TheoreticalandPhysicalChemistry Institute,NationalHellenicResearchFoundation, Athens,Greece

SabrinaPricl MolecularBiologyandNanotechnology Laboratory(MolBNL@UniTS)—DEA,Universityof Trieste,Trieste,Italy;DepartmentofGeneral Biophysics,FacultyofBiologyandEnvironmental Protection,UniversityofLodz,Lodz,Poland

RidaRafi DepartmentofAppliedChemistry, GovernmentCollegeUniversityFaisalabad, Faisalabad,Pakistan

SarjanaRaikwar PharmaceuticsResearchProjects Laboratory,DepartmentofPharmaceuticalSciences, Dr.HarisinghGourVishwavidyalaya,Sagar,Madhya Pradesh,India

MuhammadAsadSajid DepartmentofZoology, GovernmentCollegeUniversityFaisalabad, Faisalabad,Pakistan

AmaleshSamanta DepartmentofPharmaceutical Technology,JadavpurUniversity,Kolkata,West Bengal,India

SonalinandiniSamanta ESI-PGIMSR,ESICMedical CollegeandHospital,Joka,Kolkata,WestBengal, India

SamuelEshorameSanni DepartmentofChemical Engineering,CovenantUniversity,Ota,OgunState, Nigeria

TheodoreSentoukas CenterofPolymerandCarbon Materials,PolishAcademyofSciences,Zabrze, Poland

AthanasiosSkandalis DepartmentofMaterials,Imperial CollegeLondon,London,UnitedKingdom

Quratulain CentreforAppliedMolecularBiology (CAMB),UniversityofthePunjab,Lahore,Pakistan

AmitVerma BabulalTarabaiInstituteofPharmaceutical Sciences,Sagar,MadhyaPradesh,India

ReshuVirmani SchoolofPharmaceuticalSciences, MVNUniversity,Palwal,Haryana,India

TarunVirmani SchoolofPharmaceuticalSciences, MVNUniversity,Palwal,Haryana,India

AyeshaWaheed DepartmentofPharmaceutics,School ofPharmaceuticalEducationandResearch,Jamia Hamdard(DeemedUniversity),NewDelhi,India

ChaoboYang DepartmentofPharmaceutical Engineering,HubeiUniversityofTechnology,Wuhan, China

DeryaKaratas¸Yeni VeterinaryControlCentral ResearchInstitute,BacterialDiseaseLaboratory, Ankara,Turkey

SarigiannisYiannis DepartmentofLifeandHealth Sciences,UniversityofNicosia,Nicosia,Cyprus

AmnaZafar DepartmentofPharmacy,Facultyof BiologicalSciences,Quaid-i-AzamUniversity, Islamabad,Pakistan

HongdaZhu DepartmentofPharmaceutical Engineering,HubeiUniversityofTechnology,Wuhan, China

ZeynepS¸enyig ˘ it DepartmentofPharmaceutical Technology,FacultyofPharmacy,IzmirKatipC¸elebi University,I ˙ zmir,Turkey

Preface

Nanotechnologyhasrecentlyprovenitsimportanceandusefulnessforguidingtherevolutionarychangesinthefields ofnanomedicines,wherenanovesicleshaveextensivelybeenstudiedandwellrecognizedforthediagnosisandtherapy. Nanovesiclesarethenanoscalecolloidalcarriersystemscomposedofanaqueouscorewithlipidcoating.Overthepast fewdecades,differentnanovesicularcarrierforms(suchasnanoemulsions,self-nanoemulsifyingsystems,nanoliposomes,transferosomes,proniosomesandniosomes,exosomes,polymerosomes,aquasomes,ethosomes,cubosomes, phytosomes,hyalurosomes,glycerosomes,andnanobubbles)havebeenreportedforthedeliveryofvariousdrugs(such asnonsteroidalantiinflammatorydrugs,centralnervoussystemdrugs,cardiovasculardrugs,antibiotics,anticancer drugs,antiviraldrugs,andproteinandpeptidedrugs)throughdifferentroutesofadministrations(suchasoral,nasal, ocular,transdermal,andintravenous).Thesehavebeenemployedforthetarget-specificdrugdeliveryapplications (suchasbraintargeting,colontargeting,livertargeting,andcancertargeting).Inaddition,someadvancedtriggerassistedsystems(suchasiontophoresisandultrasoundtriggering)havebeenusedforimproveddrugdeliverybythe variousnanovesicles.Inthiscontextthecurrentbook“ApplicationsofNanovesicularDrugDelivery”aimstopresenta thoroughinsightintothecompleteandup-to-datediscussionsaboutthevariousmultifunctionalapplicationsofnanovesiculardrugdeliverywithacollectionof 25authoritativechapters bytheleadingacademiciansandresearchersacross theworld.Aconciseaccountonthecontentsofeachchapterhasbeendescribedtoprovideaglimpseofthebookto thereaders.

Chapter1presentsaninsightintotheroleoftargetingcellularandmolecularmechanismsofnanovesicularsystems totreatdifferentdiseases.Inthefirstpart,anoverviewofthemaincategoriesofnanovesicles,formulationprocesses, andcharacterizationtechniquesisdescribed.Inthesecondpart,thenanovesicularsystemsfortargetingtocellularand molecularmechanismshavebeenanalyzedindepth.Acomprehensiveupdateabouttheirapplicationindifferentdiseases,marketedproducts,andpotentialchallengeshasalsobeendiscussed.

Chapter2highlightstheapplicationsofvariousnanovesiclesfordrugdelivery,specificallycodeliveryofmultiple drugs.Thechapteralsoprovidesanoverviewofdrugcombinationtherapyanddifferenttechniquesusedinpreparing nanovesiclesforthecodeliveryofmultipledrugs.Acomprehensiverecentupdateoftheapplicationsofvariousdrug codeliverynanovesiclesincancers,infectious,cardiovasculardiseases,andinflammatorydiseaseshasalsobeen discussed.

Chapter3providesacomprehensivereviewontheranosticapplicationsofvariousnanovesicles(suchasliposomes, ethosomes,transferosomes,niosomes,andpolymersomes).

Chapter4focusesonvariousstrategiesdevelopedinthefieldofnanovesicle-assistedoculardrugdeliveryoverthe pastdecadewithanaimtoovercomethelimitationsofoculardrugdelivery.

Chapter5discussesaboutthepotentialofnanovesicularsystemsandtheirusesinnasaldrugdelivery.Inaddition, dosageformsandabsorptionenhancers,benefitsofintranasaldrugdelivery,barriersinnasaldistribution,anatomyand physiologyofthenasalroute,needforintranasaldrugdeliverysystems,mechanismofabsorptionofdrugsviathenasal route,nasaldevicesandroleofnanotechnologyinintranasaldrugdeliveryhavebeenaddressed.

Chapter6presentsacomprehensivereviewonthevariousnanovesicularsystemsasexcellenttransdermaldrug deliverycarrierstoovercomethestratumcorneumbarrierinintactskin.

Chapter7describestherecentdevelopmentsintheintravenousadministrationofnanovesicles,theiradministrations, andcommerciallyavailableproducts.Inaddition,thischaptercoversthepotentialuseofintravenousnanovesiclesin thetreatmentofdifferentdiseasegroups,genetherapy,imaging,andtheranosticdeliverybyinvestigatingtheiradvantages/disadvantagesandtheuseofthementionedareas.

Chapter8providesadetailedreviewofvariousnaturalandsyntheticnanovesicularsystemswiththeirtherapeutic applicationsforthetarget-orienteddrugdelivery.

Chapter9impartsdeepinsightsintovarioustypesofmultifunctionalnanovesiclescapableofcrossingthe blood brainbarrierforactivetargetingandimagingintreatingtheunhealthycellspresentinthebrain.

Chapter10offersacomprehensiveinsightofnanonovesiclesfortargeteddrugdeliverytotheliverandtheirapplicationsinthemanagementofvariousliverdisorders.Inaddition,mechanismsofnanovesiclesforpassiveandactive hepatictargeting,theroleofnanovesiclesinimprovingdrugdistributionandpharmacokineticparametershavebeen welladdressed.

Chapter11reviewsdifferenttypesofnanovesiclesandtheirtargetingmechanismforcancerimagingandtreatment. Inaddition,somestudiesperformedtodevelopnanovesiclesasimaging,treatment,ortheranosticsystemsforcancers havealsobeensummarized.

Chapter12spotlightsontherecentadvancesinthedesignoftumormicroenvironment-responsivenanovesiclesfor theeffectivedeliveryofchemotherapeuticdrugsandtacklingthechallengeshinderingtheirwidescaleclinical translation.

Chapter13coverstherecentadvancementsinnanovesiclestodesigneffectivecolon-targeteddrugdeliverycarrier systemsforthetreatmentofcolonicdiseases.

Chapter14overviewstheusesofvariousnanovesiclesforthedeliveryofanticancerdrugsinafacilemannerand ultimatelyhelpstotreatvarioustypesofcancers.

Chapter15dealswiththeusesofnanovesiclesfortheeffectivetreatment/managementofsomeimportantskindisorderssuchasskincancer,psoriasis,acne,alopecia,fungalinfections,andatopicdermatitis.Differentnanovesiclesas excellentalternativestoconventionaldosageformsforefficientdermaldeliveryhavealsobeenaddressed.

Chapter16describesthepotentialapplicationsofdifferentnanovesiclesforefficientdeliveryofnonsteroidalantiinflammatorydrugs.

Chapter17providesthecurrentprogressinapplicationsofnanovesiclesforeffectivedrugdeliveryagainstcentral nervoussystemdiseasessuchasAlzheimerdisease,Parkinsondisease,psychosis,migraine,depression,epilepsy,and braintumor.

Chapter18focusesonthemostrecentadvancementsinnanovesiclesasnanodeliverysystemsforcardiovascular drugsforthetreatmentofvariouscardiovasculardiseasessuchasatherosclerosis,hyperlipidemia,thromboembolism, hypertension,acutemyocardialinfarction,andischemicstroke.

Chapter19presentsthepotentialapplicationsofdifferentnanovesiclesfortheefficientdeliveryofantibiotics.In addition,mechanismsofantibioticresistanceandovercomingstrategiesbyantibiotics-loadednanovesicleshavealso beendiscussed.

Chapter20discussestheusesofvesicularnanocarriers(nanovesicles)inthecontextofdeliveryofantifungalagents throughsystemicandtopicalroutestotreatfungalinfections.

Chapter21overviewsthepotentialapplicationsofdifferentnanovesiclesforefficientdeliveryofantiviraldrugsfor thetreatmentofvariousviralinfections.Thecomposition,preparation,andcharacterizationofnanovesiclesarediscussedinthischapter.Inaddition,thedesigningofantiviraldrugsandvariousapprovedantiviraldrugshavealsobeen presented.

Chapter22summarizestheexistingliteratureregardingtheproduction,efficacy,andpotentialtherapeuticusesof nanovesiclesinthecontextsoftargetingautoimmunediseases,fromthediseasepathologytodiagnosisaswellas treatment.

Chapter23describesthebasiccharacteristicsofeachgroupofnanovesicularstructures,providingsomeofthelatest studiesthatshowpotentialapplicationsofthesenanovesicularcarriersystemsforthedeliveryoftherapeuticproteins andpeptidesforthetreatment/managementofseveraldiseasesandconditionssuchasParkinson’sdisease,woundhealing,diabetes,inflammation,cysticfibrosis,ischemicstrokes,andseveraltypesofcancers.

Chapter24focusesontheroleofnanovesiclesforsiRNAdelivery.Othermedicalapplicationsthatbotheron approachesforsiRNAdeliveryinrelationtonanoparticlesinchemicallymodifiedsiRNAshavealsobeendiscussed.

Chapter25givesaninsightintotheregulatoryframeworkgoverningtheclinicaltrialsofvariousnanovesiclesthat arecurrentlyunderclinicaldevelopmentbasedonbibliographicsourcesandclinicaltrialdatabases.

Aseditors,wewouldliketoconveyourspecialthankstoallthecontributingauthorsfordeliveringtheirinvaluable chaptercontributionsinatimelymanner,allowingustopublishthisbookintime.Wewouldalsoliketoexpressour heartfeltgratitudetotheElsevierInc.,AndreGerhardWolff,EmmaHayes,andPatriciaGonzalez(SeniorEditorial ProjectManager)fortheirinvaluableassistanceandkindsupportduringtheeditingprocessofthisbook.Wewould liketoexpressoursincerethankstoPraveenAnandS.(CopyrightCoordinator)forhisoutstandingsupportinobtaining thecopyrightpermissionsandPunithavathyGovindaradjane(ProductionManager)forthedevelopmentandproduction ofthefinalbook.Allthecopyrightcontentsandreprintinglicensesfromdifferentcopyrightsourceshavedulybeen gratefullyacknowledged.

Finally,weappreciateourfamilymembers,alltherespectedteachers,friends,colleagues,andstudentsfortheircontinuousencouragement,inspiration,andsupportduringthepreparationofthisvoluminousbook.Wehope,alongwith ourcontributingauthorsandpublishers,thatoureffortsmeetthedemandsofstudents,academicians,researchers,drug deliveryformulators,pharmaceuticalspecialists,polymerengineers,andbiomedicalexperts.

AmitKumarNayak MdSaquibHasnain TejrajM.Aminabhavi VladimirP.Torchilin

Targetingcellularandmolecular mechanismsofnanovesicularsystemsfor thetreatmentofdifferentdiseases

NatassaPippa1,2,HectorKatifelis3,MariaGazouli3,4 andStergiosPispas2 1FacultyofPharmacy,DepartmentofPharmaceuticalTechnology,NationalandKapodistrianUniversityofAthens,Athens,Greece, 2Theoreticaland PhysicalChemistryInstitute,NationalHellenicResearchFoundation,Athens,Greece, 3SchoolofMedicine,LaboratoryofBiology,Departmentof BasicMedicalScience,NationalandKapodistrianUniversityofAthens,Athens,Greece, 4SchoolofMedicine,2ndDepartmentofRadiology,National andKapodistrianUniversityofAthens,Athens,Greece

1.1Introduction

Nowadays,oneofthekeychallengesinpharmaceuticalnanotechnologyishowtoformulateplatformsthatselectively deliverincorporatedactivesubstancestospecificcellsortissues,whenpassivetargetingisnotpossible,andthereductionofadversereactionsisrequiredforpatientcompliance.1 10 Nanovesicles,suchaslipid-based(liposomes,niosomes,transferosomes,ethosomes,etc.)andpolymer-based(polymersomes,polymernanovesicularstructures,etc.),are nowwellrecognizedaspotentialcandidatesforlow-molecular-weightdrugandantigendeliveryanddiagnostic applications.1 25 Someofthenanovesicularsystemshavebeenalreadyusedinclinicalpracticeasnanomedicineswith addedvalueforthepatientsincomparisontotheclassicalformulations.1,9

Theseconsistofbiocompatibleandbiodegradablematerials(i.e.,lipids,surfactants,andamphiphilicpolymers),and theycanself-assembleinaqueousmediaintovesicularstructureswithvariousphysicochemicalcharacteristicsandbiologicalbehaviors.Theiradvantageoverothermoreconventionalnanostructuresisthepropertytoencapsulatehydrophilicactivepharmaceuticalingredients(APIs)intotheircavityandincorporatethelipophiliconesintheirbilayers. Theycanbealsocharacterizedasbio-inspiredsystemsbecausetheymimicthestructuralpropertiesandthemorphology ofcellularmembranesandsubcellularorganelles.6 Therecenttrendinthisdirectionofresearchisthefabricationof nanovesicularsystemscomposedofdifferentmaterials(i.e.,lipids/polymersandpolymers/surfactants).20,21 Another recenttrendistheplant-derivednanovesiclesthatareaclassofnanovesiclesisolatedfromdietaryvegetablesandfruits andexhibitedseveraladvantagesandnewproperties.16 Alltheabovenanovesicularsystemscancontrolthereleaseof theencapsulatedAPIsatthespecifictargettissue.Thedesignandthedevelopmentofstimuli-responsivenanovesicles forspatiallyandtemporallycontrolledreleaseofAPIsinresponsetointracellularstimuli,suchaspH,redoxpotential, reactiveoxygenspecies,enzymesandtemperatureisveryusefulforthedecreaseofadversereactionsoftheencapsulatedAPI.22 25

NanovesiclescanbeusedfortheencapsulationofdifferentcategoriesofAPIs,andtheycanbeadministered throughdifferentroutes.Forexample,exosomes(versatile,cell-derivednanovesiclesnaturallyendowedwithexquisite target-homingspecificityandtheabilitytosurmountinvivobiologicalbarriers)holdsubstantialpromisefordeveloping excitingapproachesindrugdelivery,cancerimmunotherapy,andasnanoscalecancervaccines.12,13 Furthermore,nanovesiclesareusedasvaccinedeliveryplatformsandasadjuvantsystems.Theadjuvantpropertiesofnanovesiclesare veryimportantbecausetheycanenhancetheimmuneresponseindifferentmolecularpathwaysandinparallel,they cancontrolthereleaseoftheantigen.17,18

Thischapterprovidesaninsightintotheroleoftargetingcellularandmolecularmechanismsofnanovesicularsystemsforthetreatmentofdifferentdiseases.Inthefirstpart,wepresentanoverviewofthemaincategoriesofnanovesicles,theformulationprocessesandcharacterizationtechniquesthatareusedintherecentliterature.Inthesecondpart, 1 ApplicationsofNanovesicularDrugDelivery.DOI: https://doi.org/10.1016/B978-0-323-91865-7.00006-7 © 2022ElsevierInc.Allrightsreserved.

thenanovesicularsystemsfortargetingtocellularandmolecularmechanismsareanalyzedindepthandexamplesfrom recentlypublishedstudiesarecited.Acomprehensiveupdateabouttheirapplicationindifferentdiseasesandthemarketedproducts,aswellaspotentialchallengeswillbealsodiscussed.Systematicsearchandreviewofpapersregarding thetargetingcellularandmolecularmechanismsofnanovesicularsystemsforthetreatmentofdifferentdiseaseswere performedviaMedLine,ScopusandWebofScienceplatforms.

1.2Lipidnanovesicularsystems

1.2.1Liposomes

Liposomesarevesicularsystemscomposedofphospholipidbilayers,andtheirsizerangesfromafewtensofnanometersupto1000nm.26 36 Theyarebiocompatibleandbiodegradabledeliverynanosystems.26 36 Liposomaldrugs aremarketedmedicineswithgreatpotentialinthefieldofcancertherapyaswellasotherdiseases.30 31,34 According torecentliterature,patentpublicationsonliposomalformulationshaveexpandedinnovativeareasinpharmaceutical nanotechnology.30 31,34 Thecompositionoftheliposomaldispersionandtheformulationprocessesarethefocuspoints ofmostofthepublishedpatents.Specialattentionisgiventoformulateliposomalsuspensionswithgreatstabilityover timeandwithcontrolledreleasepropertiesoftheencapsulatedAPI.30,34 TheQuality-by-Designandthescale-upof liposomalformulationsgaintheinterestofboththeacademicandindustrialcommunity.30,34 Liposomesareadministeredthroughdifferentroutesincludingtheoralroute.TheycanimprovetheoralbioavailabilityofavarietyofAPIs includingpeptidesandproteins.29,33 Sometimes,thesurfacemodificationismandatoryfortheoraladministrationof thesedeliveryplatforms.33 Additionally,thedesignofeffectiveliposomalformsforinhalationisalsoanimportant researchsubjectanddependshighlyonthecompositionofthevesicles,withtheaimofreducingthedetrimentaleffect ofshearingonliposomestabilityandmaximizingtheirdepositioninthelungtree.32 Finally,stealthliposomesarea subcategoryofliposomeswithbiocompatibleandlowproteinbindingpolymercoatingsexhibitinghighercirculation timeinthehumanbloodavoidingthedecompositionfromtheplasmaproteins.36 Stealthliposomesarealsomarketed medicinesforcancertherapy.31,36

1.2.2Elasticliposomes:ethosomesandtransferosomes

Elasticliposomesareacategoryofliposomesforcutaneousadministration,includingdermalandtransdermaldelivery oftheAPIs.37 Inthisclassofvesicularnanosystem,ethosomesandtransferosomesarecategorized.15,38 55 Ethosomes consistofphospholipids,ethanolathighpercentages(upto40% 50%)andaqueousmedium.15,42 46 Thefluidityof ethosomalmembraneisquitefluidduetothepresenceofethanol.Additionally,theethanolhighpercentageinethosomalformulationsallowsthevesiclestopenetratedeeperintotheskin.15,42 46 Accordingtotherecentliterature,glycerosomesandtrans-ethosomesarephospholipidvesiclescontainingglyceroloramixtureofethanolandedge activators.Theedgeactivatorsalsoenhancetheskinpenetration.49 Thesevesicularsystemshavebeenalreadyusedfor thetreatmentofskinbacterialandfungalinfections,acne,skincancersandinflammation.15,42 55 Forexample,fisetin loadedbinaryethosomesformulationisapotentialdermaldeliverysystemforthemanagementofskincancer.47 Ethosomeshavepotentialapplicationsinthedevelopmentofphytomedicines,forthetreatmentofchallengingdiseases. 54 Forexample,fluorouracilethosomeshavebeendevelopedforskindepositionandmelanomatreatmentinmice models.Stabilizationandeffectiveapplicationinskinofantioxidantsandnanocosmeceuticalcompounds,likecaffeic acidandrosmarinicacid,havebeenachievedbytheirencapsulationintoethosomes.53 55 Transfersomesofferaversatiledeliveryconceptforfacingtheinstabilitylimitationsaswellasthepotentialtobeusedwithawiderangeof APIs.56 61 Comparativestudyofliposomes,ethosomesandtransfersomesascarriersforenhancingthetransdermal deliveryofdifferentAPIsinvitroandinvivohaveappearedintheliterature,showingtheaddedvalueoftransfersomes indermalandethosomesintransdermaldelivery.Theyare(quasi)metastable,whichmakesthemembraneultra-flexible andarecharacterizedas“softvesicles.”Forthisreason,theycaneasilysqueezethroughporesinthestratumcorneum. Surfactants/edgeactivators(i.e.,sodiumcholates;Tween-80andSpan-80)arealsocomponentsoftransferosomesas flexibilityagents.Thepercentageofsurfactants/edgeactivatorsisbetween10%and25%,whilethepercentageofethanolrangesbetween3%and10%.Thisisthemaindifferencebetweenethosomesandtransferosomes(thepercentageof ethanolintheformulation).49 59 Lyophilizedtransfersomalgelcontainingoleicacidwasconsideredasapromising nanosystemforhydrophilicAPIslikebuspironehydrochloride.58 Transferosomesarepromisingdeliveryplatformsfor anticanceragentforthetreatmentofskincancersaswell.59 61 In Table1.1,examplesofresearchreportsonusing transfersomesascarriersforthedeliveryofanticanceragentsarepresented.

TABLE1.1 Examplesofresearchreportsonusingtransfersomesascarriersforthedeliveryofanticanceragents.

Anticancer drugs Conventional topical available formulation (market)

InvestigationLipidandsurfactantusedObservations/conclusions

Doxorubicin hydrochloride (DOX) DOXILAnovelhyaluronicacid-modified transfersomewaspreparedto deliverdrugstolymphatics throughthetransdermalroute. Hyaluronicacideffectively improvedtheuptakeofdrugloadednanocarriersbytumorcells

5-FluorouracilFluroplexDifferentformulationof transfersomewaspreparedusing Tween-80andSpan-80asedge activators.5-FUcontaining transfersomeloaded1%Carbopol 940usedfordeeperpenetration intoskintumorsandtocompare itsanticancerefficacywithits marketedformulationforthe treatmentofskincancer

GemcitabineGemzarInvestigatedassupramolecular vesicularaggregates(SVAs) preparedbyself-assembling liposomesandpolyasparthy drazidecopolymersconjugatedto folicacidmoleculesaspotential activetargetingformulationfor anticancerdrugdelivery

EfudexCreamInthisstudy,constructed transfersomes,liposomes,and niosomesof5-FUfortopical applicationforthetreatmentof actinickeratosisand nonmelanomaskincancer. Transfersomeswerepreparedby thesolventevaporationmethod, whereasliposomesandniosomes wereconstructedbythereversephaseevaporationmethod

Cytotoxicitystudywascarriedout onHaCaTcells

Sodiumdeoxycholate,lecithinResultsrevealedthatDOX-loadedHA-GMS-Twasableto penetrateefficientlyintothedeepskintissue,leadingto enhancedabsorptionbylymphaticsanddecreasedorgan toxicity.Thisstudyprovidesanewanglefortumor metastasistherapythroughlymphaticdrugdeliverywith transdermalnanomedicine

Tween-80,Span-80,edgeactivatorsTheresultsshowedthatTween-80seemstobeabetter edgeactivatorthanSpan-80onthebasisofvesiclesize andentrapmentefficiency.Thetransfersomalgelwasable toimprovebothinvitroskinpermeationandskin depositionof5-FUcomparedwiththemarketed formulation.Transfersomesshowedmaximumskin deposition(81.3%)andcomparabletransdermalfluxof 21.46mg/cm2/h

1,2-dipalmitoyl-sn-glycero-3phosphocholinemonohydrate(DPPC)and N-(carbonyl-methoxypolyethyleneglycol2000)-1,2-distearoyl-sn-glycero-3phosphoethanolamine(DSPE-MPEG2000), cholesterol

Dimiristoylphosphatidylcholine, dipalmitoylphosphatidylcholine,cholesterol, sodiumcholate

Theresultsshowedthatchemotherapeuticactivityof gemcitabinewasincreasedextensivelyduringinvivo experimentsonNOD-SCIDmicebearingMCF-7human xenograftmodelsafteritsentrapmentinsidethefolatetargetedSVAs.Boththevolumeandweightofthetumor massesweredecreasedifcomparedwiththoseobtained bytreatinganimalmodelswithgemcitabine-loaded mPEG-SUVsandthefreeformofgemcitabine

TheIC50valueoftransfersomes(1.02 μmol/L),liposomes (6.83 μmol/:),andniosomes(9.91 μmol/L)wasfoundtobe farlessthan5-FU(15.89 μmol/l)at72h.5-FU-loaded transfersomeswerefoundtobemostcytotoxiconthe HaCaTcelllineincomparisonwithliposomesand niosomes.Theresultsconcludedthatvesiculizationof5FUnotonlyimprovesthetopicaldelivery,butalso enhancesthecytotoxiceffectof5-FU

(Continued )

5-Fluorouracil (5-FU)

TABLE1.1 (Continued)

Anticancer drugs Conventional topical available formulation (market)

Raloxifene hydrochloride

InvestigationLipidandsurfactantusedObservations/conclusions

CelecoxibCelecoxib topical

Inthisstudy,aresearcher developedandoptimized raloxifenehydrochlorideloaded nanotransfersomesfortransdermal delivery,toovercomethepoor bioavailabilityofthedrug.A responsesurfacemethodology experimentaldesignwasapplied fortheoptimizationof transfersomes,using Box Behnkenexperimental design

Threekindsofcelecoxib-loaded vesicularformulationshavebeen investigatedasdrugcarriers, liposomescontainingasurfactant, ortransfersomesandethosomes containingsuitableedgeactivators

Phospholipon90G,sodiumdeoxycholateRaloxifenehydrochloride-loadedtransfersomesproved significantlysuperiorintermsofamountofdrug permeatedanddepositedintheskin,withenhancement ratiosof6.25 6 1.50and9.25 6 2.40,respectively,when comparedwithconventionalliposomes,andanethanolic solution.Differentialscanningcalorimetrystudyrevealed agreaterchangeinskinstructure,comparedwitha controlsample,duringtheexvivodrugdiffusionstudy. Further,confocallaserscanningmicroscopyprovedan enhancedpermeationofcoumarin-6-loaded transfersomes,toadepthofapproximately160 μM,as comparedwithrigidliposomes

Tween-20,ethanolAllvesicularformulationsmarkedly(p , 0.001)improved thedrugamountthatpenetratedintotheskinwithrespect toanaqueoussuspension,from2.0to6.5,upto9.0-fold forliposomes,transfersomes,andethosomes,respectively. Inparticular,ethosomescontainingTween-20asedge activatorenabledthehighestincreaseindrugpenetration throughtheskin,probablyduetothesimultaneous presenceintheircompositionofethanolandTween-20, bothactingaspermeationenhancers

Vinblastine

Inthisstudyvinblastineliposomes werepreparedfromlipids dimiristoylphosphatidylcholineand dipalmitoylphosphatidylcholine withcholesterolandtransfersomes withsodiumcholatewereprepared bythethin-filmhydrationmethod. Thedrugencapsulation,stability, drugreleaseandinvitrohuman celllineswereperformed

Dimiristoylphosphatidylcholine, dipalmitoylphosphatidylcholine,cholesterol, sodiumcholate

Theresultsshowedthatencapsulationofvinblastineinto liposomeswashigherthan98%atadrug/phospholipid molarratiofrom0.17to0.18,whileencapsulationof vinblastineintotransfersomesvariedfrom50%to80%at adrug/phospholipidmolarratiofrom0.05to0.09.The retentionofdruginliposomesandintransfersomeswas foundtobetime-dependent.Theresultsofcelllinestudy showedthattheliposomeswerefoundtoexhibit20-fold lessactivityascomparedwiththefreevinblastine

Source:AdaptedfromRaiS,PandeyV,RaiG.Transfersomesasversatileandflexiblenano-vesicularcarriersinskincancertherapy:thestateoftheart. NanoRevExp.2017;8(1):1325708. https://doi.org/ 10.1080/20022727.2017.1325708

1.2.3Niosomes

Niosomesareself-assembledvesicularsystemsinnanoscaleformedbythehydrationofnonionicsurfactant(s)(i.e., alkylethers,alkylesters,fattyacids,andaminoacids),cholesterolorotheramphiphilicmolecules,mainlycharged,that serveasaversatileplatformwithavarietyofapplicationsrangingfromtransdermaldeliverytobrain-targeteddelivery, aswellasfororaladministrationandcosmeceuticalpurposes.62 77 Niosomesarehighlykineticallyandthermodynamicallystableincomparisontootherlipidicsystems(i.e.,liposomes).63 Theapplicationsofniosomesindifferentareasof medicineandpharmaceuticsaresummarizedin Table1.2.Furthermore,themainobjectiveofthedesignandthedevelopmentofthisvesicularsystemistocontrolthereleaseofAPIinasustainedway,alterationofitsADMEprofileand fortargetingtothespecifictissuesandorgans.67,68 Niosomescanbeusedfornuclearimagingandradiolabelling. Accordingtorecentpublications,theformulated 99mTc-labeledniosomespossessedhighradiolabellingefficacy,good stabilityinvitro,andshowgoodpromiseforpotentialuseinnuclearimaginginthefuture.66,70 SurfacemodifiedniosomesbyhyaluronicacidcomposedofTween60andSpan60asnonionicsurfactants,andcholesterol,wereusedfor thedeliveryof Centellaasiatica extractwithgreatresultsintransdermaladministration.74 TheoraldeliveryoftelmisartanwasachievedbytheniosomescomposedofSpan60andcholesterol.76 Inthefinaltwoexamplesthestudiedniosomeswerepreparedbythethin-filmhydrationmethod,asimpleandlow-costtechnique.

1.2.4Ufasomes

Ufasomesappearedintheliteratureatearly1970s.78 88 Ufasomesarestableparticlessurroundedbyunsaturatedfatty acidmembranesaccordingtoGebickiandHicks.78 Long-chainfattyacids,thatis,oleicandlinoleicacids,selfassembleintovesiclesbymechanicalagitationofthin-filmsinthepresenceofaqueousdispersions.78 85 Thesizeof ufasomesisstronglydependentontheircomposition.78 88 TheincreasedintestinalabsorptionofpoorlysolubleAPIs suchascarboxyfluoresceinmakesufasomescarrieswithgreatpotentialfororaladministrationofpharmaceutics.80 The semipermeablemembranesofufasomesareidealfordrugdeliveryandforavoidingtheenzymeattack.78 80 Ufasomes wereusedforthedeliveryofoleuropein,whichisabiologicalphenoliccompoundofoliveoil,andtheresultsshowed improvedantioxidantactivityandincreasedpotentialfornutraceuticalapplications.83 Ufasomesloadedwithcinnarizine werelyophilizedandincorporatedinhydrogelsforintranasaladministration.84 Exvivoconfocallaserimagingconfirmedtheaddedvalueofthepreparedvesicularcarrierstopenetratedeepthroughnasalmucosalayers.84 Theencapsulationefficiencyofantifungalagentsintoufasomesisapproachingto50%,whichispromisingforfurtherstudiesfor invitroandinvivoevaluation.85,86 Skinpermeationandskinretentionstudiesshowedthattheufasomesoffernumerousadvantagesforthedeliveryofantifungalagents,thatis,clotrimazoleandfluconazole.85,86 Thetopicaldeliveryof methotrexateisalsoachievedbyufasomesforthetreatmentofinflammationinrheumatoidarthritis.87

1.3Polymernanovesicularsystems

1.3.1Polymersomes/polymervesicles

Inthelasttwodecades,polymersomeshaveattractedincreased attentioninthescientificcommunitybecausetheyexhibitsignificantadvantagesinthefieldofpharmaceuticalnanotechnologyandnanomedicine.89 107 Polymersomesarecomposedof amphiphilicblockcopolymers,whichself-assembleinto vesicularstructuresinaqueousandbuffersolutions.89 97 Thesize andtheshapeofpolymersomescouldbecontrolledbychanging themolecularweightandthefunctionalgroupsoftheblock copolymers,whicharethecrucialfactorsforthepackingofself-assemblingamphiphilicpolymerchainsintotheformed nanostructures.98 Theincreasedcolloidalstabilityofpolymersomes,thelowfluidityandthetunablemembraneproperties overcomethelimitationsoflipidvesicularsystemsfordrugdeliveryapplications,especiallyliposomes.95,98 Polymersomes havebeenalreadyusedformedicalimagingandtheranosticpurposes.100 107 In Fig.1.1 aschematicrepresentationofpolymersomeassemblyillustratingthreepossibleapplications,opticalimaging,drugdelivery,andtargetedtherapy,ispresented. Fig.1.2 illustratesthepolymersomeassembliesandthecellularuptakeandrelease.Severalexampleshaveappearedintheliteratureusingstimuli-sensitiveandstimuli-responsivepolymersomesforcontrolledreleaseandtargetingofAPIsincancer therapy.102 104 Thestimuli-responsiveAPIsreleasemayresultinsignificantlyimprovedtherapeutic effectivenessandminimizedadversedrugreactions.102 104 Polymersomesarealsousefulfortheloading ofproteins/peptideswithimprovedcirculationduration.Namely,endosomolyticpolymersomesincreasetheactivityofcyclicdinucleotidestimulatorofinterferongenes agoniststoenhancecancerimmunotherapyinhumanmelanoma.105 Simplesurfacefunctionalizationofpolymersomesusing nonantibacterialpeptideanchorshavebeenachievedfornanobiotechnologyapplications.106 Finally,itshouldbenotedthat polymersomesarethemostcommonterminologyforpolymervesicles.4,108 113 Accordingtotheliterature,polymervesicles

TABLE1.2 Applicationsofniosomes.

No.ApplicationsComponentsMethodusedDrugused

1..Asadrugdelivery carrier a, ω-Hexadecyl-bis-(1-aza)18-crown-6(bola), Span-80,Cholesterol

2Toincrease bioavailability

Cholesterol,Sorbitanmonostearate(span60), Dicetylphosphate(DCP)

Thinlayerevaporation technique 5-Fluorouracil (5-FU)

FilmhydrationmethodAcyclovir

Span20,Span40,Span60,cholesterol,DCPThin-filmmethod,Ether injectionmethod Griseofulvin

3..Forbraintargeting N-Palmitoylglucosamine(NPG),Span60, Cholesterol,SolulanC24

4..Toprolongthe releasetime

ProbesonicationmethodVasoactive Intestinal Peptide

SorbitanestersReverse-phaseevaporation method Rifampicin

5FordrugtargetingPalmiticacid N-Hydroxysuccinimide, Glucosamine,Sorbitanmonostearate(Span 60)

Cholesterol,Glycolchitosan,Sorbitan monostearate(Span60)

SonicationmethodTransferrin

Reverse-phaseevaporation method Methotrexate

6InleishmaniasisSpan40,Cholesterol,DCPSolventevaporationmethod14-Deoxy-11oxoandograph slide

Span20,Cholesterol,PhosphatidicacidMechanicalshakingmethod withoutsonication Amarogentin

7..For antiinflammatory effect

8Inanticancer therapy

9..Inlocalized psoriasis

Cholesterol(CH),Dihexadecylphosphate (DCP),Surfactants(Tween85,PluronicF108)

Reverse-phaseevaporation method Diclofenac sodium

C16MonoalkylglyceroletherSonicationmethodDoxorubicin

Span60,Cholesterol,DCPLipidlayerhydrationmethodBleomycin Span20,Span60,Span40,Tween20, Tween60,Brij76,Brij78,Brij72

ThinlayerhydrationmethodPaclitaxel

Span40,cholesterolTransmembranepHgradient (insideacidic)druguptake process(remoteloading method)

Vincristine

ChitosanLipidlayerhydrationmethodMethotrexate

10.Inoraldeliveryof peptidedrug Brij52,Brij72,Brij92,Brij76,Brij97,Brij58, Brij35,DCP,Cholesterol

11.Indiagnostic imaging N-Palmitoyl-glucosamine(NPG),Polyethylene glycol(PEG)-4400

12.Intransdermaldrug deliverysystem a, ω-Hexadecyl-bis-(1-aza)18-crown-6(bola), Span-80,Cholesterol

13.Inophthalmicdrug deliverysystem

FilmhydrationmethodInsulin

EtherinjectionmethodGadobenate

FilmhydrationmethodAmmonium glycyrrhizinate

Span20,Span60,CholesterolReverse-phaseevaporation method,Thinlayerhydration method Acetazolamide

14.ForlungtargetingSpan85,cholesterolHandshakingmethod,Ether injectionmethod Rifampicin

15.Inthromboembolic disease Hexadecylpoly(3)glycerol,DCP,CholesterolFilmmethodUrokinase (Continued )

TABLE1.2 (Continued) No.ApplicationsComponentsMethodusedDrugused 16.Forstability improvement Span60,CholesterolEtherinjectionmethodFluconazole

17.Toincreaseimmune responseand immunological selectivity

Dimethyldioctadecylammoniumbromide (DDA)anda,a-trehalose-6,6-dibehenate (TDB),1-Monopalmitoylglycerol(MP), Cholesterol

Dehydration rehydration method Ag85B-ESAT6,MSP1or GLURP

18.Forsustained antiplateleteffect Cholesterol,Tween60,StearylamineLipidhydrationmethodIndomethacin

19.ForlivertargetingSpan60,Cholesterol,DCPThin-filmhydrationmethodRibavirin 20.Forenhancementof therapeuticindex SpanandTween(20and/or60),cholesterolReverse-phaseevaporation method a-Lipoicacid

21.Toincrease entrapment efficiency Span60,Cholesterol,DCPThin-filmhydrationmethodKetoprofen

22.ToreducetoxicitySpan20,Span40,Span60,cholesterolThin-filmhydrationmethodCefpodoxime Proxetil

Source:AdaptedfromRajeraR,NagpalK,SinghSK,MishraDN.Niosomes:acontrolledandnoveldrugdeliverysystem. BiolPharmBull.2011;34 (7):945 953. https://doi.org/10.1248/bpb.34.945

FIGURE1.1 Generalapplicationofpolymersomearchitectureintherapeutics.Schematicofpolymersome assemblyillustratingthreepossibleapplications, namelyopticalimaging,drugdelivery,andtargeted-therapy. AdaptedfromLevineDH,GhoroghchianPP,FreudenbergJ,etal.Polymersomes:anew multi-functionaltoolforcancerdiagnosisandtherapy.Methods.2008;46(1):25 32. https://doi.org/10.1016/j.ymeth.2008.05.006

aregenerallyfabricatedthroughtheself-assemblyprocessofamphiphilicpolymers withalineararchitectureinaqueousor bufferdispersionmedia.4,108 113 Polymervesiclesmimicthepropertiesofbiologicalmembranesandareusedfordrugdeliverypurposes,aspolymersomes.Polymervesiclesarealsocharacterizedassmartnanocontainersduetotheirtargetedpropertiesforintracellulardelivery,especiallyincancertherapeutics.112,113

1.3.2Nanovesicularsystemsfortargetingtocellularmechanisms

Inthissection,wediscussnanovesicularsystemsformodifyingimportantcellularmechanismswhichcontrolthecell cycle,theapoptoticpathwaysandautophagy.Thecellcycleisacomplicatedprocesscomposedoftheinterphase(in whichDNAisreplicatedwhilecellgrowthispromoted)andtheMphase(inwhichthereplicatedchromosomesare separatedcelldivisionfollows).Givenitscrucialroleinhealthanddiseaseofhumans,severalnanovesicleshave

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.