Analysis and design of prestressed concrete di hu - Download the full ebook now for a seamless readi

Page 1


https://ebookmass.com/product/analysis-and-design-of-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Prestressed Concrete 5th Edition Warner Foster

https://ebookmass.com/product/prestressed-concrete-5th-edition-warnerfoster/

ebookmass.com

Prestressed Concrete: A Fundamental Approach 5th Edition Edward Nawy

https://ebookmass.com/product/prestressed-concrete-a-fundamentalapproach-5th-edition-edward-nawy/

ebookmass.com

Reinforced Concrete Structures Analysis and Design (2nd Edition) David A Fanella

https://ebookmass.com/product/reinforced-concrete-structures-analysisand-design-2nd-edition-david-a-fanella/

ebookmass.com

Administracio■n de compras y abastecimientos P. Fraser Johnson

https://ebookmass.com/product/administracion-de-compras-yabastecimientos-p-fraser-johnson/

ebookmass.com

Principles and Practice of Radiation Therapy E Book 4th Edition, (Ebook PDF)

https://ebookmass.com/product/principles-and-practice-of-radiationtherapy-e-book-4th-edition-ebook-pdf/

ebookmass.com

Microsoft Outlook 365 Complete: In Practice, 2021 Edition Randy Nordell

https://ebookmass.com/product/microsoft-outlook-365-complete-inpractice-2021-edition-randy-nordell/

ebookmass.com

The Business Student's Guide to Sustainable Management -Principles and Practice 2nd Edition Molthan-Hill

https://ebookmass.com/product/the-business-students-guide-tosustainable-management-principles-and-practice-2nd-edition-molthanhill/

ebookmass.com

The Thirteenth-Century Animal Turn: Medieval and TwentyFirst-Century Perspectives 1st ed. Edition Nigel Harris

https://ebookmass.com/product/the-thirteenth-century-animal-turnmedieval-and-twenty-first-century-perspectives-1st-ed-edition-nigelharris/

ebookmass.com

Advances in the Practice of Public Investment Management 1st ed. Edition Narayan Bulusu

https://ebookmass.com/product/advances-in-the-practice-of-publicinvestment-management-1st-ed-edition-narayan-bulusu/

ebookmass.com

Loving the Wolf: A Fated Mates Romance Paige Tyler

https://ebookmass.com/product/loving-the-wolf-a-fated-mates-romancepaige-tyler/

ebookmass.com

ANALYSISAND DESIGNOF PRESTRESSED CONCRETE

DIHU

AssociateProfessor,SchoolofCivilEngineering, CentralSouthUniversity,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

© 2022CentralSouthUniversityPress.PublishedbyElsevierInc.AllRightsReserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchas theCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

ISBN:978-0-12-824425-8

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: SuryaNarayananJayachandran

CoverDesigner: GregHarris

TypesetbyTNQTechnologies

Listoffigures

Figure1.1 Schematicdiagramofthestressdistributionofanaxialtensile member.2

Figure1.2 Stressdistributionatthemidspansectionofasimplysupported beam.3

Figure1.3 Schematicdiagramofasimplysupportedbeam.4

Figure1.4 Aprestressedconcretebeamarrangedwithparabolictendons.6

Figure1.5 PictureoftheBeipanjiangsuperbridgefromJipingGuo.11

Figure2.1 Schematicdiagramofthetime-dependentstrainversusstress ofconcrete.24

Figure2.2 Developmentofdelayedelasticstrainwithtime.27

Figure2.3 Developmentofdelayedplasticstrainwithtime.28

Figure2.4 Influenceofnotionalsizeoncreep.28

Figure2.5 Developmentofstrengthwithtime.29

Figure2.6 Helicalribwireandindentedwire.33

Figure2.7 Cross-sectionsofprestressingsteelstrands.35

Figure2.8 Shapeofaprestressedscrew-threadsteelbar.36

Figure2.9 Cross-sectionofunbondedprestressedstrands:(1)strands;(2) sheathings;(3)coating.37

Figure2.10 Structuraldiagramoftypicalexternalcables:(1)unbonded strand;(2)HDPEsheath;(3) fillingmaterial;(4)outersheath; (5)bondedstrand.38

Figure2.11 Stress straincurveofprestressingthreadedbars.38

Figure2.12 Schematicdiagramofcold-drawnaging.39

Figure2.13 Stress straincurveofprestressingsteelwires.40

Figure2.14 Stressrelaxationversusloadingduration.49

Figure2.15 Temperatureeffectonthe finalvalueoftherelaxation.49

Figure3.1 Schematicdiagramofthepretensioningmethod.57

Figure3.2 Schematicdiagramofpost-tensioningmethod.58

Figure3.3 Workersarrangingtheductsfortendonsinaboxgirderin aprefabricationplant.60

Figure3.4 Workersarrangingtheductsfortendonsinthewebofa continuousboxgirder.60

Figure3.5 Diagramofclip-typeanchoragesystemforstrands: (1)anchorbackingplate;(2)clip;(3)anchorageplate; (4)spiralreinforcement;(5)strands;(6)corrugatedduct.63

Figure3.6 Structureofaclip.64

Figure3.7 Clip-typeanchoragesystem.64

Figure3.8 Diagramoftheconicalanchorstructure.65

Figure3.9 Conicalanchor.65

Figure3.10 Diagramofthescrewendrodanchor:(1)reservedhole; (2)washer;(3)rowgroove;(4)threadedsteelbar; (5)anchornut;(6)bearingplate;(7)spiralreinforcement.66

Figure3.11 DiagramofBBRVanchorage.66

Figure3.12 Diagramoftherivet-head-bearinganchoragesystem.67

Figure3.13 Nutanchorage.67

Figure3.14 End-rivetanchoragesystem.68

Figure3.15 Extrudinganchoragesystem.68

Figure3.16 Diagramof floweranchorage:(1)duct;(2)restrainring; (3)spiralreinforcement;(4)strands;(5)bracing;(6)bulbor flowerportion.69

Figure3.17 Floweranchoragesystem.69

Figure3.18 Couplerforprestressingstrands.70

Figure3.19 MechanicalclampinganchorageforasingleFRProdorwire.70

Figure3.20 MechanicalclampinganchorageforasingleFRPplate.71

Figure3.21 Adhesiveanchoragesystem.71

Figure3.22 AnchoragesystemforanFRPplate.72

Figure3.23 Double-actingjackwiththroughcore.72

Figure3.24 Temporaryanchorplatemoveswithram.73

Figure3.25 Workersoperatingtheintelligenttensioningsystemtostretch thetendons.73

Figure3.26 Head-anchorjack.74

Figure3.27 Pullrodjack.74

Figure3.28 Mouthforgrouting.75

Figure3.29 Cementmortargroutingusinganintelligentgroutingsystem.75

Figure3.30 Beforeandaftersealingforanchorages.77

Figure4.1 Knowledgesystemofprestressedconcrete.80

Figure4.2 Majordesignsteps.A1 Expressionsofdesignparameterby rewritingtheformulasobtainedintheanalysis;A2 Formulas intheanalysis.90

Figure5.1 Prestresslossesinprestressedconcretemembers.(A)Prestress lossesinaposttensionedmember.(B)Prestresslossesina pretensionedmember.97

Figure5.2 Twoturnsoftendonswithintheanchoragedevice.98

Figure5.3 Diagramoffrictionallosscalculation.(A)Curvedprestressing tendon.(B)Forceofmicroprestressingtendon.98

Figure5.4 Schematicdiagramofthebalancedcantilevermethod.102

Figure5.5 sl 2 ðxÞ occursinalengthof lf .103

Figure5.6 Typicalprofileoftheprestressingtendon.106

Figure5.7 Distributionoftendonstressattheanchorageset.107

Figure5.8 Profilesoftheprestressingtendons.123

Figure5.9 Cross-sectionatmidspan.126

Figure5.10 Arrangementoftendons.126

Figure5.11 GeometricrelationinthecurvedsegmentBC.128

Figure5.12 Sectiondimension.135

Figure5.13 Convertedsection.136

Figure6.1

Equivalentloadsofthelinearprestressingtendon.(A)Asimply supportedbeamwithastraighttendon.(B)Tensionintendon. (C)Equivalentloadsonconcretestructure.142

Figure6.2 Equivalentloadsbyabroken-linetendon.(A)Asimply supportedbeamwithbroken-linetendon.(B)Forceson tendon.(C)Equivalentloadsonconcretestructure.143

Figure6.3 Equivalentloadsbyaparabolictendon.(A)Asimply supportedbeamwithaparabolictendon.(B)Forceson tendon.(C)Equivalentloadsonconcretestructure.145

Figure6.4 Diagramoftheprimaryinternalforces.(A)Asimplysupported beamwithaparabolictendon.(B)Internalforcesonconcrete section.146

Figure6.5 Diagramforthesolutionofsecondaryinternalforceand totalinternalforce.(A)Two-spanbeamarrangedwith eccentricstraighttendons.(B)Camberduetoprestressingforce whensupportBisremoved.(C)Camberincontinuousbeam duetoprestresingforce.(D)ReactiononsupportB.

(E)Momentcausedby Rb.(F)Momentcausedby Np. (G)FinalMoment.148

Figure6.6 Diagramofthelineartransformationandshearforce.

(A)Acontinuousbeamarrangedwithconstanteccentric tendons.(B)ThetendonsarearrangedalongtheC-line. (C)Shearforceinbeam(A)duetotheprestressingforce. (D)Shearforceinbeam(B)duetotheprestressingforce.151

Figure6.7 Connectseveralsimplysupportedbeamstoacontinuousbeam. (A)Threesimplysupportedbeamsbeforeconnecting. (B)Acompletedprestressedconcretecontinuousbeam.152

Figure6.8 ConnectseveralT-structurestoacontinuousbeam.

(A)TwoT-structuresalongwithtwoendpartsbefore connecting.(B)Acompletedprestressedconcretecontinuous beam.153

Figure6.9 Connecttwosimplysupportedbeamstoacontinuousbeam. (A)Structuresin firststage.(B)Momentin firststagestructure causedby Np.(C)Continuousbeam(structurein finalstage). (D)Changeofmomentduetocreep.154

Figure7.1 Sectionstressesatvariousstages.159

Figure7.2 Bendingmomentversusverticaldeformationofa flexural member.160

Figure7.3 Temporarysupportsduringtransportation.166

Figure7.4 Relationsofstrainchangeintendonsandreinforcingsteels.169

Figure7.5 Diagramforcalculatingthegeneralizedprestressingforce anditseccentricity.170

Figure7.6 Analysisofshearstressandprincipalstresses.177

Figure7.7 Diagramofthecrackingmomentcalculation.181

Figure7.8 Diagramofthecorrectioncoefficientcalculation.182

Figure7.9 Decomposedstatesofstressinacrackedsection.185

Figure7.10 SchematicdiagramofstresscalculationinthecrackedT-section.189

Figure7.11 Schematicdiagramofcross-section.196

Figure7.12 Schematicdiagramofforcetransmissioninapretensioned member.205

Figure7.13 Anchoragezonetypes.208

Figure7.14 Stressdistributioninanchoragezone.208

Figure7.15 Distributionoftransversestressunderlocalcompression.209

Figure7.16 Tensionregionsinthetriangulartoothblockanchoragezone.210

Figure8.1 Schematicdiagramofrotationofthebeamend.213

Figure8.2 Deflectionvarieswiththemoment.214

Figure8.3 Diagramofcalculatingdeflection.215

Figure8.4 Relationbetween Kcr anddeflection.219

Figure8.5 Variationofthesectionalcurvature.221

Figure8.6 Bendingofasimplysupportedbeamsubjectedtoauniformly distributedload.228

Figure8.7 Simplysupportedbeamsubjectedtoaconcentratedload.229

Figure8.8 Schematicdiagramofrotationatthebeamend.231

Figure8.9 Schematicdiagramofreinforcementatthemidspansection.233

Figure8.10 Dimensionofthemidspansectionoftheboxgirder.235

Figure8.11 ZKliveloadmodel.236

Figure8.12 EquivalentloadsofZKonthegirder.238

Figure8.13 Schematicdiagramofcrackingina flexuralmember.244

Figure8.14 Calculationoftheeffectiveareaofconcreteintension.248

Figure8.15 Dimensionandreinforcementarrangementatthe midspansection.253

Figure8.16 Dimensionandreinforcementarrangementatthemidspan section.255

Figure8.17 Dimensionandreinforcementarrangementatthemidspan section.257

Figure9.1 Equivalentstressblock.263

Figure9.2 Stressandstraininaprestressedconcrete flexuralsection: ①,failureoftheover-reinforcedsection; ②,failureofthe balancedsection; ③,failureoftheunder-reinforcedsection.265

Figure9.3 Stressversusstraininsteelwiresandstrands.267

Figure9.4 Typicalprestressedconcreterectangularsectionsubjected tobendingmoment.269

Figure9.5 Strainrelationinthecompressionzone.271

Figure9.6 TypicalprestressedconcreteT-section.272

Figure9.7 Strainsofprestressingtendonsinthecompressionzone:

Figure9.8 Dimensionandreinforcementsatthemidspansection.275

Figure9.9 Dimensionandreinforcementatthemidspansection.277

Figure9.10 Dimensionandreinforcementatthemidspansection.279

Figure9.11 Crackingpatternsinasimplysupportedconcretebeam: ①, flexuralregion; ②, flexure-shearregion; ③,webshearregion.281

Figure9.12 Crackingperpendiculartothetensileprincipalstress.281

Figure9.13 Crackingbetweentheconcentratedloadandthesupport.282

Figure9.14 Failurepatternsduetoshearforce.282

Figure9.15 Shearbearingcapacitycalculationdiagram.286

Figure9.16 Relationshipbetweentheshearspanratioandtheshear bearingcapacity.290

Figure9.17 Calculationdiagramofshearbearingcapacitywithan inclinededgeinthetensionzone.292

Figure9.18 Calculationdiagramof flexuralbearingcapacityofthe obliquesection.294

Figure9.19 Arrangementoflongitudinalprestressingtendons.296

Figure9.20 Arrangementoflongitudinalprestressingtendons.298

Figure9.21 Arrangementoflongitudinalprestressingtendons.300

Figure9.22 Torsionalsections(h > b).304

Figure9.23 Correlationbetweenshearandtorsionbearingcapacity.306

Figure9.24 Dimensionandreinforcementofrectangularsection.310

Figure9.25 Shearmodelforthefailuremechanismofconcrete underlocalcompression.313

Figure9.26 Calculationdiagramfor Ab inQ/CR9300-2018.315

Figure9.27 Calculationdiagramfor Ab inJTG3362-2018and GB50010-2010.316

Figure9.28 Calculationdiagramfor Fl ;s bythehoopingstrengthening theory.317

Figure9.29 Arrangementofindirectreinforcement.319

Figure9.30 Burstingforceattheendanchors.323

Figure9.31 Spallingforceattheendanchors.324

Figure9.32 Tensionsattheedgeregionclosetotheendsectionwithan anchorage.325

Figure9.33 Tensionregionsintheanchoragezone.325

Figure10.1 Typicalcross-sectionsofprestressedconcretebeams.331

Figure10.2 Diagramforestimatingtheareaofprestressingtendons.336

Figure10.3 Thethreadedsteelbarsinthepretensionedsleepersfora ballastlesstracksysteminahigh-speedrailway.339

Figure10.4 Schematicdiagramoftheverticaltendonsinaboxsection.340

Figure10.5 SchematicdiagramofthetendonboundaryinaT-beam.341

Figure10.6 Schematicdiagramofreinforcingsteelsintheanchoragezone.348

Figure11.1 Typicalprestressedconcreterectangularsectionsubjectedto eccentrictensionforce.356

Figure11.2 Stressdistributionacrossconcretesectiondepth.359

Figure11.3 Calculationdiagramofbearingcapacityofarectangular sectionundereccentriccompression.364

Figure11.4 CalculationdiagramofbearingcapacityofaT-sectionunder eccentriccompression.366

Figure11.5 Arrangementofprestressingtendonsandreinforcingsteels.368

Figure11.6 Calculationdiagramofthebearingcapacityoftheannular sectionundereccentriccompression.375

Figure12.1 Crackingofanunbondedprestressedconcretebeamwithout reinforcingsteels.380

Figure12.2 Structuraldiagramoftypicalcircularsleeveanchorage: (1)clip;(2)anchorring;(3)bearingplate;(4)spiralreinforcing steelbar;(5)unbondedstrands;(6)cavemold;(7)plasticcap; (8)microexpansive fineaggregateconcreteornonshrinkage cementmortar.382

Figure12.3 Structuraldiagramoftypicalintegrated-bearing-plate anchorage:(1)clip;(2)integrated-bearing-plate;(3)unbonded strands;(4)spiralreinforcingsteelbar;(5)plasticsealingsleeve; (6)cavemold;(7)sealingconnectorandnut;(8)sealingcover; (9)microexpansive fineaggregateconcreteornonshrinkage cementmortar.382

Figure12.4 Structuraldiagramoftypical fixing-endanchorage (1)extrusionanchorage;(2)specialanticorrosivegrease; (3)sealingcover;(4)plasticsealingsleeve;(5)pressuresealing cover;(6)sealingring;(7)thermoplasticpressuresealingsleeve.382

Figure12.5 Bendingmomentversusdeflectionofanunbonded prestressedconcrete flexuralmember.384

Figure12.6 Stressoftheunbondedandbondedtendonsversusthe bendingmoment.384

Figure13.1 Typicallayoutsofexternalcableinasimplysupportedbeam.398

Figure13.2 Deformationrelationbetweentheexternalcableandbeam.398

Figure13.3 Componentsofanexternalcableassembly:(1)anchorage; (2)conduit;(3)sealingdevicesandjoint;(4)externalcable; (5)dampingdevice;(6)steeringdevice;(7)spiralreinforcing steelbar.400

Figure13.4 Structuraldiagramoftypicalanchoragesforexternalcables: (1)protectivecover;(2)anchorplate;(3)baseplate;(4)spiral reinforcingsteelbar;(5)connectingpipe;(6)isolationbushing; (7)reservedsectionforstretching;(8)nut;(9)outersheath; (10)conduit.401

Figure13.5 Structuraldiagramoftypicalsteeringdevices:(1)blocktype; (2)transverseribtype;(3)verticalribtype;(4)beamtype.402

Figure13.6 Layoutdiagramoftheprestressingstrandsinthesteeringgear: (1)steelpipe;(2)unbondedstrand;(3)HDPEsheath; (4)bondedstrand;(5)cementmortar;(6)guidepipe; (7)accessorystructure.402

Figure13.7 Atypicaldampingdevice:(1)adjustablepullrod; (2)rubbercushion;(3)haverbuckle;(4)externalcable.403

Figure13.8 Calculationdiagramofstresschangeinexternaltendon.406

Figure13.9 TypicalexternallyprestressedconcreteT-section.408

Figure13.10 TypicalexternallyprestressedconcreteT-section.411

Figure13.11 Calculationdiagramofshearbearingcapacity.412

Figure13.12 Diagramforcalculationofthegeneralizedprestressingforce anditseccentricity.414

Listoftables

Table2.1 Characteristicstrengthsofconcrete(MPa).18

Table2.2 Designvaluesofconcretestrength(MPa).19

Table2.3 Modulusofelasticityofconcrete(104 MPa).20

Table2.4 Correctioncoefficient gr forfatiguecompressivestrength.21

Table2.5 Correctioncoefficient gr forfatiguetensilestrength.21

Table2.6 Fatiguemodulusofconcrete(104MPa).22

Table2.7 Designvaluesoffatiguecompressivestrengthofconcrete.22

Table2.8 Notionalcreepcoefficient.26

Table2.9 4f 1 and l.28

Table2.10 Notionalcreepcoefficientandshrinkagestrain.29

Table2.11 Notionalshrinkage εsho 10 6 .31

Table2.12 Notionalshrinkagestrain εu 10 4 .31

Table2.13 Categoryofprestressingsteelstrand.35

Table2.14 Mechanicalpropertiesofstress-relievedplainroundsteel wiresandribbedwires.41

Table2.15 Mechanicalpropertiesof1 7steelstrands.42

Table2.16 Mechanicalpropertiesof1 19steelstrands.43

Table2.17 Mechanicalpropertiesofprestressingthreadedsteelbars.44

Table2.18 Modulusofelasticityofsteels.45

Table2.19 Characteristictensilestrengthofprestressingsteels.45

Table2.20 Designtensileandcompressivestrengthsofprestressing steels(MPa).45

Table2.21 Characteristicstrengthofprestressingsteels.46

Table2.22 Designstrengthofprestressingsteels(MPa).46

Table2.23 Mechanicalpropertiesof fiberribs.47

Table2.24 AmbientimpactcoefficientonprestressingFRP.47

Table2.25 Ultimaterelaxationofsteelstrandsandwires(MPa).50

Table2.26 Ratioofintermediatevaluetoultimaterelaxation.51

Table2.27 RelaxationrateforprestressingFRP.51

Table2.28 Limitsofstressamplitudeoftheprestressingtendons(MPa).52

Table3.1 Requiredperformanceofcementmortar.76

Table4.1 Typesofactionforarailwaybridge.88

Table4.2 Partialfactorsoftheactionsforarailwaybridge.89

Table5.1 Coefficientofcontrolstressinprestressingtendonsat stretching.95

Table5.2a Thevaluesof m and k.100

Table5.2b Thevaluesof m and k.101

Table5.3 Valuesoftendonretractionduetoanchorageset(mm).102

Table5.4 Calculationofeffectivestressinprestressingtendonsinthecodes.121

Table5.5 Geometricparametersofthestrands.128

Table7.1 Valuesof a and b.165

Table7.2 Valuesofbasiccorrectioncoefficientconsideringtheinfluence ofplasticityofconcrete.184

Table7.3 Valuesof k1 and k2 .194

Table7.4 Valuesof g1 and g2 .195

Table7.5 Calculationofgeometricalproperties.198

Table7.6 Basicfatiguestrengthofreinforcingsteels(MPa).203

Table7.7 Influencecoefficientofstressratio g1 .203

Table7.8 Influencecoefficientofsteelbardiameter g2 .203

Table7.9 Influencingcoefficientofreinforcingsteelstrengthgrade g3 .204

Table7.10 Coefficientontheshapeofcommonlyusedprestressing tendons.206

Table7.11 Stress-transmissionlengthoftheprestressingtendon.206

Table7.12 Anchoragelengthoftheprestressingtendon (Q/CR9300-2018).207

Table7.13 Anchoragelengthoftheprestressingtendon(JTG3362-2018).207

Table8.1 Valuesofthestiffnessreductionfactor.217

Table8.2 Limitsforrailwaybeammaximumdeflection.230

Table8.3 Limitsforanintercityrailwaybeamend’smaximum rotationangle.231

Table8.4 Limitsforahigh-speedrailwaybeamend’smaximum rotationangle.232

Table8.5 Limitsforabuildingbeam’smaximumdeflection.232

Table8.6 Coefficientvaluesoftherelativebondpropertyof reinforcement.250

Table8.7 Allowablemaximumcrackwidth.252

Table8.8 Allowablemaximumcrackwidth.252

Table9.1 Valuesof b1 .264

Table9.2 Valuesofrelativeboundaryratioofthecompressionzone depth(xb )forrailwaybridges.268

Table9.3 Valuesofrelativeboundaryratioofthecompressionzone depth(xb )forhighwaybridges.268

Table10.1 Typicalratiosforprestressedconcretecontinuoushighway andrailwaybeams.333

Table10.2 Minimumconcretecoversforstraighttendonsfor highwaybridges(JTG3362-2018)(mm).342

Table10.3 Parametersforductsofprestressingtendons.343

Table11.1 Stabilitycoefficient.372

Table12.1 Thevaluesof m and k.385

Table12.2 ThecontrolstressintheunbondedprestressingFRP.385

Table13.1 Thevaluesof m and k.404

Table13.2 Thevaluesof k1 and k2 .419

Authorbiography

Dr.DiHu iscurrentlyanassociateprofessorattheSchoolofCivilEngineering,Central SouthUniversity(CSU),Changsha,China.HereceivedaPh.D.degreeinCivil EngineeringfromCSUin2003,andfulfilledhispost-doctoralresearchontransportation engineeringinCSUduring2009 2010.HewasinvitedtostudyattheUniversityof BritishColumbia.Canadain2018.Dr.Hu’smainresearchincludesnonlinearanalysis ofbridgestructures,theoryofcreepeffectonconcretestructures,assessmentand strengtheningdesignofexistingbridges,andnoveljointsofconcrete-filledsteeltubular columnsinhigh-risebuildings.Inparticular,hehasproposedarefinedmethodfor calculatingthestresslossinprestressingsteelsduetoanchoragesetconsideringthe reverse-frictioneffect,arefinedmethod(automaticallystep-upmethod)andasimplified method(steelrestraintinfluencecoefficientmethod)foranalyzingthecreepeffecton prestressedconcretestructures.Dr.Huhaspublishedover40journalpapers,andtwo monographs TheoryofCreepEffectonConcreteStructures (2015)and DesignPrinciplesof PrestressedConcreteStructures (secondedition,2019).

Preface

Prestressedconcretehasbeenoneofthemostwidelyusedstructuralmaterialsin railwaybridges,highwaybridges,andcivilandindustrialbuildingssinceits firsttrialapplicationover100yearsago.Aprimeexampleofitsapplicationisprestressedconcrete beams,whicharealmostthestrongestcompetitivesuperstructuresinbridgeswithspans from30to250m.Inviewoftheexcessivedeflectionandcrackingofsomebuiltlongspanbridgesthatarestillinserviceandthestrictrequirementsforhigh-speedrailway bridgesforlong-termcamberordeflection,combinedwiththedevelopmentofmaterial science,constructiontechnology,andstructuralanalysis,thefollowingtrendsare emerging:prestressingmaterialswithhigherstrengthandmechanicalpropertieswillbe developedandused,theconstructiontechnologieswillbemoreintelligentandstandardized,theperformance-baseddesignwilldrawincreasedattention,andmostoftheanalysis anddesignofprestressedconcretestructureswillbecompletedbycomputersthrough specificsoftwareratherthanbyhand.Accordingly,thetextbooksorreferencebooks fortheanalysisanddesignofprestressedconcretemustkeepupwithnewdevelopments.

Thisbooksystematicallyintroducesthebasicconceptsofprestressedconcreteand fundamentalprinciplesofanalysisanddesignforprestressedconcretestructuressubjected tobending,shear,tension,compression,andtorsionbasedontheultimatelimitstate method.

Themostdistinctfeatureofthisbookisthatthecalculationofprestresslossesina step-by-stepmannerfromtheconstructiontotheserviceperiodisexpoundedcomprehensively,andaneffective-stress-basedanalysissystemaswellasthecalculationformulas fordesignparametersattheserviceabilitylimitstateareconstructed.Theaccuratecalculationofeffectivestressinprestressingtendonsisthebasisofstressanalysis,crackcontrol, andlong-termdeflectionprediction.

Anotherdistinctfeatureofthisbookisthatitbuildsabridgebetweengeneralanalysis methodsandthesimplifiedapproachesprovidedintherelevantcodes.Forastrictly performance-baseddesignwiththepremiseofsufficientstrengthanddurability,when theprestresslossesduetofriction,creepandshrinkageofconcrete,andrelaxationof prestressingtendonsareconsideredcomprehensively,itisverycomplicatedandtedious tocarryoutstressanddeflectionanalysisofaprestressedconcretememberwithalarge numberofdifferentprestressingtendons.Forstaticallyindeterminateprestressedconcrete beamswithmultispans,itisalmostimpossibletocompletetheanalysisusingasimplified approach.Therefore,itisnecessarytoelaboratethepreciseanalysisapproaches. However,theassociatedcodesandtechnicalstandardsguidingthedesignoftenspecify thesimplifiedmethodsandapproximateformulasformanykeydesignparameters.

x Preface

Thisbook firstexpoundsthetrainofthoughtofgeneralanalysis,andthenintroduces simplifiedapproachestothecodes.Byreadingthisbook,readerswillbeabletoeasily masterthegeneralanalysisandsimplifiedcalculationstrategiesforpretensionedand post-tensionedconcretestructures,andcultivatetheirdesignability.

TheauthorsincerelythanksProf.TengWufromUniversityatBuffalo,Prof.Tony YangfromUniversityofBritishColumbia,Prof.WenyuJifromBeijingJiaotongUniversity,andProf.XiaojunWeiandMenggangYangfromCentralSouthUniversityfor theirtremendoussupportandvaluablesuggestionsthroughoutthewholeprocessof writingthisbook.Acknowledgmentsarealsoduetotheauthor’sformerstudents,senior engineersJipingGuofromGuizhouCommunicationsConstructionGroupCo.,Ltd. andYongTangfromGuangxiCommunicationsDesignGroupCo.,Ltd.forproviding the figures,andcurrentgraduatestudentsJingweiWu,YujieLi,andDangnanJwakdak forcontributingtotypinganddrawingofthe figures.Specialthanksareduetothe editors,SuryaNarayananJayachandranandYingweiLiu,fortheirexcellenceinediting andproofreading.

Thisbookcanbeusedasatextbookforgraduatesandundergraduatesmajoring incivilengineeringandrelevant fields,aswellasareferenceforresearchers,engineers, technicians,andmanagersengagedinprestressedconcrete-relatedprojects.

CHAPTER1

Basicconceptsofprestressedconcrete

Contents

1.1 Basicconcepts 1

1.2 Thefunctionsofprestressorprestressingforce4

1.3 Prestresslevel 7

1.4 Classificationofprestressedconcrete8

1.4.1 Classificationbystressingmethods8

1.4.2 Classificationbyprestresslevel8

1.4.3 Classificationbythelevelofcrackcontrol9

1.4.4 Classificationbybondingconditionbetweentheprestressingtendonsandtheconcrete9

1.5 Prestressedversusreinforcedconcrete9

1.5.1 Highcrackresistance9

1.5.2 Highshearresistance10

1.5.3 Highdurability10

1.5.4 Highfatigueresistance10

1.5.5 Abilitytocontrolthedeflectionactively10

1.5.6 Abilitytobuildlong-spanstructureswithlighterself-weight10

1.5.7 Efficientutilizationofhigh-strengthmaterials10

1.5.8 Goodeconomy11

1.6 Concisehistoryofprestressedconcrete12 Suggestedreadings 12

1.1Basicconcepts

Concrete,oneofthemostwidelyusedmaterialsincivilengineeringstructures,isstrong incompressionwhileitisweakintension.Asreinforcementsareembeddedinthetensionzonetoresisttension,reinforcedconcreteisformedwhichcanbeusedmoreextensivelythanplainconcrete.Evenso,areinforcedconcretemembersubjectedtotension, eccentriccompression,bending,ortorsion,inevitablyexhibitscrackingduetothelow tensilestrengthofconcrete.Forthisreason,reinforcedconcretecannotbeappliedin thosestructuresinwhichhighcrackresistanceisrequired,suchasoilstoragetanks,nuclearpowervessels,andstructuresinaseverelycorrosiveenvironment.Asforthosestructuresinwhichcrackingisallowed,ontheotherhand,thecrackwidthmustbecontrolled toalimitedvaluetoguaranteestructuraldurabilityintheserviceabilitylimitstate.Correspondingtothetypicalmaximumpermissiblevaluesofcrackwidthspecifiedinthe designcodes,0.3 0.4mm,thetensilestressinreinforcementatacrackonlyreaches 250 400MPa,showingthatitisuneconomicaltousehigh-strengthmaterialsinreinforcedconcrete.Inaddition,ifreinforcedconcreteisemployedtobuildabeamwith

alongspan,thesectionaldimensionsandthereinforcementquantityhavetobeincreased tremendouslytocontrolthecrackwidth,resultinginasharpincreaseintheproportionof theself-weighttothetotaldesignload,whicheventuallybecomesanuneconomical scheme.Therefore,reinforcedconcretecannotbeusedtobuild flexuralstructures withalongspan.

Considerareinforcedconcretemembersubjectedtoaxialtensionasshownin Fig.1.1A.Thetensilestressinconcretequicklyexceedsthetensilestrengthasthetension increases,withcrackingbecominginevitable.Ifthereinforcementsarereplacedby severalhigh-strengthsteelbarswithoutsideplasticpipeswhichareembeddedinside theconcretebeforecasting,highcompressionintheconcreteisgeneratedasthebars areanchoredattwomemberendsaftertheyarestretchedinhightensionwhentheconcreteattainssufficientstrength,asshownin Fig.1.1B.Inthisstate,thenormalstressof concreteinaprestressedsectionsubjectedtoaxialtensionisderivedas

where sc ¼ normalstressofconcrete.

sc ;p ¼ concretestressduetocompressiongeneratedbythestretchedsteelbars.

sc ;T ¼ tensilestressofconcreteduetoexternalaxialtension.

Np ¼ compressioninconcretetransferredfromthetensionedsteelbars.

T ¼ externalaxialtension.

Ac ¼ cross-sectionalareaofconcrete.

In Eq.(1.1),iftheintroducedcompressioninconcreteisgreaterthantheexternal tension,tensilestresswillnotoccurandcrackingwillbepreventedinthetensilemember.

Figure1.1 Schematicdiagramofthestressdistributionofanaxialtensilemember.

Considerasimplysupportedbeamsubjectedtoauniformlydistributedload.The beamisarrangedwithstretchedparabolicsteelwireswhichareanchoredatthebeam’ s ends,asshownin Fig.1.2.Thenormalstressinconcreteinthebottomface fiberat themidspanisgivenby

where sc ¼ stressinconcreteinthebottomface fiberatthemidspansection.

sc ;p ¼ compressivestressinconcreteinthebottomface fiberatthemidspansection causedbythestretchedwires.

sc ;M ¼ tensilestressinconcreteinthebottomface fiberatthemidspansectioncaused bytheuniformlydistributedload.

M ¼ bendingmomentatthemidspancausedbytheuniformlydistributedload.

Ac ¼ cross-sectionalareaofconcrete.

Ic ¼ momentofinertiaoftheconcretesection.

ep ¼ eccentricityofsteelwireswithrespecttothecenterofgravityoftheconcrete section(c.g.c.)atthemidspansection.

y1 ¼ distancefromthecenterofgravityoftheconcretesectiontothebottomedge.

Figure1.2 Stressdistributionatthemidspansectionofasimplysupportedbeam.

Similarly,iftheintroducedcompressivestressinconcretebythestretchedwiresis greaterthanthetensilestresscausedbytheuniformlydistributedload,therewillbe notensilestressatthetensionzone.

Theprestretchedsteelbarsandwiresarecalledprestressingsteelsorprestressingtendons,andthetensileforceinthetendonsiscalledtheprestressingforce.Thestress achievedinconcretebeforeitissubjectedtoaloadiscalledtheprestress.Inabroadsense, prestressedconcretereferstoconcreteinwhichprestressisachieveddeliberatelybefore service.Iftheprestressisgeneratedbythestretchedtendons,thecorrespondingprestressedconcretecanbetreatedasaparticularformofreinforcedconcrete.

Obviously,thetensilemember(Fig.1.1C)and flexuralmember(Fig.1.2A)arranged withprestressingtendonsareprestressedconcretestructures.Thecompressioninconcretetransferredfromtheprestressingforcenotonlychangestheinternalforcesofthe concretestructureinservicebutalsoaltersthestressesinsections.Tofullyorpartially eliminatethetensilestressinconcreteatserviceloads,thestressinthetendonsgenerated bystretchingshouldbehighenoughafterallstresslosseshavetakenplace.Therefore, hightensilestrengthmaterialsmustbeusedfortendons,meanwhile,thehighstrength oftendonscanbeutilizedfully.

1.2Thefunctionsofprestressorprestressingforce

Althoughtheoriginalpurposeofintroducingprestressinconcretewastofullyeliminate thetensilestresses,thereareseveralotherfunctions.Takeareinforcedconcretesimply supportedbeamwitharectangularsectiononlysubjectedtotheself-weightasan example,asshownin Fig.1.3.Assumethattheloadintensityduetoself-weightof thebeamalongtheentirespanisconstant,thetensilestressinconcreteinthebottom face fiberatthemidspansectionisgivenby

Figure1.3 Schematicdiagramofasimplysupportedbeam.

where sc ;M ¼ tensilestressinconcreteinthebottomface fiberatthemidspansection duetotheself-weightofthebeam.

g ¼ loadintensityduetotheself-weightofthebeam.

h ¼ depthoftherectangularsection.

b ¼ widthoftherectangularsection.

I ¼ momentofinertiaofthereinforcedconcretesection, I ¼ 1 12 bh3 istaken approximately.

l ¼ effectivespan.

Ifcrackingisnotallowed,themaximumspanofthesimplysupportedbeamcanbe derivedfrom Eq.(1.3),as

where fct ;u ¼ tensilestrengthofconcrete.

fct ;u couldbethecharacteristictensilestrengthofconcrete, fctk ,inthe fip ModelCode andthedesigncodesinChina,ormodulusofruptureofconcrete fr ,intheACIcode.

Eq.(1.4) indicatesthatthesectiondepthwillincreasedramaticallyifalongerspan beamisbuiltwithoutcracking,sincethetensilestrengthofconcreteislowandit fluctuatesinasmallrange.Astheexternalloadsareexertedonthebeam,thesectiondepth hastobeincreasedmoredramatically.Thehugedepthnotonlygeneratesheavyselfweightresultinginanuneconomicalscheme,butalsooccupiesexcessivebuildingspace, indicatingthatreinforcedconcretecannotbeusedtobuildlong-spanbeams.Ifthe compressivestressinconcreteisintroducedinthetensionzone, Eq.(1.4) turnsinto

where sc ;p ¼ introducedcompressivestressinconcreteinthebottom fiberatthe midspansection.

Eq.(1.5) demonstratesthatthespancanincreaseeffectivelywiththeincreaseofintroducedcompressivestressincaseofkeepingthedepthunchanged,namely,ahigherspanto-depthratioisachievedintheprestressedconcretebeams.Meanwhile,theproportion ofself-weightintotaldesignloaddoesnotincreaseassharplywiththeincreaseofspanas thatinthereinforcedconcretebeam.Therefore,theprestressedconcretecanbeusedto buildlarge-span flexuralmemberswithlightself-weight.

Thebendingmomentproducedbytheeccentricprestressingforce,asshownin Fig.1.2A,willgenerateupwardcamber.Iftheeccentricityformsaparabola(Fig.1.4), itcanbeexpressedas

Figure1.4 Aprestressedconcretebeamarrangedwithparabolictendons.

where ep ¼ eccentricityofthetendonswithrespecttothecenterofgravityofthe concretesection.

l ¼ effectivespan.

x ¼ distancefromtheleftsupporttothesectionunderconsideration.

Thetotalinternalforcesinasectionoftheprestressedconcretebeamsubjectedtoa uniformlydistributedloadaregivenby

where qðxÞ¼ bendingangleofthetendonswithrespecttothebeam’saxis.

q ¼ uniformloadduetotheself-weightofthebeamandexternalloads.

Np ¼ prestressingforce.

M ðxÞ¼ bendingmomentinasection.

V ðxÞ¼ shearforceinasection.

N ðxÞ¼ axialforceinasection.

Assumethatthemodulusofelasticityofconcreteisconstant,thedeflectionatmidspancanbederivedby

¼ Z

where EI ¼ sectional flexuralrigidity.

Mmid ¼ bendingmomentatmidspanduetouniformlydistributedload.

Eq.(1.10) demonstratesthattheeccentricprestressingforcecaneffectivelyadjustthe deflectionofthebeambyalteringtheprestressingforce Np anditseccentricity ep , respectively.

Ingeneral,theintroducedprestressorprestressingforcebearsthefollowingbasic functions:

(1) Toimprovetheworkingperformanceofconcretestructuresbyactivelycounterbalancingfullyorpartiallythetensilestressinconcretecausedbytheserviceloads.

(2) Toenableconcretetobeusedtobuildlong-spanstructureswithlightself-weight.

(3) Toactivelyadjustthedeflectionofthe flexuralmembersbyalteringtheprestressing forceanditseccentricity,respectively.

(4) Toenablehigh-strengthmaterialstobeemployedefficientlyandeconomicallyin concretestructures.

1.3Prestresslevel

Theprestresslevel,knownasthedegreeofprestressing,referstotheratioofprestressingcausedcompressivestressinconcreteintheextremetension fibertoload-causedtensile stress,expressedas

where sc ;p ¼ compressivestressinconcreteintheextreme fiberinthetensionzone generatedbytheprestressingforce.

sc ;l ¼ tensilestressinconcreteintheextreme fiberduetotheserviceloads.

For flexuralmembers,theprestresslevelcanbeexpressedas

(1.12)

where M0 ¼ decompressionmoment,themomentthateliminatestheprestressingcausedcompressivestressinconcreteintheextremetension fibertozero.

M ¼ bendingmomentcausedbytheserviceloads.

Foraxialtensionmembers,theprestresslevelcanbeexpressedas

(1.13)

where N0 ¼ decompressionaxialforce,theforcethateliminatestheprestressing-caused compressivestressinconcretetozero.

N ¼ axialforcecausedbytheserviceloads.

Theprestresslevelisanimportantindexindesign,whichcanbeusedtocontrolthe concretestressandcracking.Therewillbenotensilestressinthetensionzoneatservice

loadswhen lP1,whiletensilestressoccurswhen l < 1,andthecrackingevendevelops whenthetensilestressexceedsthetensilestrengthofconcrete.Therefore,theprestress levelmakesthereinforcedconcreteacontinuousspectrumwhichcanbegroupedinto thefollowingthreecategories:

ClassI-fullyprestressedconcrete(FPC), lP1.

ClassII-partiallyprestressedconcrete(PPC),0 < l < 1.

ClassIII reinforcedconcrete(RC), l ¼ 0.

1.4Classificationofprestressedconcrete

Theprestressedconcretecanbeclassifiedbystressingmethods,prestresslevel,crackcontrol,bondingcondition,andthepositionoftheprestressingtendonsintheconcrete section.

1.4.1Classificationbystressingmethods

Accordingtotheprocessofcastingconcreteorstretchingtendons firstduringconstruction,theprestressedconcretestructuresareclassifiedintopretensionedandposttensionedstructures.Theformerreferstothestructuresthatthetendonsarestretched beforecastingconcrete,whilethetendonsarestretchedandanchoredaftertheconcrete iscastandhardensenoughinthelatter.

1.4.2Classificationbyprestresslevel

Astheprestresslevelisexpressedby Eqs.(1.11) (1.13),theprestressedconcretecanbe classifiedintofullyprestressedconcretewhen lP1andpartiallyprestressedconcrete when0 < l < 1.

Fullyprestressedconcreteisbroadlyusedinhighwaybridges,railwaybridges,and civilandindustrialbuildings.Forlong-spanbridgesandthosestructuresinwhich crackingisnotallowed,suchasoiltanksandnuclearvessels,fullyprestressedconcrete isoneofthemostpreferablebuildingmaterials.Sincecrackingisavoidedintheservice period,fullyprestressedconcretebearshighfatigueresistance,makingitwidelyusedin railwayandhighwaybeams,cranebeamsinfactories,andotherstructuresthatcomeunderrepeatedloading.

High-strengthsteelwiresandstrandswithoutobviousyieldpointsarewidelyusedin prestressedconcrete.Toimprovethestructuralductilityinearthquake-proneareas,a greatquantityofreinforcingsteels(nonprestressingsteels)arecommonlyarrangedin theconcretetoreplacepartoftheprestressingtendons,inthiscondition,tensilestress inconcreteorcrackinginthetensionzoneisallowedatserviceloads.Thesepartiallyprestressedconcretestructurescanbeclassifiedintotwotypes,ClassAandClassBinthe CodeforDesignofHighwayReinforcedConcreteandPrestressedConcreteBridgesandCulverts (JTG3362-2018).ForClassA,themaximumtensilestressinconcreteinthetension

zonecannotexceedtheallowablevaluesprescribedinthecode.ForClassB,crackingis allowedwhilethecrackwidthshouldbecontrolledtoalimitedvalueprescribedinthe code.

1.4.3Classificationbythelevelofcrackcontrol

Accordingtothelevelofcrackcontrolinserviceabilitylimitstate,the Concretestructure designcode (GB50010-2010)and Prestressedconcretestructuredesigncode (JGJ369 2016) stipulatethattheprestressedconcretecanbeclassifiedintothefollowingthreecategories:

ClassI notensilestressinconcreteinthetensionzoneisallowedintheservice period.

ClassII limitedtensilestressinconcreteinthetensionzoneisallowedintheservice period.

ClassIII crackingisallowedwhilethemaximumcrackwidthcannotexceedthe valuesspecifiedinthecode.

Threeclassesofthebehaviorofprestressed flexuralmembersaredefinedintheACI code.ClassUmembersareassumedtobehaveasuncrackedmembers,ClassCmembers areassumedtobehaveascrackedmembers,andthebehaviorofClassTmembersis assumedtobeintransitionbetweenuncrackedandcracked.

1.4.4Classificationbybondingconditionbetweentheprestressingtendons andtheconcrete

Thebondedprestressedconcretereferstothoseinwhichtheprestressingtendonsarearrangedintheconcreteandbondtogether,whiletheprestressingtendonsdonotcontact theconcretedirectlyintheunbondedprestressedconcrete.Iftheunbondedprestressing tendonsarearrangedoutsideoftheconcreteinastructure,thecorrespondingstructureis calledtheexternallyprestressedconcretestructure.

1.5Prestressedversusreinforcedconcrete

Comparedtoreinforcedconcrete,prestressedconcretebearsthefollowingadvantages.

1.5.1Highcrackresistance

Thecompressivestressinconcretegeneratedbythelongitudinalprestressingforcecan completelyorpartiallyeliminatethenormaltensilestresscausedbytheserviceloads. Inaddition,theprincipaltensilestressinconcreteduetotheserviceloadscanbeeffectivelyreducedordeletedbytheinclinedcompressiongeneratedbythebentuplongitudinalprestressingtendonsandverticalprestressingtendonsinthewebs.Therefore,there ishighcrackresistanceinthetensionzoneand flexural-shearzoneinprestressedconcrete structures.

1.5.2Highshearresistance

Theverticalforcegeneratedbythebentuplongitudinalprestressingtendonsandvertical prestressingtendonscounterbalancescompletelyorpartiallytheshearforcecausedbythe designload,resultinginhighresistanceforshearforceinservice.Ontheotherhand,the highshearbearingcapacityhelpstoreducethewebthicknessintheprestressedconcrete structures,leadingtolighterself-weight.

1.5.3Highdurability

Inafullyprestressedconcretestructure,crackingisnotallowed.Inapartiallyprestressed concretestructure,althoughthecrackingmayoccurunderthemostunfavorablelive load,thecrackswillclosemostofthetime.Hence,thelowchanceofdirectlybeing incontactwithmoistureandairpreventsthesteelfromcorroding,therebyhighdurabilityisachievedinprestressedconcrete.

1.5.4Highfatigueresistance

Thefatigueresistanceoftheconcretestructuresdependsmainlyonthestressamplitudein tensilereinforcement.Intheprestressedconcretestructures,thevariationofstresscaused bytheliveloadisrelativelylowcomparedtotheexistingstressintendonsintheservice period,thislow fluctuationgivesprestressedconcretestrongfatigueresistance.

1.5.5Abilitytocontrolthedeflectionactively

Accordingto Eq.(1.10),thedeflectionofa flexuralmembercanbeadjustedeffectively byalteringtheprestressingforceanditseccentricity,respectively.Thisadvantagenot onlymakesitpossibleto flexiblysettheprestressingtendonsaccordingtothestructure characteristicsandcross-sectionformsinthedesignofnewstructuresbutalsocanadjust thedeflectionofexistingstructuresbyaddingexternalprestressingtendons,which broadenstheapplicationoftheprestressingtechnology.

1.5.6Abilitytobuildlong-spanstructureswithlighterself-weight

Asshownin Eq.(1.5),ahigherspan-to-depthratioiseasilyachievedintheprestressed concretebeams.Inaddition,thecrackinganddeflectionofthebeamcanbecontrolled effectivelybyadjustingthelongitudinalprestressingforceanditseccentricityandtheverticalprestressingforceratherthanbyincreasingthesectiondepth,makingprestressed concretesuitableforbuildinglong-spanstructures.Atpresent,prestressedconcretehas strongcompetitivenessinbuildingbridgeswithspansfrom30to300m(Fig.1.5).

1.5.7Efficientutilizationofhigh-strengthmaterials

Inaprestressedconcretemember,thetendonsmustbestretchedtoaveryhighstressso thatthepermanentstressintendonsintheserviceperiodcanbekeptatadesiredhigh

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.