Algebraic art: mathematical formalism and victorian culture andrea k. henderson - The ebook in PDF f

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Victorian Culture and Experiential Learning: Historical Encounters in the Classroom Kevin A. Morrison

https://ebookmass.com/product/victorian-culture-and-experientiallearning-historical-encounters-in-the-classroom-kevin-a-morrison/

ebookmass.com

Against Art and Culture 1st Edition Liam Dee (Auth.)

https://ebookmass.com/product/against-art-and-culture-1st-editionliam-dee-auth/

ebookmass.com

Victorian Surfaces in Nineteenth-Century Literature and Culture: Skin, Silk, and Show 1st Edition Sibylle Baumbach

https://ebookmass.com/product/victorian-surfaces-in-nineteenthcentury-literature-and-culture-skin-silk-and-show-1st-edition-sibyllebaumbach/

ebookmass.com

Tanmay Teaches Go: the Ideal Language for Backend Developers Bakshi

https://ebookmass.com/product/tanmay-teaches-go-the-ideal-languagefor-backend-developers-bakshi/

ebookmass.com

Oxford Handbook of Anaesthesia (5th Edition) Rachel Freedman

https://ebookmass.com/product/oxford-handbook-of-anaesthesia-5thedition-rachel-freedman/

ebookmass.com

TeleNeurology 1st Edition Randall Wright

https://ebookmass.com/product/teleneurology-1st-edition-randallwright/

ebookmass.com

Geological Pioneers of the Jurassic Coast Andrew S. Goudie

https://ebookmass.com/product/geological-pioneers-of-the-jurassiccoast-andrew-s-goudie/

ebookmass.com

Practice Guidelines for Family Nurse Practitioners E Book 5th Edition, (Ebook PDF)

https://ebookmass.com/product/practice-guidelines-for-family-nursepractitioners-e-book-5th-edition-ebook-pdf/

ebookmass.com

The Ritual Animal: Imitation and Cohesion in the Evolution of Social Complexity Harvey Whitehouse

https://ebookmass.com/product/the-ritual-animal-imitation-andcohesion-in-the-evolution-of-social-complexity-harvey-whitehouse/

ebookmass.com

Positive Learning Environments 1st Edition John De Nobile

https://ebookmass.com/product/positive-learning-environments-1stedition-john-de-nobile/

ebookmass.com

ALGEBRAICART

AlgebraicArt

MathematicalFormalism andVictorianCulture

ANDREAK.HENDERSON

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©AndreaHenderson2018

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2017952161

ISBN978–0–19–880998–2

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

FormybelovedMichaelandClara

Acknowledgments

Iowethanks, firstofall,totheGuggenheimFoundationandtotheACLS, whosefellowshipsprovidedinvaluablesabbaticaltime,andenabledmeto immersemyselfintheworldofVictorianmathematics.VickiRuiz,UCI DeanofHumanitiesatthetimeIwasgrantedthosefellowships,helpedme tomaximizethetimetheyprovided,forwhichIremaingrateful.I’dalso liketothankmyeditor,JacquelineNorton,forherguidance,andtheOUP readersfortheirusefulsuggestionsonthemanuscript.Versionsofsomeof theargumentsofthebookoriginallyappearedelsewhere;Iamgratefulto beabletoincludethem,inalteredandexpandedform,here. “Mathfor Math’sSake:Non-EuclideanGeometry,Aestheticism,andFlatland,” appearedin PMLA 124:1; “MagicMirrors:FormalistRealisminVictorian PhysicsandPhotography” appearedin Representations 117:1; “Symbolic LogicandtheLogicofSymbolism” appearedin CriticalInquiry 41:1;and “ThePhysicsandPoetryofAnalogy,” appearedin VictorianStudies 56:3.

Iowespecialthankstoasetofliteraryscholarswhohavesharedand encouragedmyenthusiasmforthestudyofmath,logic,andphysics.The firstofthesewasCarlaMazzio,towhomIowemanyyearsoffriendship andsupport,andwhoblazedthemathematicaltrailinheressayon Hamlet.IwouldalsoliketothankAliceJenkinsforintroducingmeto theworldofliterary-mathematicalstudyintheU.K.;DanielBrown, whoseknowledgeofVictorianmathandphysicsisunrivaled,fordelightfulconversationonMaxwell;andAnnaKornbluh,DanielWright,and JeffreyBlevinsforbringingtogetherscholarsworkinginlogic.

Ibecameanineteenth-centuryscholarbecauseofMarjorieLevinson, andherongoingencouragementandfriendshipcontinuetosustainme. IalsooweastandingdebttoDeniseGigante,YopiePrins,Marshall Brown,andespeciallyAdelaPinch,whosegenerosityasacolleagueis exceptional.Inthe “Form” researchclusteratUCIIhaveasetof colleagueswhoseconversationhaspromptedmanyoftheinsightsinthe followingpages.JamiBartlett’sinterestinphilosophyoflanguagehas suggestednewwaysofthinkingaboutthenovel;OrenIzenberg,my clusterco-convener,isalwayswillingtodiscussanytext,howeverrecondite,andhasthepowertoclarifyeventhemostdifficultones;and JonathanGrossman,unfailinglygenerous,sawmethroughatacritical momentoftheproductionofthisbook.IreneTuckerhassimultaneously supportedtheidiosyncrasiesofmyinterestsandhelpedmebecomea betterVictorianist.Sheinspiredmetomakethisprojectaccordwithher

ownbig-heartedvisionofit.ToRichardGoddenIowethanksnotjustfor conversationontopicsrangingfromAdornotocontemporarypoetry,but alsoforhisscrupulousreadingsofmydrafts;myworkisalwaysbetterfor hiscommentary.JonathanAlexanderhashelpedmetoseemychapters fromoutsidemyownheadandpreoccupations,andmademelaughalong theway.EllenBurt,constantcoffeecompanionandmyspecialistinall matterspertainingtoFrenchliterature,hasalwaysbeenwillingtodrop whatshe’sdoingandreadadraft.Shehashelpedmewitheverythingfrom refiningthestructureofasinglesentencetoclarifyingachapter.Finally, IowethegreatestdebttoMichaelSzalay,whohelpedsetmeonthepath tothisbook’sconceptionbyencouragingmetoindulgemyinterestin Victorianmathinandofitself.Hisabilitytoseethebigpictureis extraordinary,andhehasimprovedthisprojectinmorewaysthan Icouldeverenumerate.

Myfather,Glenn,alwaystoldmeto “keepmyoptionsopen”—by whichhemeant “keeptakingmathclasses”;mymother,Dorothy,modeledapassionforhistory;andmysister,Teri,showedmebyexamplethat it’snevertoolatetotakeupanewsubjectofstudy,howeverdifficult. TheirpleasureinlearningistheleastoftheinspirationsIowetothem. Theirlovehasalwayssustainedme.ToClara,myfellownumberdevil, IowecountlesshappyhoursdiscussingeverythingfromFibonaccinumberstoPascal’striangle.SheandMichaelmakethesunriseeverymorning, andthisbookisdedicatedtothem.

3.Analysis

4.Analogy

5.InvariantForms

ListofIllustrations

1.1.EdwinAbbott, Flatland:ARomanceofManyDimensions (London:Seeley&Co.,1884),Figures1and2.53

1.2.EdwinAbbott, Flatland:ARomanceofManyDimensions (London:Seeley&Co,1884), finalpage.56

1.3.EdwinAbbott, Flatland:ARomanceofManyDimensions (London:Seeley&Co.,1884),frontcover.57

2.1.FromGeorgeBoole, AnInvestigationoftheLawsofThought (Mineola,N.Y.:Dover,1958),224.71

2.2.FromAugustusDeMorgan, OntheSyllogism,in Onthe SyllogismandOtherLogicalWritings,ed.PeterHeath (NewHaven:YaleUniversityPress,1966),206.71

2.3.FromJohnVenn, SymbolicLogic (London:Macmillan,1881), 106,107.71

2.4.FromLewisCarroll, SymbolicLogic (London:Macmillan,1896), frontispiece.72

3.1.OscarGustaveRejlander(British,bornSweden,1813‒75). TheInfantPhotographyGivingthePainteranAdditionalBrush, c.1856.Albumensilverprint6 7.1cm(23/8 213/16in.).

TheJ.PaulGettyMuseum,LosAngeles.112

3.2.LewisCarroll, TheMissesLutwidgePlayingChess, c.1858. NationalMuseumofPhotography,Film,and Television,Bradford.113

3.3.Clementina,LadyHawarden,1862‒3;©Victoriaand AlbertMuseum,London.114

3.4.Clementina,LadyHawarden,1862;©VictoriaandAlbert Museum,London.116

3.5.Clementina,LadyHawarden,1861;©VictoriaandAlbert Museum,London.118

3.6.Clementina,LadyHawarden,1862‒3;©Victoriaand AlbertMuseum,London.119

3.7.Clementina,LadyHawarden,1862‒3;©Victoriaand AlbertMuseum,London.119

3.8.Clementina,LadyHawarden,1863‒4;©Victoriaand AlbertMuseum,London.119

3.9.Clementina,LadyHawarden,1863‒4;©Victoriaand AlbertMuseum,London.119

3.10.Clementina,LadyHawarden,1863‒4;©Victoriaand AlbertMuseum,London.120

3.11.Clementina,LadyHawarden,1864;©Victoriaand AlbertMuseum,London.122

3.12.Clementina,LadyHawarden,1863‒4;©Victoriaand AlbertMuseum,London.123

3.13.WilliamNotman, MissStevenson,as “Photography,” Montréal,QC,1865;©McCordMuseum,I-14647.1.125

3.14.Clementina,LadyHawarden,1863‒4;©Victoriaand AlbertMuseum,London.127

4.1.IsaacNewton,Plate20fromAndrewMotte’stranslationof Newton’ s TheMathematicalPrinciplesofNaturalPhilosophy (London:BenjaminMotte,1729).142

4.2.MichaelFaraday,Plate1,Figure25from Experimental ResearchesinElectricity,vol.1,(London:Richard andJohnTaylor,1839).143

4.3.JamesClerkMaxwell, “LinesofForceandEquipotential Surfaces,” FigureIVfrom TreatiseonElectricity andMagnetism,vol.1,3rded.,editedbyJ.J.Thomson (Oxford:ClarendonPress,1892).151

4.4.JamesClerkMaxwell,Figure2from “OnPhysicalLines ofForce,” PhilosophicalMagazine,Vol.XXI(1861‒2).152

4.5.JamesAbbottMcNeillWhistler, SymphonyinWhite,no.2, 1864.CourtesyofTateImages.158

4.6.Titian, VenuswithaMirror, c.1555.Oiloncanvas. NationalGalleryofArt,AndrewW.MellonCollection.159

4.7.GeorgesdelaTour, TheRepentantMagdalen, c.1635‒40. Oiloncanvas.NationalGalleryofArt,AilsaMellonBruceFund.160

Introduction

[M]athematicalscience[is]notmerely...avastbodyofabstractand immutabletruths,whoseintrinsicbeauty,symmetryandlogical completeness...entitlethemtoaprominentplaceintheinterest ofallprofoundandlogicalminds,but...possess[es]ayetdeeper interestforthehumanrace,whenitisrememberedthatthisscience constitutesthelanguagethroughwhichalonewecanadequately expressthegreatfactsofthenaturalworld.

AdaLovelace(1843)1

Thetraditionalstoryoftheinfluenceofscienceonnineteenth-centuryart isamongthemostfamiliarinliterarycriticism:industrializingVictorian culture,positivisticandpracticalevenasitsometimesresistedthebroader implicationsofDarwinism,rejectedRomanticidealisminfavorofrealist aestheticsthatfocusedontheconcreteandthequotidian GeorgeEliot’ s “definite,substantialreality.”2 TheascendancyofGradgrindianfactsis memorablydramatizedintheopeningsceneof HardTimes,inwhich childrenaretaughtthathorsesaregraminivorousquadrupedsthatdonot belongonwallpaperbecausetheydon’ t “[walk]upanddownthesidesof roomsinreality.”3 Thisaccountremainsapowerfulone:withtheirrichly detaileddescriptions, finediscriminations,andfamilialandhereditary fixations,manyVictorianworksdoindeedbeartheimprintoftheempiricist mode,classificatorydrive,andfascinationwithevolutionarydynamicsthat characterizedthenaturalsciencesoftheperiod.Buttherelationshipbetween scienceandVictorianaestheticsismorethanjustadramaofrealismandits discontents.ForinitsmoreabstractandtheoreticalincarnationsVictorian scienceoftenprivilegeddeductionoverempiricalfact-findingandvaluedthe internalcoherenceofrepresentationalsystemsmorethantheircapacity

1 AdaLovelace,noteAtohertranslationof “SketchoftheAnalyticalEngine” by L.F.Menebrea.PrintedinTaylor’ s ScientificMemoirs,vol.III(London:Richardand JohnTaylor,1843),696.

2 FromEliot’sreviewofRuskin’ s ModernPainters, WestminsterReview 66(April1856): 626.

3 CharlesDickens, HardTimes (Oxford:OxfordUniversityPress,1989),6.

faithfullytodescribethenaturalandsocialworld.If,initsinductive manifestations,Victoriansciencesponsoredfamiliarvarietiesofrealism,in itsmoretheoreticalruminationsonmethoditsponsoredtheproductionof strikinglyabstractandevenfantasticworksofart.

Theprotagonistofthislessfamiliarstoryis,onthefaceofit,anunlikely one:mathematics.Incontrasttothelifesciences,littlehasbeenwritten abouttheinfluenceofVictorianmathematicsonVictorianaesthetics, althoughinthepastdecadethishasbeguntochangewiththeappearance ofbookssuchasAliceJenkins’ Spaceandthe “marchofmind” andDaniel Brown’ s ThePoetryofVictorianScientists. 4 Thisrelativeneglectisunfortunate,becausenoVictoriandiscourse,withthepossibleexceptionof painting,wasmoredeeplyconcernedwiththeworkingsandlimitsof representation.Mathematiciansexplicitlysetthemselvesthetaskofunderstandingtheroleofimaginationintheproductionofknowledgeandthe meansbywhichwords,images,andsymbolssignify.Historiansofmathematicsspeakof “thecriticalmovement” ofthesecondhalfofthenineteenthcentury,amovementthatledtoafundamentalreconceptionofthe natureandvalueofmathematicalknowledge:mathematicalrepresentations werenolongerpresumedtobedescriptive,andratherthan “relianceupon truththerewastobelogicalcompatibilityorconsistency.”5 Arithmeticitself wasredefinedsuchthat “numbers[were]nolongerinterpretedasobjects, butaspuresymbols,as ‘marks,’ asameansofobjectifyingmathematical thought–i.e.asalanguage.”6 Nineteenth-centurymathematicianHermann vonHelmholtzremarkedthatheregardedarithmeticasamethod “toteach theconsistentapplicationofasystemofsigns(i.e.numbers)ofunlimited extentandunlimitedopportunitiesofsophistication.”7 AshistorianAdrian Ricepointsout, “Britishmathematicsexperiencedadramaticrenaissance

4 AliceJenkins, Space (Oxford:OxfordUniversityPress,2007);DanielBrown, Poetry (Cambridge:CambridgeUniversityPress,2015).Anumberofcriticsarecurrentlycompletingprojectsthatexplorethepertinenceofmathematicalsciencestonineteenth-century culture,fromseniorscholarssuchasMarjorieLevinson,workingonCantorand field theory,toyoungerscholarslikeJeffreyBlevins,AnnaKornbluh,andJessicaKuskey.See alsoCarlaMazzioonmathematicsinRenassainceculture(ed., Shakespeare&Science, specialdoubleissueof SouthCentralReview [WinterandSpring,2009]),Matthew Wickmanonmathematicalconceptsintheeighteenthcentury(LiteratureAfterEuclid: TheGeometricImaginationintheLongScottishEnlightenment [Philadelphia:Universityof PennsylvaniaPress,2016]),andMirandaHickmanonVorticism(TheGeometryofModernism [Austin:UniversityofTexasPress,2005]).

5 MorrisKline, Mathematics:TheLossofCertainty (NewYork:FallRiverPress,1980),270.

6 HansNielsJahnkeandMichaelOtte, “OriginsoftheProgramof ‘Arithmetizationof Mathematics,’” in SocialHistoryofNineteenth-CenturyMathematics,ed.HerbertMehrtens, HenkBos,andIvoSchneider(Boston:Birkhäuser,1981),29.

7 Quotedinibid.,30.

duringQueenVictoria’sreign,” andBritishmathematicianswereparticularlyinterestedinthe “masteryofsymbolicmanipulation.”8

Becauseoftheculturalprestigeofmathematics,itscentralroleinthe explorationofthecharacterofknowledgeandthereferentialcapacitiesof representationswasapparenttoeducatedcontemporariesevenwhenthey werenotmathematiciansthemselves.Thiscentralitywasepitomizedinthe idealof “theCambridgeeducation,” which “culminatedinthemathematical Tripos,[but]wasnotintendedtoproducemathematicalspecialists....The studyofmathematicsformedthemajorpartoftheeducationalenterprise becauseitwouldmostdirectlyenablestudentstocometoknowthenatureof truth.”9 Howthat “truth” wasdefinedchangedoverthecourseofthe century:before1840Euclideangeometryservedasthemodelforrepresentationalreliability;from1840totheendofthecenturymodernalgebraand non-Euclideangeometrywouldstandattheheartofdebatesregardingthe possibilityofrepresentationaltransparency;andbytheturnofthecenturyit seemedthatmathematicallogiccouldserveastheultimatephilosophical language.Theepistemologyofmathematicschangedoverthecourseof thecentury,buttherenownofitsrepresentationalparadigmsdidnot.In theearlyyearsofthenineteenthcenturyWordsworthrhapsodizedoverthe powerofgeometrytofusetheidealwiththereal: “WithIndianaweand wonder/...didImeditate/Upontheallianceofthosesimple,pure/ Proportionsandrelations,withtheframe/AndlawsofNature.”10 Inthe earlyyearsofthetwentiethcenturyT.S.EliotpraisedBertrandRussellfor helpingtomakeEnglishalanguage “inwhichitispossibletothinkclearly andexactlyonanysubject.The PrincipiaMathematica areperhapsagreater contributiontoourlanguagethantheyaretomathematics.”11 Forus denizensofthetwenty-firstcentury,whotendtotaketheriftbetweenthe “twocultures” asagiven,itiseasytounderestimatethecentralityof mathematicalthinkingtoart,butthenineteenthcenturywasatimewhen mathematicianJ.J.Sylvesterpublishedavolumeonprosodytowhichhe appendedalectureonmathematics;physicistJamesClerkMaxwellwrote poetryonsuchtopicsasnon-Euclideangeometry;andpoetGerardManley Hopkinsplannedtowriteabookonwavetheory.12 Eccentricthoughhe

8 AdrianRice, “Introduction,” MathematicsinVictorianBritain,ed.RaymondFlood, AdrianRice,andRobinWilson(Oxford:OxfordUniversityPress,2011),2,6.

9 JoanRichards, “TheArtandtheScienceofBritishAlgebra:AStudyinthePerception ofMathematicalTruth,” HistoriaMathematica 7(1980):363.

10 WilliamWordsworth, ThePrelude:1799,1805,1850,ed.JonathanWordsworth, M.H.Abrams,andStephenGill(NewYork:W.W.Norton&Co.,1979),p.192(BookVI, ll.142–7).

11 T.S.Eliot, “Commentary,” TheCriterion 6:5(October1927):291.

12 IamgratefultoDanielBrownfortellingmeofthis;Hopkinsplannedtotitlethe book “LightandOpticks.”

was,mathematicianLewisCarroll’sfantasticnovelsandpoems,inwhich eventsareoftenshaped(andmisshaped)bytheprinciplesofmathematical logic,arebynomeansasanomalousastheymightat firstappear.

MATHEMATICALFORMALISM

Innumerableinstancesmightbegiveninillustrationoftheimmediateconnectionofthephysicalsciences,mostofwhichareunited stillmorecloselybythecommonbondofanalysis,whichisdaily extendingitsempire,andwillultimatelyembracealmostevery subjectinnatureinitsformulae.Theseformulae,emblematicof Omniscience,condenseintoafewsymbolstheimmutablelawsof theuniverse.

MarySomerville(1846)13

Theeasewithwhichmathematicalprinciplesfoundaplaceinartandart theoryduringthenineteenthcenturyreflectsnotjustthecentralityof mathematicstobourgeoisandeliteeducation onerecallsTomTulliver’ s struggleswithEuclidin TheMillontheFloss butalsotheincreasing interestinpure,asopposedtoapplied,mathematics.Thesalientfeatureof Britishmathematicsofthelatternineteenthcenturywasitspreoccupation withformalstructuresandproceduresperse,quiteapartfromtheir practicalapplications.Putanotherway,insofaras “form” cametobe valuedinandofitself,itbecamedesirabletodiscriminateitfromparticular “ contents ” (themathematicallyconservativeWilliamFrendtellingly describedhisopposedviewas “contentual”).14 Bryon’sdaughterAda Lovelaceunderscoresthesignificanceofformalprocedureinheraccount ofCharlesBabbage’sanalyticalengine;shearguesthatitiscrucialto distinguishthe “results ofoperations” fromoperationsthemselves,by which “ wemean anyprocesswhichaltersthemutualrelationoftwoor morethings.”15 Thepracticalvalueoftheresultofanoperationisclear enough,butLovelacepointsourattentiontotheformulasthatyieldthat result,formulasthatdealinrelationshipsratherthanessences.Shegoeson toinsistthatthe “scienceofoperations,asderivedfrommathematics...is ascienceofitself,andhasitsownabstracttruthandvalue” (693).

13 MarySomerville, OntheConnectionofthePhysicalSciences (NewYork:Harperand Brothers,1846),390.

14 FromaletterofJune22,1836toAugustusDeMorgan;seeHelenaPycior, “Early CriticismoftheSymbolicalApproachtoAlgebra,” HistoriaMathematica 9(1982):396.

15 Lovelace, “Sketch,” 693.

Indeed,formsandformulaswereincreasinglyregardednotsimplyasa meanstoanendbutasimportantinthemselves.Thisviewregistersa crucialmid-centuryshift;priortothe1840sgeometrywas “queenofthe sciences” preciselybecauseitbridgedthegapbetweenidealizedformand real-worlddescription itwassimultaneouslyabstractandconcrete.But withtheadventofnon-Euclideangeometriesaroundmid-century,internal formalcoherence theconsistentmanagementofrelationships gradually cametoseemmoreimportantthandescriptiveness.Aslongastheywere formallycoherent,even “imaginarygeometries” hadvalue.Thestudyof algebrawastransformedalongsimilarlines.InEnglandalgebrahadtraditionallybeenregardedwithsuspicionbecauseitssymbolswerepalpably arbitrary;theywere “symbolsbewitched,andrunningabouttheworldin searchofmeaning.”16 Thisprejudicewouldbegintochangewiththe publicationin1830ofGeorgePeacock’ s TreatiseonAlgebra.Peacock distinguished “arithmetical” algebra,theworkingsofwhichweretransparentbecauseitoperatedonlyonpositiverealnumbers,from “symbolical” algebra,which,becauseitoperatedonnegativeandimaginarynumbers, seemedtorestonuncertainfoundations.Hesalvagedsymbolicalalgebraby proposingthat “thougharbitraryintheauthorityofitsprinciples,” it achievedatleastaformalcoherenceinthatit “[was]notarbitrary” inits useofthoseprinciples,whichwere,moreover,consistentwiththeprinciplesofarithmeticalalgebra.17 OverthecourseoftwovolumesPeacock elaborates “thegenerallawoftransitionfromtheresultsofarithmeticalto thoseofsymbolicalalgebra,” whichlawhedenominates “the ‘principleof thepermanenceofequivalentforms. ’”18

Thistoleranceforungroundedsymbolismmetwithsomeresistance: theeminentmathematicianWilliamRowanHamiltoncomplainedthat Peacock’sbookwas “designedtoreducealgebratoameresystemof symbols,and nothingmore;anaffairofpothooksandhangers,ofblack strokesuponwhitepaper,tobemadeaccordingtoa fixedbutarbitraryset ofrules.”19 TheFrenchanalysisthatPeacockandhisreformistpeershoped ultimatelytopopularizeposedanevengreaterthreat: “Lagrange’salgebraic calculuswasperceivedasdangerousbyconservativeAnglicans[inpart because]itwasassociatedwiththementalityaccompanyingtheFrench

16 AugustusDeMorgan,reviewofGeorgePeacock, ATreatiseonAlgebra,in Quarterly JournalofEducation 9(1835):311.

17 GeorgePeacock, “ReportontheRecentProgressandPresentStatesofCertain BranchesofAnalysis,” in ReportontheThirdMeetingoftheBritishAssociationforthe AdvancementofScience (London:JohnMurray,1834),195.

18 GeorgePeacock, TreatiseonAlgebra,2vols.(Mineola,N.Y.:Dover,2004),vol.1,vii.

19 Froman1846lettertoPeacock.ReproducedinRobertGraves, LifeofSirWilliam RowanHamilton,vol.II(Dublin:Hodges,Figgis&Co.,1882),528.

Revolution....Theabstractnatureofapurealgebraiccalculusseemingly allowedthemindtowanderintofantasythroughthemeaninglessmanipulationofsymbols.”20 ForaconservativeBritishmathematicalestablishment,Newton’swasthepreferredversionofthecalculus:ithadthedual advantagesofbeingarithmeticallyorientedandBritish.TheLagrangian analysisthatreformerssoughttoimportnotonlyinvolvedunfamiliar symbolsbutwasformalratherthanquantitativeinitsnature: “Whenthe infinitesimalcalculusbecamemoreandmorealgebraic,itsontologicalbasis changedaswell. ...someauthorscametoholdtheviewthattheobjectsof theformulaeofalgebraandanalysisarenotquantitiesbutratherrelations betweenalgebraicandanalyticoperations;inthisviewthelettersrepresentingvariablesaremerely ‘bearersoftheoperations.’”21 Acceptanceof thenewanalysis andtheformalaccountofalgebraonwhichitrelied cameonlygradually;aslateas1850aRoyalCommissiontaskedwith assessingthestateofmathematicalstudyatCambridgeraisedthequestion ofwhether “thecourseofMathematicalstudy ...is tendingtobecome moreandmoreexclusivelyanalyticalandsymbolic” andrecommended thatinappliedmathematicsatleast “allunnecessaryexuberanceofan analyticalcalculationberepressed.”22 Changedid,however,come,and onceformalcoherenceratherthanreferentialitybecamethekeycriterion fortheevaluationofalgebra,theproductionofnewalgebras amongthem quaternions,determinants,matrices,andinvariants becamesomething ofacottageindustryinBritain.23

Indeed,algebrabecameamodelforsignsystemsgenerallydespiteits opacityvis-à-visitsparticularobjectsbecauseoftheclarityandprecision withwhichitrevealedrelationshipsamongthoseobjects.24 ThusGeorge Booleandhisfellowlogicianswouldrevolutionizelogicbyrenderingit algebraically;StanleyJevonswouldfoundmarginalisteconomicsbyconceivingofvaluenotasanessentialgoodbutasavariablerelationshipbest understoodusingthetechniquesofanalysis;JamesClerkMaxwellwould

20 WilliamAshworth, “Memory,Efficiency,andSymbolicAnalysis:CharlesBabbage, JohnHerschel,andtheIndustrialMind,” Isis 87:4(December1996):634.

21 HansNielsJahnke, “AlgebraicAnalysisintheEighteenthCentury,” in AHistoryof Analysis,ed.HansNielsJahnke(AmericanMathematicalSociety,2003),107.

22 Fromthe ReportofHerMajesty’scommissioners,appointedtoinquireintothestate, discipline,studiesandrevenuesoftheuniversityandcollegesofCambridge (London: W.ClowesandSons,1852),229,112.

23 OnthepopularityofalgebrasinVictorianEngland,seeI.Grattan-Guinness, “VictorianLogic,” p.374,andKarenHungerParshall, “VictorianAlgebra,” in Mathematics inVictorianBritain,ed.RaymondFlood,AdrianRice,andRobinWilson(Oxford:Oxford UniversityPress,2011).

24 Inhis VictorianRelativity ChristopherHerbertarguesthat “Relativitynamesitselfas thegreattransformativeideaoftheagebeforeEvolutiondoesso” ([Chicago:Universityof ChicagoPress,2001],45.)

deviseequationsthatshowedthatelectricity,magnetism,andlight,however differenttheymightappearinsubstance,wereformallycomparable,and wouldarguethatthiscomparabilitywastheirsalientfeature.Algebrawasthe preeminentlanguageofformalistabstractioninacultureincreasingly devotedtosuchabstraction.HistorianofmathDoronSwadesumsupthe change: “asilentpremiseofcontemporarymathematicsandphilosophy wasthatexamplewasinferiortogeneralization,inductioninferiortodeduction,empiricaltruthsinferiortoanalyticaltruths,thesyntheticinferiorto theanalytic.”25

ThisemphasisonformsandrelationshipsunderwrotethenewintellectualandrepresentationalidealLorraineDastonandPeterGalisoncall “structuralobjectivity.” AsGalisonandDastonexplain,inthelatenineteenthcentury, “especiallyinthe fieldsoflogicandmathematics...the word ‘ structure ’ acquirednewmeaningsandintellectualglamour,” a glamourthatledtoaredefinitionofobjectivity: “objectivitylayinthe invariablerelationsamongsensations,readliketheabstractsignsofa languageratherthanasimagesoftheworld.”26 Thisepistemologicalideal was,inessence,analgebraicone,abstractandformalist: “[forsome]these structureswerelawlikesequencesofsigns;forothers,theyweredifferential equations;forstillothers,logicalrelationships.”27 Underthisdispensation,allknowledgehadadifferentialcharacter;HenriPoincaréremarked that “allthatisobjectiveisdevoidofallqualityandisonlypurerelation. Certainly,Ishallnotgosofarastosaythatobjectivityisonlypure quantity ...butweunderstandhowsomeonecouldhavebeencarried awayintosayingthattheworldisonlyadifferentialequation.”28 When Saussureproclaimedthatlanguage “isaformandnotasubstance, ”29 hewas,then,rehearsinganalready-familiartheme.Indeed,Saussurean linguisticshasmuchincommonwithVictorianalgebra;GeorgeBoole, drawingon “thepresentstateofthetheoryofSymbolicalAlgebra,” hadlongsincedefined “Asign[as]anarbitrarymark,havinga fixed

25 DoronD.Swade, “CalculatingEngines:Machines,Mathematics,andMisconceptions,” in MathematicsinVictorianBritain,ed.RaymondFlood,AdrianRice,andRobin Wilson(Oxford:OxfordUniversityPress,2011),251.

26 LorraineDastonandPeterGalison, Objectivity (NewYork:MITPress,2007),255,253.

27 Ibid.,254.DastonandGalisonexplainthat “manyvoicesspokeoutforstructural objectivityintheperiodbetweenroughly1880and1930” (261)andthat “[t]hosewhodid identify ‘ structures ’ asthecoreofobjectivityunderstoodagreatvarietyofthingsunderthat rubric:logic,orderedsequencesofsensations,someofmathematics,allofmathematics,syntax, entitiesthatremaininvariantundertransformations,anyandallformalrelationships” (254).

28 HenriPoincaré, TheValueofScience:EssentialWritingsofHenriPoincaré (NewYork: ModernLibrary,2001),345.

29 FerdinanddeSaussure, CourseinGeneralLinguistics (1916),trans.WadeBaskin, ed.CharlesBally,AlbertSechehaye,andAlbertRiedlinger(NewYork:McGrawHill, 1966),122.

interpretation,andsusceptibleofcombinationwithothersignsinsubjection to fixedlawsdependentupontheirmutualinterpretation.”30

GeorgLukácswouldlaterdescribethisostensiblyobjectiveformalism asoneoftheessentialfeaturesofbourgeoiscapitalism: “themoreintricate amodernsciencebecomesandthebetteritunderstandsitselfmethodologically,themoreresolutelyitwillturnitsbackontheontological problemsofitsownsphereofinfluenceandeliminatethemfromthe realmwhereithasachievedsomeinsight.Themorehighlydevelopedit becomesandthemorescientific,themoreitwillbecomeaformallyclosed systemofpartiallaws.”31 Certainly,Victoriansthemselvesarguedthat formalconsistencywasthe sinequanon ofanyscientificinquiry: “Any factsare fitted,inthemselves,tobeasubjectofscience,whichfollowone anotheraccordingtoconstantlaws.”32 Overthecourseofthecentury, moreandmore(increasinglyprofessionalized)disciplinesaspiredto “scientific ” status,andtheysoughttoachieveitbyfocusingonmethod, protocol,andthediscoveryofformallaws,fromthelawofdiminishing returnstoGrimm’sLaw.

Victorianmathematicsthusnotonlyredefineditselfasa fieldbutalso allthe fieldsaroundit:inquirycenteredonfactsanddatawasincreasingly distinguishedfromthestudyofthelaws or “operations”—thatstructuredthosefacts.Inher GenresoftheCreditEconomy MaryPooveytracks thisbifurcation,focusingprimarilyonthe fieldsofeconomicsandliterature, fieldsthatwereparadigmaticintheireffortsatself-definitionandtheir privilegingoftheoretical,formalknowledge.AsPooveyexplainsofwriters ontheeconomy, “Economictheoristsofferedavarietyofwaystoexplain thedisjunctionbetween(unreliablebecauseparticular) ‘facts’ and(reliable becausegeneral) ‘principles.’”33 Thisdividegroundedbothgenericand professionaldistinctions: “Inthecourseofthecentury ...onegroupof writers ...collectedfactualinformation,andanothergroupofwriters, whoseworkwasheldtobemoreprestigious,usedthesedatatogenerate modelsthat,especiallyafterthe1870s,aspiredtothelogicalrigorand formalabstractionofmathematics” (221).AsPooveypointsout,even novelistswhohadaninvestmentinpresentingtheirworkasempirically

30 GeorgeBoole, TheMathematicalAnalysisofLogic:BeinganEssaytowardsaCalculusof DeductiveReasoning (1847)(Bristol:ThoemmesPress,1998),3;Boole, AnInvestigationof theLawsofThoughtonWhichAreFoundedtheMathematicalTheoriesofLogicand Probabilities (1854)(Mineola,N.Y.:Dover,1958),25.

31 GeorgLukács, HistoryandClassConsciousness,trans.RodneyLivingstone(Cambridge, Mass.:MITPress,1971),104.

32 JohnStuartMill, ASystemofLogic,RatiocinativeandInductive,vol.8of Collected WorksofJohnStuartMill,ed.J.M.Robson(Indianapolis:LibertyFund,2006),844.

33 MaryPoovey, GenresoftheCreditEconomy (Chicago:UniversityofChicagoPress, 2008),222.

richrecognizedthisdistinctionandoftenprivileged “reliablebecause generalprinciples.” ThusMargaretOliphantarguedthat “Truthisthat grandgeneralruleofhumanity,theharmoniouslawwhichrunsthrough everything. ...Amanwho followsfactinartattheexpenseoftruth,is accordinglytakingthelawless[path].”34 Itisnotbychancethatprofessionalizationcametobeunderstoodlessintermsofagradualtrajectory fromapprenticeshiptomasterythanintermsofknowledgeofand submissiontothelawsofadiscipline.Thiscommonstructurewithin andacross fieldsmadethemamenabletoinstitutionalization,typicallyin theuniversity.AsPooveyremarksofeconomics, “[by]the1870s...the practitionersofpoliticaleconomyhadadoptedamethodologythatresembledthoseofothersubjectstaughtinuniversities,especiallythephysical sciencesandmathematics” (229).

Thiscoordinationof fieldswenthandinhandwiththeestablishmentof theirautonomy.In TheRulesofArt,hisstudyofthenineteenth-century originsofthemodernFrenchliterary field,PierreBourdieuarguesthat while “structuralandfunctionalhomologiesexistbetweenallthe fields,” all fields,evenartisticones,scrupulouslydefinedandguardedtheirown terrain: “Theinventionofthepureaestheticisinseparablefrom...the greatprofessionalartistwhocombines ...a senseoftransgression ...with therigorofanextremelystrictdiscipline.”35 Pooveymakesasimilar argumentforBritishliterature.LikeBourdieu,shebeginsbyunderscoring theroleofgenericdistinctionintheestablishmentofprofessional fields: formalgenericpurityservedasaguarantorofautonomyof fieldand proprietyofmethod.36 Butthisemphasisonformhelpedtoguarantee thatevenas fieldsbecameincreasinglyautonomousandself-referential

34 MargaretOliphant, “NewBooks,” Blackwood’sEdinburghMagazine 108(August 1870):185.

35 PierreBourdieu, TheRulesofArt:GenesisandStructureoftheLiteraryField,trans. SusanEmanuel(Stanford:StanfordUniversityPress,1995),182,111.Tellingly,Bourdieu himselfusesthelanguageof(physical) fieldtheorytomakethepointthattheautonomyof (metaphorical)professional fieldsisonlyapparent,describingcommerceandbohemianart notasexclusivebutasexistinginamutuallydefiningtension.

36 LikePoovey,Bourdieuinsiststhatgenericdistinction(inthiscasebetweendrama,the novel,andpoetry)goeshandinhandwith “theprogressoftheliterary fieldtowards autonomy ” (Bourdieu, Rules,115).Eachofthesegenres,inturn,ispolarizedintoa “researchsector,” withitspretentionstotheoreticalvalue,anda “commercialsector” (120).UnlikeBourdieu,however,Pooveyconcludesherstudybyarguingthatthemathematicalmodelingthatservedasthebasisforeconomictheoryservedtodistinguishitfrom the “versionofformalism” developedbyliterarywriters.Iwouldargue,however,thatitis notbychancethatbothdevelopmentsservedadisciplinaryfunction,forbotheconomic andimaginativewriterswere,ineffect,mathematicizingtheirdiscipline.If,atthebeginning ofthecentury,thatmeanttryingtoproduceorganic,referentialsymbolsinthemannerof geometry,bymidandlatecenturythatmeantproducingself-referentialsystemsinthe mannerofnon-Euclideangeometryoralgebra.

theywerepresumedtobestructuredanalogously.Justastheartist consideredhimselfakindofscientist,scientistsconceivedtheirworkas akintotheworkofprofessionalartists.PhilosopherofscienceWilliam Whewell’scoinageoftheword “scientist” reflectsthisfact: “Aswecannot usephysicianforacultivatorofphysics,Ihavecalledhima physicist.We needverymuchanametodescribeacultivatorofscienceingeneral. Ishouldinclinetocallhima Scientist.Thuswemightsay,thatasanArtist isaMusician,Painter,orPoet,aScientistisaMathematician,Physicist,or Naturalist.”37

ALGEBRAICART

Theincongruitybetweenadvancedmathematicsandversecompositionismoreapparentthanreal Mathematiccommencingasa practicalart,thencepassingintotheformofascience,havingagain emergedintoanartofahigherorder a fineart plasticinthe handsoftheMathematician,obedienttoandtakingshapefromhis will,andalmostadmittingofthefreeplayoffancyuponit,thanksto thedeeperprinciplesevolvedinthenewGeometry,thehigher Algebra,andthecalculusoftheContinuousRiemonn(sic).

JamesJosephSylvester(1876)38

Ofcourse,formhadlongbeenregardedascentraltoartandaesthetic judgment,anditsimportancetoVictorianartistsandthinkersowesmuch totheinfluenceofKantinparticular.IntheKantianaccount,formisdefined inoppositiontofeaturesconsideredsecondary(intheLockeansense)or ornamental.Inart-historicalterms,formis disegno ratherthan colore:

Inpainting,sculpture,andinalltheformativearts inarchitecture,and horticulture,sofarastheyarebeautifularts the delineation istheessential thing;andhereitisnotwhatgratifiesinsensationbutwhatpleasesbymeans ofitsformthatisfundamentalfortaste.39

Andagain,

Everyformoftheobjectsofsense...iseither figure or play.Inthelattercase itiseitherplayof figures(inspace,viz.pantomimeanddancing),orthemere

37 WilliamWhewell, ThePhilosophyoftheInductiveSciences,2vols.(London:John Parker,1840),vol.1,cxiii.

38 JamesJosephSylvester, FliegendeBlätter:SupplementtoTheLawsofVerse (London: Grant,1876),5.

39 ImmanuelKant, Kant’sCritiqueofJudgement,trans.anded.J.H.Bernard(London: MacmillanandCo.,1914),75.

playofsensations(intime).The charm ofcoloursorofthepleasanttonesof aninstrumentmaybeadded;butthe delineation inthe firstcaseandthe compositioninthesecondconstitutetheproperobjectofthepurejudgementoftaste....Evenwhatwecall ‘ ornaments ’ ... i.e. thosethingswhichdo notbelongtothecompleterepresentationoftheobjectinternallyaselements,butonlyexternallyascomplements,andwhichaugmentthesatisfactionoftaste,dosoonlybytheirform.(75‒6)

Thisdefinitionlinksformtomeaningandpurposiveness.Theobjectof aestheticjudgment “canbenothingelsethanthesubjectivepurposiveness intherepresentationofanobjectwithoutanypurpose ...andthusitisthe mereformofpurposivenessintherepresentationbywhichanobjectis given tous...which ...isthe determininggroundofthejudgementof taste ” (69‒70).Asthevehicleofpurposivenesswithoutpurpose,the aesthetichasthepeculiarvirtueofallowingforpurposivenesswithoutthe taintofinterest,which,forKant,wouldcompromisethe “purity” of aestheticpleasure: “Everypurpose,ifitberegardedasagroundofsatisfaction,alwayscarrieswithitaninterest” (69).Aestheticformexercisesthe cognitivefacultiesinawaythatissimultaneouslynon-instrumentaland non-frivolous.

Thusdescribed,Kant’saestheticformsoundsremarkablylikethe Victorianidealof “puremathematics.” ThatidealhaditsrootsinGreek speculativemathematics,butthedistinctionbetweenpureandapplied mathematicswasconsolidatedinthenineteenthcentury.InEngland,this consolidationwasinstitutionalizedinthe1860establishmentofthe SadleirianChairinPureMathematicsatCambridge.Unlike “speculative,” theword “ pure ” expressesthepresumptionthatabstraction one historianofmathcallspuremathematics “formalaxiomatics”40 isthe veryessenceofmathematicalstudy.Butitalsosignalsthebeliefthat abstractionisfreeofthetaintofworldliness.LiketheKantianartwork, puremathematicsembodiespurposivenesswithoutpurpose.

Infact,VictorianmathematicianswouldpressKantianformalismina directionthatwouldprovidethecategoryoftheaestheticwithadditional ideologicalpowerandamuch-expandeddisciplinaryreach.Theydidthis, firstofall,byattackingKant’sownaccountofthevirtuesofEuclidean geometryandbyunderminingtheprestigeofsyntheticknowledge. HermannVonHelmholtzputsthecaseveryclearly: “Theassumptionof aknowledgeofaxiomsbytranscendentalintuitionapartfromallexperience is(a)anunprovedhypothesis,and(b)anunnecessaryhypothesis...also,as

40 HowardWhitleyEves, FoundationsandFundamentalConceptsofMathematics (Mineola,N.Y.:Dover,1990),150.

regardsourobjectiveknowledge,(c)awhollyirrelevanthypothesis.”41 Helmholtzclaimsthat “theaxiomsofgeometryarenotsyntheticpropositions,” andthatEuclidean “space-intuitions” arethereforeintuitions “ofthe kindtheartistpossessesoftheobjectsheistorepresent,andbymeansof whichhedecidessurelyandaccuratelywhetheranewcombinationwhich hetrieswillcorrespondornottotheirnature.”42 InthewordsofArthur Cayley,the firstoccupantoftheSadleirianChair, “Asforeverythingelse,so foramathematicaltheory:beautycanbeperceivedbutnotexplained.”43

Underthisdispensationmathematicsandartcometosharethesame virtues.Therepresentationsofbothare “merely” analytic,intheKantian sense;theycannotclaimtooffertruthsabouttheworlditself.Buttheyare bothpurposive,andtellaformaltruth.Victoriansinvestedthistruthwith transcendentalandevenspiritualvalue.Formathematicianandnovelist EdwinAbbottmathematicalforms,suchasastraightlineoraperfect circle,although “non-existent,” are “realandtrue.”44 ForAbbott,mathis “visionary” (31)and “illusive,” but “alsoleadsustotruth” (47);themathematician’simaginationsimplyworksinthesamewayanartist’sdoes.In effect,mathematicsandartarebothstructuredsymbolicsystemsthetruth ofwhichinheresintheirinternalcoherence.InHelmholtz’swords, “We are...justifiedintakingourspace-perceptionsassignsofcertainotherwise unknownrelationsintheworldofreality,thoughwemaynotassumeany sortofsimilaritybetweenthesignandwhatissignified.Butifonlysomuch standsfast thattounlikesignstherecorrespondunlikeobjectsandtolike signstherecorrespondobjectsthatarelikeinacertainrelationorcomplex ofrelations...thiswillsufficetoyieldusarealcontent.”45

Nineteenth-centuryartistswouldprofitfromthisnewaccountof knowledge,forunderitsauspiceseven fictionalrepresentations,likethe new “imaginarygeometries,” couldbeconceivedasknowledgeofthemost prestigiouskind, “analytic” knowledge thistimeinthemathematical senseoftheword.Initscapacitytoembodystructural,formaltruths,art couldclaim,likemodernmathematics,torelayamoreprofoundknowledge thananempiricallyorientedmimesiscouldprovide.AsBourdieuremarksof Baudelaire,a “pureworkonpureform” providesaccessto “arealmorereal

41 HermannvonHelmholtz, “TheOriginandMeaningofGeometricalAxioms(II),” Mind 3(1878):225.

42 HermannvonHelmholtz, “TheOriginandMeaningofGeometricalAxioms,” Mind 1(July1876):320.

43 ArthurCayley, “PresidentialAddress,” in ReportoftheFifty-thirdMeetingoftheBAAS heldatSouthportinSeptember1883 (London:JohnMurray,1884),7.

44 EdwinA.Abbott, TheKernelandtheHusk:LettersonSpiritualChristianity (London: Macmillan,1886),32.

45 Helmholtz, “AxiomsII,” 224.

thanthatwhichisoffereddirectlytothesenses,” a “realistformalism” ; “[w]ith noreferentotherthanitself,thepoemisacreationindependentofcreation, andneverthelessunitedwithitbyprofoundtiesthatnopositivistscience perceives.”46 ManyBritishwriters,too,understoodtheirworkinformalist terms,asaformalscienceinitsownrightandonethatrequiredtrainingto understand:ThomasHardycelebratedthe “beautyofshape” ofthenovel, andclaimedthatfewnon-professionalreaderscould “enjoyandappreciate” thenovel’ s “artisticsenseofform”“withoutsomekindofpreliminary direction.”47 RobertLouisStevensonarguedthat “[t]hearts,likearithmetic andgeometry,turnawaytheireyesfromthegross,colouredandmobile natureatourfeet,andregardinsteadacertain figmentaryabstraction. Geometrywilltellusofacircle,athingneverseeninnature;askedabout agreencircleoranironcircle,itlaysitshanduponitsmouth.”48

Meanwhile,theprioritymathematiciansplacedoninternalcoherence asopposedtoreal-worldreference,harmoniousorganizationratherthan densityofdetail,wouldleadthemtospeakoftheirownworkintermsthat makethemsoundalmostlike fin-de-siècle aesthetes.AdaLovelacerhapsodizedthatBabbage’sanalyticalenginecouldintheoryoperateon pitchedsoundsratherthanquantities,composing “elaborateandscientific piecesofmusic”;49 WilliamHamiltonclaimedthathisvector-likequaternionshadaquaternionofparents, “geometry,algebra,metaphysicsand poetry ”;50 andJ.J.Sylvestercontendedthattherewas “anexacthomology”“betweenpaintingandpoetryontheonehandandmodern chemistryandmodernalgebraontheother.... ”51 Indeed,Sylvester wouldnotonlyspeakofmathematicsasthequintessenceandevolutionary perfectionoflanguagebutwouldwriteanaesthetictreatise, TheLawsof Verse,inwhichheturnstothemathematicaltheoryofpermutationsto discusslinelengthandwordgroupingsinadditiontousingsquare

46 Bourdieu, Rules,107.

47 ThomasHardy, “TheProfitableReadingofFiction,” in LifeandArt:Essays,Notes, andLettersCollectedfortheFirstTime,ed.ErnestBrenneckeJr.(NewYork:Greenberg, 1925),68,70.

48 RobertLouisStevenson, “AHumbleRemonstrance,” in VictorianCriticismofthe Novel,ed.EdwinEignerandGeorgeWorth(Cambridge:CambridgeUniversityPress, 1985),216.

49 Lovelace, “Sketch,” 694.Similarly,shenotesthattheenginenotonlyusespunched cardslikeaJacquardloom,butthat “wemaysaymostaptlythattheAnalyticalEngine weavesalgebraicalpatterns justastheJacquard-loomweaves flowersandleaves” (696).

50 HamiltontotheRev.RichardTownsend,May14,1855;TrinityCollegeMS notebook1492–126,14–15.

51 JamesJosephSylvester, “Onanapplicationofthenewatomictheorytothegraphical representationoftheinvariantsandcovariantsofbinaryquantics,” in TheCollected MathematicalPapersofJamesJosephSylvester,4vols.(Cambridge:CambridgeUniversity Press,1909),vol.3,190.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.