An introduction to metallic glasses and amorphous metals zbigniew h. stachurski - Get instant access

Page 1


https://ebookmass.com/product/an-introduction-to-metallicglasses-and-amorphous-metals-zbigniew-h-stachurski/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

An Introduction to Statistical Mechanics and Thermodynamics 2nd Edition Robert H. Swendsen

https://ebookmass.com/product/an-introduction-to-statisticalmechanics-and-thermodynamics-2nd-edition-robert-h-swendsen/

ebookmass.com

Technical Editing: An Introduction to Editing in the Workplace Donald H. Cunningham

https://ebookmass.com/product/technical-editing-an-introduction-toediting-in-the-workplace-donald-h-cunningham/

ebookmass.com

An Introduction to Materials and Chemistry: Book 1 (Science for Conservators) 3rd Edition Joyce H. Townsend

https://ebookmass.com/product/an-introduction-to-materials-andchemistry-book-1-science-for-conservators-3rd-edition-joyce-htownsend/ ebookmass.com

Biofuel Extraction Techniques: Biofuels, Solar, and Other Technologies Lalit Prasad

https://ebookmass.com/product/biofuel-extraction-techniques-biofuelssolar-and-other-technologies-lalit-prasad/

ebookmass.com

Smart Materials in Additive Manufacturing, Volume 1: 4D

Printing Principles and Fabrication Mahdi Bodaghi

https://ebookmass.com/product/smart-materials-in-additivemanufacturing-volume-1-4d-printing-principles-and-fabrication-mahdibodaghi/

ebookmass.com

Behavior Management: A Practical Approach for Educators 10th Edition, (Ebook PDF)

https://ebookmass.com/product/behavior-management-a-practicalapproach-for-educators-10th-edition-ebook-pdf/

ebookmass.com

The

Palgrave Handbook of Disability at Work Sandra Fielden

https://ebookmass.com/product/the-palgrave-handbook-of-disability-atwork-sandra-fielden/

ebookmass.com

Object Oriented Programming_hard_man_v1.pdf Amany Fawzy Elgamal

https://ebookmass.com/product/object-orientedprogramming_hard_man_v1-pdf-amany-fawzy-elgamal/

ebookmass.com

Plant Extracts in Neurodegenerative Diseases 1st Edition Magisetty Obulesu

https://ebookmass.com/product/plant-extracts-in-neurodegenerativediseases-1st-edition-magisetty-obulesu/

ebookmass.com

https://ebookmass.com/product/graph-database-and-graph-computing-forpower-system-analysis-renchang-dai/

ebookmass.com

AnIntroductiontoMetallic GlassesandAmorphous Metals

AnIntroductiontoMetallic GlassesandAmorphous Metals

ZbigniewH.Stachurski

GangWang

XiaohuaTan

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021HigherEducationPress.PublishedbyElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819418-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: NirmalaArumugam

Designer: MatthewLimbert

TypesetbyVTeX

Affineandnon-affinedeformation

StrainmeasuredbytheVoronoimethod(atomiclevel)...

StrainmeasuredbytheX-raymethod:crystallinesolids..

StrainmeasuredbytheX-raymethod:amorphoussolids.

Deformationinbulkmetallicglass

ElasticmodulusbytheX-raymethod..

DeformationinZr55 Al10 Ni5 Cu30 metallicglass...

DeformationinZr46.5 Cu45 Al7 Ti1.5 metallicglass..

DeformationinZr64 Cu16 Ni10 Al10 metallicglassundercooling

Deformationinthinfilmmetallicglass. .............................210

StructuralevolutioninZr50 Cu50 metallicglassduringcompression

StructuralevolutioninZr64.13 Cu15.75 Ni10.12 Al10 duringheating...........213

Changesinatomicstructurerevealedbyradialdistribution

Introduction

AristotlestatedatthebeginningofhisbookonMetaphysicsthat“allmen,bytheirnature,desireto know.”AristotlewasanancientGreekphilosopher(384–322BCE)andascientistborninthecity ofStagira,Chalkidiki,inthenorthofClassicalGreece.Allpeoplenaturallyarecuriousandacquire knowledgeforpracticalusageaswellasfordisseminatingknowledge.Anindicationofthisisour esteemforthesenses;forapartfromtheirusewevaluethemfortheirownsake,andmostofall,the senseofsight.Notonlywithaviewtoaction,butevenwhennoactioniscontemplated,weprefer sight,generallyspeaking,toalltheothersenses.Thereasonofthisisthatofallthesensessightbest helpsustoknowthings,andrevealsmanydistinctions.

Anotherphilosopher,XiangLiu,inWesternHanDynastyofancientChinasaid:“Seeingisbetter thanhearing,andpracticeisbetterthanseeing.”

Itisfrommemorythatpeopleacquireexperiencebecausenumerousmemoriesofthesamething eventuallyproducetheeffectofasingleexperience.Experienceseemsverysimilartoscienceandart, butactuallyitisthroughexperiencethatmenacquirescienceandart.

(a)TheGreatPyramidofGiza(ca.3000BCE);(b)abronzevaseofChina(ca.1300BCE);and(c)ironaxefrom Sweden(ca.1500ago).

Archaeologistsinvestigatehistoricandprehistoricsitesandphysicalartifactsfoundatthesitesto understandhumanactivitiesinthepast.Inthisprocesstheyrevealtheadvancementsofvariousaspects ofhumanlifeandreconstructhistoryofhumancivilizations.Asaresultoftheirextensivestudies,they havedefinedthelongspanofhumancivilizationintothreeerasdistinguishedbytheuseofmaterials aslistedbelow,andwithexamplesillustratedin Fig. 1.1:

AnIntroductiontoMetallicGlassesandAmorphousMetals. https://doi.org/10.1016/B978-0-12-819418-8.00005-X Copyright©2021HigherEducationPress.PublishedbyElsevierInc.Allrightsreserved.

FIGURE1.1

•TheStoneAge–prehistorytoca.3000BCE

•TheBronzeAge–approximately3000–1000BCE

•TheIronAge–approximately1000BCE–CE1000

Inmoderntimes,theperiodfrom1850to2000issometimesreferredtobydifferentnames:

•theAgeofSteel, •ortheAgeofPlastics, •ortheAgeofNanomaterials.

Perhapsmanydecadesfromnow,thisperiodoftimewillbereferredtoasTheAgeofNewMaterials, towhichmetallicglassesbelong.High-techcompanies,suchasSpaceX,OrbitalSciencesCorporation, orXCORAerospace,arerapidlydevelopingtransportationsystemsforexplorationoftheneighboring planets.Itismorethanlikelythatmetallicglasseswillplayasignificantroleintheseendeavors.Of course,itmayevenbecalledtheAgeofQuantumComputingorsomethingelse.

Anaccumulatedknowledge,whichcomprisesskills,art,techniques,andskillfulshapingandconstruction,constitutesanaccumulatedknow-howthatinvolves experience (skillsandfamiliarity)and requires holdinginmemory anamountofinformation(i.e.,anumberoffacts,orsimplyinformation). Notethat know-how issufficienttorepeattheactivityasmanytimesasrequired.Forexample,large man-madestonestructuresbegintoappeararound10,000yearsago.Suitablyshapedrockswereselectedforthepurpose,withtimbertrunksusedasrollers,andropesusedasslingsandforhoisting.In today’sterms,theconstructionofthestonestructurewouldbecalled civilengineering.However,from thisexperiencethemoreobservantindividualswouldholdinmemorynotonlytheeffortoflaborand theknow-howoftheconstruction,butalsosuchfactsashardnessandsurfacesmoothnessoftherock forlowerfriction,thestrengthofropeforpullingandliftingandthehardnessandresistancetosplitting oftreetrunksforrollingapplications.Allofthesearepropertiesofthematerialsusedintheengineering activitythatwouldberetainedinmemoryandinduecoursebecomeknowledgeofmaterials.

Thelongestexperiencewithmaterialswasthatwithstoneandwood,ofwhichstoneistheeverlastingasisevidentin Fig. 1.2.Smeltingandshapingofironfollowedtheexperienceandknow-how ofmakingbronzefromanearlierage,andwentonforcenturieswithoutsignificantadvances,until themiddleofthe19thcenturywhentheconfluenceoftwomajorfactorsrevolutionizedironsmelting intosteelmaking,supersedingtheageoldprocess.Thisnewmethodofsteelmaking,anditswide application,hadapronouncedeffectonourcivilizationinthemodernera.

Thefirstmajorcontributingfactorwastheexpansionofmanufacturingandconstruction,createdby demandsoftheindustrialrevolutioninthedevelopingworld,andhencetheneedforlargequantitiesof strongmaterialsformachinery,construction,andcivilengineeringconnectingcontinentsbyrailroads.

Thesecondessentialfactorwasthediscoverybychemists(metallurgists)that“pigiron”contained toomuchcarbondissolvedinit,whichhadtoberemovedbylengthyandcostlyreprocessingtogive amoreuseful“wrought”iron.Priortothattime,thecrudeironmaterialwasproducedintheblast furnace,usingrawmineralssuchasironore,lime,cokeforfuel,andotheringredients.Theproductof thisprocess,thepigiron,hadaveryhighcontentofcarbon,between4%and5%,togetherwithsilica andotherimpuritieswhichrendereditbrittleandnotofmuchusedirectly.(Thetraditionalmolds wereformedinsand,withacentralchannelbranchingintomanyindividualingotsatrightangles, resemblingalitterofsucklingpiglets,hencethenamepigiron).Chemistrywasdevelopingintoa powerfulscience,equippedwithanalyticaltoolsandtheoreticalunderstandingofthegas,liquid,and

Megalithicman-madestructuresfromtheStoneAge:(a)SinglechambertombinKorea(ca.the9thmillennium BCE);(b)StonestructuresinthemunicipalityofBorger-Odoorn,Netherlands(ca.the4thmillenniumBCE).

solidstate.Chemicalelementswerebeingdiscoveredandidentifiedatarapidrate.Alreadyin1722, RenéAntoineFerchaultdeRéaumurdemonstratedthatironwastransformedintosteelthroughthe absorptionofsomesubstance,laterfoundtobecarbon,forwhichA.L.Lavoisierproposedthename “carbon”in1789fromtheLatinwordfor“charcoal.”In1774,J.Priestleyfoundthatairisamixture ofgases,oneofwhichwasthehighlyreactivegashecalled“dephlogisticatedair,”lateridentifiedas oxygen,whichhadgreataffinityforcarbon.

In1856,theEnglishmanHenryBessemerbecameawareofthesignificanceoftheseeminglyunsaturateddemandforsteel,andsuddenlyrealizedthatcarboncouldbeburnedoutofthemolteniron byair.Hetookoutapatentonmakingsteeldirectlybyblowingairthroughthemoltenironmixture. Bytheturnofthecentury,largecompaniesweresetupintheUSAandEuropetomanufacturesteel bytheBessemermethod.Lateron,oxygensteelmakingeventuallyreplacedtheopenhearthfurnace. Oxygenwasliquefiedinastableformforthefirsttimein1883byPolishscientistsfromJagiellonian University,ZygmuntWróblewskiandKarolOlszewski.

Today,steel(togetherwithconcrete)isthemostwidelyusedmaterialintheworld.

Similarcircumstancesoccurredinthemiddleof20thcenturywithrespecttothediscoveryand developmentofmetallicglasses–thenewmaterials.Themostimportantapplicationofmetallicglasses isinthefieldofmagneticandferromagneticdevices.Theexceedinglylowmagnetizationlossofthese materialsisusedtoagoodadvantageinhighefficiencytransformersatlowfrequencypowerlines. Alsoelectronicsurveillancedevices(suchastheftcontrolpassiveIDtags)oftenusemetallicglasses becauseofthesespecialmagneticproperties.

Itisimportanttobringtonoticethefactthatamorphoussolids,otherthanmetallicglasses,are widelyused:silicaglassinwindows,inopticaldevices,andinopticalfibersfortelecommunication.

Glassy(amorphous)solidshavebeenpositivelyidentifiedintermsoftheiramorphousatomicstructureatthebeginningofthe20thcenturywiththeaidofX-raydiffractionstudies.Thefirststructure ofanamorphoussolid,namelythatofplainsilicaglass,wasidentifiedbyanX-rayscatteringstudy

FIGURE1.2

by(Warren, 1934)andmorerecentlycorroboratedbytheso-calledfluctuatingelectronmicroscopy. Chemistshadsomepriorideasaboutrandomnetworksandchainmoleculesasisknownfromthe worksofZachariasen(1932)andStaudinger(1933).Thetechnologyofprocessingofglassesandtheir manifoldusesareveryadvancedandextensive,yetthereisnoadequateunderlyingtheoryofamorphousstructureasforcrystallinesolids.Whatisgenerallyknownandacceptedatthisstageisthat amorphoussolidsdonotpossessasaruleanycrystallinity,andthattheatomicarrangementsareconsideredtoberandom,havingnolong-rangeorderasincrystals.Insomecircumstancestheyarecalled “frozenliquids.”

Theunderstandingoftheatomic-scalestructureofsolids(fromwhichmoderntechnologyand societybenefitsogreatly)hascomeabouttoalargedegreebecauseofthedevelopmentofthemethods ofgeometryandX-raycrystallography.FromthefirstdiscoveryofthediffractionofX-raysbyacrystal by(Friedrichetal., 1913)and(Bragg, 1913),tothepresentdaywhenstructuresoflargemoleculesare determinedroutinely,crystallographyhasdevelopedfromsmallbeginningstobecomeanenormously successfulandpowerfultoolforthestudyofatomicarrangementsinsolids.

TheothercontributingfactortowardsdiscoveringmetallicglasseswastheadvancementofMaterialsScience,especiallyinthefieldofplasticityofmetalsandmetallicalloys.Theoryofdislocations withintheorderedcrystallinestructure,andverificationoftheirexistencebyelectronmicroscopy,providedasoundbasisforaclearunderstandingoftheplasticityofmetals,especiallyofpuremetals,in termsofdislocations’motioninthepolycrystallinestructure.Soonafter,thestrengtheningmechanisms ofstrainhardening,precipitations,andalloyingwereidentified.Itwasconcludedthatmakingmetallic alloyswithsmallerandsmallergrainsizeleadstostep-wiseimprovementsinstrength.Eventually,in thelimitingcaseofzerograinsize,anamorphousstructurewasenvisioned,possessingmechanical strengthapproachingthatofthetheoreticalstrengthofmaterials.

Inthemid-20thcentury,thealloysystemofgold–silicon(Au–Si)waswellstudied,andwasknown tohaveahexagonalclose-packedcrystallinestructureinsolidifiedalloys.Interestingly,theAu–Si alloysystemshowsadeepeutecticatacompositionofapproximately20%atomicweightofSiin Au,withalowmeltingpointof636K,comparedtothemeltingpointofAuof1337K,and1687K forSi.Thiseutecticmelt,whenrapidlyquenchedonaspinningcopperwheel,solidifiedintothin ribbon-likeobjects,andappearedtohavenocrystallinityonthebasisofX-raydiffractionpatternof the“quenched”Au80 Si20 composition.Thiswasthefirstcaseofametallicamorphousalloyreportedin thescientificliterature.Veryhighcoolingrateshadtobeemployed,oftheorderof106 K/s,toproduce smallamountsoflongamorphousmetalofapproximately0.1 × 10mmincross-section,hencethe description“ribbon-like”metallicglasses.

Thefirstbulkmetallicglass(BMG),withcentimeterdimension,wastheternaryPd–Cu–Sialloy preparedbyChenetal.in1974.Asimplesuction-castingmethodwasusedtoformrodsofthemetallic glassatacoolingrateof103 K/s.In1982,TurnbullandcoworkerssuccessfullypreparedthePd–Ni–P BMGusingboronoxidefluxingmethodtopurifythemeltandtoeliminateheterogeneousnucleation. Theexperimentsshowedthataglasstransitiontemperature, Tg ≈ 2/3 Tm ,wasachievedwhenheterogeneousnucleationwassuppressed.Theingotwasofcentimetersize,solidifiedatcoolingratesofthe orderof10K/s.AlthoughtheformationofPd-basedBMGisanexcitingachievement,however,due tothehighcostofpalladiummetal,theexperimentswereonlyfollowedinacademiccircles,andthe interestfadedaftersomeyears.

Inthelate1980s,InoueandhiscoworkersinTohokuUniversityofJapansucceededinfinding newmulti-componentalloysystemsconsistingmainlyofcommonmetallicelementswithlowercrit-

Table1.1Propertiesofmetallicglasses(fromAshbyandGreer,2006).

Attributes

Attractiveproperties

general theabsenceofmicrostructuralfeaturessuchasgrainandphase boundariesallowscomponentswithfeaturesofnear-atomicscale mechanical highhardness,givinggoodwearandabrasionresistance highyieldstrength,veryhighfracturetoughness lowmechanicaldamping(lowdissipationlosses) thermal forsomemetallicglasses, Tg Tc ,allowingprocessingassuper-cooled liquid(thermo-plasticforming:injectionmolding,hotpressing,etc.)

Tg –glasstransitiontemperature, Tc –crystallizationtemperature electrical resistivityisalmostindependentoftemperature magnetic highmagneticpermeability chemical highcorrosionresistance processing lowsolidificationshrinkageandnograinstructuregive highprecisionandfinishincastings aesthetics veryhighsurfacepolishduetolackofmicrostructure durability highhardnessandcorrosionresistancegivesdurability

icalcoolingrates.Havingsystematicallyinvestigatedternaryalloysofrare-earthmaterialswithAl andferrousmetals,theyobservedexceptionalglassformingabilityintherare-earth-basedalloys,for example,La–Al–NiandLa–Al–Cu,bycastingthealloys’meltinwater-cooledCumolds.

Bytheearly2000s,manyhundredsofBMGshavebeenproducedaroundtheworld.Theinterest inamorphousmetallicmaterialsisevidencedbyaUSAcompany,LiquidMetal,whichintroducedthe firstcommercialamorphousalloy,Zr-basedVitreloy,in2003.TheVitreloyBMGhasbeenusedin sporting,medical,andindustrialproducts.

Metallicglassesseemunusual.Theyarehardandbrittlelikeglass,butnottransparent;theyhave thesofteningpointlikeglasswellbelowtheircrystallinemeltingpoint,yet,unlikeopticalglasses,they donotconductlight,butaregoodconductorsofelectricity.Indeed,metallicglassesarelikemetals andglasses,exhibitingsomepropertiescommontoboth.Theypossesthecharacteristicsofthetwo typesofmaterialsbecausethearrangementofatomsinmetallicglassesissimilartothoseinorganic andinorganicglasses,yetthechemistryandelectronicstructureisthatofmetals.Themainaimof thistextbookistodescribemetallicglassesintermsoftheirphysicalcharacteristics,theirusesand applications,themethodsoftheirmanufacture,andtheirinneratomicstructure.

Thechallengesofstudyinganddevelopingmetallicglassesarenumerous,carryingexcitementof newdiscoveriesandnewapplications,basedontheirinherentadvantagesshownin Tables 1.1 and 1.2.

Itcanbesaidwithahighdegreeofcertaintythatpetrolanddieselmotorcarshavelimitedlifeas theyarereachingtheirpeakinperformanceandefficiency,butcontinuetocontributesignificantlytothe environmentalpollution.Theywillgraduallydisappearfromourliveslikesteamenginesandsailing shipsofearliertimes.Electricmotorsarefarsuperiortoreciprocatingpistonengines,andtherefore,are thefutureofallourtransportationandmechanicalmovementactions.Theuseofelectricmotorsare presentlylimitedonlybythesupplyofhighcapacitybatteries.Metallicglassesareexcellentcandidates forelectricmotorapplications,andgreatadvancesintheiruseanddesignareanticipated.Imaginethe futurewithoutairpollutingcarsandtrucks.

Infact,theveryfirstmotorcarhadanelectricmotor(foracommercialexample,see Fig. 1.3)–it wasthelackofadequatebatteriesthatstalleditsprogress.FranceandtheGreatBritainwerethefirst

Table1.2Currentandpotentialapplicationsofmetallicglasses(Wangetal., 2004).

Property Primaryapplications Secondaryapplications

highstrength machinesanddevices

highhardness cuttingtools wearresistantmedicaldevices

highfracturetoughness diematerials

highreflectionratio opticalprecisionmaterials

highfrequencypermeability highmagnetostrictivematerials

highwearresistance medicaldevices

alloftheabove spaceapplications

FIGURE1.3

An1901advertisementforacommercialelectriccar.

nationstosupportthewidespreaddevelopmentofelectricvehiclesinthe1890s.FerdinandPorsche’s designandconstructionofanall-wheeldriveelectriccarinGermanywaspoweredbyanelectricmotor ineachhub,andhassetseveralspeedrecordsatthetime.Electricvehicleshaveanumberofsignificant advantagesovertheirpresentdaycompetitors.Mostimportantly,theydonothavethevibration,smell, andnoiseassociatedwithgasolineanddieselcars.Theyalsodonotrequiregearchanges.Iftheir batteriesarechargedfromrenewableenergysources,theireffectonairpollutionisclosetozeroby comparisonwithtoday’scars.

(Forcomparison,electricmotorsaretypically95%efficientintransforminginputenergyintorotationalenergy,whereasinternalcombustionenginesareonly35%efficientatbest–therestofthe fuel’scalorificvaluedissipatesasairfriction,andescapesasheatandexhaustgasses.Theefficiency ofsteamlocomotivesofthepastwasaslowas10%.)

Intelligentreflectionsontherelationshipbetweentheobservedpropertiesandperformanceofmaterialsleadtoenhancedpersonal knowledge,withsocialadvantagetopeoplecarryingoutengineering

activity.Thelevelofknowledgedependsontheabilitytoconceptualizetherelationshipsbetweenthe elementsoftheinformation,andanabilitytomanipulatetheconceptsandfactstoderivethelifeadvantage,whichleadsto understanding.(Knowledgemaybethoughtofasthedatabasecollectedby Facebook,whereasunderstandingisanalogoustothealgorithmwhichcharacterizeseachpersonon thedatabasebytheinformationheld.)Thus,scienceisabranchofknowledgedealingwithabodyof truthfulfactsarrangedtorevealgenerallaws,gainedthroughobservationandexperimentation.

MaterialsScience,abranchofthePhysicsofSolidState,isbasedontheknowledgeandunderstandingofthefollowingfundamentalrelationship:

atomic/molecularstructure → material’sproperties thatis,thechemistryandstructureofsolidsgovernsthebehaviorofthesolidmaterials.

TheuseofthisrelationshipforappliedpracticalendsisthefieldofMaterialsEngineering.An importantrelationshipexistsbetweenthemethodsandconditionsofprocessingofmaterialsandtheir finalmicrostructure.

processingofmaterials → material’smicrostructures

ThebasisofthefirstrelationshipcanbetracedbackinhistorytotheancientGreece,whenLeccipus ofMiletusandDemocritusofAbdera(inancientGreece)proposedthatmatteriscomposedofatoms (indivisiblevolume –derivedfromGreek).Furthermore,theyhypothesizedthatatomshaveshapesthat makethempossessandexhibitproperties,suchasacidity,sweetness,stickiness,andsmoothness,and allowthemtobondtomakeupothermatter.

Inthetworelationshipsabove,theterm“atomic/molecularstructure”referstothearrangementof atomsinthesolidmaterial,and“property”referstothephysical,chemical,electrical,mechanical, andotherpropertiesofmaterialsthatwemakeuseofinparticularapplications.Themetallicglasses connectthe“amorphous”structurewith“metallic”bonding;theyarethusexpectedtopossessunique propertiesthatdonotexistinothermaterials.

Indeed,itistheaimofthisbooktoprovidedeepinsightintotheserelationships,aswellasto consolidatetheexistingknowledgeonmetallicglassesandrelatedsubjects.Thehopeoftheauthorsis thatthistextbookprovidesmuchoftheinformationthestudentreaderissearchingfor,andfurthermore, thatitpointsthereadersaccuratelyandefficientlytoothersourceswheremoreinformationcanbe foundsothatdeeppersonalknowledgecanbeacquiredandenriched.

References

Bragg,W.L.,1913.Thediffractionofshortelectromagneticwavesbyacrystal.ProceedingsoftheCambridge PhilosophicalSociety17,43–57.

Friedrich,W.,Knipping,P.,Laue,M.,1913.X-raydiffractionfromsinglecrystals.AnnalsofPhysics346(10), 971–988.

Wang,W.H.,Dong,C.,Shek,C.H.,2004.Bulkmetallicglasses.MaterialsScience&Engineering.R,Reports44, 45–89.

Warren,B.E.,1934.X-raydeterminationofthestructureofglass.JournaloftheAmericanChemicalSociety17, 249–254.

Makingofmetallicglassesand applications

Applicationsofmetallicglasses

Aerospaceandbeyond

2.1

Metallicglasses(MGs)areconsideredasanovelclassofmaterials,differentfromcrystallinemetallic alloys.Overthepastdecades,experimentalandtheoreticalresearchershavedevotedtimeandeffortto understandandcharacterizethenatureofamorphoussolids.Metallicglassespossessexcellentproperties,andareregardedaspotentialmaterialsinmechanical,chemical,magnetic,andopticalengineering.

VariousmetallicglassyalloysbasedonZr-,Fe-,Ce-,Ti-,andMg-elementsattractgreatinterest forapplicationsinmedicine,electricalengineering,aeronautics,andastronautics.Therelevantresearch workhasbeenconductedinthefieldofspaceresearchanddevicesinaerospacevehicles,including protectiveshieldsandvariousaerospacecomponentssuchascompliantmechanisms,gears,magnetoelectriccomponents,solarwindcollectorplates,etc.

SpaceenvironmentissodifferentandcomplexcomparedthatontheEarth’ssurfacethatthe aerospacevehiclesaresubjectedtoextremeconditions:temperatureaslowas 200◦ C,extremehumidityanddesertenvironmentbeforelaunch,ultravioletexposure,ionirradiation,anddebrisstriking, whichdemandexceptionalpropertiesofthemetallicglassyalloysappliedinaerospace.Thestructural evolutionandperformanceofMGsatcryogenictemperatureshavebeenstudied,andaductile–brittle transitionwasobservedgoingfromlowertohighertemperatures,andvice-versa.TheionirradiationresistanceofMGshasalsobeeninvestigatedunderdifferentionsources.Therewasnosignificant damageobservedonTa38 Ni62 MGsurfaceirradiatedbyHe2+ ions.However,thermallyinducedpartial crystallizationoccurredunderprolongedexposureat360◦ CforCu60 Zr20 Hf10 Ti10 MG,whichmeans thatthisalloyisnotsuitableforirradiationenvironmentsforextendedperiodsoftime.Recently,a novelhigh-temperatureIr35 Ni20 Ta40 B5 MGalloyhasbeendevelopedbycombinatorialmethods,and itisexpectedthatitwillbeappliedinaerospaceunderbothhighandcryogenictemperatures.

Coldweldingoccursunderhighvacuum(i.e.,inaerospace)betweentheatomicallycleanmetal surfaces,evenwithoutheatapplied,andunderstaticcontact,causedbythemutualdiffusionofatoms

AnIntroductiontoMetallicGlassesandAmorphousMetals. https://doi.org/10.1016/B978-0-12-819418-8.00006-1 Copyright©2021HigherEducationPress.PublishedbyElsevierInc.Allrightsreserved.

10Chapter2 Makingofmetallicglassesandapplications atthecontactingsurfaces.Theservicelifeofthecomponentsduringstaticordynamicapplications wouldbeharmedbythestick–slipadhesivewear,andfrictionalwearduetothecoldweld.AnMoS2 compositemembranewaspreparedbychemicalplatingand/orelectroplatingmethodonthesurface ofanNi–Pamorphousalloyandanaluminiumalloymovingpart.Theadhesion(friction)coefficient betweenthecompositemembraneandtheMGwaslowerthan10 4 ,whilethatbetweenthetwoMG surfaceswasabout10 2 .AccordingtotheQ/WHJ21-93principle,theNi–P–MoS2 compositemembraneiswellsuitedforpreventingthecold-weldingeffect.

Protectiveshield

Withagrowingexplorationoftheouterspace,moreandmoremissionsarelaunchedbyNationalAeronauticsandSpaceAdministration(NASA),theEuropeanSpaceAgency(ESA),theJapanAerospace ExplorationAgency(JAXA),andtheChinaNationalSpaceAdministration(CNSA).Thespacevehicles,suchastheunmannedroboticspaceprobes,InternationalSpaceStation(ISS),spaceshuttles, andotherspacecraftwithhumansaboard,arethreatenedbythespacedebris,thenumberofwhichincreasesdaily.UntilJanuary2019,thenumberofdebriswasestimatedtobe34000forparticleslarger than10cminsize,900000for1to10cminsize,andmorethan128millionfor1mmto1cminsize, respectively.Thehugepopulationofspacedebrisinthesizerangefrom1mmto1cmisaseriousrisk tothespacecraft,fargreaterthanthatofmicrometeoroids.

Theso-called“Whippleprotectivestructure”developedbyFredWhipple(anAmericanastronomer)wasadoptedandisbeingassembledinspacecraftbymanyaerospaceagencies,inwhich thematerialoftheoutershieldisofparamountimportancetoprotectthemaincraftduringmicrometeoroidsandorbitaldebris(MMOD)impacts.Incontrasttomonolithicshieldingoftheearlyspacecraft, Whippleshieldsconsistofarelativelythinouterbumperspacedsomedistancefromthemainspacecraftwall.Thebumperisnotexpectedtostoptheincomingparticleorevenremovemuchofitsenergy, butrathertobreakitupanddisperseit,dividingtheoriginalparticleenergyamongmanyfragments thatfanoutbetweenthebumperandtheouterspacecraftwall.

Theidealmaterialforprotectiveshieldisrequiredtohavehighhardnessinordertobeabletobreak uptheparticles,andlowdensitytominimizetheweight.Anotherdesiredpropertyisalowmelting point,sothatthedebriswouldevaporateittopreventgenerationofcollisiondebrisduringanMMOD impact.Analuminiumalloyisthematerialusedcurrentlyinthespacecraftprotectiveshieldbecauseof therelativelylowpriceandadequateperformance.AresearchgroupfromNASAreportedimpressive testresultsformetallicglassesduringhyper-velocityimpact(HVI)tests.

Inthefirsttrial,Zr36 6 Ti31 4 Nb7 Cu5 9 Be19 1 MGcompositewasadoptedforconstructingthecellularstructuresandsubjectedtoimpactwithvelocitiesrangingfrom0.8to3.0km/s,usingaluminium sphereswithadiameterof3.17mmastheimpactingparticles.Singlelayersmadefromthesame materialwereimpactedbythealuminiumprojectiles,andtheresultswerecontrastedwiththoseof amulti-facetedegg-boxstructure.Theresultsshowedthatthethicknessrequiredforthefacesheets wasgreaterthanthatintheegg-boxstructuretopreventpenetration.ThecorrugatedpanelscoulddiffusethedebrisproducedbythebumperduringanMMODimpactmoresignificantlycomparedtothe single-wallshield.Inthistrial,MGswererepeatedlycastatlowcostintoacomplexhoneycomb(eggbox)structure.TheconstructionofasinglehoneycombstructurebyweldingisdifficultusingMGs. AmethodforjoiningMGcompositescanusecapacitivedischarge.Duringtheprocess,MGsshowa near-constantelectricalresistivityasafunctionoftemperatureresultingfromtherandomatomicarrangements.Thematrixofthepanelcanbeheatedtoapproximately700◦ Cin10millisecondswhen

compositepanelsareplacedbetweentwocopperelectrodeplatesanddischargedbyacapacitor.The nodesofeachpanelwouldfuseandconnectintoasinglepiecebyapplyingaforgingloadduring discharge.Thetechniqueallowsthefabricationofacellularstructuredescribedinthepatent,whichis well-suitedforspacecraftshieldsormilitaryvehicledoorpanelswithhighest-strengthandmostenergy absorption.

InthesecondtestseriesforZr41 2 Ti13 8 Cu12 5 Ni10 Be22 5 andZr36 6 Ti31 4 Nb7 Cu5 9 Be19 1 MGs, compositesweredesignedtoestimatetheballisticlimitforbulkMGsandtheircompositesandto investigatespallingbehavioratvelocitiesfrom0.8to2.8km/s.TheresultsshowedexcellentcombinationsofhardnessandtoughnessofMGsforuseasshields.Comparedtoasingleshieldstructure, multi-layershieldsaremoreeffectiveindiffusingtheimpactenergy.

Forthethirdseries,theWhippleshieldsincorporatedlayersofFe65 Si15 B20 MGandwereassessed atvelocitiesof6.97–7.05km/sthroughHVItests.ThiscompositionMGhasalowglass-formingability andcanbeproducedinaribbonwhichisonly23µmthick.Ashieldcomprising21cmsquaresheets stackedtogetherfromindividualribbonlayersallowedtheWhipplestructuretomaintainthesameareal densityastheactualISSmodulebaseline.Intheresults,theprojectilepenetratedthebaselinesample butdidnotpenetratetheshieldwithintermediatelayersofMGsundertheidenticalconditionswitha baselineWhippleshieldcurrentlyusedontheISS.ItisclaimedthatthisMGcanbeareplacementfor thefabriclayersintheWhippleshieldarchitecture.

AnothergroupconductedtheHVItestsusingFe77 Si14 B9 MGfilmcoatedontheLY12Alaluminiumalloytobeusedasthefrontbumperofatwo-layerWhippleshieldwithvelocitiesranging from3.44to5.70km/s.TheMGfilmwasfabricatedbythethermalspraycoatingtechniquetodeposit athicknessof0.15mm.CombiningtherigidsubstrateprovidedbyaluminiumandthehardFeMG film,thereinforcedbumpershowedbetterperformancethanthetraditionalone,whichmaybedueto thehigherdensity,lowerspecificheat,andnotsohighmeltingtemperatureoftheFe-basedamorphous alloy.However,thedensityenhancedbyMGfilmontheAlsubstrateislimited.Anotheradvantage ofMGinthiscaseisthathighershockpressurescanbegeneratedinthereinforcedbumpertoinduce ahighertemperatureriseintheprojectile,whichwillpromoteprojectilefragmentationandprovide betterprotectionperformancecomparedtothetraditionalone.

Inanotherdevelopment,bulkZr51 Ti5 Ni10 Cu25 Al9 MGwasfabricatedbycoppermoldcastingwith asizeof3.5mm × 45mm × 45mm.TheHVIexperimentswereconductedusingatwo-stagegas gunwithseveralvelocitiesoftheprojectiles,rangingfrom1.40to4.27km/s.Afterthehyper-velocity tests,damagemorphologyofthefrontbumpwasanalyzed.

Applicationascompliantmechanisms

Variousmechanismsareusedinaerospaceequipmentasrequiredbecauseoftheirexcellentability toapplyforce,translationandrotationmovement,inkinematicpairs,gears,linkages,andflexurecompliantmechanisms.Thesemechanismshavestrictrequirementsofdimensionalaccuracy,high strength,andelasticity,aswellaslowwearandlowcoefficientofthermalexpansion.Especially single-piecemechanismsarepreferredtoreducetheassemblingtoleranceandenhancestability.MGs combinetheadvantagesofhighstrength,highelasticity,andgoodprocessability.Twotypicalmetallic glasses,i.e.,Zr41 2 Ti13 8 Ni10 Cu12 5 Be22 5 andZr44 Ti11 Ni10 Cu10 Be25 ,areusedtofabricatebistable compliantmechanisms.Sometraditionalmaterials,suchasthebestperformanceTi-6Al-4Valloy amongthecrystallinematerials,arealsoadoptedtobecontrastedinexperiments.Itisdemonstrated

12Chapter2

Makingofmetallicglassesandapplications thatdevicesmadefromMGscanprovidealargersafetyfactorforsimilarly-sizedcompliantmechanisms,ortheycanbefabricatedtohavemuchsmallersizesbecauseofhigherstrengthcomparedto theTi-6Al-4Valloy.Duringthefabricationprocess,MGscanbemeltedandinjectedintoacomplex moldatalowtemperaturewithoutpost-processing(polishing)procedurewhichalsolowerstheproductioncosts.Forthedesignchallenge,MGsexhibitbettermanufacturabilitywithoutpost-machining toovercometheproblemofthermalexpansionmismatchandpreciseassembly.Somepatentshave beenappliedinthisfieldrecently.

Ball-and-conelocatorsarestandardlatchingmechanismswithadeployablestructureforaerospace vehicles,inwhichthepreferredmaterialshouldhavelowdensityandhighperformance,highhardness andductility,lowmeltingpoint,tolerancetocryogeniccircumstanceandcryogenic-thermalcycling, andbecompatiblewithflight-gradeepoxymaterial.TheperformanceofTi-basedMGsandtheircompositeswasstudiedthroughpush-outtests,four-pointbending,andcryogenic–thermalcyclingtests. ItwasshownthatthelocatorinsetsusingTi44 Zr20 Cu5 V5 Al7 Be19 MGwouldbe39.5%lighterwhen comparedto440stainlesssteel,indicatingthegreatestpotentialtoreplacethistraditionalsteelmaterial.AcompositionofTi40 Zr20 Cu10 Be30 isyetanotheralternativetoconsiderbecauseofitshigh glass-formingabilityandattractivemechanicalproperties.

Applicationasgears

Unlikethetraditionalsteelmaterials,metallicglassesbecomemoreductile(lessbrittle)inextreme cold,whichmakesthemmoreappropriateforrobotsworkinginspaceoronicyplanets.TheresearchersandengineersfromNASAJetPropulsionLaboratory(JPL)designedatesttoestimatethe potentialbenefitofmetallicglassincreatingroboticgearsforspacecomparedtoceramicsandsteels. Agearisessentialintheprecisionroboticsandrequiredwhentherobotsperforminspacemissions. ResultsfromJPLshowthatthegearsmadefrommetallicglasscantransmithightorqueandsmooth turningwithoutlubricantevenattemperaturesaslowas76K.Amongvariousmetallicglasses,CuZrbasedCu43 Zr43 Al7 Be7 MGexhibitsexcellentwear-resistancewitha60%improvementthrougha superiormethodofgear-to-geartestingcomparedtohigh-performancesteelVascomaxC300whichis usedcurrentlybyNASAonMarsroverCuriosity.Itisindicatedthatthenatureoftoughnessismore importantthanhardnesswhenconsideringgearwear,whichiscontrarytotraditionalclaims.Inthis test,theMGsgearwasfabricatedbyanet-shapedcastingwithoutpost-machining,whichcanimprove thewear-performanceandlifetimeofMGgearbutwithasuperiorsurfacequalitytothatofelectric dischargemachinedgears.Somepatentshavebeenappliedforinthisfieldrecently.Examplesofgears manufacturedfrommetallicglassesareshownin Fig. 2.1.1.

Applicationasmirrors

Metallicglassesweremanufacturedintomirrorsforpossessingtheabilityofcastingintoboththe mirrorsurfaceandbacking,allinonestep.Duetotheexcellentscratchresistanceandpotentiallylow costoffabrication,metallicglassesareinvaluableinspaceapplications.

AnotherapplicationformetallicmirrorsisinITER(“TheWay”inLatin)asoneofthemostambitiousenergyprojectsintheworldtoday.InSouthernFrance,35nationsarecollaboratingtobuildthe world’slargesttokamak,amagneticfusiondevicethathasbeendesignedtoprovethefeasibilityof fusion.AsimilarprojectisunderwayintheUSA.TheobjectiveoftheITERprogramistounderstand andcontrolnuclearfusion.

FIGURE2.1.1

Gearsmanufacturedformetallicglasses.

TwoITERrequirementsonshuttersareunprecedentedoncontemporarymachines.First,plasmanearcomponentsmustwithstandsignificantneutronfluxesoftheorderof1014 s 1 cm 2 withenergies upto14MeV,leadingtovolumetricheatingandmaterialdegradation.Second,accessibilityformaintenanceandreplacementisverylimitedformultiplereasons,requiringthelifetimeofshuttersbe ≥ 20 years.

MetalmirrorsareforeseenforopticaldiagnosticsystemsofITER.However,thesemirrors,subjectedtointenseirradiationbyX-rays,gammarays,neutrons,andchargedparticlesofwideenergy ranges,quicklyloosetheoriginalopticalpropertiesduetosputtering,erosion,deposition,accumulationofgasses,creationofdefects,ionimplantation,etc.Therefore,theselectionofthemirrormaterials reliesprimarilyontheresistancetodegradationthroughplasmaexposures.Amongthemaincandidate mirrormaterialsarehigh-Zmetalslikemolybdenum,tungsten,andrhodium.Laboratoryandtokamakexperimentsshowedthatpolycrystallinemetallicmirrorscouldnotsustaintheirreflectivities undererosion-dominatedconditionsduetotheincreaseinsurfaceroughness.Single-crystalmaterials suchasmolybdenumandtungstenlargelyovercometheheterogeneouserosionproblemofdifferentlyorientatedgrainsandcanpreservetheiropticalpropertiesundererosionconditionsforlongerperiods oftimeasconfirmedbylaboratorytests.

Amorphousalloys,ormetallicglasses,arehomogeneousstructureswithoutgrainboundariesthat maywellresistheterogeneoussputteringanderosions.Bulkamorphousalloyshavelargeglassformingabilitiesandhighstrengthsinsharpcontrasttotraditionalamorphousalloys.Forinstance, bulkamorphousalloyZr41 2 Ti13 8 Cu12 5 Ni10 Be22 5 wasshowntohaverelativeslowdecreaseinspecularreflectivity. Fig. 2.1.2 showsaspacemirrormadefromtheabovemetallicglassalloy.

FIGURE2.1.2

SpacemirrormadefromZr-basedmetallicglass(VitreloyI).

Applicationtocorrosionresistance

Tooptimizetheperformanceandcostswhileminimizingtheweightofthecomponentsinaerospace vehicles,afiber–metallaminateisusedincommercialaircraft,madeupofalternatinglayersoffiberreinforcedpolymer,i.e.,glassfiber-reinforcedepoxyandaluminiummetallicalloy.Thecombination betweencarbonfibercompositeandaluminiumisnotfeasiblebecauseofgalvaniccorrosioninducedat thecontactofthetwomaterialswhensubjectedtodifferentelectricalpotential.Theisotropicstructure andabsenceofcrystalboundariesinmetallicglassesassistcorrosionresistance.IthasbeendemonstratedthatametallicglassreplacingAlexhibitssuperiorcorrosionresistance(approximately20times better)aswellasgoodmechanicalperformance,especiallytheretentionofelasticbehaviortohigher strains,duetotheincorporationofalternativecomponentmaterials.

Applicationtosolarwindcollection

Metallicglasseswerefabricatedintotargetstobeexposedtosolarcorpuscularradiationwiththeaim toexploretheactivityofsolarwind,asconductedbyNASAontheGenesisDiscoveryMission.Itis consideredthatmetallicglassespossessvariousexpectedadvantagesthatmeetthedemandsforsolar windcollection.Duetotheisotropicstructureandabsenceofcrystallattice,fractionationandlossof solarwindalongthepreferreddiffusionpathsoncrystalplanesiseliminated.Furthermore,homogeneousetchingallowsthehighresolutiondepthprofilingoftheisotopiccompositionandtheamount ofimplantedsolarnoblegases.Thisdatademonstratesthecompositionalinformationaboutthesolar windandpotentialvariationsasafunctionofenergyoftheradiation.However,itwasalsonotedthat metallicglassisnotperfectlysuitablefortheprecisedeterminationoftheisotopicandelementalcompositionofbulksolarwindnoblegasesasaconsequenceofcorrectionsforlightelementscompared toahighproportionofheavyelementsintheglass. Fig. 2.1.3 showsasolarwindcollectiondevice,of theNASAspacemission,comprisinghexagonalcollectorsmadefromsiliconandotherpurematerials, includingmetallicglass.Otherexamplesofusingmetallicglassesforspaceapplicationsareshownin Fig. 2.1.4.

FIGURE2.1.3

In2004,NASA’s“Genesis”solarwindcollectiondevice.

Applicationasmagneticsensors

Magneticsensorsworkindeepaerospaceexplorationtodetecttheambientmagneticfieldvectoraccuratelyandtodiscriminatethesourcesofstraymagneticfieldsproducedbymechanical,electrical, andelectronicsystemsonaerospacevehicles.Amorphousgiantmagnetoimpedance(GMI)sensors areusedinassembledspacemagneticinstruments.Ontheotherhand,amorphousGMIsensorsare ideallyusedforthecontrolofthegearspeedandprecisedeterminationofthegear-toothpositionin aircraftenginesduetotheultrahighsensitivityandsmallsize.Co-/Fe-basedamorphousribbonsare theidealmaterialsduetotheexcellentsoftmagneticproperties,i.e.,highsaturatedmagnetization, lowcoercivity,highmagneticpermeability,andgoodmechanicalproperties.Whenaerospacevehiclesareworking,somefunctionalcomponents(i.e.,traveling-wavetube,rubidiumclock)areaffected easilybyamagneticfield.Thusmagneticshieldingisnecessarytoprotectthosecomponents.The amorphous/nano-crystallinesoftmagneticmaterialsareapromisingcandidateforuseasshielding materials,inwhichFeNi-/Co-basedamorphousalloysshowbettershieldingeffectiveness.

NASA’sGenesisspacecraftisthefirstmissiontocollectandreturnsamplesofthesolarwind— fastmovingparticlesfromtheSun.Adiskmadeofauniqueformulationofbulkmetallicglasswas createdspeciallyforGenesisinacollaborativeeffortwiththeHowmetCorporation.Thesurfacesof metallicglasseswillbedissolvedevenly,allowingthecapturedionstobereleasedinequallayersby sophisticatedacidetchingtechniques.

Inthe1990s,ametallicglass(Metglass®)wasdevelopedintoalightweightsearch-coilantenna orsensorincludingamulti-turnelectromagneticinductioncoilwoundonaspooltypecoilform.The limitationsoflightweight,size,andlocationareconstrainedbysurvivalinhighstresstypicallyused inspace.Thoughthedensityofametallicglassisabouttwicethatofferrite,only7%asmuchof themetallicglassmaterialisneededforaconfigurationofequaleffectiveness.Theamorphousribbon VITROVAC6025(typicalcomposition,Co66 Fe4 Mo2 Si16 B12 )wasusedinthevectormagnetometer sensoronboardtheAstrid-2satellitemadeasacompactring-coretomapthemagneticfield.Themissions“NewMillenniumProgramme”werelaunchedbyNASAtoestablishtheEarth’smagnetosphere, whereanetworkofnano-satellitesensorsweredesignedin2003forthispurpose.

Spaceapplicationsofmetallicglasses.

TheCo67 Fe3 Cr3 B12 Si15 amorphousalloywasusedtoinvestigatethemodelingofhysteresisloops ofultrahighpermeabilityalloysforspaceapplication.Aring-shapedcorewithasmallcross-section, with400sensingwindings,wasstudiedtoensurehighmeasurementsignal,whichindicatestheJiles–Athertonmodelissuitableformodelingtheultrasoftamorphousalloy.Itwasannouncedthatthisresult isappliedin“SmallExplorerforAdvancedMissions”and“DigitalMagnetometerforMicrosatellites Lemi-020”projectswhichaimtolowerthenoisethroughthedesignanddevelopmentofmagnetic fluxgatesensors.

Applicationassuper-conductingsensor

AprogramwasdevisedbyNASAtomeasureabroadelectromagneticspectrumatsub-millimeterand far-infraredwavelengths.Thus,anactivelycooledanddirectradiationdetectorwithhighsensitivity wasrequired,whichcanaccomplishthetaskssuchasX-raydetectionformedicalimaging,chemicalanalysisforMaterialsScienceatX-raywavelengths,andradiationdetectorsfornuclearforensics. Comparedtothetraditionalstate-of-the-artdetector,super-conductingmetallicglasstransition-edge sensorsCu35 Ti65 andCu60 Zr40 exhibitvariousadvantages,includingimprovedenergyresolution, lowerexcessnoise.Anamorphousalloymayalsobeaself-absorberofradiation(with4dand5dtransitionmetaladditionstoalloy(s)).Itcanpreciselycontrolsuper-conductingtransitiontemperature, Tc , havesimplifieddetectorarchitecture,aswellasmechanicallyandchemicallyrobustdesign.

Ti-basedmetallicglasses,whenmadeintothinpipes,havehightensilestrengthof2100MPa, elasticelongationof2%,andhighcorrosionresistance.Usingtheseproperties,aTi–Zr–Cu–Ni–Sn metallicglasswasusedtoimprovethesensitivityofaCoriolisflowmeter.Thisflowmeterisabout 28–53timesmoresensitivethanconventionalmeters,whichcanbeappliedinfossil-fuel,chemical, environmental,semiconductor,andmedicalscienceindustry.

FIGURE2.1.4

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.