Analysis of flame retardancy in polymer science henri vahabi - The full ebook version is ready for i

Page 1


https://ebookmass.com/product/analysis-of-flame-retardancy-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chain Mobility and Progress in Medicine, Pharmaceuticals, and Polymer Science and Technology George Wypych

https://ebookmass.com/product/chain-mobility-and-progress-in-medicinepharmaceuticals-and-polymer-science-and-technology-george-wypych/

ebookmass.com

Living in Time: The Philosophy of Henri Bergson Barry Allen

https://ebookmass.com/product/living-in-time-the-philosophy-of-henribergson-barry-allen/

ebookmass.com

Applications of Polymer Nanofibers Anthony L. Andrady

https://ebookmass.com/product/applications-of-polymer-nanofibersanthony-l-andrady/

ebookmass.com

Dalzielov Duh Reginald Hill

https://ebookmass.com/product/dalzielov-duh-reginald-hill/

ebookmass.com

Northern Stars: A Friends-to-Lovers Romance (The Compass Series Book 4) Brittainy Cherry

https://ebookmass.com/product/northern-stars-a-friends-to-loversromance-the-compass-series-book-4-brittainy-cherry/

ebookmass.com

Men, Masculinity and Contemporary Dating 1st ed. Edition Chris Haywood

https://ebookmass.com/product/men-masculinity-and-contemporarydating-1st-ed-edition-chris-haywood/

ebookmass.com

L'Antre des Vipères (French Edition) Knight

https://ebookmass.com/product/lantre-des-viperes-french-editionknight/

ebookmass.com

The Transmedia Franchise of Star Wars TV Dominic J. Nardi

https://ebookmass.com/product/the-transmedia-franchise-of-star-warstv-dominic-j-nardi/

ebookmass.com

eTextbook 978-9814738255 Global Business Today 9th Edition

https://ebookmass.com/product/etextbook-978-9814738255-globalbusiness-today-9th-edition/

ebookmass.com

Lockdown: Social Harm in the Covid-19 Era 1st

https://ebookmass.com/product/lockdown-social-harm-in-thecovid-19-era-1st-edition-daniel-briggs/

ebookmass.com

AnalysisofFlame Retardancyin PolymerScience

UniversityofLorraine,CentraleSupelec,LMOPS,Metz,France

MohammadRezaSaeb DepartmentofPolymerTechnology,FacultyofChemistry,Gdansk UniversityofTechnology,Gdansk,Poland

GiulioMalucelli DepartmentofAppliedScienceandTechnology, PolitecnicodiTorino,andLocalINSTMUnit,Alessandria,Italy

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-824045-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: JaiMarieJose

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

ArthurRichardHorrocks 1Introduction................................................................................1

1.1Polymersandthefiretriangle.. ................. .......................1

1.2Glossaryofterms..............................................................3

2Thermaltransitions,thermoplasticity,andgeometric effects.........................................................................................5

2.1Thermophysicaleffects...... ...............7

2.2Thermallythinversusthermallythickmaterials.... .........8

2.3Effectofsamplegeometry,orientation,and physicalstructure..............................................................8

3Fuel-formingreactions:Polymerpyrolysisandignition.........10

3.1Thermaldegradationorpyrolysis...................................10

3.2Pyrolysisofindividualpolymertypes..............................12

4Oxidativedegradation...............................................................27

5Combustionandfirespread:Effectofincidentheatflux.......28

5.1Ignition.............................................................................30

5.2Effectofheatflux.............................................................31

5.3Smoke..............................................................................36

6Flameretardance:Effectofflameretardantson ignition,combustion,andsmokegeneration..........................37

6.1Flame-retardanttypesandcharacteristics.......... ..........39

6.2Synergism,additivity,andantagonism............................41

6.3Environmentalchallengesandthepotentialfor nanotechnologyFRdevelopments..................................44

4.1IncompletecombustioninPCFCbycontrolling

5.2Predictingthetemperatureofsolidsurfaceat ignitionfromPCFC.........................................................108

5.3Correlationswithfiretests............................................110

5.4Milligram-scaleflamecalorimetry (MFC).... 112

6Concludingremarksandfutureperspectives.......................113 Acknowledgments........................................................................114 References...................................................................................114

CHAPTER4Evaluationofgasphase:Mechanismsandanalyses....117

SabyasachiGaan

1Introduction............................................................................117

2Typesofgas-phasemechanism... ...119

3Commonanalyticaltoolsforgas-phasemechanism evaluation...............................................................................124

3.1Thermogravimetry-infraredspectroscopy (TG-FTIR)/massspectrometry(MS)coupled analysis..........................................................................124

3.2Directinsertionprobe-massspectrometry(DIP-MS)...129

3.3Pyrolysis-gaschromatographycoupledtechnique.......131

3.4Microscalecombustioncalorimeter(MCC)andits variations........................................................................136

3.5Conecalorimeter...........................................................142

3.6Detectionofphosphorus-basedgas-phasereactive species...........................................................................143

4Concludingremarksandfutureperspectives.......................152 Acknowledgment..........................................................................153 References...................................................................................153

CHAPTER5Evaluationofgasphase:Smokeandtoxicityanalysis...161

EricGuillaume

1Introduction............................................................................161

2Smokecontents......................................................................161

2.1Gaseousfireeffluents....................................................161

2.2Solidandliquidfire effluents... 165

3Analysisofsmoke...... .............166

3.1Smokeopacity................................................................166

3.2Smokegases’concentrations........................................170

4Impactsofsmoke...................................................................175

4.1Visibilitythroughsmoke.... ...........................175

4.2Smokeinhalation...........................................................176

4.3Environmentaleffects....................................................185

5Conclusionsandperspectives................................................186

2Fundamentalsofcharandresidueformation.......................193

2.1Ceramization..................................................................193

2.2Intumescence.................................................................193

2.3Physicalbarrier(nanocomposite)..................................194

2.4Charring.........................................................................195

3Chemicalcharacterization:Chemicalcomposition...............195

3.1Fouriertransforminfraredspectroscopy(FTIR)...........196

3.2Ramanspectroscopy......................................................199

3.3X-rayphotoelectronspectroscopy(XPS). .........201

3.4X-raydiffraction(XRD)...................................................205

3.5Solid-statenuclearmagneticresonance(ssNMR).......207

3.6Electronspinresonance(ESR)......................................213

4Microscopy:Morphologyoftheresidue.................................215

4.1Scanningelectronmicroscopy(SEM)............................215

4.2Electronprobemicro-analysis(EPMA).................. .......216

4.3Transmissionelectronmicroscopy(TEM).....................217

4.4X-raycomputedtomography(CT)..................................220 5Dynamicsofchar/residueformation.. .......223

5.1Viscosity..........................................................................223

5.2Deformationandexpansion...........................................224 6Conclusionsandfuturetrends.....

2.1Conceptoffireresistance......

2.2Fireresistanceevaluation—Experimentalandmodeling characterization...... ...........239

2.3Influenceoffireresistanceobjectivesonhuman behavior..........................................................................241

3Materialapplicationsoffireresistance.................................242

3.1Non-combustiblematerials...........................................244

3.2Combustiblematerials... .......245 4Conventionalapproachoffireresistance..............................248

4.1Generalprinciples..........................................................248

4.2Buildingapplication....... ............249

4.3Transportapplication.....................................................261

4.4OutsideEurope...............................................................265

4.5Limitsoftheconventional approach............................. 266 5Performanceapproach...........................................................266

5.1Firedynamicsforfire resistance....................... ...........267

5.2Fireanalysisappliedtostructuralanalysis..................280

5.3Thermalanalysis............................................................283

5.4Experimentalapproachusinglarge-scaleand real-scaletests..............................................................284

5.5Structuralfireengineering............................................286 6Conclusionsandperspectives................................................292 Acknowledgments........................................................................293 References...................................................................................293

CHAPTER8Characterizationofhigh-temperaturepolymers forextremeenvironments...........................................299

HaoWuandJosephH.Koo

1Introduction............................................................................299

2High-temperaturepolymers...... ............303

2.1High-temperaturethermosets.... .303

2.2High-temperaturethermoplastics................................308 3Aerothermalablationtestingforhigh-temperature applications.............................................................................311

3.1Oxyacetylenetestbed(OTB)..........................................311

3.2Simulatedsolidrocketmotor (SSRM)...........................313

3.3Subscalesolidrocketmotor(charmotor)....................315

3.4LHMELtestfacilities......................................................316

3.5ICPtestfacilities............................................................318

3.6Arcjettestfacilities.......................................................321 4Concludingremarks...............................................................325 References...................................................................................326

CHAPTER9Correlationbetweenlaboratory-andreal-scale fireanalyses.................................................................333

LaurentAprin,LaurentFerry,FredericHeymes, RodolpheSonnier,andPascalZavaleta

1Introduction............................................................................333

4Cables.....................................................................................401

4.1Europe............................................................................401

4.2Others.............................................................................405

5Electrotechnicalproducts......................................................406

5.1Principle.........................................................................406

5.2Maintestmethods.........................................................406 6Others.....................................................................................407

6.1UL94...............................................................................407

6.2Heatreleaseratemeasurements.. ............408

6.3Smokecorrosivity..........................................................410 7Transportation........................................................................410

7.1Roadtransportationfield...............................................410

7.2Railtransportationfield.................................................413

7.3Marinefield....................................................................425

7.4Aeronauticalfield...........................................................431 8Conclusionsandperspectives................................................435 References...................................................................................437 INDEX...................................................................................................................449

Contributors

LaurentAprin LaboratoryfortheScienceofRisks(LSR),IMTMinesAles,Ales,France

VytenisBabrauskas FireScienceandTechnologyInc;JohnJayCollegeofCriminalJustice,NewYork, NY,UnitedStates

BenjaminBatiot InstitutPprime(UPR3346CNRS),UniversitedePoitiers,Poitiers,France

SergeBourbigot Univ.Lille,CNRS,INRAE,CentraleLille,UMR8207-UMET-UniteMateriauxet Transformations,Lille;InstitutUniversitairedeFrance(IUF),Paris,France

LaurentFerry IMTMinesAles,PolymersCompositesandHybrids(PCH),AlesCedex,France

SabyasachiGaan LaboratoryofAdvancedFibers,Empa,SwissFederalLaboratoriesforMaterials ScienceandTechnology,St.Gallen,Switzerland

EricGuillaume EfectisFrance,Saint-Aubin,France

FredericHeymes LaboratoryfortheScienceofRisks(LSR),IMTMinesAles,Ales,France

ArthurRichardHorrocks IMRI—UniversityofBolton,Bolton,UnitedKingdom

JosephH.Koo KAI,LLC;WalkerDepartmentofMechanicalEngineering,TheUniversityofTexasat Austin,Austin,TX,UnitedStates

ThomasRogaume InstitutPprime(UPR3346CNRS),UniversitedePoitiers,Poitiers,France

RodolpheSonnier IMTMinesAles,PolymersCompositesandHybrids(PCH),AlesCedex,France

HaoWu KAI,LLC,Austin,TX,UnitedStates

PascalZavaleta InstitutdeRadioprotectionetdeSu ˆ reteNucleaire(IRSN),StPaul-Lez-Durance Cedex,France

Preface

Anydevelopmentinthefieldofpolymerscienceandtechnologyhasalwaysbeen accompaniedbythequestfordesignandmanufactureofhigh-performancepolymericmaterials,particularlypolymercompositesandnanocomposites.Inthe meantime,preciseanalysisofpolymershasadvancedprovidingresearcherswith usefulinsightsintotheprocessing-microstructure-properties-performanceinterrelationships.Flame-retardantpolymericmaterialshavebeenatthecoreofattentionoverthepastfewdecades,asevidencedbythecommercializationofmany flame-retardedsystems.However,thereisacontinuedneedforfireanalysismakingitpossibletoevaluatethefireperformanceandalsotoidentifythemechanismsunderlyingtheflameretardancyofpolymersinbothgasandcondensed phases.Typically,firebehavioranalysiscanbeviewedintermsofflammability, ignitability,heatreleaseduringcombustion,flamespread,amountandintensity ofsmoke,andtoxicity.Severalstandardtestmethodsareavailablefortheanalysis offireincludingASTM,ISO,andEN,afewtomention.Firetestscanbeviewed fromthescaleperspectiveassmall-scale,bench-scale,andlarge-scalemeasurements.Nevertheless,researchersarequiteoftenlookingfornewwaysfortheanalysisoffirebycorrelatingtheoutcomesofstandardizedtestsand/ordefiningnew measures/indices,aimedatadeeperunderstandingofthemechanismscontrollingtheflameretardancyofpolymers.

Exploringthemechanismsofactionofflameretardantsinpolymersisanessentialrequirement.Besidesstandardmethodsthatmainlyfocusonthephysicsof fire,therewillalwaysbetheneedforsupplementaryteststounraveltheroleof chemistry,whichincludetheanalysisofchar(intumescentorcompact/dense) andmineralresidue.Sincenewflame-retardantsystemsaremainlycomplex/ hybridsystems,inwhichtwoormoreflameretardantswithsimilarordifferent natureareinvolved,theanalysisofflameretardancysometimesbecomesaseriouschallengeforresearchers.Suchhybridmaterialsareaimedatcoveringa widevarietyofapplicationsrangingfromcablesandprotectivecoatingsto theconstructionandbuildingmaterialsaswellasthoseinrailwaysandaviation.Thisbookprovidesusefulinformationaboutfireanalysisinpolymerscience.Startingfromgeneralconceptsanddefinitions/terms,severaladvanced

featuresoffireanalysisarecoveredbyanumberofexpertsfromallaroundthe worldwithlong-standingexperienceinthefield.In Chapter1,fundamentalsof fireanalysisincludingtheflammability,ignition,andfirespreadareintroduced,followedby Chapter2 onforcedcombustion,viewedfromtheperspectiveofconecalorimetrytests.In Chapter3,forcedcombustionisdiscussedin termsofmicroscalei.e.,pyrolysis-combustionflowcalorimetry(PCFC)tests.In Chapter4,thegasphaseanalysisispresented,andmechanismsaredescribed, followedbyfurtherevaluationofsmokeanalysisoverviewedin Chapter5. Evaluationofthecondensedphaseisthensurveyedbychar/residueanalysis in Chapter6.Analysisoffireresistanceofmaterialsisalsodiscussedin Chapter7,followedbycharacterizationoffireinhigh-performancepolymers usedforadvancedapplications(Chapter8).Thelasttwochaptersaredevoted tothecorrelationbetweenlaboratory-scaleandreal-scalefireanalyses (Chapter9)andfireanalysisfromanindustrialperspective(Chapter10).

Theeditorsofthisbookhopethatthechapterscancontributetodeepeningthe knowledgeofstudents,technicians,engineers,researchers,andpolicymakers ofindustryworkinginthefieldfrombothacademicandindustrialsectors.The evolutioninmaterials,processing,andstandardtestmethodswillnecessitate furtheranalysesonthefireretardancyofpolymermaterials.Webrought togetherwell-knownscientiststowritethisbookinthehopethattheoutcome couldpersuadescientistsforcontinuedinnovation,adaptationand/orestablishmentofnewtestmethodsinamorerobustandreliablemanner.

Fundamentals:Flammability,ignition, andfirespreadinpolymers

1Introduction

Thefiresafetyofmaterialsandproductsisdeterminedbyanunderstandingof howtheymayreacttoanignitingsourceintheenvironmentsinwhichtheyare used,suchasdomesticdwellings,publicbuildings,industriallocations,and transport.Theuseofpolymericmaterialsforstructuralitems,interiordecoration,furnishings,etc.,introducestheproblemoftheirpotentialflammability andincreasedfirehazard,whichtheirpresenceintroducesintermsofincreasingtheriskoffireinjuryandpotentiallossoflife.

Thischapterisintendedtoprovideanoverviewofthesignificantaspectsthat determinetheeffectofheatonthepolymericmaterials,theirsubsequentignitionandcombustion,andtherelatedfactorsinfluencingflamespreadrates. Theelementsofstrategiesthatincreasetheflameretardancyorresistanceof polymersareparticularlystressed.Inaddition,ageneralappraisalofthese andhowtheyrelatetofiretestingmethodologiesareprovidedasthebasis forsubsequentmorein-depthstudieslaterinthisbook.

Thetextisprovidedwithanumberofsignificantreferencestoenablethereader topursueeachtopicinfargreaterdepththanispossiblehere.Thereferencesare followedbyanextensivebibliographycomprisingthemostsignificanttexts publishedduringthelast20yearsorso.

1.1Polymersandthefiretriangle

Tounderstandthecombustionprocess,anappreciationoftheso-calledFire Triangleisanessentialfirstrequirement.Inessence,anycombustionrequires thethreeelements:afuel,heat,andoxygenactingtogetherinconcert. Fig.1 illustratesthisprocess,andthetriangleis“broken”ifanyoneofthesefactors isremoved.Ideally,thefuelmustbeeitheragasorvapor.

Thesimpleviewofthepolymerpyrolysis/combustionprocess. 2 CHAPTER1:Fundamentals:Flammability,i

Thefiretriangle.

Sincepolymersaresolids,theirconversionintoflammablefuels,asaresultof theapplicationofheatasaflame,ahotsurface,orinradiantform,mustfirstbe understood.Thismayberepresentedbythegeneralizedreactionsin Scheme1

Hc ΔHc heat

Volatiles + flammable gases + Polymer

Oxygen non-flammable gases + char

CO + CO2 + H2O (+ NOx + HCN) + smoke

SCHEME1

Theheatrequiredtothermallydegradeorpyrolyzethepolymerisdefinedas theheatofpyrolysis, ΔHp,andthereactionsinvolvedareusuallyendothermic. Theevolvedvolatilesandflammablegasesrepresentthe“fuels”in Fig.1,andat thetemperatures,atwhichpyrolysisoccurs,usuallyoxidizeandigniteinthe presenceofoxygen.However,inrealfires,perfectoxidationofallvolatiles tocarbondioxideandwaterdoesnotoccur;hence,ifthereisaninclusion ofcarbonmonoxideandifnitrogenispresentinthepolymer(e.g.,polyamides, polyacrylics,wool,silk),thereistheprobabilitythatnitrogen-containinggases, NOx,andhydrogencyanide,HCN,mayalsobepresent.Polymerscontaining sulfursuchaswool,keratin,vulcanizedrubber,andpolysulfonesmayinclude gasessuchashydrogensulfideandsulfurdioxideinthefiregases.Smokeagain

FIG.1

isaproductofimperfectcombustion.Oxidationisanexothermicreactionand soheatisevolved, ΔHc,theheatofcombustion,whichfeedsbacktopyrolyze morepolymers.

1.2Glossaryofterms

Thewholeareaofpolymer,fiberandtextile,film/laminate,andcomposite materialburningpropertiesandtheirrelatedrisk-reducingmethodologies useanumberofterms,whichinsomecasesmaybequiteconfusing,especially tothenon-specialist.Thefollowingisalistinanalphabeticalorderofthemore commonterms,originallytakenfromthoseidentifiedbyLewin [1],andit includesanumberofadditionsandvariationsrelatingtothewholeareaof flame-retardantpolymersanditsliterature:

Additive(flameretardant): A(flameretardant)compoundaddedafterthe polymerhasbeensynthesized,butbeforeorduringitsconversiontothe finalform(e.g.,fiber,plastic),notcovalentlyboundtopolymer substrate.

Afterglow: Glowingcombustioninamaterialaftercessation(naturalor induced)offlaming.

Afterglowtime: Thetimetheflamecontinuestoburnaftertheignitionflame isremoved.

Antagonism: Theobservedeffectivenessofcombinationsofcompoundsis lessthanthesumoftheeffectsofindividualcomponents.

Autoignition:Spontaneousignitionofamaterialwhenheatedinair.

Back-coating: Acoatingappliedtothereversefaceofafabricinamannerthat doesnotaffecttheaestheticsorotherpropertiesoftheface.

Char: Thecarbonaceousresidueorcharformedduringorremainingafter pyrolysisorcombustion.

Charlength: Thedifferencebetweenoriginallengthandremainingunburned lengthofmaterialaftertestingaspecimenbyexposuretoaflame.

Coating(flameretardant): Alayerofsecondarymaterialcomprisingaflame retardantandabinderoraflame-retardantresindepositedonthepolymer materialsurfaceorwithinthepolymersurface.

Combustion:Self-catalyzedexothermicreactioninvolvingfuelandoxidizer. Condensed-phaseflameretardant:Aflameretardantthatmodifiesthepolymer pyrolysisprocesstoreduceflammablevolatileformationandusually increaseinchar.

Damagedlength: Theextentofdamageproducedoverthespecimenbyan ignitionsourceandthesubsequentsubstrateignition.Itmayincludechar, formationofahole,discoloredregion,orzonehavingreducedtensile propertiesoracombinationthereof.

Finish(flameretardant): Acompoundorcombinationofcompoundsadded afterconversiontotheendproduct(e.g.,fiber,yarn,fabric),whichmaybe chemicallybondedordepositedonfiber,yarn,fabric,orthin-filmsurfaces.

Fireresistance:Thecapacityofamaterialorstructuretowithstandfire withoutlosingitsfunctionalproperties.

Flame:Combustionprocessinthegasphaseaccompaniedbytheemission ofvisiblelight.

Flameresistance:Thepropertyinamaterialofexhibitingresistanceto ignitionand/orminimalflammability;thetermisoftensynonymouswith flameretardancy,butmaybeconsideredtorelatetomaterials,whichdonot igniteunderaflamebutmaybedamagedbyit.

Flameretardanceorretardancy:Thepropertyinamaterialofexhibiting resistancetoignitionandreducedflammability;thetermisoften synonymouswith flameresistance butmaybeconsideredtorelateto materials,whichwilligniteunderaflameandwhichonremovalwilleither self-extinguishorburnveryslowly.

Flameretardant:Chemicalcompoundcapableofimpartingflameresistance to(orreducingtheflammabilityof)amaterial,towhichitisaddedor combinedwith.

Flamepropagation:Spreadofflamefromregiontoregioninacombustible material(burningvelocity ¼ rateofflamepropagation).Intextilefabrics,the timetoburnaspecifiedlengthoffabricismoreeasilydefined.

Flamespread: Theextentofpropagationofflameinspaceoroveraspecimen surfaceunderspecifiedtestconditions.

Flamingdebris: Materialsseparatingfromthespecimenduringthetest procedureandfallingbelowtheinitialloweredgeofthespecimenand continuingtoflameasitfalls.Thesemayincludemoltendrips,bothflaming andnon-flaming.

Flammability:Thetendencyofamaterialtoburnwithaflame.

Gas-orvapor-phaseflameretardant: Aflameretardantthatinteractswiththe flamechemistry,duringwhichvolatilesareoxidizedbyoxygeninair.

Heatflux: Theintensityofaheatorignitingsourcewithrespecttoadefined areaormassofmaterial.

Ignition: Initiationofcombustion.Infiretesting,analternativedefinition mightbe,“Thestage,atwhichthetestspecimensustainsaflameforaperiod of1sormoreafterremovaloftheignitingflame.”

Ignitiontimeortimetoignite: Thetimetakenforasampletoignitewhen subjectedtoanignitionsource,adirectheatfluxorboth.

Inherentflameorfireresistance: Thepropertyofapolymer,inwhichthe chemicalstructureresistspyrolysisandgivesofffewflammablevolatiles, therebyreducingitseasecombustionandincreasingitsabilitytomaintain itsfunctionalpropertiesathighertemperatures.Suchorganicpolymers usuallyhavearomaticstructures.

Limitingoxygenindex(LOI): Minimumoxygenpercentintheenvironment thatsustainsburningunderspecifiedtestconditions.

Nanocoating,includingsol-gelandlayer-by-layer: Coatingsonpolymersurfaces of >100nmorevenofmolecularthickness.Sol-gelcoatingsgenerally compriseacross-linkedsurfacecoatingbasedonsilicanetworks;layer-bylayercostingscomprisemultilayersandwich-typestructures,inwhicheach nanolayerhasanequalandoppositeelectricalcharge.

Peakheatreleaserate:Themaximumrateofheatreleasefollowingthe ignitionofasample.

Pyrolysis: Irreversiblechemicaldecompositionduetonon-oxidativeheating. Rateofheatrelease: Theamountofheatreleasedperunittimeatagiventime byspecimenburningunderspecifiedtestconditions.

Residualflametime: Thetimetakenforburningfragments(e.g.,molten drips)fallingfromthesampleandwhichburnonthebottomofthetest cabinettoextinguish.

Self-extinguishing: Theincapabilitytosustaincombustioninairunderthe specifiedtestconditionsaftertheremovalofexternalheatsource.

Smoke: Finedispersioninairofparticles,usuallyindividuallyinvisible,of carbonandothersolidsandliquidsresultingfromincompletecombustion. Itsopacityisduetoscatteringand/orabsorptionofvisiblelight.

Smoldering: Combustionwithoutflameandwithoutpriorflaming combustion,butusuallywithincandescenceandsmoke.

Surfaceflash: Therapidspreadofflameoverthesurfaceofamaterialwithout ignitionofitsbasicstructure.

Synergism: Theobservedeffectivenessofcombinationsofcompoundsis greaterthanthesumoftheeffectsgivenbyindividualcomponents.

Thermaltransitiontemperature:Thetemperatureatwhichaphysicalor chemicalchangeoccurswhenapolymerisheated.

Vertical,horizontal,30°,45°,orotherdefinedangle(striporcoupon)test: Orientationofthetestspecimenwithrespecttothehorizontalduring flammabilitytestingunderspecifiedconditions.

2Thermaltransitions,thermoplasticity, andgeometriceffects

Theburningbehavioroforganicpolymersisinfluencedandoftendetermined byanumberofthermaltransitiontemperaturesandthermodynamicparameters. Table1 liststhecommonlyavailablepolymerswiththeirtypicalorindicativephysicalglassorsecond-order, Tg,andmelting, Tm,transitions,if appropriate,whichmaybecomparedwiththeirchemicallyrelatedtransitions ofpyrolysis(underaninertatmosphere), Tp,andignitionandtheonsetof flamingcombustion, Tc [2,3].Alltransitiontemperaturesin Table1 should

Table1 Indicativethermaltransitionsofthemorecommonlyusedpolymers [2,3]

Naturalpolymers

Cellulose––35035018.419

Keratin(e.g.,wool)––2456002527

Thermoplasticpolymers

Nylon65021543145020–21.539

Nylon6.65026540353020–21.532

Poly(ethylene terephthalate) 80–90255420–44748020–2124

Polyacrylic100 >220a 290 >25018.232

Polyethylene,LDPE 125105–115 >450 >45018–1945

Polyethylene,HDPE135–140 >450 >45018–1945

Polypropylene 20165 >400 >40018.644

Poly(methyl methacrylate),PMMA 110200b >300 3801825

Poly(lacticacid),PLA60–65150–160 300–21–24–PVC <80 >180 >18045037–3921

Polystyrene 100240c >2801942

Thermosetpolymers

Vinylester 110– >250–20–23–

Unsaturatedpolyester 90–130– >250–20–2229–30

Phenol-formaldehyde270–300–440–520– 2528–29

Epoxy120–220–360–430–22–2330–31

Inherentlyflame-andheat-resistantpolymers

Meta-aramid (e.g.,Nomex) 275375a 410 >50029–3026

Para-aramid (e.g.,Kevlar) 340560a >590 >5502926

Polyimide(resin) >300– >450– 3526

aWithdecomposition. bSyndiotactic. cIsotactic.

beconsideredtobeindicativeonlysincetheyhavebeenobtainedfromvarious literaturesources,insomecasesaveraged,andinanycase,theyaredependent onpolymerhistoryandthemethodusedtorecordthem.Inaddition,typical heatsofcombustionaregivenas ΔHc.Generally,thelowertherespective Tc (andusually Tp)temperatureandthehottertheflame,themoreflammable

isthepolymer. Table1 listsalsotypicallimitingoxygenindex(LOI)values, whicharemeasuresoftheinherentburningcharacterofamaterialandmay beexpressedasapercentageordecimal [4].TheLOItestwasdevelopedbyFenimoreandMartinin1966 [5] andiswellestablishedinanumberofstandards includingASTMD2863andISOEN4589-2 [6].

PolymershavingLOIvaluesof21vol%or0.21orbelowigniteeasilyandburn rapidlyinair(containing20.8%oxygen).ThosewithLOIvaluesabove21vol% igniteandburnmoreslowly,andgenerallywhenLOIvaluesriseabovevalues ofabout26–28vol%,polymersusuallymaybeconsideredtobeflameretardantandwillpassmostsmallignitiontestswhensubjectedtoasmallflame inthehorizontalandverticalorientations.

2.1Thermophysicaleffects

Thermoplasticity,determinedbythemagnitudeofthesecond-ordertemperature, Tg,whichmayormaynotprecedemelting,isanimportantfactorthatinfluencesthefirebehaviorofanypolymer.Thistransitionisassociatedwiththe temperaturerequiredforpolymersegmentalmotiontooccurwithinthenoncrystallineregionofapolymer.Inamorphouspolymers,suchasatacticpolystyreneandpoly(methylmethacrylate),onlyasecond-ordertransitiontemperature mayberecordedasisthecaseinallthermosetpolymers(sometimesreferredto asresins),inwhichcovalentcross-linksexistbetweenthepolymericchains.

Semi-crystallinepolymers,whichareoftenfiber-forming,mayalsohavean associatedmeltingpoint, Tm (e.g.,polyamidesornylons,polyesters,polyolefins),unlessthedegreesofcrystallinityareexceptionallyhigh(e.g.,cellulose, poly(para-aramid)),whichresultinsecond-orderand/ormeltingtransition temperaturesbeingsohighthatthermaldecompositionoccursfirst.

Whensubjectedtoheat,athermoplasticpolymermayshrinkawayfromany ignitingflame,therebygivingtheillusionofflameretardancyinthattheshrinkageoccurswellbelowtheignitiontemperature.Infact,inthinmaterialslike textilefabricsandfilms,theshrinkagemaybesufficienttoenableanotherwise quiteflammablepolymernottoigniteandsopassagivenflammabilitystandard.Notallthermoplasticpolymersmelt,especiallythosewithhigh Tg values, sincethermaldecompositionmayprecedeorpreventmelting.Ifapolymer melts,thenmoltendripsmayformwhich—whileremovingthermalenergy fromtheheatedzone,andthuspreventingorreducingthetendencyto ignite—mayalsoaddtothefirehazardifthedripsdoigniteandsospread theflameviaflamingdripstounderlyingoradjacentmaterials.In Table1,most ofthepolymerswithwell-definedmeltingpointswillsufferfromthisphenomenon.Somethermoplasticpolymerslikepolyacrylicswillappeartomelt,while decomposingatthesametime;thisisespeciallynoticeablewithsomeinherentlyflame-andheat-resistantpolymerslikepoly(meta-andpara-)aramids.

2.2Thermallythinversusthermallythickmaterials

Itisimportantalsowhileconsideringthesethermophysicaleffectstoconsider thedifferencebetweenthermallythinandthermallythickmaterials [7].Polymersaregoodthermalinsulators,andsowheninthebulkform,ifexposedto heatononesurface,willbesubjectedtoonlythelocalizedeffectsthattheheat sourcegenerates,withtheinteriorexperiencinglittleincreaseintemperaturefor sometime.Inotherwords,athermalgradientwillbecreated,whichcouldbe closeto1000°Conthesurfaceandambienttemperaturewithinoratthereverse surfaceofthematerial.Suchamaterialisdefinedasbeing thermallythick.This willmeanthatthermaldegradationorpyrolysisreactionsgeneratingfuelwill occuratdifferentratesacrossthisgradient.Shouldthepolymerbecharforming,thenitmayformalayerofcharimmediatelybelowtheflamezone, whichwillactasafurtherbarriertoheattransfer.

Ontheotherhand,ifthematerialisverythin,thentherateofheattransfer acrossitsthicknessmaybesofastthatnothermalgradientisactuallymeasurable.Materialsthatbehaveinthismanneraretypicallyfilms,textilefabrics,and thinlaminatesandaresaidtobe thermallythin.Experienceshowsthatthermally thinbehaviorisobservedwhenmaterialthicknessesarelessthan3or4mm, andsoforthicknessesabove5mm,thermallythickbehaviorisobserved.Ifheat fluxesaresignificantlyhigh( 50kW/m2,avaluetypicallyequivalenttoan averageroomfireaboveatflashover—see Section5),thenthethermallythin tothickboundarymaybecloserto10mm,especiallyinmaterialslike wood [8]

Thus,thinfilms,laminates,andtextilesareusuallyconsideredtobethermally thin.Inthecaseoftextilestructures,singlelayersmaybethermallythinbutas layersareadded,theymaybeabletoshowthermallythickbehavior [9].This maybeusefullyexploitedwhendesigningheat-protectiveclothingandespeciallyfirefighters’garments [10,11]

Inconclusion,itisgenerallythecasethatthermallythinmaterialswilltherefore ignitesoonerandburnmuchmoreintenselythanthermallythicksamples.

2.3Effectofsamplegeometry,orientation,andphysical structure

Inadditiontotheeffectsofthickness,anumberofothergeometricalfactors mayinfluencetheignitionandburningpropertiesofmaterials,someofwhich aresummarizedbelow.

Ignitionsourcelocationandsampleorientation:Materialssubjectedtoan ignitionsourceappliedtothetopofthesampleusuallyshowthelongest ignitiontimesinceheatfromanygeneratedflamewillbedissipatedupward, awayfromthesample.Conversely,ignitionatthebottomofasamplewill

producetheshortesttimesinceheatfromflamesgeneratedwillbe transferredtothesampleimmediatelyinadvanceoftheflame.Onceignited, theadvancingflamewillpreheatthematerialandtheflamewillaccelerate rapidlyasaconsequenceofthisso-calledchimneyeffect.Thedegreeof accelerationwilldecreaseastheangleofadvancingflamereducesfrom90° withrespecttothehorizontal.Standardtestmethodsusuallyreflectthe orientationthatagivenmaterialwillbeusedduringitsservicelifeandthe firehazardposed.Thus,forexample:

(i)Buildingwallpanels,curtainsandblinds,andprotectiveclothing willbetestedinverticalorientations(90°);

(ii)Flooring,includingcarpets,andcarinteriorfabricsaretestedinthe horizontalmode(0°);

(iii)Tentingandinternalstrappingsforaircraftluggagecontainment maybetestedatotheranglessuchas30°,45°,or60° tothe horizontal.

Faceversusedgeignition :Sampleedgeignitionpresentsamoresevereignition conditionthanfaceignition,sinceintheformertheflamewillcontactnot onlythesampleface,butalsotheloweredgesurfaceand,inthecaseofathin laminate,filmortextile,thereverseface.Thus,testingmethodsreflectthe applicationhazardsothattextilesmayoftenbetestedattheedge,whereas wallpanelsmaybeexposedtoafaceignitionsource.

Effectofheterogeneityandstructure :Inmultiphasematerialscontaininga polymerasabinderresininacompositeforexample,ordispersed reinforcingshortglassfibersinanextrudedormoldeditem,theactionof heatmaycausethestructuretodelaminateordeconstruct,thereby exposinginnersurfacestobothheatandoxygen.Inaddition,exposed reinforcingelementsmaypreventotherwisemoltenpolymerfrom drippingawayfromtheignitionzone.Inbothcases,theburning propertiesofthematerialwillbesignificantlydifferentfromthoseofthe polymeritself.Agoodexamplehereistheverycommonpolyester/cottonblendedtextilefabric,whichwhenheatedthepolyestermeltsandwetsthe surfacesoftheadjacentcharringcottonfibers,whichpreventtheformer fromdrippingaway.Thisso-calledscaffoldingeffectexplainswhy polyester/cotton-blendedfabricsoftenposeagreaterfirehazardthanthose comprisingcottonalone.

Foamsandtextilesalsocontainairorothergaseswithintheirstructures,which willsignificantlyaffecttheirburningproperties.Thus,lowfabricareadensity valuesandopenstructuresaggravatetheburningrateandsoincreasethehazardsofburnseveritymorethanheavierandmultilayeredconstructions [12].

CorrelationsbetweenLOIlinearlywithrespecttoareadensityandlogarithmicallywithairpermeabilityhavebeenshownforaseriesofcottonfabrics, althoughcorrelationcoefficientswerelow [13].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.