Antimicrobial Food Packaging
Edited by Jorge Barros-Velázquez
Academic Press is an imprint of Elsevier
125 London Wall, London, EC2Y 5AS, UK
525 B Street, Suite 1800, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
Copyright © 2016 Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.
Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN: 978-0-12-800723-5
For information on all Academic Press publications visit our website at http://store.elsevier.com/
Publisher: Nikki Levy
Acquisition Editor: Patricia Osborn
Editorial Project Manager: Jaclyn Truesdell
Production Project Manager: Nicky Carter
Designer: Greg Harris
Typeset by SPi
Printed and bound in the USA
C.C. Adley and M.P. Ryan 1.1
T.G. Villa, L. Feijoo-Siota, J.L.R. Rama, A. Sánchez-Pérez and T. de Miguel-Bouzas
2.3.1
2.3.2
6. The Downside of Antimicrobial Packaging: Migration of Packaging Elements into Food 81
C. Nerin, F. Silva, S. Manso and R. Becerril
6.1 Migration in Antimicrobial Packaging 81
6.1.1 The Migration Process 81
6.1.2 Factors Involved in the Migration Process 82
6.1.3 The Role of the Substrate in the Antimicrobial Migration 82
6.1.4 Testing and Legislation 85
6.2 Dealing with Migration 86
6.2.1 Strategies for Controlled Release Packaging 87
6.2.2 Food Packaging Nanotechnology 87
6.3 Migration of Compounds Other than Antimicrobials 87 References 90
7. Packaging Material in the Food Industry 95
V. Siracusa
7.1 Introduction 95
7.2 General Information on Food Packaging Materials 96
7.2.1 Glass, Metal, Paper Packaging 96
7.2.2 Plastics Packaging 97
7.2.3 First Group: Polymers from Biomass 99
7.2.4 Second Group: Aliphatic Polymers/Copolymers and Aliphatic-Aromatic Copolymers 101
7.2.5 Third Group: Polymers from Microorganisms and Bacteria 101
7.3 Polymer Nanocomposites for Packaging Application 101
7.4 Special Packaging Application 101
7.4.1 The Role of Atmosphere Packaging 102
7.4.2 The Role of Active Packaging 102
7.5 Conclusions 105
8. Effect of Packaging Systems on the Inactivation of Microbiological Agents 107
J.M. Miranda, A.C. Mondragón, A. Lamas, P. Roca-Saavedra, I.S. Ibarra, J.A. Rodriguez, A. Cepeda and C.M. Franco
8.1 Introduction 107
8.2 Antimicrobial Packaging Films 108
8.3 Antimicrobial Packaging
9. Antimicrobial Susceptibility Testing of Foodborne Bacteria Related to National and International ResistanceMonitoring Programs
A. de Jong, H. Moyaert and S. Simjee 9.1
10. Food Safety: Good Manufacturing Practices (GMP), Sanitation Standard Operating Procedures (SSOP), Hazard Analysis and Critical Control Point (HACCP) 129
C.A.F. de Oliveira, A.G. da Cruz, P. Tavolaro and C.H. Corassin
10.1 Introduction
Prerequisite Programs
General Principles and Definitions
10.2.2 Good Manufacturing Practices
10.2.3 Sanitation Standard Operating Procedures
10.3 Hazard Analysis and Critical Control Point System
10.3.1 General Principles and Definitions
10.3.2 Implementation of HACCP System Within the Food Industry
10.4 Successful HACCP Implementation
11. Control of Microbial Activity Using Antimicrobial Packaging 141
G. Mauriello
11.1 Introduction 141
11.2 Substances Used in the Antimicrobial Packaging Development 141
11.2.1 Metals 143
11.2.2 Chemicals 143
11.2.3 Essential Oils 144
11.2.4 Enzymes 144
11.2.5 Bacteriocins 144
11.3 Foodborne Pathogens Controlled by Antimicrobial Packaging 145
11.4 Food Spoilage Microorganisms Controlled by Antimicrobial Packaging 149 References 150
12. Detection of Foodborne Pathogens Using Biosensors 153
C.F. Fronczek and Jeong-Yeol Yoon
12.1 Foodborne Pathogens 153
12.2 Salmonellosis 153
12.3 Current Gold Standards in Pathogen Detection 154
12.3.1 Culture Plating and Colony Counting 155
12.3.2 Enzyme-Linked Immunosorbent Assay 156
12.3.3 Polymerase Chain Reaction 157
12.4 Problems with Real Samples 158
12.5 Lab-on-a-Chip for Pathogen Detection 158
12.6 Lab-on-a-Chip Biosensors for Pathogen Detection Biosensor 159
12.6.1 Particle Immunoagglutination Assay 160
12.6.2 Direct Fluorescent Detection of Nucleic Acids from Pathogens 161
12.7 Extraction and Elution of Nucleic Acids 162
12.8 Paper Microfluidics for Pathogen Detection 162
12.9 Future Directions 163 References 164
13. Detection of Foodborne Pathogens Using DNA Arrays 167
C. Consolandi, P. Cremonesi, M. Severgnini and B. Castiglioni
13.1 Introduction 167
13.2 Traditional Arrays 169
13.2.1 Target Biomarkers 169
13.2.2 Platform Description 170
13.2.3 Food Matrices and Crucial Features
13.3 Integrated Array Devices 174
13.3.1 Target Biomarkers
13.3.2 Food Matrices
13.3.3 Devices Description 176 13.3.4 Crucial Features 177 13.4 Concluding Remarks and Future Trends 178 References 179
14. Detection of Foodborne Pathogens Using Nanoparticles. Advantages and Trends 183
M. Prado, B. Espiña, M.T. Fernandez-Argüelles, L. Diéguez, P. Fuciños, S. Vial, J.M. Oliveira, R.L. Reis and K. Boehme
14.1 Introduction 183
14.2 Nanotechnology and its Contribution to Foodborne Pathogen Detection 184 14.2.1 Gold Nanoparticles
14.2.2 Quantum Dots 187
14.2.3 Magnetic Nanoparticles 188
14.2.4 Micro and Nanofluidics 192
14.3 Integration of Nanomaterial-Based Sensors for Pathogen Detection in Food Packaging Systems 194 References 196
15. Detection of Foodborne Pathogens Using MALDI-TOF Mass Spectrometry 203
K. Böhme, S. Caamaño Antelo, I.C. Fernández-No, M. Quintela-Baluja, J. Barros-Velázquez, B. Cañas and P. Calo-Mata
15.1 Introduction 203
15.2 Principles of MALDI-TOF MS for Bacterial Identification 203
15.2.1 Spectral Databases and Their Applications in Routine Bacterial Identification 204
15.2.2 MALDI-TOF MS Fingerprinting for Taxonomic Studies 205
15.3 Foodborne Pathogen Detection by MALDI-TOF MS Fingerprinting 205
15.3.1 MALDI-TOF MS for Bacterial Species Differentiation of Foodborne Pathogens 206
15.3.2 MALDI-TOF MS for Taxonomic Studies and Identification of Bacterial Strains Isolated from Food 209
15.4 Future Trends 211 References 211
16. Industrial Applications: Regulatory Issues and Life Cycle Assessment of Food Packaging 215
D. Restuccia, R. Salomone, U.G. Spizzirri, G. Saija, G. Ioppolo, O.I. Parisi and N. Picci
16.1 Main Characteristics of Antimicrobial Packaging 215
16.2 Global Market and Applications 216
16.3 The United States' and Europe's Approach to Antimicrobial Food Packaging 218
16.4 European Legislation on FCM (Regulation 1935/2004/EC) and A&I Packaging (Regulation 450/2009/EC) 218
16.5 Safety Issues and Compliance 220
16.6 Environmental Assessment of Food Packaging: Reasons, Relevance, and Methods 221
16.7 Life Cycle Assessment of Food Packaging 223
16.7.1 A Literature Overview 223
16.7.2 Life Cycle Assessment of Antimicrobial and Active and Intelligent Food Packaging: Main Findings and Future Research Needs 224 References 226
17. Antimicrobial Packaging for Meat Products 229
S. Rawdkuen, N. Punbusayakul and D.S. Lee
17.1 Introduction 229
17.2 Spoilage or Pathogenic Microorganisms in Meat 229
17.3 Monitoring Techniques for Detecting the Microbial Quality and Spoilage in Meat
17.4 Action Mode of AM Packaging in Meat Products 232
17.5 Types and Applications of AM Packaging Applied to Meat Products 234
17.6 Combination
18. Antimicrobial Packaging for Fresh and Minimally Processed Fruits and Vegetables
J. Jung and Y. Zhao
18.4 Future Perspectives in Antimicrobial Packaging for Fresh and Minimally Processed Fruits and Vegetables
18.4.1 Improvement of Antimicrobial Activity with Antimicrobial Packaging
18.4.2 Enhancement of Stability of Volatile Antimicrobial Substance in the Packaging System
19. Antimicrobial Packaging for Poultry
D.P. Karumathil, A. Upadhyay and K. Venkitanarayanan
Antimicrobial Packaging Materials
Antimicrobial Agents Used in Food Packaging Materials
19.4.1 Organic Acids and Their Salts
19.4.4 Amino Acid-Based Surfactants
19.4.5 Chitosan
19.4.6 Chlorine-Based Antimicrobials
19.4.7 Plant-Derived Antimicrobials
19.5 Active and Intelligent Packaging 262
19.6 Effects of Packaging Systems on Poultry Meat Quality 263
19.6.1 Effects of Packaging on Color of Poultry Meat Products 263
19.6.2 Effects of Packaging on Lipid Oxidation Profile of Poultry Meat Products 263
19.7 Conclusion and Future Directions 264 References 264
20. Antimicrobial Packaging for Seafood 269
C.A. Campos, L.I. Schelegueda, M.F. Gliemmo and J. Barros-Velázquez
20.1 Introduction 269
20.2 Elaboration of Films and Coatings 270
20.3 Biopolymers Used in the Formulation of Films and Coatings for the Preservation of Aquatic Products 270
20.4 Antimicrobials Incorporated in the Formulation of Films and Coatings for the Preservation of Aquatic Products 272
20.4.1 Chitosan 272
20.4.2 Organic Acids 272
20.4.3 Bacteriocins 272
20.4.4 Plant Extracts and Their EO 273
20.5 Interactions Between Biopolymers and Antimicrobials: Their Effects on the Functionality of Films and Coatings 273
20.6 Uses of Films and Coatings for the Preservation of Aquatic Products 274
20.7 Conclusions and Future Perpectives 278 Acknowledgments
21. Antimicrobial Packaging of Beverages 281
F. Palomero, A. Morata, J. Suárez-Lepe, F. Calderón and S. Benito
21.1 Active Packaging of Beverages 281
21.1.1 Introduction 281
21.1.2 Active Packaging of Beverages That Cause Physical Alteration 282
21.1.3 Active Packaging of Beverages Based on Polymeric Plastic Films 284
21.1.4 Packaging of Food and Beverages Based on Polymer Nanomaterials 287
21.1.5 Antimicrobial Metal-Based Active Packaging for Beverage Applications
21.2 Physical Techniques for Cold Pasteurization of Packaged Beverages 290
21.2.1 HHP in Packaged Beverages
21.2.2 PEF in Packaged Beverages
21.2.3 Food Irradiation in Packaged Beverages 293
22. Antimicrobial Active Packaging Systems Based on EVOH Copolymers 297
R. Catalá, V. Muriel-Galet, J.P. Cerisuelo, I. Domínguez, G.L. Carballo, P. HernándezMuñoz and R. Gavara
22.1 Introduction
23. Ethyl Lauroyl Arginate (LAE): Antimicrobial Activity and Applications in Food Systems 305
C. Nerin, R. Becerril, S. Manso and F. Silva
23.1 Manufacturing and Physical-Chemical Properties
23.2 Metabolism and Toxicological Data on LAE
23.4 The Role of LAE in Food Systems
24. Ethyl Lauroyl Arginate (LAE): Usage and Potential in Antimicrobial Packaging 313
V. Muriel-Galet, G.L. Carballo, P. Hernández-Muñoz and R. Gavara
24.1 Introduction
24.2 Legal Aspects of the Use of LAE
24.5
24.6
25. Volatile Compounds Usage in Active Packaging Systems
A. Lucera, A. Conte and M.A. Del Nobile
25.1 Introduction
25.2 Active Packaging with Volatile Compounds in Sachets, Pads, Gauze, or Filter Paper
25.3 Active Packaging with Volatile Compounds Incorporated Into the Polymeric Film
25.4 Active Packaging with Volatile Compounds Coated on the
26. Carvacrol-Based Films: Usage and Potential in Antimicrobial Packaging
M. Ramos, A. Jiménez and M.C. Garrigós
26.1
26.2
26.3
26.4
26.5
26.6
27. Gelatin-Based Nanocomposite Films: Potential Use in Antimicrobial Active Packaging
S. Shankar, L. Jaiswal and J.-W. Rhim
27.1
28.
C. Fuciños, P. Fuciños, I.R. Amado, M. Míguez, P. Fajardo, L.M. Pastrana and M.L. Rúa
29. Antimicrobial Food Packaging Basedon Biodegradable Materials
V. García Ibarra, R. Sendón and A. RodríguezBernaldo de Quirós 29.1
30. Pullulan: A Suitable Biopolymer for Antimicrobial
V. Trinetta and C.N. Cutter 30.1
30.5 Existing Applications for Pullulan in the Food and Pharmaceutical Industry 394
30.6 Future Trends, Opportunities, and Challenges 395
30.7 Conclusions 395 References 395
31. Use of Metal Nanoparticles for Active Packaging Applications 399
C. Costa, A. Conte, M. Alessandro and D. Nobile
31.1 Introduction 399
31.2 Copper Nanoparticles 400
31.3 Gold Nanoparticles 400
31.4 Silver Nanoparticles 401
31.5 Zinc and Magnesium Oxide Nanoparticles 402
31.6 Titanium Dioxide Nanoparticles 403 References 404
32. Silver-Based Antibacterial and Virucide Biopolymers: Usage and Potential in Antimicrobial Packaging 407
J.L. Castro-Mayorga, A. Martínez-Abad, M.F. Fabra, J.M. Lagarón, M.J. Ocio and G. Sánchez
32.1 Biopolymers in Food Packaging 407
32.2 Active Packaging 408
32.3 Silver as Antimicrobial Agent 408
32.4 Regulatory Issues 409
32.5 Silver-Based Antibacterial Biopolymers 409
32.5.1 Polylactic Acid-Silver Nanocomposites 410
32.5.2 Polyhydroxyalkanoates-Silver Nanocomposites 411
32.5.3 Other Silver-Based Biopolymer Nanocomposites 412
32.6 Virucide Activity of Silver Based Polymers 412
32.7 Conclusions and Future Perspectives 413 Acknowledgments 413 References 413 Websites 415
33. Antimicrobial Food Packaging Incorporated with Triclosan: Potential Uses and Restrictions 417
P.J.P. Espitia, R.A. Batista, C.G. Otoni and N.F.F. Soares
33.1 Introduction 417
33.2 Main Characteristics and Mechanism of Action 417
33.3 Active Food Packaging Incorporated with Triclosan 419
33.4
34. Zinc Oxide Nanoparticles for Food Packaging Applications 425
P.J.P. Espitia, C.G. Otoni and N.F.F. Soares
34.1
35.1
35.7.1
35.7.2
35.7.3
35.8.2 The Expanded Roles of Food
35.8.3
35.9
36. Pediocin Applications in Antimicrobial Food Packaging Systems 445
P.J.P. Espitia, C.G. Otoni and N.F.F. Soares
36.1 Introduction 445
36.2 Pediocin Structure and Antimicrobial Activity 446
36.3 Methods of Pediocin Application on Food Preservation 448
36.4 Pediocin Applications on Food Packaging 449
36.5 Antimicrobial Food Packaging: Characterization and Migration 450
36.6 Safety and Regulation Issues 451
36.7 Future Trends 452 Acknowledgments 452 References 452
37. Casein and Chitosan Polymers: Use in Antimicrobial Packaging 455
A. Ponce, S.I. Roura and M.R. Moreira
37.1 Introduction 455
37.2 Properties and Composition of Edible Coatings/Films 456
37.3 Use of Edible Films/Coating to Protect Food Products 456
37.3.1 Antimicrobial Properties 456
37.3.2 Antibrowning Agents 457
37.3.3 Texture Enhancers 457
37.3.4 Nutraceuticals 458
37.4 Different Application of Films/ Coatings on Food Products 458
37.4.1 Edible Coatings on Fresh Vegetables: Effect of Film Drying Temperature on the Nutritional and Microbiological Quality 458
37.4.2 Antimicrobial and Antioxidant Activities of Edible Coatings Enriched with Natural Plant Extracts 459
37.4.3 Effectiveness of Edible Coatings Combined with Mild Heat Shocks on Microbial Spoilage and Sensory Quality of Fresh-Cut Broccoli 459
37.4.4 Effectiveness of Chitosan Edible Coatings to Improve Microbiological and Sensory Quality of Fresh-Cut Broccoli 460
37.4.5 Antimicrobial Effectiveness of Bioactive Packaging Materials from Edible Chitosan and Casein Polymers: Assessments on Carrot, Cheese, and Salami 462
37.5 Sensory Implications 462
37.6 Conclusions 465 References 465
38. Multifunctional Films, Blends, and Nanocomposites Based on Chitosan: Use in Antimicrobial Packaging
E. Fortunati
38.1
Antimicrobial Properties of Chitosan
38.2.2 Antioxidant Properties of Chitosan
38.3 Chitosan-Based Package Formulations 470
38.3.1 Chitosan-Based Edible Films and Coatings 471
38.3.2 Chitosan Blends 472
38.3.3 Chitosan-Based Composites and Nanocomposites 472
38.4 Conclusions and Future Trends 474 Acknowledgments 475 References 475
39. Cinnamaldehyde and Eugenol: Use in Antimicrobial Packaging 479
P. Suppakul
39.1 Introduction 479
39.2 Understanding Cinnamaldehyde and Eugenol and Their AM Effectiveness 479
39.3 Functioning AM Packaging Systems from Natural Compounds 482
39.3.1 Coating of AMs 482
39.3.2 Incorporation of AMs 482
39.3.3 Smart Blending of AMs 482
39.4 Effectiveness of AM Cinnamaldehydeand Eugenol-Incorporated Packaging Materials 483
39.5 Applications of AM Cinnamaldehyde and Eugenol-Incorporated Packaging Materials 486
39.6 Future Trends 487 References 488
40. Enzybiotics: Application in Food Packaging 491
T.G. Villa, L. Feijoo-Siota, J.L.R. Rama, A. Sánchez-Pérez and T. de Miguel-Bouzas
40.1 Introduction 491
40.2 Materials for the Manufacture of Active Wrapping 491
40.3 Lysozymes 492
40.4 Lysostaphin and Related Enzymes 495
40.5 Bacteriocins 497
40.6 Conclusions and Future Trends 499 References 499
41. Zein and Its Composites and Blends with Natural Active Compounds: Development of Antimicrobial Films for Food Packaging 503
A. Yemenicioglu
41.1 Introduction 503
41.2 Major Properties of Zein and Its Edible Films 504
41.3 Basic Principles of Developing Antimicrobial Zein Films 504
41.3.1 Compatibility of Zein with Different Natural Antimicrobial Compounds 505
41.3.2 Control of Antimicrobial Release from Zein Films 508
41.4 Conclusions 510 References 510
42. Casein-Based Zataria multiflora Boiss Films: Use in Antimicrobial Packaging 515
Z. Emam-Djomeh, A. Karami-Moghaddam and A. Broumand
42.1 Introduction 515
42.2 Materials and Methods 516
42.2.1 Preparation of Culture Media and Microbiological Tests 516
42.2.2 Film Preparation 517
42.2.3 Determination of Antimicrobial Activity of Essential Oil Incorporated Sodium Caseinate Film 517
42.2.4 Preparation of Food Samples 518
42.2.5 Microbial Analysis of Food Samples 518
42.2.6 Statistical Analysis 519
42.3 Results and Discussion 519
42.3.1 Antimicrobial Activity of ZMO 519
42.3.2 Antimicrobial Properties of Films Containing ZMO 519
42.3.3 Water Vapor Permeability 521
42.3.4 Microbiological Analysis of Food Samples 521
42.4 Conclusion 524 References 524
43. Antimicrobial Peptides from Bacillus spp.: Use in Antimicrobial Packaging 527
S. Achi and P.M. Halami
43.1 Introduction 527
43.2 Bacillus Diversity 528 43.3 Antimicrobial Compounds 528
43.3.1 Ribosomally Synthesized Peptides 529
43.3.2 Nonribosomally Synthesized Peptides 530
43.3.3 Nonpeptide-Based Antibiotics 530
43.4 Identification of New Antimicrobial Compounds 531
43.5 Bacillus in Food Systems 531
43.6 Antimicrobial Peptides for Food Safety 532
43.7 Antimicrobial Peptides in Food Packaging 532
43.8 Application of Active Packaging in Different Food Systems 534
43.9 Conclusion 535 References 535
44. Chitosan-Oregano Essential Oil Blends Use as Antimicrobial Packaging Material 539
M.Z. Elsabee, R.E. Morsi and M. Fathy
44.1 Introduction 539
44.2 Edible Films 539
44.3 Chitosan 540
44.3.1 Chitosan Antimicrobial and Film-Forming Properties 541
44.3.2 Factors Affecting the Antimicrobial Activity of Chitosan 541
44.4 Chitosan and Essential Oils 541
44.5 Oregano Essential Oil 542
44.5.1 Antimicrobial Activity of OEO 542
44.5.2 Chitosan Films with OEO 543 References 548
45. Thymol: Use in Antimicrobial Packaging 553
M.J. Galotto, C. López de Dicastillo, A. Torres and A. Guarda
45.1 Introduction 553
45.2 Chemical Structure and Properties 554
45.3 Types of Microbial Targets 555
45.4 Incorporation Methods of Active Substance in Plastic Polymeric Matrices 557
45.4.1 Supercritical Impregnation of Active Compounds 558
45.5 Release of Active Compounds 559
45.6 Conclusions 559
References 559
46. Organic Acids: Usage and Potential in Antimicrobial Packaging 563
C. Hauser, J. Thielmann and P. Muranyi
46.1 Organic Acids for the Preservation of Food 563
46.2 Toxicological Innocuousness 563
46.3 Antimicrobial Mode of Action and Cellular Resistance Mechanisms 569
46.4 Incorporation of Organic Acids in Active Packaging Material 571
46.4.1 Extrusion and Compression Molding 571
46.4.2 Solvent Casting 571
46.4.3 Coating 572
46.5 Assessment of the Release and the Antimicrobial Activity 572
46.5.1 Test Methods In Vitro 573
46.5.2 Testing on Food 574
46.6 Legislation and Labeling in the EU 575
46.7 Future Potential of Organic Acids in Antimicrobial Packaging 576 References 576
47. Combinational Approaches for Antimicrobial Packaging: Chitosan and Oregano Oil 581
R. Avila-Sosa, C.E. Ochoa-Velasco, A.R. NavarroCruz, E. Palou and A. López-Malo
47.1 Introduction 581
47.2 Chitosan 582
47.3 Oregano Essential Oil 583
47.4 Potential for Food Packaging 585
47.5 Final Remarks 586 References 586
48. Combinational Approaches for Antimicrobial Packaging: Lysozyme and Lactoferrin 589
A. Barbiroli, S. Farris and M. Rollini
48.1 Lysozyme 589
48.1.1 Structure, Functions, and Applications 589
48.1.2 Lysozyme in Packaging 590
48.2 Lactoferrin 590
48.2.1 Structure, Functions, and Applications 590
48.2.2 Lactoferrin in Packaging 591
48.3 Lysozyme-Lactoferrin Combination in Food Packages 592
48.3.1 LZ-LF Incorporation in Thin Polymer Layers 592
48.3.2 LZ-LF "Bulk" Incorporation 594 References 595
49. Combinational Approaches for Antimicrobial Packaging: Natamycin and Nisin 599
R.J. Jagus, L.N. Gerschenson and C.P. Ollé Resa
49.1 Introduction 599
49.1.1 Packaging 599
49.1.2 Natural Antimicrobials 600
49.1.3 Active Antimicrobial Films for the Control of Mixed Populations 600
49.2 Packaging Formulation: Physicochemical Properties 601
49.3 Packaging Formulation: Antimicrobial Activity 602
49.4 Recent Developments Concerning Antimicrobial Edible Food Packaging Containing Natamycin and Nisin 603
49.5 Conclusion 606 Acknowledgments 606 References 606
50. Combinational Approaches for Antimicrobial Packaging: Pectin and Cinnamon Leaf Oil 609
M.M. Gutierrez-Pacheco, L.A. Ortega-Ramirez, M.R. Cruz-Valenzuela, B.A. Silva-Espinoza, G.A. Gonzalez-Aguilar and J.F. Ayala-Zavala
50.1 Introduction 609
50.2 Use of Pectin to Formulate ECs 609
50.3 Antimicrobial Properties of CLO 611
50.4 Combination of Pectin with Cinnamon Leaf Essential Oil to Formulate Antimicrobial Edible Films 613
50.5 Conclusion 615 References 615
51. Combinational Approaches for Antimicrobial Packaging: Bivalve Shell Waste-Derived Material and Silver 619
Z.-T. Yao
51.1 Introduction 619
51.2 Materials and Methods 620
51.2.1 Materials 620
51.2.2 Antibacterial Material Preparation 620
51.2.3 Characterization and Tests 620
51.2.4 Silver Ion Release and pH Test 620
51.2.5 Antibacterial Test 621
51.3 Results and Discussion 621
51.3.1 Characterization 621
51.3.2 Antibacterial Test 624
52. Combinational Edible Antimicrobial Films and Coatings 633
R. Raybaudi-Massilia, J. Mosqueda-Melgar, R. Soliva-Fortuny and O. Martín-Belloso
52.1 Introduction 633
52.2 Potential Uses of Antimicrobial Edible Films and Coatings 633
52.3 Target Microorganisms for the Evaluation of the Antimicrobial Properties of Edible Films and Coatings 634
52.4 Antimicrobial Compounds Incorporated into Edible Film and Coating Formulations 634
52.5 Commercial Applications of Antimicrobial Edible Films and Coatings 639
52.6 Regulatory Aspects 639
52.7 Perspectives and Future Trends 641 References 641
51.3.3 Antibacterial Mechanism 625 51.4 Conclusions 629 References 629
Contributors
S. Achi CSIR (Central Food Technological Research Institute), Mysore, India
C.C. Adley University of Limerick, Limerick, Ireland
M. Alessandro Università di Foggia, Foggia, Italy
I.R. Amado University of Vigo, Ourense, Spain
R. Avila-Sosa Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
J.F. Ayala-Zavala Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC), Hermosillo, Mexico
A. Barbiroli Università degli Studi di Milano, Milano, Italy
J. Barros-Velázquez Universidad de Santiago de Compostela, Lugo, Spain
R.A. Batista Sergipe Federal University, São Cristovão, Brazil
R. Becerril University of Zaragoza, Zaragoza, Spain
S. Benito Technical University of Madrid, Madrid, Spain
K. Boehme International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
K. Böhme International Iberian Nanotechnology Laboratory, Braga, Portugal
A. Broumand University College of Agriculture and Natural Resources, University of Tehran, Karadj, Iran
S. Caamaño Antelo Universidad de Santiago de Compostela, Lugo, Spain
F. Calderón Technical University of Madrid, Madrid, Spain
P. Calo-Mata Universidad de Santiago de Compostela, Lugo, Spain
C.A. Campos University of Buenos Aires, Mayor Güiraldes s/n, Ciudad Universitaria, and National Council of Scientific and Technical Research of Argentina, Buenos Aires, Argentina
B. Cañas University Complutense of Madrid, Madrid, Spain
G.L. Carballo Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
B. Castiglioni Institute of Agricultural Biology and Biotechnology, Lodi, Italy
J.L. Castro-Mayorga Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
R. Catalá Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
A. Cepeda Universidad de Santiago de Compostela, Lugo, Spain
J.P. Cerisuelo Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
C. Consolandi Institute of Biomedical Technologies, Segrate, Italy
A. Conte Università di Foggia, Foggia, Italy
C.H. Corassin University of São Paulo, Pirassununga, São Paulo, Brazil
C. Costa Università di Foggia, Foggia, Italy
P. Cremonesi Institute of Agricultural Biology and Biotechnology, Lodi, Italy
M.R. Cruz-Valenzuela Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC), Hermosillo, Mexico
C.N. Cutter Pennsylvania State University, University Park, PA, United States of America
A.G. da Cruz Federal Institute of Education, Science and Technology, Rio de Janeiro, Brazil
M. D'Agostino Fera Science Limited (Fera), York, United Kingdom
P. Dantigny Université de Bretagne Occidentale, Brest, France
A. de Jong CEESA, Brussels, Belgium
T. de Miguel-Bouzas University of Santiago de Compostela, Lugo, Spain
C.A.F. de Oliveira University of São Paulo, Pirassununga, São Paulo, Brazil
M.A. Del Nobile Università di Foggia, Foggia, Italy
L. Diéguez International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
I. Domínguez Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
M.Z. Elsabee Cairo University, Cairo, Egypt
Z. Emam-Djomeh University College of Agriculture and Natural Resources, University of Tehran, Karadj, Iran
B. Espiña International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
P.J.P. Espitia Food Research Division, Observatorio del Caribe Colombiano, Cartagena de Indias, Colombia
M.F. Fabra Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
P. Fajardo Colegio Universitario, Vigo (Pontevedra), Spain
S. Farris Università degli Studi di Milano, Milano, Italy
M. Fathy Egyptian Petroleum Research Institute, Cairo, Egypt
L. Feijoo-Siota Universidad de Santiago de Compostela, Lugo, Spain
M.T. Fernandez-Argüelles International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
I.C. Fernández-No Universidad de Santiago de Compostela, Lugo, Spain
E. Fortunati University of Perugia, Terni, Italy
C.M. Franco Universidad de Santiago de Compostela, Lugo, Spain
C.F. Fronczek University of Arizona, Tucson, AZ, United States of America
L. Fu Zhejiang Gongshang University, Hangzhou, China
P. Fuciños International Iberian Nanotechnology Laboratory (INL), Braga, Portugal, and University of Vigo, Ourense, Spain
C. Fuciños University of Vigo, Ourense, Spain, and University of Minho, Braga, Portugal
M.J. Galotto University of Santiago de Chile, Santiago, Chile
V. García Ibarra Universidad de Santiago de Compostela, Lugo, Spain
M.C. Garrigós University of Alicante, Alicante, Spain
R. Gavara Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
L.N. Gerschenson FCEN, UBA, and Member of the National Research Council (CONICET), Buenos Aires, Argentina
M.F. Gliemmo Universidad de Santiago de Compostela, Lugo, Spain
G.A. Gonzalez-Aguilar Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC), Hermosillo, Mexico
A. Guarda University of Santiago de Chile, Santiago, Chile
S. Gupta Dr. B. Lal Institute of Biotechnology, Jaipur, Rajasthan, India
M.M. Gutierrez-Pacheco Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC), Hermosillo, Mexico
P.M. Halami CSIR (Central Food Technological Research Institute), Mysore, India
C. Hauser Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
P. Hernández-Muñoz Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
I.S. Ibarra Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
G. Ioppolo University of Messina, Messina, Italy
R.J. Jagus FI, UBA, and Institute of Technology and Engineering Sciences (INTECIN), Buenos Aires, Argentina
L. Jaiswal Mokpo National University, Muangun, Republic of Korea
A. Jiménez University of Alicante, Alicante, Spain
J. Jung Oregon State University, Corvallis, OR, United States of America
A. Karami-Moghaddam University College of Agriculture and Natural Resources, University of Tehran, Karadj, Iran
D.P. Karumathil University of Connecticut, Storrs, CT, United States of America
J.M. Lagarón Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
A. Lamas Universidad de Santiago de Compostela, Lugo, Spain
D.S. Lee Kyungnam University, Changwon, South Korea
C. López de Dicastillo University of Santiago de Chile, Santiago, Chile
A. López-Malo Universidad de las Américas Puebla, Puebla, Mexico
A. Lucera Università di Foggia, Foggia, Italy
S. Manso University of Zaragoza, Zaragoza, Spain
O. Martín-Belloso University of Lleida, Lleida, Spain
A. Martínez-Abad Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
G. Mauriello University of Naples Federico II, Portici, Italy
M. Míguez University of Vigo, Ourense, Spain
J.M. Miranda Universidad de Santiago de Compostela, Lugo, Spain
A.C. Mondragón Universidad de Santiago de Compostela, Lugo, Spain
A. Morata Technical University of Madrid, Madrid, Spain
M.R. Moreira Universidad Nacional de Mar del Plata, Mar del Plata, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
R.E. Morsi Egyptian Petroleum Research Institute, Cairo, Egypt
J. Mosqueda-Melgar Central University of Venezuela, Caracas, Venezuela
H. Moyaert CEESA, Brussels, Belgium
P. Muranyi Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
V. Muriel-Galet Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Spain
A.R. Navarro-Cruz Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
C. Nerin University of Zaragoza, Zaragoza, Spain
N. Nguyen Van Long Université de Bretagne Occidentale, Brest, France
D. Nobile Università di Foggia, Foggia, Italy
C.E. Ochoa-Velasco Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
M.J. Ocio Institute of Agrochemistry and Food Technology (IATA-CSIC), and University of Valencia, Valencia, Spain
J.M. Oliveira University of Minho, and ICVS/3B's – PT Government Associate Laboratory, Guimarães, Portugal
C.P. Ollé Resa Fellow of CONICET, Buenos Aires, Argentina
L.A. Ortega-Ramirez Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC), Hermosillo, Mexico
C.G. Otoni Federal University of São Carlos; National Nanotechnology Laboratory for Agribusiness, and EMBRAPA-CNPDIA, São Carlos, Brazil
F. Palomero Technical University of Madrid, Madrid, Spain
E. Palou Universidad de las Américas Puebla, Puebla, Mexico
O.I. Parisi University of Calabria, Arcavacata di Rende (CS), Italy
L.M. Pastrana University of Vigo, Ourense, Spain
T. Petrović Scientific Veterinary Institute “Novi Sad”, Novi Sad, Serbia
N. Picci University of Calabria, Arcavacata di Rende (CS), Italy
A. Ponce Universidad Nacional de Mar del Plata, Mar del Plata, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
M. Prado International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
N. Punbusayakul Mae Fah Luang University, Chiang Rai, Thailand
M. Quintela-Baluja Newcastle University, Newcastle, United Kingdom
J.L.R. Rama Universidad de Santiago de Compostela, Lugo, Spain
M. Ramos University of Alicante, Alicante, Spain
S. Rawdkuen Mae Fah Luang University, Chiang Rai, Thailand
R. Raybaudi-Massilia Central University of Venezuela, Caracas, Venezuela
R.L. Reis University of Minho, and ICVS/3B's – PT Government Associate Laboratory, Guimarães, Portugal
D. Restuccia University of Calabria, Arcavacata di Rende (CS), Italy
J.-W. Rhim Mokpo National University, Muangun, Republic of Korea
P. Roca-Saavedra Universidad de Santiago de Compostela, Lugo, Spain
J.A. Rodriguez Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
A. Rodríguez-Bernaldo de Quirós Universidad de Santiago de Compostela, Lugo, Spain
M. Rollini Università degli Studi di Milano, Milano, Italy
S.I. Roura Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
M.L. Rúa University of Vigo, Ourense, Spain
M.P. Ryan University of Limerick, Limerick, Ireland
G. Saija University of Messina, Messina, Italy
R. Salomone University of Messina, Messina, Italy
G. Sánchez Institute of Agrochemistry and Food Technology (IATA-CSIC), and University of Valencia, Valencia, Spain
A. Sánchez-Pérez University of Sydney, Sydney, NSW, Australia
L.I. Schelegueda University of Buenos Aires, Mayor Güiraldes s/n, Ciudad Universitaria, and National Council of Scientific and Technical Research of Argentina, Buenos Aires, Argentina
R. Sendón Universidad de Santiago de Compostela, Lugo, Spain
S. Sethi Dr. B. Lal Institute of Biotechnology, Jaipur, Rajasthan, India
M. Severgnini Institute of Biomedical Technologies, Segrate, Italy
S. Shankar Mokpo National University, Muangun, Republic of Korea
F. Silva University of Zaragoza, Zaragoza, Spain
B.A. Silva-Espinoza Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC), Hermosillo, Mexico
S. Simjee CEESA, Brussels, Belgium
V. Siracusa University of Catania, Catania, Italy
N.F.F. Soares Federal University of Viçosa, Viçosa, Brazil
R. Soliva-Fortuny University of Lleida, Lleida, Spain
U.G. Spizzirri University of Calabria, Arcavacata di Rende (CS), Italy
J. Suárez-Lepe Technical University of Madrid, Madrid, Spain
P. Suppakul Kasetsart University, Bangkok, Thailand
P. Tavolaro Faculdades Metropolitanas Unidas, São Paulo, Brazil
J. Thielmann Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
A. Torres University of Santiago de Chile, Santiago, Chile
V. Trinetta Pennsylvania State University, University Park, PA, United States of America
A. Upadhyay University of Connecticut, Storrs, CT, United States of America
H.R. Valentino State University of New York at Oswego, Oswego, NY, United States of America
K. Venkitanarayanan University of Connecticut, Storrs, CT, United States of America
S. Vial University of Minho, and ICVS/3B's – PT Government Associate Laboratory, Guimarães, Portugal
T.G. Villa Universidad de Santiago de Compostela, Lugo, Spain
Y. Wang Zhejiang Gongshang University, Hangzhou, China
Z.-T. Yao Hangzhou Dianzi University, Hangzhou, China
A. Yemenicioğlu Izmir Institute of Technology, Izmir, Turkey
Jeong-Yeol Yoon University of Arizona, Tucson, AZ, United States of America
Y. Zhao Oregon State University, Corvallis, OR, United States of America