Applications of hypothesis testing for environmental science abbas f.m. alkarkhi - Instantly access

Page 1


https://ebookmass.com/product/applications-of-hypothesis-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Applied Statistics for Environmental Science With R 1st Edition Abbas F. M. Alkarkhi

https://ebookmass.com/product/applied-statistics-for-environmentalscience-with-r-1st-edition-abbas-f-m-alkarkhi/

ebookmass.com

Introduction to Robust Estimation and Hypothesis Testing

4th Edition Rand Wilcox

https://ebookmass.com/product/introduction-to-robust-estimation-andhypothesis-testing-4th-edition-rand-wilcox/

ebookmass.com

Introduction to Robust Estimation and Hypothesis Testing

5th Edition Rand R. Wilcox

https://ebookmass.com/product/introduction-to-robust-estimation-andhypothesis-testing-5th-edition-rand-r-wilcox/

ebookmass.com

Morrey’s The Elbow and Its Disorders 5th Edition Bernard F. Morrey

https://ebookmass.com/product/morreys-the-elbow-and-its-disorders-5thedition-bernard-f-morrey/

ebookmass.com

Spinoza and Biblical Philology in the Dutch Republic, 1660-1710 Jetze Touber

https://ebookmass.com/product/spinoza-and-biblical-philology-in-thedutch-republic-1660-1710-jetze-touber/

ebookmass.com

The Fall of the Roman Republic: Roman History, Books 36-40 (Oxford World's Classics) Dio

https://ebookmass.com/product/the-fall-of-the-roman-republic-romanhistory-books-36-40-oxford-worlds-classics-dio/

ebookmass.com

Good Governance: Concept and Context Henk Addink

https://ebookmass.com/product/good-governance-concept-and-contexthenk-addink/

ebookmass.com

The Mineral Fix: How to Optimize Your Mineral Intake for Energy, Longevity, Immunity, Sleep and More 1st Edition

https://ebookmass.com/product/the-mineral-fix-how-to-optimize-yourmineral-intake-for-energy-longevity-immunity-sleep-and-more-1stedition-james-dinicolantonio/ ebookmass.com

eTextbook 978-0133412130 Exploring Microsoft Office 2013, Brief: Microsoft Office 2013, Brief (Exploring for Office 2013)

https://ebookmass.com/product/etextbook-978-0133412130-exploringmicrosoft-office-2013-brief-microsoft-office-2013-brief-exploring-foroffice-2013/

ebookmass.com

AACN Essentials of Progressive Care Nursing, Third Edition (Chulay, AACN Essentials of Progressive Care Nursing) 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/aacn-essentials-of-progressive-carenursing-third-edition-chulay-aacn-essentials-of-progressive-carenursing-3rd-edition-ebook-pdf/ ebookmass.com

Applicationsof HypothesisTestingfor EnvironmentalScience

AbbasF.M.Alkarkhi

UniversityofKualaLumpur(Unikl)–Malaysia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-824301-5

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JosephHayton

AcquisitionsEditor: MarisaLaFleur

EditorialProjectManager: GraceLander

ProductionProjectManager: SruthiSatheesh

CoverDesigner: ChristianBilbow

TypesetbyMPSLimited,Chennai,India

Dedication

Tothememoryofmyparents(deceased)

TomybelovedchildrenAtheer,Hibah,andFarah

Tomybelovedwife

Prefacexi

1Introductiontostatisticalhypothesistesting1 Learningoutcomes1 1.1Introduction1 1.2Whatishypothesistesting?2

1.3Thegeneralprocedureforperformingstatistical hypothesistesting6

1.4Proceduresforperforminghypothesistesting10 1.5Typesoferrors11 Furtherreading12

2Z-testforone-samplemean13 Learningoutcomes13

2.1Introduction13

2.2Whatisnormaldistribution?14

2.3Whatisstandardnormaldistribution?15

2.4Findingtheareaunderthenormalcurve16

2.5Hypothesistestingforonesamplemean(Z-test)25 Furtherreading32

3t-testforone-samplemean33 Learningoutcomes33 3.1Introduction33

3.2Whatistdistribution?34

3.3Findingthetcriticalvalues35

3.4Hypothesistestingforaone-samplemean(t-test)39 Furtherreading46

4Z-testforonesampleproportion47 Learningoutcomes47 4.1Introduction47

4.2WhatisBernoullidistribution?48

4.3WhatisBinomialdistribution?48

4.4Hypothesistestingforonesampleproportion(Z-test)52 Furtherreading61

5Chi-squaretestforonesamplevariance63

Learningoutcomes63

5.1Introduction63

5.2Whatischi-squaredistribution?64

5.3Findingthechi-squarevalues(areaunderthechi-squarecurve)65

5.4Hypothesistestingforone-samplevarianceorstandarddeviation71

Furtherreading78

6Theobservedsignificancelevel(P-value)procedure79

Learningoutcomes79

6.1Introduction79

6.2Whatistheobservedsignificancelevel?80

6.3Computingthe P-valueforaZ-test80

6.4Testingonesamplemeanwhenthevariance isknown: P-value85

6.5Computingthe P-valueforat-test90

6.6Testingonesamplemeanwhenthevariance isunknown: P-value95

6.7Testingonesampleproportion: P-value101

6.8Computethe P-valueforachi-squaretest107

6.9Testingone-samplepopulationvarianceor standarddeviation: P-value112

Furtherreading118

7Intervalestimationforonepopulation121

Learningoutcomes121

7.1Introduction121

7.2Whatisintervalestimation?122

7.3Confidenceintervalforonepopulationmean123

7.4Confidenceintervalforonepopulationproportion128

7.5Confidenceintervalforonepopulationvariance131

Furtherreading133

8Theintervalestimationprocedure:hypothesistesting foronepopulation135

Learningoutcomes135

8.1Introduction135

8.2Thestepsfortheconfidenceintervalprocedure136

8.3Confidenceintervalfortestingonemeanvalue:Z-test136

8.4Confidenceintervalfortestingonemeanvalue:t-test140

8.5Confidenceintervalfortestingoneproportionvalue145

8.6Confidenceintervalfortestingonestandarddeviationvalue149

Furtherreading154

9Hypothesistestingforthedifferencebetweentwopopulations155 Learningoutcomes155 9.1Introduction155

9.2Thegeneralprocedurefortestingtwosamples156

9.3Testingthedifferencebetweentwomeanswhenthe samplesizeislarge161

9.4Testingthedifferencebetweentwomeanswhenthe samplesizeissmall169

9.5Testingtwodependentsamples179

9.6Testingthedifferencebetweentwoproportions189

9.7Testingtheratiooftwovariances199 Furtherreading208

10Intervalestimationforthedifferencebetweentwopopulations209 Learningoutcomes209 10.1Introduction209

10.2Thestepsfortheconfidenceintervalprocedurefor thedifferencebetweentwopopulations210

10.3Confidenceintervalforthedifferencebetweentwomeans whenthesamplesizeislarge210

10.4Confidenceintervalforthedifferencebetweentwomeans whenthesamplesizeissmall214

10.5Confidenceintervalfordependentsamples218

10.6Confidenceintervalforthedifferencebetweentwoproportions221

10.7Confidenceintervalfortheratiooftwovariances225 Furtherreading229

11Theintervalestimationprocedure:hypothesistestingfortwo populations231 Learningoutcomes231 11.1Introduction231

11.2Thestepsfortheconfidenceintervalprocedureforthe differencebetweentwopopulations232

11.3Confidenceintervalfortestingthedifferencebetween twomeanswhensamplesizeislarge232

11.4Confidenceintervalfortestingthedifferencebetween twomeanswhenthesamplesizeissmall238

11.5Confidenceintervalfortestingtwodependentsamples246

11.6Confidenceintervalfortestingthedifferencebetween twoproportions251

11.7Confidenceintervalfortestingtheratiooftwovariances257 Furtherreading263 Appendix265 Index275

Preface

Inthisbookapplicationsofhypothesistestingforenvironmentalscienceare describedinaneasyandenjoyablestyletohelpandassistgraduateandpostgraduate studentsandresearchersworkinginthefieldsofenvironmentalscience,environmentalengineering,andrelatedfields.Thelackofknowledgeofmanyresearchersabout theconceptandapplicationofhypothesistestingintheenvironmentalfield,includinghowtostatethehypothesis,howtochoosethemostsuitabletest,andhowto interpretanddrawconclusionsmotivatedmetowritethisbookandintroduce hypothesistestingforoneandtwoparameterscoveringthreeproceduresforhypothesistesting(criticalvalue, P-value,andconfidenceinterval)andtoconnectthetheorytotheenvironmentalfieldtomeettheneedsofresearchersandenablethemto carryoutvarioustestingproceduresanddrawconclusions.

Theconceptofhypothesistesting,thetypeoftest,interpretationoftheresults, anddrawingconclusionsarecarriedoutinastep-by-step,easy,andclearmannerto enableresearcherstounderstanditclearlyanduseitintheirresearch.Thebook focusesontheapplicationofhypothesistestingforoneandtwopopulationparametersincluding Z-test, t-test,chi-squaretest,and F-test,whicharefrequentlyused byresearchersintheenvironmentalfield.Mostofthetutorialsinthebookusereal dataobtainedthroughover18yearsofresearchinthisarea.

Finally,Iwishtothankmybelovedfamilyfortheircontinuoussupport.Ialsowould liketoexpressmygratitudetoUniversityofKualaLumpur(Unikl)foritssupport.

AbbasF.M.Alkarkhi

June2020

Introductiontostatistical hypothesistesting

Abstract

Chapter1istheintroductorychapterthatpresentsthephilosophyofhypothesistesting andtheconceptofnullandalternativehypotheses,rejectionregion,nonrejectionregion, significancelevel,andcriticalvalues.Furthermore,thegeneralprocedureforperforming hypothesistestingisgivenalongwiththetwotypesoferrorsthatcouldoccurwhileperformingtheprocedure.Typesofhypothesistestingincludingone-tailed(right-tailedand left-tailed)andtwo-tailedtestsaredeliveredinasimpleandeasytounderstandway.This chapterincludesexamplesobtainedfromthefieldofenvironmentalsciencetoshowthe applicationofhypothesistestinginthefieldofenvironmentalscienceandengineering.

Keywords: Nullandalternativehypotheses;criticalvalue;rejectionandnonrejection regions;significancelevel;typesIandIIerrors

Learningoutcomes

Aftercompletingthischapter,readerswillbeableto:

● Understandthephilosophybehindhypothesistestingidea;

● Knowthegeneralprocedureforperforminghypothesistesting;

● Knowhowtodefinethetwohypotheses(nullandalternative);

● Describethestepsonhowtosetupthenullandalternativehypothesesintermsofmathematicalforms;

● Understandthedifferencebetweenrejectionandnonrejectionregions;

● Knowhowtoobtaincriticalvaluesfromaprobabilitydistributiontable;

● Knowthelevelofsignificanceandhowtouseit;

● Knowhowtousethesampledataincalculatingtheteststatistic;

● Describethetwotypesorerrors(typeIandtypeIIerrors);

● Understandthedifferencebetweentwo-tailedandone-tailedtests;

● Understandtheprocedureforapplyinghypothesistestinginthefieldofenvironmental scienceorengineering;

● Explaintheoutputsandmatchtheresultstoenvironmentalissues;

● Knowhowtoextracthelpfulinferencesregardingtheproblemunderstudy.

1.1Introduction

Researchersusuallycarryoutvariousexperimentsusingstatisticaltechniques forcollecting,analyzing,summarizing,anddrawconclusionstogather ApplicationsofHypothesisTestingforEnvironmentalScience.DOI: https://doi.org/10.1016/B978-0-12-824301-5.00006-X © 2021ElsevierInc.Allrightsreserved.

2ApplicationsofHypothesisTestingforEnvironmentalScience

informationregardingthebehaviorof populationsunderinvestigationandhelp inmakingjudgmentsregardingthepurpo seofstudy.Statisticalhypothesistestingisusedtomakejudgmentsregardin ganyclaimorissueusingthesample datatoobtainthecorrectdecisionthat guidesresearcherstoaccomplishthe researchandachievetheobjectives.Gat heringinformationcanbedoneusinga representativesamplechosenfromthes amepopulationunderinvestigation. Hypothesistestingisanimportantmeth odtoexaminevariousclaimsorstatementsregardingdifferentissuestosupportordenytheclaimsinordertoplan forthenextstep.

Hypothesistestingconcerningpopulationproportions,populationmeans,and populationvariancesisofthesubjectofthistext.A Z-testisusedtocarryout hypothesistestingregardingpopulationproportions.Furthermore,a Z-testcanbe usedforpopulationmeanswhenthesamplesizeislarge,anda t-testisusedwhen thesamplesizeissmall.Achi-squaretestand F-testareusedtotestahypothesis concerningoneandtwovariances.

Asanexample,consideraresearcherwhowantstotestaclaimregardingthe concentrationoftotalsuspendedsolids(TSSs)inthesurfacewaterofariver,the claimsaysthatthemeanconcentrationofTSSsis465(mg/L).Asampleshouldbe selectedfromtheriverandtestedfortheconcentrationofTSSsandthentheresults summarizedandanalyzedtofinallydecidewhethertosupporttheclaimorto rejectit.

1.2Whatishypothesistesting?

Hypothesistestingisastatisticaltechniqueusedtomakejudgmentsregarding claimsorstatementsrelatedtopopulations.Theopinionanddefinitionofhypothesistestingwiththegeneralprocedureofconductingtheanalysisareclarifiedbefore beingappliedtoenvironmentaldata.

Anyclaimorstatementmadeonpopulationparameters(mean,standarddeviation,andproportion)iscalledahypothesis.Asampleshouldbechosenfromthe populationofinteresttounderstandthebehavioroftheissueunderinvestigation andmakeajudgmentbasedonthecollectedsampleinformation.

Wecanidentifytwotypesofhypotheses:thenullhypothesisandthealternative hypothesis.Thetwohypothesesaremutuallyexclusive(theycannotoccur together).

Thenullhypothesisisastatisticalhypothesisthatsaysnorealdifference existsbetweenapopulationparameter(s uchasproportion,average,andstandarddeviation)andsomeclaimedvalue(givenvalue).Thesymbolfornull hypothesisis H 0

Thealternativehypothesisisastatisticalhypothesisthatrepresentstheopposite ofthenullhypothesis.Analternativehypothesissaysthatarealdifferenceexists betweenapopulationparameterandagivenvalue.Thesymbolforalternative hypothesisis H1

Threestepscanbeemployedtospecifythenullandalternativehypothesesmathematicallyasgivenbelow.

1. Findoutthehypothesisconcerningtheissueunderinvestigation.

2. Translatethewordsofthenullhypothesisintoamathematicalexpression.

3. Translatethewordsofthealternativehypothesisintoamathematicalexpression.

Example1.1:Specifythetwohypothesesforthetwo-sidedtest: Anenvironmentalistwishestoinvestigateaclaimregardingthemeanconcentrationofcadmium (Cd)ofsurfacewater.Theenvironmentalistwantstoexaminetheclaimthatthe meanconcentrationofcadmiumofsurfacewateris0.17mg/L.

Thethreestepsforspecifyingthenullandalternativehypothesescanbeusedto writethetwohypothesesasshownbelow.

1. Findoutthehypothesisconcerningtheissueunderinvestigation

Onecanseethatthehypothesisisgiveninwords;thusweneedtofigureoutthe hypothesis.Thehypothesissays,“themeanconcentrationofcadmiumofsurfacewateris 0.17mg/L.”

2. Translatethewordsofthenullhypothesisintoamathematicalexpression

Thenextstepinspecifyingthenullandalternativehypothesesistotranslatethewords ofthenullhypothesisintoamathematicalform.Thenullhypothesisstatesthatthemean concentrationofcadmiumofsurfacewaterisexactly0.17mg/L.Thisstatementcanbe translatedintoamathematicalformasgivenbelow:

where μ referstothepopulationmean.

Onecanseethattheequalitysignisunderthenullhypothesis.

3. Translatethewordsofthealternativehypothesisintoamathematicalexpression

Thenullhypothesisstatesthatthemeanconcentrationofcadmiumofsurfacewater equals0.17mg/L.Theoppositeofthenullhypothesisrepresentsthealternativehypothesis,whichisnotequal.Thus,ifthemeanconcentrationofcadmiumofsurfacewateris notequalto0.17mg/L,thenthemeanconcentrationofcadmiumofsurfacewaterwillbe eithergreaterthanorlesserthan0.17mg/L.Wecanrecognizetwodirectionsforthe alternativehypothesis,thefirstdirectionisgreaterthan0.17mg/Landthesecond directionislessthan0.17mg/L.Thetwodirectionscanberepresentedinamathematical symbolas ¼ .Thealternativehypothesisintermsofamathematicalformis

17

Onecanseethatthenullandalternativehypothesesaremutuallyexclusive(theycannotoccuratthesametime).

Example1.2:Specifythetwohypothesesforaright-tailedtest: Anenvironmentalistwishestoinvestigateaclaimregardingthemeanconcentrationofcadmium (Cd)ofsurfacewater.Theenvironmentalistwantstoexaminetheclaimthatthe meanconcentrationofcadmiumofsurfacewaterisgreaterthan0.17mg/L.

H0 :μ 5 0:17ClaimðÞ
H1 :μ ¼ 0

Thethreestepsforspecifyingthenullandalternativehypothesescanbeusedto writethetwohypothesesasshownbelow.

1. Findoutthehypothesisconcerningtheissueunderinvestigation

Onecanseethatthehypothesisisgiveninwords;thusweneedtofigureoutthe hypothesis.Theclaimsays,“themeanconcentrationofcadmiumofsurfacewateris greaterthan0.17mg/L.”

2. Translatethewordsofthenullhypothesisintoamathematicalexpression

Thenextstepinspecifyingthenullandalternativehypothesesistotranslatethewords ofthenullhypothesisintoamathematicalform.Theclaimstatesthatthemeanconcentrationofcadmiumofsurfacewaterisgreaterthan0.17mg/L.Thus,ifthemeanconcentrationofcadmiumisnotgreaterthan0.17mg/L,thenthemeanconcentrationofcadmium ofsurfacewaterwillbeeitherequalto0.17mg/Lorlessthan0.17mg/L.Thuswecan usethetwodirectionstorepresentthenullhypothesisas # .Thisstatementcanbetranslatedintoamathematicalformasgivenbelow:

Onecanseethattheequalitysignisunderthenullhypothesis.

3. Translatethewordsofthealternativehypothesisintoamathematicalexpression

Thenullhypothesisstatesthatthemeanconcentrationofcadmiuminsurfacewater islessthanorequalto0.17mg/L.Theoppositeofthenullhypothesisrepresentsthe alternativehypothesis;thusifthemeanc oncentrationofcadmiumofsurfacewateris notlessthanorequalto0.17mg/L,thenthemeanconcentrationofcadmiumofsurface waterwillbegreaterthan0.17mg/L.Thuswecanrecognizeonedirectionforthealternativehypothesiswhichisgreaterthan0.17 mg/L.Thisdirectioncanberepresentedin amathematicalsymbolas . .Thealternativehypothesisintermsofamathematical formis:

Onecanseethatthenullandalternativehypothesesaremutuallyexclusive(theycannotoccuratthesametime).

Example1.3:Specifythetwohypothesesforaleft-tailedtest: Anenvironmentalistwishestoinvestigateaclaimregardingthemeanconcentrationofcadmium(Cd) ofsurfacewater.Theenvironmentalistwantstoexaminetheclaimthatthemean concentrationofcadmiumofsurfacewaterislessthan0.17mg/L.

Thethreestepsforspecifyingthenullandalternativehypothesescanbeusedto writethetwohypothesesasshownbelow.

1. Findoutthehypothesisconcerningtheissueunderinvestigation

Onecanseethatthehypothesisisgiveninwords;thusweneedtofigureoutthe hypothesis.Thehypothesissays,“themeanconcentrationofcadmiumofsurfacewateris lessthan0.17mg/L.”

2. Translatethewordsofthenullhypothesisintoamathematicalexpression

Thenextstepinspecifyingthenullandalternativehypothesesistotranslatethewords ofthenullhypothesisintoamathematicalform.Theclaimstatesthatthemean 4ApplicationsofHypothesisTestingforEnvironmentalScience

H0 :μ # 0 17
H1 :μ . 0 17

concentrationofcadmiumofsurfacewaterislessthan0.17mg/L.Thus,ifthemeanconcentrationofcadmiumisnotlessthan0.17mg/L,thenthemeanconcentrationofcadmiumofsurfacewaterwillbeeitherequalto0.17mg/Lorgreaterthan0.17mg/L.Thus wecanusethetwodirectionstorepresentthenullhypothesisas $ .Thisstatementcan betranslatedintoamathematicalformasgivenbelow:

0 :μ $ 0 17

Onecanseethattheequalitysignisunderthenullhypothesis.

3. Translatethewordsofthealternativehypothesisintoamathematicalexpression

Thenullhypothesisstatesthatthemeanconcentrationofcadmiuminsurfacewater isgreaterthanorequalto0.17mg/L.Theoppositeofthenullhypothesisrepresentsthe alternativehypothesis;thusifthemeanconcentrationofcadmiumofsurfacewateris notmorethanorequalto0.17mg/L,thenthemeanconcentrationofcadmiumofsurfacewaterwillbelessthan0.17mg/L.Thu swecanrecognizeonedirectionforthe alternativehypothesiswhichislessthan0.17mg/L.Thisdirectioncanberepresentedin amathematicalsymbolas , .Thealternativehypothesisintermsofamathematical formis:

H1 :μ , 0 17

Onecanseethatthenullandalternativehypothesesaremutuallyexclusive(theycannotoccuratthesametime).

Wecansummarizethethreesituationsofstatisticalhypothesesincludingonesituationforthetwo-tailedtestandtwosituationsfortheone-tailedtest.

1. Thetwo-tailedtestwillhavethetwohypothesesasgivenin Eq.(1.1).

H0 :μ 5 c H1 :μ ¼ c

2. Theright-tailedtestisaone-tailedtest,andthetwohypothesesfortheright-tailedtestare givenin Eq.(1.2).

0 :μ # c

H1 :μ . c (1.2)

3. Theleft-tailedtestisaone-tailedtest,andthetwohypothesesfortheleft-tailedtestare givenin Eq.(1.3).

H0 :μ $ c

H1 :μ , c (1.3) where c isagivenvalue.

Researchersusuallyemployoneofthehypothesesintheirresearchtomatchthe purposeofthestudy.

H
H

Note

● Onecanseethattheequalitysign 5 ; $ ; # ðÞ mustbeplacedwiththenullhypothesis H0

● Wealwaysinclude , , . ,or ¼ inthealternativehypothesis H1.

● Onecanseethatthetwohypothesesaremutuallyexclusive.

1.3Thegeneralprocedureforperformingstatistical

hypothesistesting

Thegeneralprocedureforconductinghypothesistestingcanbesummarizedbythe stepsgivenbelow.

Step1:Specifythenullandalternativehypotheses.

Step2:Selectthesignificancelevel(α)forthestudy.

Step3:Usethesampleinformationtocalculatetheteststatisticvalue.

Step4:Identifythecriticalandnoncriticalregionsforthestudy.

Step5:Makeadecisionandinterprettheresults.

Wewilldiscussthegeneralprocedurestep-by-stepsupportedbyexampleswhere necessary.

Step1:Specifythenullandalternativehypotheses

Wehavestudiedthisstepearlieronhowtowriteandspecifythenullandalternativehypotheses.

Step2:Selectthesignificancelevel(α)forthestudy

Thesignificancelevel,usuallycalledalpha(α),isalsocalledthelevelofsignificance.Considerthatthenullhypothesisistrue(H0),thentheprobabilityofrejectingthenullhypothesis(H0)iscalledthealphaorsignificancelevel.Thevalueof alphareferstothesignificanceoftheresults,andweusuallyselectthevalueof alpha(α)tobe0.05or0.01.

Step3:Usethesampleinformationtocalculatetheteststatisticvalue

Thesampleinformation(data)isusedtocalculateavaluecalledtheteststatistic. Thisvalueiscalculatedusingaspecificmathematicalformulaforeachdistribution. Researchersusetheteststatisticvaluetomakeadecisiontorejectthenullhypothesisornot.

Step4:Identifythecriticalandnoncriticalregionsforthestudy

Thecriticalandnoncriticalregionsarealsocalledrejectionandnonrejection regions;weshoulddelivertheconceptofcriticalvalues,andcriticalandnoncritical regions.

Therangeofvaluesoftheteststatisticthatwouldrejectthenullhypothesisis calledthecriticalregionortherejectionregionforahypothesistesting.

Therangeofvaluesoftheteststatisticthatwouldnotrejectthenullhypothesis iscalledthenoncriticalregionorthenonrejectionregionforahypothesistesting.

Thevaluethatiscalculatedfromaprobabilitydistributionrelatedtotheproblem understudyiscalledthecriticalvalue.Thisvalueisusedinhypothesistestingto 6ApplicationsofHypothesisTestingforEnvironmentalScience

differentiatethecriticalregion(where H0 shouldberejected)fromthenoncritical region.Wecancalculatecriticalvaluesforeachdistributionbasedonthesignificancelevel.

Wecanrecognizethecriticalandnoncriticalregionsbyemployingthreesimple stepsgivenbelow:

1. Specifythealternativehypothesis;

2. Selecttheappropriatesignificancelevel;

3. Extractthecorrectcriticalvalue.

Weshouldmakeadecisionregardingthenullhypothesisofthestudywhetherto reject H0 ornot.Thenweneedtointerpretthedecisionanddrawaconclusion regardingthestudyunderinvestigation.

Examplesaboutthemeanvaluewillbeshowntoidentifythecriticalandnoncriticalregions.Weconsiderthevariableunderstudytobenormallydistributed.

Example1.4:Identifythecriticalandnoncriticalregionsforthetwo-tailed test: Anenvironmentalistwishestoidentifythecriticalandnoncriticalregionsfor aclaimregardingthemeanconcentrationofcadmium(Cd)ofsurfacewater.The environmentalistwantstoexaminetheclaimthatthemeanconcentrationofcadmiumofsurfacewateris0.17mg/L.Useasignificancelevelof α 5 0.05toidentify thetworegions.Assumethatthedataarenormallydistributed.

Wecanusethethreestepspresentedearliertoidentifythecriticalandnoncriticalregionsforthetwo-tailedtest.

1. Specifythealternativehypothesis

Thekeytospecifyingthecriticalandnoncriticalregionsistoknowthealternative hypothesis.Thenullandalternativehypothesesare H0 :μ 5 0 17 H1 :μ ¼ 0:17

2. Selecttheappropriatesignificancelevel

Thesecondstepintheprocedureforidentifyingthecriticalandnoncriticalregionsis toselecttheappropriatesignificancelevel.Theappropriatesignificancelevelisselected tobe0.05(α 5 0.05).Becausethetestisatwo-tailedtest,weshoulddividealphaby2to identifytwoequallycriticalregionsonbothtails.

Anareaof0.025 α 2 willbeoneachtailtorepresentthecritical(rejection)region.

3. Extractthecorrectcriticalvalue

Theextractedcriticalvalue e forthetwo-tailedtestwith α 5 0.05is 6 1.96(seestandardnormalTableA).Thecriticalandnoncriticalregionsforthisstudywhichrepresent thetwo-tailedtestarepresentedin Fig.1.1.Theshadedareain Fig.1.1 iscalledthecritical(rejection)region.

Example1.5:Identifythecriticalandnoncriticalregionsfortheright-tailed test: Anenvironmentalistwishestospecifythecriticalandnoncriticalregionsfora claimregardingthemeanconcentrationofcadmium(Cd)ofsurfacewater. Theenvironmentalistwantstoexaminetheclaimthatthemeanconcentration ofcadmiumofsurfacewaterisgreaterthan0.17mg/L.Useasignificancelevel of α 5 0.05tospecifythetworegions.Assumethatthedataarenormallydistributed.

Wecanusethethreestepspresentedearliertoidentifythecriticalandnoncriticalregionsfortheright-tailedtest.

1. Specifythealternativehypothesis

Thekeytospecifyingthecriticalandnoncriticalregionsistoknowthealternative hypothesis.Thenullandalternativehypothesesare

0 :μ # 0:17

H1 :μ . 0 17

2. Selecttheappropriatesignificancelevel

Thesecondstepintheprocedureforidentifyingthecriticalandnoncriticalregionsis toselecttheappropriatesignificancelevel.Theappropriatesignificancelevelisselected tobe0.05(α 5 0.05).Becausethetestisaone-tailedtest(right-tailed),weidentifythe criticalregion(rejection)of α 5 0.05ontherighttail.

3. Extractthecorrectcriticalvalue

Theextractedcriticalvaluefortheone-tailedtestwith α 5 0.05is 6 1.645(seestandard normalTableA).Thecriticalandnoncriticalregionsforthisstudywhichrepresentaone-tailed testarepresentedin Fig.1.2.Theshadedareain Fig.1.2 iscalledthecritical(rejection)region.

H
Figure1.1 Thecriticalandnoncriticalregionsfor H1 :μ ¼ 0 17.

Example1.6:Identifythecriticalandnoncriticalregionsfortheright-tailed test: Anenvironmentalistwishestospecifythecriticalandnoncriticalregionsfora claimregardingthemeanconcentrationofcadmium(Cd)ofsurfacewater.The environmentalistwantstoexaminetheclaimthatthemeanconcentrationofcadmiumofsurfacewaterislessthan0.17mg/L.Useasignificancelevelof α 5 0.05 toidentifythetworegions.Assumethatthedataarenormallydistributed.

Wecanusethethreestepspresentedearliertospecifythecriticalandnoncritical regionsfortheright-tailedtest.

1. Specifythealternativehypothesis

Thekeytoidentifyingthecriticalandnoncriticalregionsistoknowthealternative hypothesis.Thenullandalternativehypothesesare

2. Selecttheappropriatesignificancelevel

Thesecondstepintheprocedureforidentifyingthecriticalandnoncriticalregionsis toselecttheappropriatesignificancelevel.Theappropriatesignificancelevelisselected tobe0.05(α 5 0.05).Becausethetestisaone-tailedtest(left-tailed),weidentifythecriticalregion(rejection)of α 5 0.05onthelefttail.

3. Extractthecorrectcriticalvalue

Theextractedcriticalvaluefortheone-tailedtestwith α 5 0.05is 6 1.645(seestandardnor-

malTableA).Thecriticalandnoncriticalregionsforthisstudywhichrepresenttheone-tailed testarepresentedin Fig.1.3.Theshadedareain Fig.1.3 iscalledthecritical(rejection)region.

H0 :μ $ 0 17
H1 :μ , 0:17
Figure1.2 Therejectionandnonrejectionregionsfor H1 :μ . 0:17.

Step5:Makeadecisionandinterprettheresults

Thelaststepinthegeneralprocedureforhypothesistestingistomakeadecisiontorejectthenullhypothesis(H0)ornot.Interpretationofthedecisionisneeded anditisimportanttodrawaconclusionregardingthestudyunderinvestigationand reachtheobjectiveofthestudy.

1.4Proceduresforperforminghypothesistesting

Therearethreeproceduresformakingadecisioninstatisticalhypothesistesting, whicharethecriticalvalueprocedure, P-valueprocedure,andconfidenceinterval procedure.Wewillpresentthecriticalvalueprocedureinthischapter,whilethe PvalueandconfidenceintervalprocedureswillbegiveninChapter6,Theobserved significancelevel(P-value)procedure,andChapter7,Intervalestimationforone population,respectively.

1. Criticalvalueprocedure

Thecriticalvalueprocedureisusedtoguide researchersandhelpinmakingadecision instatisticalhypothesistesting.Thisprocedureisalsoknownasatraditionalprocedure. Wecanusethecriticalvalueproceduretomakeadecisionregardingthenullhypothesis usingtheteststatisticvalueandthecriticalvaluerelatedtothedistributionusedforsolvingtheproblem.Thedecisionismadebycomparingthetwovalues(teststatisticvalue

Figure1.3 Therejectionandnonrejectionregionsfor H1 :μ , 0 17.

andcriticalvalue).Iftheabsoluteteststatisticvalueisgreaterthanthecriticalvalue,the nullhypothesisisrejected;otherwisethenullhypothesisisnotrejected.Orusingtheprobabilitydistributioncurve,iftheteststatisticvaluefallsinthecriticalregion,thenull hypothesisisrejected;otherwisethenullhypothesisisnotrejected.

Wewillemploythecriticalvalueprocedureformakingadecisionregardingtheonesampletestforthemeanvalue,proportionvalue,andvariancevalue,whiletheothertwo procedures,the P-valueandconfidenceintervalprocedures,willbegiveninChapter6, Theobservedsignificancelevel(P-value)procedure,andChapter7,Intervalestimation foronepopulation,respectively,andthencomparetheresultsofvariousprocedures.

1.5Typesoferrors

Twotypesoferrorsareassociatedwithhypothesistestingproceduresinmakinga decisionregardingthenullhypothesis.Adecisionisusuallymadebasedonthe sampleinformation,andthisdecisioncouldbecorrectorincorrect.Thetwotypes oferrorsaretypeIandtypeIIerrors.

Thefirsttypeoferroriscalleda typeIerror.Thiserroroccurswhenweincorrectlydecidetorejectatruenullhypothesis.AtypeIerroriscalledthesignificance level(α).

Thesecondtypeoferroriscalleda typeIIerror .Thiserroroccurswhenwe failtorejectafalsenullhypothesis.ThesymbolfortheprobabilityofatypeII erroris β . Note

● TypeIandtypeIIerrorsareinverselyproportional;decreasingtypeIerror(α)would increasetypeIIerror β ,andincreasingtypeIerror(α)woulddecreasetypeIIerror(β ).

Example1.7:SpecifytypeIandtypeIIerrors: SpecifytypeIandtypeIIerrors fortheclaimwhichstatesthatthemeanconcentrationofcadmium(Cd)is0.17mg/L.

Weneedtoidentifythenullandalternativehypothesesforthisclaim.Thetwo hypothesesaregivenbelow:

H0 :μ 5 0:17

H1 :μ ¼ 0 17

TypeIerror

AtypeIerrorwouldoccurwhenweincorrectlydecidetorejectatruenull hypothesis.Forthemeanconcentrationofcadmium,atypeIerrorwouldoccurif themeanconcentrationofcadmiumofsurfacewateris0.17mg/L(μ 5 0.17),but theinformationprovidedbytheselectedsampletellsustorejecttheclaimthatthe meanconcentrationofcadmiumofsurfacewateris0.17mg/Landconcludethat themeanconcentrationofcadmiumofsurfacewaterisnotequalto0.17mg/L μ ¼ 0 17 ðÞ

TypeIIerror

AtypeIIerrorwouldoccurwhenwefailtorejectafalsenullhypothesis.For themeanconcentrationofcadmiumofsurfacewater,atypeIIerrorwouldoccurif themeanconcentrationofcadmiumofsurfacewaterisnotequalto0.17mg/L μ ¼ 0 17 ðÞ,buttheinformationprovidedbytheselectedsampletellsusnotto rejectthenullhypothesisandconcludethatthemeanconcentrationofcadmiumof surfacewaterisequalto0.17mg/L(μ 5 0.17).

Correctdecision

Acorrectdecisioncanbeachievedintwocases:inthefirstcase,ifwedonot rejectthenullhypothesiswhenitistrue.Thecorrectdecisionforthisexampleis wedonotrejectthenullhypothesisifthemeanconcentrationofcadmiumofsurfacewaterisequalto0.17mg/L(μ 5 0.17).

Inthesecondcase,ifwerejectthenullhypothesiswhenitisfalse.Thecorrect decisionforthisexampleiswerejectthenullhypothesisifthemeanconcentration ofcadmiumofsurfacewaterisnotequalto0.17mg/L μ ¼ 0:17 ðÞ.

Furtherreading

Alkarkhi,A.F.M.,&ALqaraghuli,W.A.A.(2020). Appliedstatisticsforenvironmental sciencewithR (1sted.).Elsevier. Alkarkhi,A.F.M.,&Chin,L.H.(2012). Elementarystatisticsfortechnologist (1sted.). Malaysia:UniversitiSainsMalaysia. Bluman,A.G.(1998). Elementarystatistics:Astepbystepapproach (3rded.).Boston: WCBMcGraw-Hill. Weiss,N.A.(2012). Introductorystatistics (9thed.).Pearson. 12ApplicationsofHypothesisTestingforEnvironmentalScience

Z-testforone-samplemean

Abstract

2

Thischapterpresentshypothesistestingbasedonnormaldistributionincludingtheconceptofnormaldistribution,standardnormaldistribution,andrelatedterms.Thearea undernormaldistributioncurvewiththeconceptofrejectionandnonrejectionregionsis deliveredwithillustrationsbyexamplesforeachregionusinganormaldistributioncurve. Moreover,thegeneralprocedureforhypothesistestingusingZ-testforalargesampleis givenandexplainedclearly.Examplesfromthefieldofenvironmentalscienceare selectedandusedtoillustratethestepsofhypothesistestingusingZ-testandmakinga decisionregardingthestudywithsufficientexplanationforeachstep.

Keywords: Normaldistribution;standardnormaldistribution;criticalandcriticalregions; criticalvalue;areaunderthecurve;Z-test

Learningoutcomes

Aftercompletingthischapter,readerswillbeableto:

● Understandtheimportanceofnormaldistribution

● Explaintheconceptofstandardnormaldistribution

● Computetheareaunderthestandardnormalcurve

● Determinetheprobabilitiesfornormaldistribution

● Describethecommonstepsforperforminghypothesistesting

● ComputetheZ-teststatisticvalueforasinglepopulationmean

● KnowtherejectionandnonrejectionregionsforZ-test

● Knowone-tailedandtwo-tailedtestsforZ-test

● Describethestepsforprovidingcorrectinterpretationoftheresults

● Writeusefulconclusions

2.1Introduction

Z-testforone-samplemeanandotherstatisticaltestsemploystheconceptofnormal distributiontoperformhypothesistesting.ThustheconceptandpropertiesofnormaldistributionshouldbedeliveredbeforegivingtheprocedureofhypothesistestingforonesampleZ-test.

Theconceptandpropertiesofnormaldistributionandstandardnormaldistributionarecoveredinthischapter.Moreover,theprocedureforcalculatingthearea underthestandardnormalcurveiscoveredandthegeneralprocedureforperformingaZ-testforaone-samplemeanalsoisgiven.

2.2Whatisnormaldistribution?

Therearemanydistributionsinstatisticsusedtodescribethebehaviorofdifferent phenomena.Oneofthemostimportantdistributionsiscallednormaldistribution, orthebellcurveduetoitsshape(bell-shaped).AGaussiandistributionisanother namefornormaldistribution.Thenormaldistributioncurveispresentedin Fig.2.1

Figure2.1 Thenormaldistributioncurve.

Consider Y representsarandomvariablethatfollowsanormaldistributionwith mean μ ðÞ andvariance ðσ 2 Þ,thenthenormalprobabilitydistributionfunctionispresentedin Eq.(2.1)

where, Y representsarandomvariablethatisdistributednormally N ðμ; σ 2 Þ orsymbolizedas Y BN ðμ; σ 2 Þ, π 5 3:14,and eD2 71828

Thepropertiesofnormaldistributioncurveareasfollows:

1. Thenormaldistributioncurveisbell-shaped.

2. Theshapeofthenormaldistributioncurveissymmetricaboutthemean.

3. Themeanisatthecenteranddividestheareaintotwoequalparts.

4. Thetotalareaunderthenormaldistributioncurveisequalto1.

5. Mostoftheareaunderthecurvefallsbetweenthreestandarddeviationsofthemean.The percentageoftheareaunderone,two,andthreestandarddeviationsisgivenbelow.

● 68%ofthepointsfallbetweenonestandarddeviationofthemean;

● 95%ofthepointsfallbetweentwostandarddeviationsofthemean;

● 99.7%ofthepointsfallbetweenthreestandarddeviationsofthemean.

2.3Whatisstandardnormaldistribution?

Considerthat Y representsarandomvariablethatfollowsanormaldistribution withmean(0)andvariance(1),thenthestandardnormaldistributionfunctionis presentedin Eq.(2.2)

Y representsarandomvariablethatisdistributednormally N 0; 1 ðÞ orsymbolized as Y BN 0; 1 ðÞ.Thestandardnormaldistributionhasthesamepropertiesofnormal distribution,thestandardnormaldistributioncurveispresentedin Fig.2.2 Figure2.2

16ApplicationsofHypothesisTestingforEnvironmentalScience

Wecanconvertanynormalrandomvariabletothestandardnormaldistribution employingtheformulagivenin Eq.(2.3).

Theformulain Eq.(2.3) iscalledthestandardscore.

2.4Findingtheareaunderthenormalcurve

Theareaunderthestandardnormalcurvecanbecomputedusingthestandard score.TheZscoreprovidesinformationonthepositionofavaluecomparedtothe averagevalueusingthedistancetoexpressthepositionbyhowmanystandard deviationsthevaluefallsaboveorbelowtheaverage.Thestepsforfindingthearea underthestandardnormalcurverequiredescribingthestandardnormaltableand thenfollowafewstepstoextracttheareafromthetable.

WeuseTableAintheAppendixtoextracttheareaunderthecurveforZvalues from0to3.ThevalueofZshouldbedividedintotwoparts,thefirstpartoftheZ valueinTableAisrepresentedintheleft-hand(first)column,thevaluesofZin thetablestartfrom0to3(nearesttenth),whilethefirst(upper)rowprovidesthe secondpartoftheZvalue(seconddecimalplace).Wecanusethesametableto findtheareaunderthecurvefornegativeZvaluesbecauseofthesymmetrical propertyofnormaldistribution.

Example2.1:ComputetheareatotheleftofaZvalue: Computetheareaunder thestandardnormalcurvetotheleftofapositiveZvalueof2.13.

FindingtheareatotheleftofapositiveZvalueof2.13requiresusingTableAin theAppendixforthestandardnormal.Thevalue“2.13”shouldbedividedintotwo pieces,thefirstpieceis“2.1”andthesecondis“0.03.”Theexactareatotheleftof 2.13canbecomputedemployingthestepsbelow.

● Thefirststepistosearchforthepositionof“2.1”inthefirstverticalcolumnof Table2.1 labeledZtospecifythefirstpiece“2.1”ofthenumber2.13(highlightedrow)[Table2.1 isaportionofthestandardnormaltableintheAppendix(TableA)].

● Thesecondstepinfindingtheareaistomoveontherowof“2.1”tothecolumnlabeled “0.03”(highlightedcolumn),thepointofintersectionrepresentstherequiredvaluewhich is 0.9834 asshownin Table2.1 (boldvalue).

Theexactareatotheleftof2.13isshownin Fig.2.3 (shadedarea).

Table2.1 TheareatotheleftofaZvalueof2.13.

1.20.88490.88690.88880.89070.89250.89440.89620.8980.89970.9015 1.30.90320.90490.90660.90820.90990.91150.91310.91470.91620.9177

1.40.91920.92070.92220.92360.92510.92650.92790.92920.93060.9319

2.20.98610.98640.98680.98710.98750.98780.98810.98840.98870.989

Showingtheareatotheleftof2.13.

Example2.2:ComputetheareatotherightofaZvalue: Computethearea underthestandardnormalcurvetotherightofapositiveZvalueof2.03.

FindingtheareatotherightofapositiveZvalueof2.03requiresusingTableA intheAppendixforthestandardnormal.Thevalue“2.03”shouldbedividedinto twopieces,thefirstpieceis“2.0”andthesecondis“0.03.”Theexactareatothe rightof2.03canbecomputedemployingthestepsbelow.

● Thefirststepistosearchforthepositionof“2.0”inthefirstcolumnof Table2.2 labeled Ztospecifythefirstpiece“2.0”ofthenumber2.03(highlightedrow)[Table2.2 isaportionofthestandardnormaltableintheAppendix(TableA)].

● Thesecondstepinfindingtheareaistomoveontherowof“2.0”tothecolumnlabeled “0.03”(highlightedcolumn),thepointofintersectionrepresentstheareatotheleftof 2.03whichis“0.9788”asshownin Table2.1 (boldvalue).

Figure2.3

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Applications of hypothesis testing for environmental science abbas f.m. alkarkhi - Instantly access by Education Libraries - Issuu