An introduction to multiphase, multicomponent reservoir simulation matthew balhoff - The ebook with

Page 1


https://ebookmass.com/product/an-introduction-to-multiphase-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Modeling and Simulation Mark W. Spong

https://ebookmass.com/product/introduction-to-modeling-and-simulationmark-w-spong/

ebookmass.com

Petroleum Reservoir Modeling and Simulation. Geology, Geostatistics, and Performance Reduction Sanjay Srinivasan

https://ebookmass.com/product/petroleum-reservoir-modeling-andsimulation-geology-geostatistics-and-performance-reduction-sanjaysrinivasan/

ebookmass.com

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation (Volume 68) (Developments in Petroleum Science, Volume 68) 1st Edition Kamy Sepehrnoori

https://ebookmass.com/product/embedded-discrete-fracture-modeling-andapplication-in-reservoir-simulation-volume-68-developments-inpetroleum-science-volume-68-1st-edition-kamy-sepehrnoori/ ebookmass.com

Gregory of Nyssa’s Doctrinal Works: A Literary Study

https://ebookmass.com/product/gregory-of-nyssas-doctrinal-works-aliterary-study-andrew-radde-gallwitz/ ebookmass.com

The ECG Made Practical 7th Edition John

Hampton

https://ebookmass.com/product/the-ecg-made-practical-7th-edition-johnhampton/

ebookmass.com

Microeconomía con aplicaciones a Latinoamérica 19th Edition Paul Samuelson

https://ebookmass.com/product/microeconomia-con-aplicaciones-alatinoamerica-19th-edition-paul-samuelson/

ebookmass.com

Wrecked Mary Anna Evans

https://ebookmass.com/product/wrecked-mary-anna-evans/

ebookmass.com

Getting Started with Enterprise Architecture: A Practical and Pragmatic Approach to Learning the Basics of Enterprise Architecture 1st Edition Eric Jager

https://ebookmass.com/product/getting-started-with-enterprisearchitecture-a-practical-and-pragmatic-approach-to-learning-thebasics-of-enterprise-architecture-1st-edition-eric-jager/ ebookmass.com

A Comprehensive Guide to Solar Energy Systems: With Special Focus on Photovoltaic Systems 1st Edition Trevor M. Letcher

https://ebookmass.com/product/a-comprehensive-guide-to-solar-energysystems-with-special-focus-on-photovoltaic-systems-1st-edition-trevorm-letcher/ ebookmass.com

Re-Visioning Family Therapy, Third Edition: Addressing

Diversity in Clinical Practice Third Edition – Ebook PDF Version

https://ebookmass.com/product/re-visioning-family-therapy-thirdedition-addressing-diversity-in-clinical-practice-third-edition-ebookpdf-version/

ebookmass.com

DEVELOPMENTSINPETROLEUM SCIENCE75

AnIntroductiontoMultiphase, MulticomponentReservoirSimulation

Thispageintentionallyleftblank

DEVELOPMENTSINPETROLEUM SCIENCE75

AnIntroductionto Multiphase, Multicomponent ReservoirSimulation

MatthewBalhoff

Director,CenterforSubsurfaceEnergyandtheEnvironment; Professor,HildebrandDepartmentofPetroleumandGeosystems Engineering,TheUniversityofTexas,Austin,TX,UnitedStates; BankofAmericaProfessorshipinPetroleumEngineering

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthePublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’ spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublisher,northeauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-99235-0

ISSN:0376-7361

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher:CandiceJanco

AcquisitionsEditor: JennetteMcClain

EditorialProjectManager:ZsereenaRoseMampusti

ProductionProjectManager:BharatwajVaratharajan

CoverDesigner:ChristianJBilbow

TypesetbyTNQTechnologies

Dedication

Tomywife,Julie,andThomas

Thispageintentionallyleftblank

1.Reviewofreservoirrockandfluidproperties

1.1Introduction 1

1.2Overviewofreservoirengineeringprinciples 1 1.3Definitions 2

1.3.1Phasesandcomponentsinsubsurfaceporousmedia2

1.3.2Porosity,saturation,density,andconcentrations3

1.4Phasebehavior 4

1.5RockandFluidProperties 6

1.5.1Formationproperties6

1.5.2Gaseousphaseproperties7

1.5.3Oleicphaseproperties9 1.5.4Aqueousphaseproperties12

1.6Petrophysicalproperties 14

1.6.1Darcy’slaw14

1.6.2Relativepermeability16

1.6.3Capillarypressure20

1.6.4Capillarypressurescanningcurves22

1.7Reservoirinitialization 23

1.8.1Relativepermeability29

2.Phasemassbalancesandthediffusivityequation

2.1Introduction 37 2.2Phasemassbalances 37

2.2.1MassbalanceofaphaseinCartesiancoordinates38

2.3Thecontinuityequation 40

2.4Thediffusivityequation 41

2.4.1Generalmultiphaseflow41

2.4.2Single-phaseflow42

2.5Analyticalsolutions 48

2.5.11Dheatequationinafinitemedium48

2.5.21Dheatequationinasemi-infinitemedium50

2.5.3Solutionincylindricalcoordinates(arounda wellbore)51

2.6Exercises 54 References 55

3.FinitedifferencesolutionstoPDEs

3.1Introduction 57

3.2Taylorseriesandfinitedifferences 57

3.2.1First-orderforwarddifferenceapproximation59

3.2.2First-orderbackwarddifferenceapproximation60

3.2.3Second-order,centereddifferenceapproximation61

3.2.4Approximationstothesecondderivative61

3.2.5Generalizationtohigher-orderapproximations64

3.3Discretizationoftheparabolicdiffusivity(heat)equation 68

3.4Boundaryandinitialconditions 70

3.4.1Dirichletboundarycondition71

3.4.2Neumannboundarycondition71

3.4.3Robinboundaryconditions72

3.5Solutionmethods 72

3.5.1Explicitsolutiontothediffusivityequation72

3.5.2Implicitsolutiontothediffusivityequation76

3.5.3MixedmethodsandCrank Nicolson77

3.5.4Linearsystemsofequations83

3.6Stabilityandconvergence 84

3.7Higher-orderapproximations 85

3.8Pseudocodefor1D,single-phaseflow 88

3.9Exercises 89 References 91

4.Multidimensionalreservoirdomains,thecontrol volumeapproach,andheterogeneities

4.1Introduction 93

4.2Griddingandblocknumberinginmultidimensions 93

4.2.1Gridblockindexingin2Dand3D94

4.2.2Griddimensions95

4.2.3Irregulargeometryandinactivegrids96

4.3Single-phaseflowinmultidimensionsandthecontrol volumeapproach 98

4.3.1Accumulation99

4.3.2Fluxterms100

4.3.3Sourcesandsinks(wells)101

4.3.4Single-phaseflow101

4.4Wells,boundaryconditions,andinitialconditions 102

4.4.1Constantratewells102

4.4.2Neumannboundaryconditions102

4.4.3Dirichletconditions103

4.4.4Cornerblocks104

4.4.5Initialconditions107

4.5Reservoirheterogeneities 107

4.5.1Fluidproperties109

4.5.2Geometricproperties109

4.5.3Accumulationterms113

4.6Matrixarrays 113

4.6.1Accumulationandcompressibility113

4.6.2Transmissibility114

4.6.3Sourceterms114

4.6.4Gravity115

4.7Pseudocodeforsingle-phaseflowinmultidimensions 120

4.7.1Preprocessing120

4.7.2Interblocktransmissibility120

4.7.3WellArrays121

4.7.4GridArrays121

4.7.5Maincode121

4.7.6Postprocessing122

4.8Exercises

5.Radialflow,wells,andwellmodels

5.1Introduction 127

5.2Radialflowequationsandanalyticalsolutions 127

5.3Numericalsolutionstotheradialdiffusivityequation 129

5.3.1Gridding129

5.3.2Discretization130

5.4WellsandwellmodelsinCartesiangrids 135

5.4.1Wellconstraints135

5.4.2Steady-stateradialflowaroundawell136

5.4.3Massbalanceonthewell-residinggridblock137

5.4.4Extensiontohorizontalwellsandanisotropy139

5.5Inclusionofthewellmodelintothematrixequations 142

5.6Practicalconsiderations 147

5.7Pseudocodeforsingle-phaseflowwithconstantBHPwells 147

5.8Exercises 148 References 150

Contents

6.Nonlinearitiesinsingle-phaseflowthroughsubsurface porousmedia

6.1Introduction 151

6.2Examplesofnonlinearitiesinsingle-phaseflowproblems 151

6.2.1Gasflow152

6.2.2Non-Newtonianflow153

6.2.3Forchheimerflow155

6.3Numericalmethodsfornonlinearproblems 156

6.3.1Explicitupdateoffluidandreservoirproperties157

6.3.2Picarditeration157

6.3.3Newton’smethod161

6.4PseudocodeforNewton’smethod 169

6.5Exercises 171 References 172

7.Componenttransportinporousmedia

7.1Introduction 175

7.2Transportmechanisms 175

7.2.1Advection175

7.2.2Hydrodynamicdispersion176

7.2.3Reactivetransportandothersourceterms182

7.3Componentmassbalanceequations 183

7.3.1Single-phaseflow184

7.3.2Overallcompositionalequations184

7.4Analyticalsolutions 186

7.4.11DCartesianADEinasemi-infinitedomain186

7.4.2Semianalyticalsolutiontotwo-phaseflow189

7.5Exercises 198 References 199

8.Numericalsolutiontosingle-phasecomponent transport

8.1Introduction 201

8.2FinitedifferencesolutiontotheADEin1Dforasingle component 201

8.3Discretizationofadvectiveterms 204

8.3.1Cell-centered204

8.3.2Upwinding205 8.3.3Matrices205

8.4Wellsandboundaryconditions 206

8.4.1Wells206

8.4.2Nofluxboundarycondition207

8.4.3Constantconcentration(Dirichlet)211

8.5Solutionmethods 212

8.5.1Implicitpressure,explicitconcentration(IMPEC)212

8.5.2Implicitpressure,implicitconcentration214

8.5.3Fullyimplicit218 8.6Stability

8.7Numericaldispersion

8.8Channelingandviscousfingering

8.9Multicomponents,multidimensions,andadditionalforms

8.10Pseudocodeforcomponenttransport

9.Numericalsolutiontotheblackoilmodel

9.1Introduction

9.3Finitedifferenceequationsformultiphaseflow

9.4.1Implicitpressure,explicitsaturation237

9.4.2Simultaneoussolutionmethod243

9.4.3Fullyimplicitmethod247

9.5Interblocktransmissibilitiesandupwinding

9.7.1Constantrateinjectorwells258

9.7.2Constantrateproducerwells259

9.7.3ConstantBHPinjectorwells261

9.7.4ConstantBHPproducerwells261

9.7.5Time-dependentwellconstraints261

9.8Pseudocodeformultiphaseflow 272

9.8.1Preprocessing272

9.8.2Blockproperties273

9.8.3Interblockproperties273

9.8.4Wellproductivityindex273

9.8.5Wellarrays273

9.8.6Gridarrays274

9.8.7Maincode274

9.8.8Postprocessing274

9.9Exercises 279 References 282

10.Numericalsolutiontomultiphase,multicomponent transport

10.1Introduction 283 10.2Compositionalequationsformultiphaseflow

10.4Solutionmethod 287

10.4.1Flashcalculations287

10.4.2Equationsofstate291

10.4.3Phasesaturation298

10.4.4Two-phasecompressibility299

10.4.5Phaseviscosity301

10.4.6Relativepermeabilityandtransmissibility304

10.4.7Wellsandsourceterms306

10.4.8Pressureandcompositionsolution308

10.5Oleic aqueousbipartitioningcomponents 311

Preface

Theflowoffluidsinsubsurfaceporousmediaisimportantinmanyapplicationsincludingtheproductionofhydrocarbons,carbonstorage,hydrogen storage,aquiferremediation,andproductionofgeothermalenergy.Accurate modelingoftheseprocessesisofcriticalimportanceforpredictionsand decision-making.Forexample,inhydrocarbonproduction,modelscanbeused tomakebusinessdecisions,suchas:(1)Shouldafieldbeboughtorsold?(2) Where,when,howmany,andwhattypeofwellsshouldbedrilled?(3)What shouldbetheconstraint(wellrateorbottomholepressure)ofthewells?(4)If, when,andwhattypeofsecondary(andtertiary)recoveryshouldbepursued? (5)Whenshouldawellbeshut-inorconvertedtoaninjectorandwhatfluids shouldbeinjected?

Modelingofsubsurfacephenomenaischallengingformanyreasons.The subsurfacereservoiristhousandsoffeetbelowthesurfaceandcanbemassive (thousandsofacresinarea,orinthecaseintheGhawaroilfield,overa millionacres).Ourunderstandingofareservoir’ssize,lithology,permeability, porosity,fluidproperties,etc.,isanestimate.Reservoirsaregenerallyvery heterogeneousintheirpermeability,porosity,saturation,lithology,etc.,and canchangesignificantlyoversmallorlargelengthscales.Predictionsmaybe requiredforyearsordecadesintothefuture,orevenmillenniainthecaseof carbonstorage.

Subsurfacemodelsvaryincomplexityandcanbeassimpleasanalyticalor reduced-ordermodelssuchastankbalancesandthecapacitanceresistance model(Sayarpouretal.,2009).Suchmodelsaresimplificationsbutoften provideveryvaluableinformationandcanevenbepredictive.Thefundamentalequationsthatdescribeflowandtransportinsubsurfacemediaare multidimensional,multicomponent,multiphase,nonlinear,coupledpartial differentialequations(PDEs)withspatiallyheterogeneousandtime-dependent properties.Theseequations,withoutmajorsimplificationandassumptions,are notamenabletoanalyticalsolution.Numericalreservoirsimulatorsarethe mostadvancedtoolswehavetosolvethesePDEsandpredictflowand transportinsubsurfaceporousmedia.Thesesimulatorsaretheclosestthing wehavetoa crystalball.

Therearemanytypesofreservoirsimulators,withvaryingcomplexityand features,butgenerallytheyinvolvediscretizingthereservoirinto N grids, blocks,orelements.OnecanthinkofareservoirsimulatorasagiantRubik’s

Cube,witheachblockinthecubebeingagridinthemodel.Thesimulatorcan havethousands,millions,orevenbillionsofgridsandeachgridhasunique, constant(orsimplefunction)properties,suchaspermeability,porosity,saturation,composition,pressure,etc.Balance(mass,energy,momentum)equationsthatareimposedareoneachblockwhicharedependentonadjacent blockproperties.Asaresult,thecomplicatedPDEsreducetoasystemof N algebraicequationsand N unknowns.

Manycommercial(e.g.,CMG,ECLIPSE,INTERSECT,Nexus),academic, oropensource(BOAST,MRST,UTCHEM,UTCOMP,IPARS,TOUGH)and proprietary,in-housesimulatorshavebeendevelopedbyteamsofexpertsover decades.Thesesimulatorsvaryintheirapplicabilitybutarebasedonthesame basicfundamentals.Thesesimulatorsareoftenrelativelyeasyforthebeginnerto use,whichcanbeasmuchofaproblemasitisafeature.Failuretounderstandthe principlesandbasicequationsofnumericalsimulation(whatis underthehood) canleadonetonotrecognizethemodel’slimitationsandleadtocostlyoreven unsafedecisions.Themathematicsarecomplicatedandcanbedauntingforeven PhDscientistsandengineers.Manyoutstandingbookshavebeenwrittenonthe subject; AzizandSettari(1979), Ertekinetal.(2001), Chen(2007), Lie(2019), and Abou-Kassemetal.(2020) arejustafewofmyfavorites.Manyofthese booksarebestsuitedforadvancedgraduatestudentsorprofessionalswithsome experienceinsimulation.

Ihavetaughtthefundamentalsofreservoirsimulationfor15yearstoovera thousandundergraduatesandfirst-yeargraduatestudents.Breakingdownthe complexitiesofsimulationtostudentsnewtothesubjectischallenging,toputit mildly.Inthisbook,Ihaveattemptedtoorganizemynotes,teachingstyle,and “lessonslearned”inaconcisetextforthebeginner.Manyadvancedandmodern topicsareintentionallynotincluded,buttheinterestedreadershouldreadthe dozensofadvancedbooksandthousandsofpublicationsthatcoverthem.

Thisbookincludestwoimportantfeatures.Thefirstistheinclusionof dozensofsmall(e.g.,4 9block)exampleproblemsthataresolvedbyhand andcalculator,largelywithouttheuseofacomputer.ToquoteAlbertEinstein, “exampleisn’tanotherwaytoteach;itistheonlywaytoteach.”Ihavefound theseexamplesessentialforthebeginnertounderstandthebasicsofreservoir simulation.Inadditiontoexampleproblems,eachchapterincludesadditional exercisesforthereadertoattempt.

Thesecondfeatureofthebookistheemphasisonwritingcomputercode withtheend-goalofthereaderdevelopingtheirownmultiphase,multidimensional,andmulticomponentreservoirsimulator.Thefinalproductwillbe asimulatorthatwillproduceidentical(ornearlyidentical)resultsasthe aforementionedcommercial,academic,andin-housesimulators.Theuser’s codecanbeandshouldbevalidatedagainstthesesimulators,analyticalsolutions,orthesmallexampleproblemsprovidedinthetext.Thebookis organizedinsuchawaythatthecodestartsrelativelysimple(1D,single phase,homogeneous)andcomplexities(multidimensions,heterogeneities,

multiphase,etc.)areaddedalongtheway.Pseudocodeisprovidedineach chapter,withsomeexplanationanddiscussion,tohelptheuserdeveloptheir owncode.Themostcomputationallyefficient,vectorized,orelegantpseudocodesarenotalwaysprovided.Infact,thisisoftenintentional,assometimesthelesselegantcodesarebetterforunderstandingthelogicand mathematics.Thedeveloperofthesimulatorisencouragedtooptimizetheir codeoncetheyhaveaworkingcodethattheyunderstand.

Thesimulatordeveloperisencouragedtobepatientandavoidfrustration asbestaspossible.Ihavewrittenhundredsofsubroutinesandcodesformy reservoirsimulationcoursesovertheyearsandcansaywithconfidencethat everyoneofthemhaderrorsandbugsintheinitialversion.Theseerrorshave takenanywherefromminutestodays(orevenweeks)todebug.However, everysingletimeIhavefixedanerror,Ihavecomeawaywithabetterunderstandingofreservoirsimulationandreservoirengineeringingeneral.When thedeveloperobtainsresultsthatarenonphysicalordisagreewithanalytical solutions,exampleproblems,orcommercialsimulators,theyshouldaskwhat physicallyormathematicallycouldcausesuchadiscrepancy.Inmyexperience,99%ofthecodingerrorsareintheformationofthefewmatricesand vectorsthatareusedtosolvetheproblem.Theerror(s)canalmostalwaysbe identifiedbycomparisontothematrices/vectorscreatedbyhandintheexampleswithasmallnumberofgrids.

Yourfinalreservoirsimulator(albeitaccurateandflexible)willprobably notbeascomputationallyefficient,scalable,user-friendly,orhavenearlyas manyfeaturesasacommercialsimulator.However,youwilldevelopan excellentunderstandingofthedetailsandlimitationsofthesesimulators.And, justmaybe,youwilljoinateamorhaveacareerdevelopingthenextgenerationcommercial,in-house,oracademicsimulator.

References

Abou-Kassem,Hussein,J.,RafiqulIslam,M.,Farouq-Ali,S.M.,2020.PetroleumReservoir Simulation:TheEngineeringApproach.Elsevier.

Aziz,K.,Settari,A.,1979.PetroleumReservoirSimulation.1979.AppliedSciencePubl.Ltd., London,UK.

Chen,Z.,2007.Reservoirsimulation:mathematicaltechniquesinoilrecovery.SocietyforIndustrialandAppliedMathematics.

Ertekin,T.,Abou-Kassem,J.H.,King,G.R.,2001.BasicAppliedReservoirSimulation,7.Society ofPetroleumEngineers,Richardson.

Lie,K.-A.,2019.AnintroductiontoreservoirsimulationusingMATLAB/GNUOctave:User guidefortheMATLABReservoirSimulationToolbox(MRST).CambridgeUniversityPress. Sayarpour,M.,Zuluaga,E.,ShahKabir,C.,Lake,L.W.,2009.Theuseofcapacitance resistance modelsforrapidestimationofwaterfloodperformanceandoptimization.JournalofPetroleumScienceandEngineering69(3 4),227 238.

Thispageintentionallyleftblank

Acknowledgments

Firstandforemost,Iwouldliketothankthemanycurrentandformer,graduateandundergraduate,studentswhohelpedinthedevelopmentofthisbook. Althoughimpossibletolistthemall,Iwouldliketospecificallyrecognize NkemEgboga,YasharMehmani,HamzaSalimAlRawahi,TravisSalomaki, MoisesVelasco,JianpingXu,andSarahRazmara.IwouldliketothankMary Wheelerforintroducingmetothesubjectmatterofreservoirsimulationand themanycolleaguesforwhichIhavehaddiscussionsincludingLarryLake, KamySepehrnoori,GaryPope,RussJohns,DavidDiCarlo,andChengChen.I alsoacknowledgeCooperLink,JoannaCastillo,andJostineHoforhelping withthemanyillustrations.Iwouldliketothankmyfather,whotaughtmeto beanengineerandhelpedmenumericallysolvetheDiffusivityequationfor thefirsttime,mymother,whotaughtmetopersistentanddedicated,andmy sisters.Finally,thisbookwouldnotbepossiblewithouttheendlesssupport andloveofmywife,Julie.

Thispageintentionallyleftblank

Nomenclature

a cross-sectionalarea,ft2;empiricalcoefficientformechanical dispersion

A accumulationterm(Vif/Dt),ft3/day;parameterforcubicEOS

Ak ’ parameterforfugacitycoefficientofcomponent k incubicEOS

b empiricalexponentformechanicaldispersion

B parameterforcubicEOS

Ba formationvolumefactorforphase a,RB/STBorft3/scf

Bk ’ parameterforfugacitycoefficientofcomponent k incubicEOS

ca compressibilityofphase a,psi 1

cf formationcompressibility,psi 1

cp porecompressibility,psi 1

cr rockmatrixcompressibility,psi 1

cB bulkcompressibility,psi 1

ct totalcompressibility,psi 1

C constantforeffectiveshearrateinporousmedia fornon-Newtonianflow

Ck concentrationofcomponent k,lbm/ft3

Cj,i coefficientforblockiinIMPESmethod(j¼1,2,3)

dp graindiameter,ft

D depth,ft;hydrodynamicdispersioncoefficient,ft2/day

D1 capillarydiffusioncoefficient,ft2/day

Dm moleculardiffusioncoefficient,ft2/day

Dm,eff effectivediffusioncoefficientinporousmedium,ft2/day

DL longitudinalmechanicaldispersioncoefficient,ft2/day

Dr restricteddiffusioncoefficient(Dm,eff/Dm),ft2/day

DT transversemechanicaldispersioncoefficient,ft2/day

f weightingfactorforcapillarypressurescanningcurve

fa fractionalflowofphase a

fk,a fugacityofcomponent k ofphase a,psia

F residualofgridbalanceequation,ft3/day;formationresistivityfactor

g gravitationalconstant(32ft/s2)

G Gravityvector,ft3/day

h reservoirthickness,ft

i gridblockindex

j gridblockindex,x-direction

Ja productivityindexofphase a,ft3/psi-day

J totalproductivityindex,ft3/psi-day

Nomenclature

k permeability,mD;rateconstant,1/day;gridblockindexin y-direction

kapp apparentpermeability,mD

kB Boltzmannconstant(1.38 10 23 J/K)

kg Klinkenbergapparentpermeabilityforgasflow,mD

kH geometricmeanofpermeability,mD

kr,a relativepermeabilityofphase a

Kk K-values/equilibriumratioofcomponent k

l gridblockindex,z-direction

L reservoirlength,ft

m mass,lbm

_ mx massflux(inx-direction),lbm/ft2-day

M mobilityratio(krwmo/kromw)

Mk molecularweightofcomponent k

Ma molecularweightofphase a

n shear-thinningindexforpower-laworCarreaumodel

N numberofgridblocksinreservoirmodel

Nc numberofcomponentsinthereservoirmodel

Nk,a flux(advective,diffusive,ordispersive)ofcomponent k inphase a

Np cumulativeamountofoilproduced,bblorft3

Nx numberofgridblocksinx-directionofreservoirmodel

Ny numberofgridblocksiny-directionofreservoirmodel

Nz numberofgridblocksinz-directionofreservoirmodel

O scalingorder

p pressure(exact),psia

pb bubblepointpressure,psia

pc capillarypressure,psi

pc,k criticalpressureofcomponent k,psia

pe capillaryentrypressure,psia

pk sat vaporpressureofcomponent k,psia

P pressure(numericalapproximation),psia

Pwf bottomholepressureofwell,psia

Plim limitingpressureofproducingwell,psia

q sourceterm(1/time)

qwf wellflowingrate(ft3/day)

Q sourcevector,ft3/day

r radialdirectionincylindricalcoordinates,ft

re drainageradius,ft

rw wellboreradius,ft

req equivalentradiusforwellmodels,ft

rk effectiveradiusofcomponent k,ft

R idealgasconstant(10.73psi-ft3/lbmole-R)

Rs solutiongas-oilratio,scf/STB)

s skinfactor

Sa saturationofphase a

Sar residualsaturationofphase a

Swf watersaturationatshockfront

t time,day

Nomenclature xxi

T totaltransmissibility,ft3/psi-day;reservoirtemperature, For R

Ta phasetransmissibility,scf/psi-day

Tk componenttransmissibility,md-/cp-ft2

Tc criticaltemperature, R

Tr,k reducedtemperatureofcomponent k (T/Tc,k)

u Darcyvelocity,ft/day

U Dispersivetransmissibilityincomponentbalancematrixequations,ft3/day

v interstitial/frontalvelocity,ft/day

Vi volumeofgridblocki,ft3

Vp porevolume,ft3

Vm molarvolume,ft3/lbmole

w width,ft

Wk bulkconcentrationofcomponent k,lbm/ft3

x molefraction

X solutionvector(pressuresandsaturations)forSSmethod

z compressibilityfactor/z-factor;elevation,ft

Greeklettersandsymbols

a phase(e.g.,oleic,gaseous,aqueous)

aL longitudinaldispersivity,ft

aT transversedispersivity,ft

b non-Darcycoefficient(ft 1);spatialdifferencingschemeforADE

ba capillarypressurecorrectedformationvolumefactor

g shearrate(1/s);Euler’sconstant(0.5772)

go specificgravityofoil

gg specificgravityofgas

gr coefficientforgeometricprogressionofgridsincylindrical coordinates

dk,l binaryinteractionparameterbetweencomponents k and l

dP changeinthepressurevectorbetweentwoiterations,psia

D discriminantincubicEOS

Dl tortuouslengthofporousmedium,ft

ε smallperturbationparameter

h dimensionlessdiffusivity/Fouriernumber(aDt/Dx 2 orDDt/Dx2)

q dipangle,degrees

J JacobianforNewton Raphsonmethods

k componentorpseudocomponent(e.g.,water,oil,gas)

l timeconstantforCarreaumodel,s

la mobilityofphase a (kkra/ma),mD/cp

m viscosity,cp

m0 zero-shearviscosity,cp

mN infinite-shearviscosity,cp

y molesgaseousphase/moleshydrocarbon

r density,lbm/ft3;variabletransformationforcylindrical coordinates(r2)

rr,a reduceddensityofphase a

sk parameterforcomponent k incubicEOS

sk,a volumefractionofcomponent k inphase a

s tortuosityinporousmedium

f porosity

fk,a fugacitycoefficientofcomponent k inphase a j pseudopressure,psi2/cp

u temporaldifferencingschemeforADE

uk weightfractionofcomponent k;acentricfactorofcomponent k

Superscriptsandsubscripts

cen centered

GOC gas-oilcontactline,ft

g gaseousphase

o oleicphase

rc reservoirconditions

sc standardconditions(14.7psi,60F)

up upwinding

WOC water-oilcontactline,ft

x x-direction

y y-direction

z z-direction

y iterationnumberinnonlinearproblems

Dimensionlessvariables

CD concentration

xD distance(x/L)

pD pressure((C-Cinit)/(Cinj-Cinit))

NPe,d Pecletnumberbasedondiffusioncoefficient(udp/Dm)

NPe Pecletnumberbasedondispersioncoefficient(uL/Df)

NRe Reynoldsnumber(rvdp/m)

Ng 0 gravitynumber(kkro 0 Drg/umo)

NpD oilrecovery(Np/Vp)

tD time/porevolumesinjected(ut/Lf)

h Fouriernumber(aDt/Dx 2 orDDt/Dx2)

p localPecletnumber(uDx/Df)

z Courantnumber(uDt/Dxf)

sD time/porevolumesinjected(ut/Lf) xxii Nomenclature

Chapter1

Reviewofreservoirrockand fluidproperties

1.1Introduction

Reservoirsimulationrequiresanaccuratedescriptionoffluidandreservoir propertiescombinedwiththeeffectpressure,temperature,andcomposition hasonthem.Manytexts(e.g.McCain,1991;Pedersenetal.,2006;Dandekar, 2013)provideanexcellent,thoroughdiscussionoffluidandrockpropertiesin thesubsurface;hereaconcisereviewisprovided.Thereservoirfluidsare composedofthousandsofuniquechemicalmolecules,areconfinedina complexporespace,andpartitionbetweenmultiplefluidphases,whichmake modelingofsubsurfacereservoirsverychallenging.

Inthischapter,anoverviewofbasicreservoirengineeringprinciplesisfirst presentedfollowedbyafewbasicdefinitions.Phasebehaviorprinciplesare introduced,followedbydefinitionsandequationsforfluid,rock,andpetrophysicalproperties.Finally,approachesfordeterminingtheinitialpressure andsaturationfieldsinthereservoirarediscussed.

1.2Overviewofreservoirengineeringprinciples

Petroleumreservoirsconsistofporousrockthousandsoffeetbelowtheearth’s surface.Thevoidspaceintherockcontainsfluids,includinghydrocarbons(oil andgas)andwaterthatcanbeextractedthroughwells.Uponexplorationand drilling,thepressureandtemperatureinthereservoirarerelativelyhigh(often thousandsofpsiaand >100 F,respectively)anddrillingawellwithalower pressureresultsinadrivingforce(drawdownpressure)forfluidproduction fromthereservoirtothewell.During primaryproduction thefluidsexpand; thereservoirpressure,drawdownpressure,andproductionratedecreasewith timeuntilproductionoffluidsisnolongereconomical.Attheendofprimary production,thereservoiriseitherabandonedor secondaryproduction methods areemployed.Duringsecondaryproduction,anaqueousphasecontainingsalts andotherdissolvedsolids(brine)orhydrocarbongasisinjectedthrough

2 AnIntroductiontoMultiphase,MulticomponentReservoirSimulation

injectorwellstorepressurizethereservoiranddrivemobilehydrocarbons towardtheproducerwells.Whentheinjectedfluidisanaqueousphase,itis oftenreferredtoas waterflooding.Secondaryrecoverycanoccurfordecades andcontinuesuntiltheprocessbecomesuneconomical,usuallyduetothe decreaseinproductionrateofhydrocarbonsandincreasein watercut (volume percentofproducedfluidsthatisbrine).Finally, tertiaryrecovery or enhanced oilrecovery (EOR)involvesinjectionofotherfluids(steam,carbondioxide, surfactants,polymers,microbes,etc.)notoriginallypresentinthereservoir. ThepurposeofEORistorecover unswept (bypassed)and/or residual (capillarytrapped)hydrocarbonsusuallybyreducingthe interfacialtension betweenphases,increasingthe viscosity ofthedisplacingfluid,ordecreasing theviscosityofthehydrocarbons.Enhancedoilrecoverymethodsareonly pursuedifeconomicallyviable.

1.3Definitions

1.3.1Phasesandcomponentsinsubsurfaceporousmedia

A phase (a)isaregionofspacewithuniformphysicalproperties.Subsurface reservoirsmayhaveseveralfluidphases;inthistextuptothreeareconsidered: liquidaqueousphase(w),liquidoleicphase(o),andgaseousphase(g).Other fluidphasessuchas microemulsions and supercriticalfluids arenotdiscussed inthistext.Asolidphase(s)consistsoftherockmatrix. Fig.1.1 showsa cartoonofareservoirwiththreefluidphasessealedbycaprock.

A component (k)isauniquechemicalspecies.Forexample,water(H2O), carbondioxide(CO2),methane(CH4),decane(C10H22),sodiumchloride (NaCl),andcalciumcarbonate(CaCO3)areallexamplesofcomponentsthat mayexistinareservoir.Aphasemaycontainmanycomponentsandthesame componentmaybepresentinmultiplephases. Compositionalreservoirsimulators (seeChapters7,8and10)areusedtomodelflowandtransportof individualcomponents.However,subsurfacereservoirsmaycontainthousands

FIGURE1.1 Threefluidphases,aqueous(blue),oleic(brown),andgaseous(yellow),andasolid phase(rockmatrix)inageologicaltrap.Importantlytheoleicandgaseouszonescontainconnate waterduetocapillaryforces.

ofuniquecomponents,modelingofwhichisneitherpracticalnorcomputationallyfeasible.Inpractice,componentsofsimilarsizeandphysicaland/or chemicalpropertiesarelumpedtogethertoform pseudocomponents.Most compositionalsimulatorsmodelthreetotensofpseudocomponents.

Aspecialcaseofthecompositionalmodelisthe blackoil (or b)model.A blackoilmodelcontainsthreepseudocomponents(water,oil,andgas)inupto threefluidphases(aqueous,oleic,andgaseous).Theoilpseudocomponent consistsofallcomponentspresentinaliquidhydrocarbonphasewhenbrought to standardconditions (sc)oftemperature(Tsc ¼ 60 F)andpressure (psc ¼ 14.7psia).Likewise,thegasandwaterpseudocomponentconsistsofall componentsinahydrocarbongaseousphaseandaqueousphase,respectively, atstandardconditions.Intheblackoilmodel,thegascomponentmaybe dissolvedintheoleicphaseatreservoirconditions(T > Tsc; p > psc)andoil mayormaynotbevolatilizedinthegaseousphase,buttheaqueousphaseis assumedtocontainnooilorgasandnowaterisinthegaseous/oleicphases.In reality,thereisaverysmallsolubility(< 100ppm)ofhydrocarbonsinthe aqueousphaseandremovalofthehydrocarbonsinshallowaquifersisoften thegoalin aquiferremediation strategies.

1.3.2Porosity,saturation,density,andconcentrations

Porosity (f)isdefinedastheporevolumedividedbythebulkvolumeofthe reservoirorporousdomain, f ¼ Vp/Vb,andisreportedasafractionorpercentage.The saturation ofaphase(Sa ¼ Va/Vp)isthevolumefractionofthe voidspaceintheporousmediumoccupiedbythatphase.Phasesaturations mustsumtounity,

where Np isthetotalnumberoffluidphasesandsubscripts w, o,and g referto theaqueous,oleic,andgaseousphases,respectively.

Density (r)isamass(e.g.,lbm)perunitvolume(e.g.,ft3)andusuallyrefers toaphase(ra)butmayalsobeusedtodescribeacomponent(rk).Thedensity ofafluidisafunctionofpressure,temperature,andcomposition.Thedensity ofpurewater(H2Owithoutdissolvedsolids)atstandardconditionsis62.37 lbm/ft3,andthedensityofhydrocarbonliquidsisusually(butnotalways)less thanwater.

The poreconcentration ofacomponent(Ck)isdefinedastheamountof component k intheporevolume(Ck ¼ massof k/porevolume).Thus,theunits of Ck arelbm/ft3.Concentrationscanalsobeusedtodefinetheamountof componentwithinaphase, Ck,a ¼ amountof k/volumeofphase a.Finally,the

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.