https://ebookmass.com/product/analysis-of-flame-retardancy-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Chain Mobility and Progress in Medicine, Pharmaceuticals, and Polymer Science and Technology George Wypych
https://ebookmass.com/product/chain-mobility-and-progress-in-medicinepharmaceuticals-and-polymer-science-and-technology-george-wypych/
ebookmass.com
Living in Time: The Philosophy of Henri Bergson Barry Allen
https://ebookmass.com/product/living-in-time-the-philosophy-of-henribergson-barry-allen/
ebookmass.com
Applications of Polymer Nanofibers Anthony L. Andrady
https://ebookmass.com/product/applications-of-polymer-nanofibersanthony-l-andrady/
ebookmass.com
Dalzielov Duh Reginald Hill
https://ebookmass.com/product/dalzielov-duh-reginald-hill/
ebookmass.com
Northern Stars: A Friends-to-Lovers Romance (The Compass Series Book 4) Brittainy Cherry
https://ebookmass.com/product/northern-stars-a-friends-to-loversromance-the-compass-series-book-4-brittainy-cherry/
ebookmass.com
Men, Masculinity and Contemporary Dating 1st ed. Edition Chris Haywood
https://ebookmass.com/product/men-masculinity-and-contemporarydating-1st-ed-edition-chris-haywood/
ebookmass.com
L'Antre des Vipères (French Edition) Knight
https://ebookmass.com/product/lantre-des-viperes-french-editionknight/
ebookmass.com
The Transmedia Franchise of Star Wars TV Dominic J. Nardi
https://ebookmass.com/product/the-transmedia-franchise-of-star-warstv-dominic-j-nardi/
ebookmass.com
eTextbook 978-9814738255 Global Business Today 9th Edition
https://ebookmass.com/product/etextbook-978-9814738255-globalbusiness-today-9th-edition/
ebookmass.com
Lockdown: Social Harm in the Covid-19 Era 1st
Daniel Briggs
https://ebookmass.com/product/lockdown-social-harm-in-thecovid-19-era-1st-edition-daniel-briggs/
ebookmass.com
AnalysisofFlame Retardancyin PolymerScience
Editedby HenriVahabi
UniversityofLorraine,CentraleSupelec,LMOPS,Metz,France
MohammadRezaSaeb DepartmentofPolymerTechnology,FacultyofChemistry,Gdansk UniversityofTechnology,Gdansk,Poland
GiulioMalucelli DepartmentofAppliedScienceandTechnology, PolitecnicodiTorino,andLocalINSTMUnit,Alessandria,Italy
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright © 2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-12-824045-8
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionsEditor: AnitaKoch
EditorialProjectManager: JaiMarieJose
ProductionProjectManager: BharatwajVaratharajan
CoverDesigner: MarkRogers
TypesetbySTRAIVE,India
ArthurRichardHorrocks 1Introduction................................................................................1
1.1Polymersandthefiretriangle.. ................. .......................1
1.2Glossaryofterms..............................................................3
2Thermaltransitions,thermoplasticity,andgeometric effects.........................................................................................5
2.1Thermophysicaleffects...... ...............7
2.2Thermallythinversusthermallythickmaterials.... .........8
2.3Effectofsamplegeometry,orientation,and physicalstructure..............................................................8
3Fuel-formingreactions:Polymerpyrolysisandignition.........10
3.1Thermaldegradationorpyrolysis...................................10
3.2Pyrolysisofindividualpolymertypes..............................12
4Oxidativedegradation...............................................................27
5Combustionandfirespread:Effectofincidentheatflux.......28
5.1Ignition.............................................................................30
5.2Effectofheatflux.............................................................31
5.3Smoke..............................................................................36
6Flameretardance:Effectofflameretardantson ignition,combustion,andsmokegeneration..........................37
6.1Flame-retardanttypesandcharacteristics.......... ..........39
6.2Synergism,additivity,andantagonism............................41
6.3Environmentalchallengesandthepotentialfor nanotechnologyFRdevelopments..................................44
4.1IncompletecombustioninPCFCbycontrolling
5.2Predictingthetemperatureofsolidsurfaceat ignitionfromPCFC.........................................................108
5.3Correlationswithfiretests............................................110
5.4Milligram-scaleflamecalorimetry (MFC).... 112
6Concludingremarksandfutureperspectives.......................113 Acknowledgments........................................................................114 References...................................................................................114
CHAPTER4Evaluationofgasphase:Mechanismsandanalyses....117
SabyasachiGaan
1Introduction............................................................................117
2Typesofgas-phasemechanism... ...119
3Commonanalyticaltoolsforgas-phasemechanism evaluation...............................................................................124
3.1Thermogravimetry-infraredspectroscopy (TG-FTIR)/massspectrometry(MS)coupled analysis..........................................................................124
3.2Directinsertionprobe-massspectrometry(DIP-MS)...129
3.3Pyrolysis-gaschromatographycoupledtechnique.......131
3.4Microscalecombustioncalorimeter(MCC)andits variations........................................................................136
3.5Conecalorimeter...........................................................142
3.6Detectionofphosphorus-basedgas-phasereactive species...........................................................................143
4Concludingremarksandfutureperspectives.......................152 Acknowledgment..........................................................................153 References...................................................................................153
CHAPTER5Evaluationofgasphase:Smokeandtoxicityanalysis...161
EricGuillaume
1Introduction............................................................................161
2Smokecontents......................................................................161
2.1Gaseousfireeffluents....................................................161
2.2Solidandliquidfire effluents... 165
3Analysisofsmoke...... .............166
3.1Smokeopacity................................................................166
3.2Smokegases’concentrations........................................170
4Impactsofsmoke...................................................................175
4.1Visibilitythroughsmoke.... ...........................175
4.2Smokeinhalation...........................................................176
4.3Environmentaleffects....................................................185
5Conclusionsandperspectives................................................186
2Fundamentalsofcharandresidueformation.......................193
2.1Ceramization..................................................................193
2.2Intumescence.................................................................193
2.3Physicalbarrier(nanocomposite)..................................194
2.4Charring.........................................................................195
3Chemicalcharacterization:Chemicalcomposition...............195
3.1Fouriertransforminfraredspectroscopy(FTIR)...........196
3.2Ramanspectroscopy......................................................199
3.3X-rayphotoelectronspectroscopy(XPS). .........201
3.4X-raydiffraction(XRD)...................................................205
3.5Solid-statenuclearmagneticresonance(ssNMR).......207
3.6Electronspinresonance(ESR)......................................213
4Microscopy:Morphologyoftheresidue.................................215
4.1Scanningelectronmicroscopy(SEM)............................215
4.2Electronprobemicro-analysis(EPMA).................. .......216
4.3Transmissionelectronmicroscopy(TEM).....................217
4.4X-raycomputedtomography(CT)..................................220 5Dynamicsofchar/residueformation.. .......223
5.1Viscosity..........................................................................223
5.2Deformationandexpansion...........................................224 6Conclusionsandfuturetrends.....
2.1Conceptoffireresistance......
2.2Fireresistanceevaluation—Experimentalandmodeling characterization...... ...........239
2.3Influenceoffireresistanceobjectivesonhuman behavior..........................................................................241
3Materialapplicationsoffireresistance.................................242
3.1Non-combustiblematerials...........................................244
3.2Combustiblematerials... .......245 4Conventionalapproachoffireresistance..............................248
4.1Generalprinciples..........................................................248
4.2Buildingapplication....... ............249
4.3Transportapplication.....................................................261
4.4OutsideEurope...............................................................265
4.5Limitsoftheconventional approach............................. 266 5Performanceapproach...........................................................266
5.1Firedynamicsforfire resistance....................... ...........267
5.2Fireanalysisappliedtostructuralanalysis..................280
5.3Thermalanalysis............................................................283
5.4Experimentalapproachusinglarge-scaleand real-scaletests..............................................................284
5.5Structuralfireengineering............................................286 6Conclusionsandperspectives................................................292 Acknowledgments........................................................................293 References...................................................................................293
CHAPTER8Characterizationofhigh-temperaturepolymers forextremeenvironments...........................................299
HaoWuandJosephH.Koo
1Introduction............................................................................299
2High-temperaturepolymers...... ............303
2.1High-temperaturethermosets.... .303
2.2High-temperaturethermoplastics................................308 3Aerothermalablationtestingforhigh-temperature applications.............................................................................311
3.1Oxyacetylenetestbed(OTB)..........................................311
3.2Simulatedsolidrocketmotor (SSRM)...........................313
3.3Subscalesolidrocketmotor(charmotor)....................315
3.4LHMELtestfacilities......................................................316
3.5ICPtestfacilities............................................................318
3.6Arcjettestfacilities.......................................................321 4Concludingremarks...............................................................325 References...................................................................................326
CHAPTER9Correlationbetweenlaboratory-andreal-scale fireanalyses.................................................................333
LaurentAprin,LaurentFerry,FredericHeymes, RodolpheSonnier,andPascalZavaleta
1Introduction............................................................................333
4Cables.....................................................................................401
4.1Europe............................................................................401
4.2Others.............................................................................405
5Electrotechnicalproducts......................................................406
5.1Principle.........................................................................406
5.2Maintestmethods.........................................................406 6Others.....................................................................................407
6.1UL94...............................................................................407
6.2Heatreleaseratemeasurements.. ............408
6.3Smokecorrosivity..........................................................410 7Transportation........................................................................410
7.1Roadtransportationfield...............................................410
7.2Railtransportationfield.................................................413
7.3Marinefield....................................................................425
7.4Aeronauticalfield...........................................................431 8Conclusionsandperspectives................................................435 References...................................................................................437 INDEX...................................................................................................................449
Contributors
LaurentAprin LaboratoryfortheScienceofRisks(LSR),IMTMinesAles,Ales,France
VytenisBabrauskas FireScienceandTechnologyInc;JohnJayCollegeofCriminalJustice,NewYork, NY,UnitedStates
BenjaminBatiot InstitutPprime(UPR3346CNRS),UniversitedePoitiers,Poitiers,France
SergeBourbigot Univ.Lille,CNRS,INRAE,CentraleLille,UMR8207-UMET-UniteMateriauxet Transformations,Lille;InstitutUniversitairedeFrance(IUF),Paris,France
LaurentFerry IMTMinesAles,PolymersCompositesandHybrids(PCH),AlesCedex,France
SabyasachiGaan LaboratoryofAdvancedFibers,Empa,SwissFederalLaboratoriesforMaterials ScienceandTechnology,St.Gallen,Switzerland
EricGuillaume EfectisFrance,Saint-Aubin,France
FredericHeymes LaboratoryfortheScienceofRisks(LSR),IMTMinesAles,Ales,France
ArthurRichardHorrocks IMRI—UniversityofBolton,Bolton,UnitedKingdom
JosephH.Koo KAI,LLC;WalkerDepartmentofMechanicalEngineering,TheUniversityofTexasat Austin,Austin,TX,UnitedStates
ThomasRogaume InstitutPprime(UPR3346CNRS),UniversitedePoitiers,Poitiers,France
RodolpheSonnier IMTMinesAles,PolymersCompositesandHybrids(PCH),AlesCedex,France
HaoWu KAI,LLC,Austin,TX,UnitedStates
PascalZavaleta InstitutdeRadioprotectionetdeSu ˆ reteNucleaire(IRSN),StPaul-Lez-Durance Cedex,France
Preface
Anydevelopmentinthefieldofpolymerscienceandtechnologyhasalwaysbeen accompaniedbythequestfordesignandmanufactureofhigh-performancepolymericmaterials,particularlypolymercompositesandnanocomposites.Inthe meantime,preciseanalysisofpolymershasadvancedprovidingresearcherswith usefulinsightsintotheprocessing-microstructure-properties-performanceinterrelationships.Flame-retardantpolymericmaterialshavebeenatthecoreofattentionoverthepastfewdecades,asevidencedbythecommercializationofmany flame-retardedsystems.However,thereisacontinuedneedforfireanalysismakingitpossibletoevaluatethefireperformanceandalsotoidentifythemechanismsunderlyingtheflameretardancyofpolymersinbothgasandcondensed phases.Typically,firebehavioranalysiscanbeviewedintermsofflammability, ignitability,heatreleaseduringcombustion,flamespread,amountandintensity ofsmoke,andtoxicity.Severalstandardtestmethodsareavailablefortheanalysis offireincludingASTM,ISO,andEN,afewtomention.Firetestscanbeviewed fromthescaleperspectiveassmall-scale,bench-scale,andlarge-scalemeasurements.Nevertheless,researchersarequiteoftenlookingfornewwaysfortheanalysisoffirebycorrelatingtheoutcomesofstandardizedtestsand/ordefiningnew measures/indices,aimedatadeeperunderstandingofthemechanismscontrollingtheflameretardancyofpolymers.
Exploringthemechanismsofactionofflameretardantsinpolymersisanessentialrequirement.Besidesstandardmethodsthatmainlyfocusonthephysicsof fire,therewillalwaysbetheneedforsupplementaryteststounraveltheroleof chemistry,whichincludetheanalysisofchar(intumescentorcompact/dense) andmineralresidue.Sincenewflame-retardantsystemsaremainlycomplex/ hybridsystems,inwhichtwoormoreflameretardantswithsimilarordifferent natureareinvolved,theanalysisofflameretardancysometimesbecomesaseriouschallengeforresearchers.Suchhybridmaterialsareaimedatcoveringa widevarietyofapplicationsrangingfromcablesandprotectivecoatingsto theconstructionandbuildingmaterialsaswellasthoseinrailwaysandaviation.Thisbookprovidesusefulinformationaboutfireanalysisinpolymerscience.Startingfromgeneralconceptsanddefinitions/terms,severaladvanced
featuresoffireanalysisarecoveredbyanumberofexpertsfromallaroundthe worldwithlong-standingexperienceinthefield.In Chapter1,fundamentalsof fireanalysisincludingtheflammability,ignition,andfirespreadareintroduced,followedby Chapter2 onforcedcombustion,viewedfromtheperspectiveofconecalorimetrytests.In Chapter3,forcedcombustionisdiscussedin termsofmicroscalei.e.,pyrolysis-combustionflowcalorimetry(PCFC)tests.In Chapter4,thegasphaseanalysisispresented,andmechanismsaredescribed, followedbyfurtherevaluationofsmokeanalysisoverviewedin Chapter5. Evaluationofthecondensedphaseisthensurveyedbychar/residueanalysis in Chapter6.Analysisoffireresistanceofmaterialsisalsodiscussedin Chapter7,followedbycharacterizationoffireinhigh-performancepolymers usedforadvancedapplications(Chapter8).Thelasttwochaptersaredevoted tothecorrelationbetweenlaboratory-scaleandreal-scalefireanalyses (Chapter9)andfireanalysisfromanindustrialperspective(Chapter10).
Theeditorsofthisbookhopethatthechapterscancontributetodeepeningthe knowledgeofstudents,technicians,engineers,researchers,andpolicymakers ofindustryworkinginthefieldfrombothacademicandindustrialsectors.The evolutioninmaterials,processing,andstandardtestmethodswillnecessitate furtheranalysesonthefireretardancyofpolymermaterials.Webrought togetherwell-knownscientiststowritethisbookinthehopethattheoutcome couldpersuadescientistsforcontinuedinnovation,adaptationand/orestablishmentofnewtestmethodsinamorerobustandreliablemanner.
HenriVahabi MohammadRezaSaeb GiulioMalucelli
Fundamentals:Flammability,ignition, andfirespreadinpolymers
ArthurRichardHorrocks IMRI—UniversityofBolton,Bolton,UnitedKingdom
1Introduction
Thefiresafetyofmaterialsandproductsisdeterminedbyanunderstandingof howtheymayreacttoanignitingsourceintheenvironmentsinwhichtheyare used,suchasdomesticdwellings,publicbuildings,industriallocations,and transport.Theuseofpolymericmaterialsforstructuralitems,interiordecoration,furnishings,etc.,introducestheproblemoftheirpotentialflammability andincreasedfirehazard,whichtheirpresenceintroducesintermsofincreasingtheriskoffireinjuryandpotentiallossoflife.
Thischapterisintendedtoprovideanoverviewofthesignificantaspectsthat determinetheeffectofheatonthepolymericmaterials,theirsubsequentignitionandcombustion,andtherelatedfactorsinfluencingflamespreadrates. Theelementsofstrategiesthatincreasetheflameretardancyorresistanceof polymersareparticularlystressed.Inaddition,ageneralappraisalofthese andhowtheyrelatetofiretestingmethodologiesareprovidedasthebasis forsubsequentmorein-depthstudieslaterinthisbook.
Thetextisprovidedwithanumberofsignificantreferencestoenablethereader topursueeachtopicinfargreaterdepththanispossiblehere.Thereferencesare followedbyanextensivebibliographycomprisingthemostsignificanttexts publishedduringthelast20yearsorso.
1.1Polymersandthefiretriangle
Tounderstandthecombustionprocess,anappreciationoftheso-calledFire Triangleisanessentialfirstrequirement.Inessence,anycombustionrequires thethreeelements:afuel,heat,andoxygenactingtogetherinconcert. Fig.1 illustratesthisprocess,andthetriangleis“broken”ifanyoneofthesefactors isremoved.Ideally,thefuelmustbeeitheragasorvapor.
Thesimpleviewofthepolymerpyrolysis/combustionprocess. 2 CHAPTER1:Fundamentals:Flammability,i
Thefiretriangle.
Sincepolymersaresolids,theirconversionintoflammablefuels,asaresultof theapplicationofheatasaflame,ahotsurface,orinradiantform,mustfirstbe understood.Thismayberepresentedbythegeneralizedreactionsin Scheme1
Hc ΔHc heat
Volatiles + flammable gases + Polymer
Oxygen non-flammable gases + char
CO + CO2 + H2O (+ NOx + HCN) + smoke
SCHEME1
Theheatrequiredtothermallydegradeorpyrolyzethepolymerisdefinedas theheatofpyrolysis, ΔHp,andthereactionsinvolvedareusuallyendothermic. Theevolvedvolatilesandflammablegasesrepresentthe“fuels”in Fig.1,andat thetemperatures,atwhichpyrolysisoccurs,usuallyoxidizeandigniteinthe presenceofoxygen.However,inrealfires,perfectoxidationofallvolatiles tocarbondioxideandwaterdoesnotoccur;hence,ifthereisaninclusion ofcarbonmonoxideandifnitrogenispresentinthepolymer(e.g.,polyamides, polyacrylics,wool,silk),thereistheprobabilitythatnitrogen-containinggases, NOx,andhydrogencyanide,HCN,mayalsobepresent.Polymerscontaining sulfursuchaswool,keratin,vulcanizedrubber,andpolysulfonesmayinclude gasessuchashydrogensulfideandsulfurdioxideinthefiregases.Smokeagain
FIG.1
isaproductofimperfectcombustion.Oxidationisanexothermicreactionand soheatisevolved, ΔHc,theheatofcombustion,whichfeedsbacktopyrolyze morepolymers.
1.2Glossaryofterms
Thewholeareaofpolymer,fiberandtextile,film/laminate,andcomposite materialburningpropertiesandtheirrelatedrisk-reducingmethodologies useanumberofterms,whichinsomecasesmaybequiteconfusing,especially tothenon-specialist.Thefollowingisalistinanalphabeticalorderofthemore commonterms,originallytakenfromthoseidentifiedbyLewin [1],andit includesanumberofadditionsandvariationsrelatingtothewholeareaof flame-retardantpolymersanditsliterature:
Additive(flameretardant): A(flameretardant)compoundaddedafterthe polymerhasbeensynthesized,butbeforeorduringitsconversiontothe finalform(e.g.,fiber,plastic),notcovalentlyboundtopolymer substrate.
Afterglow: Glowingcombustioninamaterialaftercessation(naturalor induced)offlaming.
Afterglowtime: Thetimetheflamecontinuestoburnaftertheignitionflame isremoved.
Antagonism: Theobservedeffectivenessofcombinationsofcompoundsis lessthanthesumoftheeffectsofindividualcomponents.
Autoignition:Spontaneousignitionofamaterialwhenheatedinair.
Back-coating: Acoatingappliedtothereversefaceofafabricinamannerthat doesnotaffecttheaestheticsorotherpropertiesoftheface.
Char: Thecarbonaceousresidueorcharformedduringorremainingafter pyrolysisorcombustion.
Charlength: Thedifferencebetweenoriginallengthandremainingunburned lengthofmaterialaftertestingaspecimenbyexposuretoaflame.
Coating(flameretardant): Alayerofsecondarymaterialcomprisingaflame retardantandabinderoraflame-retardantresindepositedonthepolymer materialsurfaceorwithinthepolymersurface.
Combustion:Self-catalyzedexothermicreactioninvolvingfuelandoxidizer. Condensed-phaseflameretardant:Aflameretardantthatmodifiesthepolymer pyrolysisprocesstoreduceflammablevolatileformationandusually increaseinchar.
Damagedlength: Theextentofdamageproducedoverthespecimenbyan ignitionsourceandthesubsequentsubstrateignition.Itmayincludechar, formationofahole,discoloredregion,orzonehavingreducedtensile propertiesoracombinationthereof.
Finish(flameretardant): Acompoundorcombinationofcompoundsadded afterconversiontotheendproduct(e.g.,fiber,yarn,fabric),whichmaybe chemicallybondedordepositedonfiber,yarn,fabric,orthin-filmsurfaces.
Fireresistance:Thecapacityofamaterialorstructuretowithstandfire withoutlosingitsfunctionalproperties.
Flame:Combustionprocessinthegasphaseaccompaniedbytheemission ofvisiblelight.
Flameresistance:Thepropertyinamaterialofexhibitingresistanceto ignitionand/orminimalflammability;thetermisoftensynonymouswith flameretardancy,butmaybeconsideredtorelatetomaterials,whichdonot igniteunderaflamebutmaybedamagedbyit.
Flameretardanceorretardancy:Thepropertyinamaterialofexhibiting resistancetoignitionandreducedflammability;thetermisoften synonymouswith flameresistance butmaybeconsideredtorelateto materials,whichwilligniteunderaflameandwhichonremovalwilleither self-extinguishorburnveryslowly.
Flameretardant:Chemicalcompoundcapableofimpartingflameresistance to(orreducingtheflammabilityof)amaterial,towhichitisaddedor combinedwith.
Flamepropagation:Spreadofflamefromregiontoregioninacombustible material(burningvelocity ¼ rateofflamepropagation).Intextilefabrics,the timetoburnaspecifiedlengthoffabricismoreeasilydefined.
Flamespread: Theextentofpropagationofflameinspaceoroveraspecimen surfaceunderspecifiedtestconditions.
Flamingdebris: Materialsseparatingfromthespecimenduringthetest procedureandfallingbelowtheinitialloweredgeofthespecimenand continuingtoflameasitfalls.Thesemayincludemoltendrips,bothflaming andnon-flaming.
Flammability:Thetendencyofamaterialtoburnwithaflame.
Gas-orvapor-phaseflameretardant: Aflameretardantthatinteractswiththe flamechemistry,duringwhichvolatilesareoxidizedbyoxygeninair.
Heatflux: Theintensityofaheatorignitingsourcewithrespecttoadefined areaormassofmaterial.
Ignition: Initiationofcombustion.Infiretesting,analternativedefinition mightbe,“Thestage,atwhichthetestspecimensustainsaflameforaperiod of1sormoreafterremovaloftheignitingflame.”
Ignitiontimeortimetoignite: Thetimetakenforasampletoignitewhen subjectedtoanignitionsource,adirectheatfluxorboth.
Inherentflameorfireresistance: Thepropertyofapolymer,inwhichthe chemicalstructureresistspyrolysisandgivesofffewflammablevolatiles, therebyreducingitseasecombustionandincreasingitsabilitytomaintain itsfunctionalpropertiesathighertemperatures.Suchorganicpolymers usuallyhavearomaticstructures.
Limitingoxygenindex(LOI): Minimumoxygenpercentintheenvironment thatsustainsburningunderspecifiedtestconditions.
Nanocoating,includingsol-gelandlayer-by-layer: Coatingsonpolymersurfaces of >100nmorevenofmolecularthickness.Sol-gelcoatingsgenerally compriseacross-linkedsurfacecoatingbasedonsilicanetworks;layer-bylayercostingscomprisemultilayersandwich-typestructures,inwhicheach nanolayerhasanequalandoppositeelectricalcharge.
Peakheatreleaserate:Themaximumrateofheatreleasefollowingthe ignitionofasample.
Pyrolysis: Irreversiblechemicaldecompositionduetonon-oxidativeheating. Rateofheatrelease: Theamountofheatreleasedperunittimeatagiventime byspecimenburningunderspecifiedtestconditions.
Residualflametime: Thetimetakenforburningfragments(e.g.,molten drips)fallingfromthesampleandwhichburnonthebottomofthetest cabinettoextinguish.
Self-extinguishing: Theincapabilitytosustaincombustioninairunderthe specifiedtestconditionsaftertheremovalofexternalheatsource.
Smoke: Finedispersioninairofparticles,usuallyindividuallyinvisible,of carbonandothersolidsandliquidsresultingfromincompletecombustion. Itsopacityisduetoscatteringand/orabsorptionofvisiblelight.
Smoldering: Combustionwithoutflameandwithoutpriorflaming combustion,butusuallywithincandescenceandsmoke.
Surfaceflash: Therapidspreadofflameoverthesurfaceofamaterialwithout ignitionofitsbasicstructure.
Synergism: Theobservedeffectivenessofcombinationsofcompoundsis greaterthanthesumoftheeffectsgivenbyindividualcomponents.
Thermaltransitiontemperature:Thetemperatureatwhichaphysicalor chemicalchangeoccurswhenapolymerisheated.
Vertical,horizontal,30°,45°,orotherdefinedangle(striporcoupon)test: Orientationofthetestspecimenwithrespecttothehorizontalduring flammabilitytestingunderspecifiedconditions.
2Thermaltransitions,thermoplasticity, andgeometriceffects
Theburningbehavioroforganicpolymersisinfluencedandoftendetermined byanumberofthermaltransitiontemperaturesandthermodynamicparameters. Table1 liststhecommonlyavailablepolymerswiththeirtypicalorindicativephysicalglassorsecond-order, Tg,andmelting, Tm,transitions,if appropriate,whichmaybecomparedwiththeirchemicallyrelatedtransitions ofpyrolysis(underaninertatmosphere), Tp,andignitionandtheonsetof flamingcombustion, Tc [2,3].Alltransitiontemperaturesin Table1 should
Table1 Indicativethermaltransitionsofthemorecommonlyusedpolymers [2,3]
Naturalpolymers
Cellulose––35035018.419
Keratin(e.g.,wool)––2456002527
Thermoplasticpolymers
Nylon65021543145020–21.539
Nylon6.65026540353020–21.532
Poly(ethylene terephthalate) 80–90255420–44748020–2124
Polyacrylic100 >220a 290 >25018.232
Polyethylene,LDPE 125105–115 >450 >45018–1945
Polyethylene,HDPE135–140 >450 >45018–1945
Polypropylene 20165 >400 >40018.644
Poly(methyl methacrylate),PMMA 110200b >300 3801825
Poly(lacticacid),PLA60–65150–160 300–21–24–PVC <80 >180 >18045037–3921
Polystyrene 100240c >2801942
Thermosetpolymers
Vinylester 110– >250–20–23–
Unsaturatedpolyester 90–130– >250–20–2229–30
Phenol-formaldehyde270–300–440–520– 2528–29
Epoxy120–220–360–430–22–2330–31
Inherentlyflame-andheat-resistantpolymers
Meta-aramid (e.g.,Nomex) 275375a 410 >50029–3026
Para-aramid (e.g.,Kevlar) 340560a >590 >5502926
Polyimide(resin) >300– >450– 3526
aWithdecomposition. bSyndiotactic. cIsotactic.
beconsideredtobeindicativeonlysincetheyhavebeenobtainedfromvarious literaturesources,insomecasesaveraged,andinanycase,theyaredependent onpolymerhistoryandthemethodusedtorecordthem.Inaddition,typical heatsofcombustionaregivenas ΔHc.Generally,thelowertherespective Tc (andusually Tp)temperatureandthehottertheflame,themoreflammable
isthepolymer. Table1 listsalsotypicallimitingoxygenindex(LOI)values, whicharemeasuresoftheinherentburningcharacterofamaterialandmay beexpressedasapercentageordecimal [4].TheLOItestwasdevelopedbyFenimoreandMartinin1966 [5] andiswellestablishedinanumberofstandards includingASTMD2863andISOEN4589-2 [6].
PolymershavingLOIvaluesof21vol%or0.21orbelowigniteeasilyandburn rapidlyinair(containing20.8%oxygen).ThosewithLOIvaluesabove21vol% igniteandburnmoreslowly,andgenerallywhenLOIvaluesriseabovevalues ofabout26–28vol%,polymersusuallymaybeconsideredtobeflameretardantandwillpassmostsmallignitiontestswhensubjectedtoasmallflame inthehorizontalandverticalorientations.
2.1Thermophysicaleffects
Thermoplasticity,determinedbythemagnitudeofthesecond-ordertemperature, Tg,whichmayormaynotprecedemelting,isanimportantfactorthatinfluencesthefirebehaviorofanypolymer.Thistransitionisassociatedwiththe temperaturerequiredforpolymersegmentalmotiontooccurwithinthenoncrystallineregionofapolymer.Inamorphouspolymers,suchasatacticpolystyreneandpoly(methylmethacrylate),onlyasecond-ordertransitiontemperature mayberecordedasisthecaseinallthermosetpolymers(sometimesreferredto asresins),inwhichcovalentcross-linksexistbetweenthepolymericchains.
Semi-crystallinepolymers,whichareoftenfiber-forming,mayalsohavean associatedmeltingpoint, Tm (e.g.,polyamidesornylons,polyesters,polyolefins),unlessthedegreesofcrystallinityareexceptionallyhigh(e.g.,cellulose, poly(para-aramid)),whichresultinsecond-orderand/ormeltingtransition temperaturesbeingsohighthatthermaldecompositionoccursfirst.
Whensubjectedtoheat,athermoplasticpolymermayshrinkawayfromany ignitingflame,therebygivingtheillusionofflameretardancyinthattheshrinkageoccurswellbelowtheignitiontemperature.Infact,inthinmaterialslike textilefabricsandfilms,theshrinkagemaybesufficienttoenableanotherwise quiteflammablepolymernottoigniteandsopassagivenflammabilitystandard.Notallthermoplasticpolymersmelt,especiallythosewithhigh Tg values, sincethermaldecompositionmayprecedeorpreventmelting.Ifapolymer melts,thenmoltendripsmayformwhich—whileremovingthermalenergy fromtheheatedzone,andthuspreventingorreducingthetendencyto ignite—mayalsoaddtothefirehazardifthedripsdoigniteandsospread theflameviaflamingdripstounderlyingoradjacentmaterials.In Table1,most ofthepolymerswithwell-definedmeltingpointswillsufferfromthisphenomenon.Somethermoplasticpolymerslikepolyacrylicswillappeartomelt,while decomposingatthesametime;thisisespeciallynoticeablewithsomeinherentlyflame-andheat-resistantpolymerslikepoly(meta-andpara-)aramids.
2.2Thermallythinversusthermallythickmaterials
Itisimportantalsowhileconsideringthesethermophysicaleffectstoconsider thedifferencebetweenthermallythinandthermallythickmaterials [7].Polymersaregoodthermalinsulators,andsowheninthebulkform,ifexposedto heatononesurface,willbesubjectedtoonlythelocalizedeffectsthattheheat sourcegenerates,withtheinteriorexperiencinglittleincreaseintemperaturefor sometime.Inotherwords,athermalgradientwillbecreated,whichcouldbe closeto1000°Conthesurfaceandambienttemperaturewithinoratthereverse surfaceofthematerial.Suchamaterialisdefinedasbeing thermallythick.This willmeanthatthermaldegradationorpyrolysisreactionsgeneratingfuelwill occuratdifferentratesacrossthisgradient.Shouldthepolymerbecharforming,thenitmayformalayerofcharimmediatelybelowtheflamezone, whichwillactasafurtherbarriertoheattransfer.
Ontheotherhand,ifthematerialisverythin,thentherateofheattransfer acrossitsthicknessmaybesofastthatnothermalgradientisactuallymeasurable.Materialsthatbehaveinthismanneraretypicallyfilms,textilefabrics,and thinlaminatesandaresaidtobe thermallythin.Experienceshowsthatthermally thinbehaviorisobservedwhenmaterialthicknessesarelessthan3or4mm, andsoforthicknessesabove5mm,thermallythickbehaviorisobserved.Ifheat fluxesaresignificantlyhigh( 50kW/m2,avaluetypicallyequivalenttoan averageroomfireaboveatflashover—see Section5),thenthethermallythin tothickboundarymaybecloserto10mm,especiallyinmaterialslike wood [8]
Thus,thinfilms,laminates,andtextilesareusuallyconsideredtobethermally thin.Inthecaseoftextilestructures,singlelayersmaybethermallythinbutas layersareadded,theymaybeabletoshowthermallythickbehavior [9].This maybeusefullyexploitedwhendesigningheat-protectiveclothingandespeciallyfirefighters’garments [10,11]
Inconclusion,itisgenerallythecasethatthermallythinmaterialswilltherefore ignitesoonerandburnmuchmoreintenselythanthermallythicksamples.
2.3Effectofsamplegeometry,orientation,andphysical structure
Inadditiontotheeffectsofthickness,anumberofothergeometricalfactors mayinfluencetheignitionandburningpropertiesofmaterials,someofwhich aresummarizedbelow.
Ignitionsourcelocationandsampleorientation:Materialssubjectedtoan ignitionsourceappliedtothetopofthesampleusuallyshowthelongest ignitiontimesinceheatfromanygeneratedflamewillbedissipatedupward, awayfromthesample.Conversely,ignitionatthebottomofasamplewill
producetheshortesttimesinceheatfromflamesgeneratedwillbe transferredtothesampleimmediatelyinadvanceoftheflame.Onceignited, theadvancingflamewillpreheatthematerialandtheflamewillaccelerate rapidlyasaconsequenceofthisso-calledchimneyeffect.Thedegreeof accelerationwilldecreaseastheangleofadvancingflamereducesfrom90° withrespecttothehorizontal.Standardtestmethodsusuallyreflectthe orientationthatagivenmaterialwillbeusedduringitsservicelifeandthe firehazardposed.Thus,forexample:
(i)Buildingwallpanels,curtainsandblinds,andprotectiveclothing willbetestedinverticalorientations(90°);
(ii)Flooring,includingcarpets,andcarinteriorfabricsaretestedinthe horizontalmode(0°);
(iii)Tentingandinternalstrappingsforaircraftluggagecontainment maybetestedatotheranglessuchas30°,45°,or60° tothe horizontal.
Faceversusedgeignition :Sampleedgeignitionpresentsamoresevereignition conditionthanfaceignition,sinceintheformertheflamewillcontactnot onlythesampleface,butalsotheloweredgesurfaceand,inthecaseofathin laminate,filmortextile,thereverseface.Thus,testingmethodsreflectthe applicationhazardsothattextilesmayoftenbetestedattheedge,whereas wallpanelsmaybeexposedtoafaceignitionsource.
Effectofheterogeneityandstructure :Inmultiphasematerialscontaininga polymerasabinderresininacompositeforexample,ordispersed reinforcingshortglassfibersinanextrudedormoldeditem,theactionof heatmaycausethestructuretodelaminateordeconstruct,thereby exposinginnersurfacestobothheatandoxygen.Inaddition,exposed reinforcingelementsmaypreventotherwisemoltenpolymerfrom drippingawayfromtheignitionzone.Inbothcases,theburning propertiesofthematerialwillbesignificantlydifferentfromthoseofthe polymeritself.Agoodexamplehereistheverycommonpolyester/cottonblendedtextilefabric,whichwhenheatedthepolyestermeltsandwetsthe surfacesoftheadjacentcharringcottonfibers,whichpreventtheformer fromdrippingaway.Thisso-calledscaffoldingeffectexplainswhy polyester/cotton-blendedfabricsoftenposeagreaterfirehazardthanthose comprisingcottonalone.
Foamsandtextilesalsocontainairorothergaseswithintheirstructures,which willsignificantlyaffecttheirburningproperties.Thus,lowfabricareadensity valuesandopenstructuresaggravatetheburningrateandsoincreasethehazardsofburnseveritymorethanheavierandmultilayeredconstructions [12].
CorrelationsbetweenLOIlinearlywithrespecttoareadensityandlogarithmicallywithairpermeabilityhavebeenshownforaseriesofcottonfabrics, althoughcorrelationcoefficientswerelow [13].