AgriculturalNanobiotechnology
WoodheadPublishingSeriesinFoodScience, Technology,andNutrition Agricultural Nanobiotechnology
BiogenicNanoparticles,Nanofertilizers, andNanoscaleBiocontrolAgents
Editedby
SougataGhosh
DepartmentofPhysics,FacultyofScience, KasetsartUniversity,Bangkok,Thailand DepartmentofMicrobiology,SchoolofScience, RKUniversity,Rajkot,Gujarat,India
SirikanjanaThongmee
DepartmentofPhysics,FacultyofScience, KasetsartUniversity,Bangkok,Thailand AjayKumar
AgricultureResearchOrganization,Volcani Center,MinistryofAgricultureandRural Development,RishonLeZion,Israel
WoodheadPublishingisanimprintofElsevier
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformation aboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligence orotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontained inthematerialherein.
ISBN:978-0-323-91908-1(print)
ISBN:978-0-323-99936-6(online)
ForinformationonallWoodheadpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: NikkiP.Levy
AcquisitionsEditor: NancyJ.Maragioglio
EditorialProjectManager: LenaSparks
ProductionProjectManager: SojanP.Pazhayattil
CoverDesigner: MarkRogers
TypesetbySTRAIVE,India
Contributors
KafeelAhmad CivilEngineeringDepartment,JamiaMilliaIslamia,NewDelhi, India
SagarBag LaboratoryofMicrobialInteraction,SchoolofBiotechnology,Presidency University,Kolkata,WestBengal,India
KaushikBanerjee NationalReferenceLaboratory,ICAR-NationalResearchCentre forGrapes,Pune,Maharashtra,India
AvishekBanik LaboratoryofMicrobialInteraction,SchoolofBiotechnology, PresidencyUniversity,Kolkata,WestBengal,India
SahilaBeegum NebraskaWaterCenter,PartoftheRobertB.DaughertyWaterfor FoodGlobalInstitute,UniversityofNebraska,Lincoln,NE,UnitedStates
JoorieBhattacharya GeneticGains,InternationalCropsResearchInstituteforthe Semi-AridTropics;DepartmentofGenetics,OsmaniaUniversity,Hyderabad, Telangana,India
RonitaChandra DepartmentofMicrobiology,VivekanandaMahavidyalaya, Burdwan,WestBengal,India
AnamikaChavan AmityInstituteofBiotechnology,AmityUniversityMaharashtra, Mumbai,Maharashtra,India
AshokChoudhury DirectorateofResearch,UttarBangaKrishiViswavidyalaya, CoochBehar,WestBengal,India
YashodharaM.Dalal ShobhabenPratapbhaiPatelSchoolofPharmacyand TechnologyManagement,SVKM’SNMIMS,VileParle(West),Mumbai,India
SauravDas DepartmentofAgronomyandHorticulture,Universityof Nebraska–Lincoln,Lincoln,NE,UnitedStates
SnehalDesai AmityInstituteofBiotechnology,AmityUniversityMaharashtra, Mumbai,Maharashtra,India
AnkitaDey DepartmentofBiotechnology,MaulanaAbulKalamAzadUniversityof Technology,Haringhata,WestBengal,India
SougataGhosh DepartmentofMicrobiology,SchoolofScience,RKUniversity, Rajkot,Gujarat,India;DepartmentofPhysics,FacultyofScience,Kasetsart University,Bangkok,Thailand
SreejitaGhosh DepartmentofBiotechnology,MaulanaAbulKalamAzadUniversity ofTechnology,Haringhata,WestBengal,India
SujayGhosh AMHEnergyPvt.Ltd.,Kolkata,WestBengal,India
ArchitaGupta DepartmentofBioengineeringandBiotechnology,BirlaInstituteof Technology,Mesra,Ranchi,Jharkhand,India
DipakKumarHazra DepartmentofAgriculturalChemicals,BidhanChandraKrishi Viswavidyalaya,Mohanpur,WestBengal,India
TofazzalIslam InstituteofBiotechnologyandGeneticsEngineering(IBGE), BangabandhuSheikhMujiburRahmanAgriculturalUniversity,Gazipur,Bangladesh
RitiThaparKapoor AmityInstituteofBiotechnology,AmityUniversity,Noida, India
RajibKarmakar DepartmentofAgriculturalChemicals,BidhanChandraKrishi Viswavidyalaya,Mohanpur,WestBengal,India
BhavtoshKikani DepartmentofBiologicalSciences,P.D.PatelInstituteofApplied Sciences,CharotarUniversityofScienceandTechnology,Changa,Gujarat,India
AjayKumar DepartmentofPostharvestScience,AgriculturalResearchOrganization (ARO),VolcaniCenter,RishonLeZion,Israel
MaushmiS.Kumar ShobhabenPratapbhaiPatelSchoolofPharmacyand TechnologyManagement,SVKM’SNMIMS,VileParle(West),Mumbai,India
RajeshKumar DivisionofAgriculturalChemicals,ICAR-IndianAgricultural ResearchInstitute,NewDelhi,India
KanishkaKunal DepartmentofBioengineeringandBiotechnology,BirlaInstituteof Technology,Mesra,Ranchi,Jharkhand,India
DibyajitLahiri DepartmentofBiotechnology,UniversityofEngineering& Management,Kolkata,WestBengal,India
RosalinLaishram DivisionofBiochemistry,ICAR-IndianAgriculturalResearch Institute,NewDelhi;DepartmentofBiochemistry,FacultyofAgriculture,Uttar BangaKrishiViswavidyalaya,CoochBehar,WestBengal,India
JayaLakkakula AmityInstituteofBiotechnology,AmityUniversityMaharashtra, Mumbai,Maharashtra,India
NurUddinMahmud InstituteofBiotechnologyandGeneticsEngineering (IBGE),BangabandhuSheikhMujiburRahmanAgriculturalUniversity,Gazipur, Bangladesh
SanjayKumarMehta DepartmentofBioengineeringandBiotechnology,Birla InstituteofTechnology,Mesra,Ranchi,Jharkhand,India
Momina CivilEngineeringDepartment,JamiaMilliaIslamia,NewDelhi,India
AnupamMondal LaboratoryofMicrobialInteraction,SchoolofBiotechnology, PresidencyUniversity,Kolkata,WestBengal,India
PrithusayakMondal RegionalResearchStation(TeraiZone),UttarBangaKrishi Viswavidyalaya,CoochBehar,WestBengal,India
KunalMukhopadhyay DepartmentofBioengineeringandBiotechnology,Birla InstituteofTechnology,Mesra,Ranchi,Jharkhand,India
MoupriyaNag DepartmentofBiotechnology,UniversityofEngineering& Management,Kolkata,WestBengal,India
RahulNitnavare DivisionofPlantandCropSciences,SchoolofBiosciences, UniversityofNottingham,Leicestershire;DepartmentofPlantSciences,Rothamsted Research,Hertfordshire,UnitedKingdom
KumareshPal DepartmentofBiochemistry,FacultyofAgriculture,UttarBanga KrishiViswavidyalaya,CoochBehar,WestBengal,India
AzaniaT.Panicker ShobhabenPratapbhaiPatelSchoolofPharmacyand TechnologyManagement,SVKM’SNMIMS,VileParle(West),Mumbai,India
SanjoyKumarPaul InstituteofBiotechnologyandGeneticsEngineering (IBGE),BangabandhuSheikhMujiburRahmanAgriculturalUniversity,Gazipur, Bangladesh
ShriPrakash DepartmentofZoology,KulbhaskarAshramP.G.CollegePrayagraj, Prayagraj,UttarPradesh,India
MohdRafatullah SchoolofIndustrialTechnology,UniversitiSainsMalaysia, Penang,Malaysia
RinaRaniRay DepartmentofBiotechnology,MaulanaAbulKalamAzadUniversity ofTechnology,Haringhata,WestBengal,India
ParitoshChandraRoy InstituteofBiotechnologyandGeneticsEngineering(IBGE), BangabandhuSheikhMujiburRahmanAgriculturalUniversity,Gazipur,Bangladesh
BishwarupSarkar CollegeofScience,NortheasternUniversity,Boston,MA,United States
PrahladSarkar AllIndiaNetworkProjectonJuteandAlliedFibres,UttarBanga KrishiViswavidyalaya,CoochBehar,WestBengal,India
ManishSingh AmityInstituteofBiotechnology,AmityUniversityMaharashtra, Mumbai,Maharashtra,India
SnehaSingh DepartmentofBioengineeringandBiotechnology,BirlaInstituteof Technology,Mesra,Ranchi,Jharkhand,India
HossainSohrawardy InstituteofBiotechnologyandGeneticsEngineering(IBGE), BangabandhuSheikhMujiburRahmanAgriculturalUniversity,Gazipur,Bangladesh
SirikanjanaThongmee DepartmentofPhysics,FacultyofScience,Kasetsart University,Bangkok,Thailand
AnuragTripathi DepartmentofZoology,KulbhaskarAshramP.G.College Prayagraj,Prayagraj,UttarPradesh,India
NileshS.Wagh AmityInstituteofBiotechnology,AmityUniversityMaharashtra, Mumbai,Maharashtra,India
1
1.1Introduction
Agricultureisthemainsourceoffoodandnutritionforanimalsandhumans.Butthe conventionaltechnologiesofagriculturearenotsufficienttomeettheneedsofgrowingpopulation.Inaddition,thepresent-daytoolsandtechniquesusedinagriculture poseaseriousdamagetoenvironmentandecosystem.Indiscriminateuseofchemical fertilizers,traditionalirrigationtechniques,pesticides,andherbicideshasbeen questionedatthescientificandpolicylevelsthatneedtobereplacedbysustainable techniques.Atthisalarmingjuncture,nanobiotechnologymaybeapromisingsolution alongwithothersustainableagriculturaltechniques,especiallyforthosenations whereagricultureisthemainoccupationofmajorityofthepopulation. Nanobiotechnologyisanewlyexploredinterdisciplinaryareaofresearchbytheintegrationofnanotechnologyandbiotechnologyinparticularandbiologicalsciences, surfacescience,organicchemistry,nucleicacidchemistry(DNA-basednanodevices forpreciseandtargeteddrugdelivery),proteomics,pharmaceutics,molecularscience, andsemiconductorphysicsingeneralforitsapplicationinvarioussectorsincluding electronics,robotics,biomedicalresearch,andagriculture.Nanotechnologymaybe describedasthescienceofdesigningandbuildingmachinesatthedimensionsof 1–100nmwheretheuniquephysicalpropertiesofnanomaterialsmakeitnoveland extraordinary(Mukhopadhyay,2014).Atthenanolevel,everyatomandchemical bondisspecifiedwithitsuniqueproperties;hence,atthislevel,nanomachines,inorganicandorganiccompound-basednanomaterials,andnanodevicescanbedesigned tomanipulatematterattheatomiclevel.Thejudiciousandpreciseapplicationof nanotechnologyinagriculturalsectorhasfar-sightingprospectsatnationalandglobal levels.Specificallyengineerednanotoolsmayhaveawidescopeforthenationslike Indiahavingtheirapplicationsinenhancingtheproductivityandnutritionalvalueof produces,sustainableandefficientandeco-friendlynanofertilizers,nanopesticides, preservationoffoodandfoodadditives,understandinghost–parasiterelationshipat molecularlevel,enhancingthequalityofsoilandwatermanagementtonamea few.Thus,itislikelytooverwhelmallspheresofagriculturalactivities.Variousterminologiesthatareinvogueinagrinanobiotechnologyaresummarizedin Table1.1.
2AgriculturalNanobiotechnology
Table1.1 Agrinanotechnology-relateddefinitions.
NanodevicesDefinitions
NanomaterialAnatural,incidentalormanufacturedmaterialcontaining particles,inanunboundstateorasanaggregateorasan agglomerateandwhere,for50%ormoreoftheparticlesinthe numbersizedistribution,oneormoreexternaldimensionsisin thesizeofnanoscale(EuropeanCommission,2011)
NanofertilizerNanomaterialswhichcansupplyoneormorenutrientstothe plantsandenhancetheirgrowthandyields
Nanomaterialenhancedfertilizer
Nanomaterials,which,whenaugmentedwithconventional fertilizers,canimprovetheirperformance,withoutdirectly providingcropswithnutrients
NanopesticideAnypesticideformulationthatinvolveseitherverysmall particlesofapesticideactiveingredientorothersmallengineered structureswithusefulpesticidalproperties
NanocoatingNanocoatingsorsurfacecoatingsofnanomaterials,onfertilizer orpesticideactiveingredients,canholdthematerialmore stronglyduetohighersurfacetensionthantheconventional surfacesandthushelpincontrolledrelease
Nano-enabled formulation Nano-enabledformulationencompassesthoseemulsionsmade ofsmallermicellesformedwithsmalleramountofsurfactants,or microcapsuleswithawell-definednanoporenetwork
NanoemulsionThisisasolidsphereofnanoscalerange,whichactsascarrier desiredelementsandchemicalsincludingagrochemicals.Its surfaceisamorphousandlipophilic,anditisasubstitutefor liposomeandvesicle( Jaiswaletal.,2015)
NanosphereAggregateinwhichtheactivecompoundishomogeneously distributedintothepolymericmatrix
NanocapsuleAggregateinwhichtheactivecompoundisconcentratednearthe centercore,linedbythepolymermatrix
NanogelHydrophilic,generallycross-linked,polymers,whichcanabsorb highvolumesofwater
NanosensorNanoscaledevicescapableofdetectingandrespondingto physicochemicalandbiologicalstimuli. Nanomaterialsmayprovidelargersurfaceareaforthe immobilizationofthetargetrecognitionelementsortheymay conferthesensorparttoexpresstheirownoptical-physicaland electrochemicalproperties
ModifiedandadaptedfromLavicoli,I.,Leso,V.,Beezhold,D.H.,Shvedova,A.A.,2017.Nanotechnologyin agriculture:opportunities,toxicologicalimplications,andoccupationalrisks.Toxicol.Appl.Pharmacol.329,96–111.
1.2Nanobiotechnologyandagriculture
Nanobiotechnologyisarevolutionarytechnologyof21stcentury.Theefficient, precise,andneed-basedapplicationofnanotechnologyhasimmenseresultsinfosteringsustainableagriculturewithaugmentedfoodandnutritionalsecurityalongwith mitigatingenvironmentalchallengeswithpreciseuseofwaterandagrochemicals.
Nanobiotechnology:Emergingtrends,prospects,andchallenges3
Nanobiotechnologyhasthepotentialtoprotectplants,monitorplantgrowth,diagnose plantdisease,enhancenutritionalefficacy,andreducewaste(Prasadetal.,2017). Specificallydesignednanotoolshaveenabledtheenhancedcropproductivitywith morenutritionalvalueandlesscostinput.Nanotechnologyisexpandingincontemporaryfieldsofagriculturelikefoodprocessing,foodpreservation,foodpacking,and dairyindustry.ItisalsobeingsupportedbyIndiangovernmentbymakingplansto extendsupportforcommercialapplicationofnanobiotechnology.Someoftheprecise andemergingapplicationsofnanobiotechnologyinagriculturearedepictedin Fig.1.1.
1.2.1Nanotoolsinagriculture
Inthepasttwodecades,manyresearchesareinprogressaboutthepreciseapplication oftoolsandtechniquesofnanobiotechnologyinagriculturalsectorwithmanypositive outcomesintheformofnanotoolslikeinorganiccompound-basednanoparticles,carbonnanotubes,quantumdots,organicdendrimers,polymernanocapsules,nanoshells,
Fig.1.1 Possibleapplicationofnanobiotechnologyinagriculture. AdaptedfromShang,Y.,Hasan,M.K.,Ahammed,G.J.,etal.,2019.Applicationsof nanotechnologyinplantgrowthandcropprotection:areview.Molecules24(2558),1–23. https://doi.org/10.3390/molecules24142558,publishedinMolecules;throughopenaccess policy.
andnanospheres,whicharebeingtestedforvariouspurposesinagriculturalresearch. Nanoparticles(NPs)canbedefinedasnaturalorengineeredtinyparticleofnanoscale range(1–100nm).Theseareendowedwithuniquepropertiesincludingshape,size, largesurfacearea,surfacefunctionalization,porosity,zetapotential,hydrophobicity, andhydrophilicity.Newlydesignedcarbonnanomaterials(CNMs)areaclassof engineerednanomaterials,whichareextensivelybeingusedinthefieldofelectronics, nanomedicine,optics,biosensors,andagricultureinminuscule,duetotheirspecific mechanical,electrical,optical,andthermalproperties.TheCNMfamilyincludescarbonnanotubes(CNTs),fullerenes,nano-onions,nanobeads,nanofibers,grapheme, nanodiamonds,nanohorns,carbondotstonameafew(Mukherjeeetal.,2016).These materialsassumequantumpropertiesandspecificphysicochemicalpropertiesat nanoscalelevel.Carbonnanotubes(CNTs)arecylindricalstructureswithopenand closedends.Thesecanbedividedintosingle-wallednanotubes(SWCNTs)and multiwallednanotubes(MWCNTs)onthebasisofnumberofconcentriclayersof rolledgraphenesheets.Theapplicationofthesecompositenanomaterialsintheagriculturalsectorisstillininfantstage;nevertheless,ithasgivenpromisingresults.The internalizationofCNTswithinplantcellsandcellorganellesiswellproven;thus,it canbeusedasnanotransporter.Manynanotoolsincludingbuckyballs,dendrimers, andnanocapsulesarebeingtestedforpreciseandefficientdrugdeliveryinformof nanoveterinarymedicines(Mukherjeeetal.,2016).Adhesion-specificnanoparticles areusedfortheremovalofbacteria Campylobacterjejuni frompoultry.Inaddition, ironnanoparticlesareusedforfeedingoflivestockandfisheries (Mukhopadhyay,2014).
ManyhydroponicstudieshaveproventhataccumulationofCNMsinplants increasestherootlength.Astudymadeonsixplantspecies,carrot(Daucuscarota), tomato(Lycopersiconesculentum),lettuce(Lactucasativa),cabbage(Brassica oleracea),onion(Alliumcepa),andcucumber(Cucumissativus),byusingcoated anduncoatedCNTsatdifferentexposuresshowedthatthesehaveindirecteffect onplantrootsystemsbyhamperingwithmicrobial-rootinteractionsorbyaltering crucialbiochemicalprocesses(Mukherjeeetal.,2016).Anothersignificantstudy ongramplant(Cicerarietinum)onexposuretocitrate-coatedwater-solubleCNTs exhibitedthattheyenhancewateruptakeefficiency,therebyincreasingtheplant growth.Itisevidentfromthestudyoncorn(Zeamays)andbarley(Hordeumvulgare) thatapplicationofCNMsenhancestherateofgerminationincomparisontothatof untreatedwithCNMs.Fullerol,anotherCNM,hasbeenshowntoenhancebiomass andphytomedicinalcontentofamedicinalplantbittermelon(Momordicacharantia) (Dwivedietal.,2016).Itsextractsareusedforthetreatmentofdiseaseslikecancer, diabetes,andacquiredimmunodeficiencysyndrome(AIDS)(Mukherjeeetal.,2016). Inaddition,CNMshavebeenshowntoboostthegrowthofterrestrialplantsalso.A plentyofNPsareunderexperimentalstage,whichcouldefficientlydeliverthenutrientsadministeredthroughplantrootsandrarelythroughfoliarway.Abriefsummary ofNPs(Chughetal.,2021)andtheirefficacyinagriculturehasbeenpresentedin Table1.2.Thus,itisworthinferringthatCNMshavethepotentialtoenhanceplant growth,seedgermination,nutrientuptake,andfruitquality.However,moreextensive studiesareneededtoauthenticatevariousimplicationsofCNMsonplants. 4AgriculturalNanobiotechnology
Table1.2 Applicationofnanoparticlesindeliveringsignificantnutrientsandtheireffectsontargetplants.
NanoparticlesNutrientsPlantspeciesEffectonplants
TitaniumdioxideTitanium
Oryzasativa (rice)
Solanumlycopersicum (tomato)
Hordeumvulgare (barley)
Menthapiperita (peppermint)
CeriumdioxideCerium
Oryzasativa (rice)
Haordieumvulgare (barley)
Triticumaestivum (wheat)
Cucumissativus (cucumber)
Coriandrumsativum (cilantro)
Zincoxide
Zn-aminoacid nanocomplex
Zinc
Pisumsativum (pea)
Cucumissativus (cucumber)
Zeamays (maize)
Solanumlycopersicum (tomato)
Arachishypogaea (peanut)
Ocimumbasilicum (sweetbasil)
Increasedaminoacids,fattyacids,andPinroot,shoot,andgrains
Increasedaminoacids,phenolics,antioxidantcapacity
Increased,P,Ca,Mg,Zn,Mn,aminoacids
IncreasedN,chlorophyll,menthol,menthone
CopperCopper
Solanumlycopersicum (tomato)
Cucumissativus (cucumber)
IncreasedK,Ca,Na,proteinalbumin,totalsugars
IncreasedP,K,Ca,Mg,S,Cu,Fe,Zn,Mn,aminoacids,fattyacids
IncreasedP,Fe,K,aminoacids,fattyacids,totalsugars
IncreasedK,Ca,Mg,S,P,Fe,Mn,totalsugars,starch,proteins
IncreasedCe,catalase,ascorbateperoxidaseactivity
IncreasedP,Fe,Zn,Mn,totalsugars
IncreasedK,Mg,Fe,Mn,Zn,S,prolamin,globulin,gluten
IncreasedK,germination,growth,yield
Increasedlycopene
IncreasedZn,chlorophyll,rootbiomass,yield
Increasedcatechin,hesperetin
IncreasedK,totalproteins,vitaminC,totalphenols,flavonoids, lycopene,antioxidantcapacity
IncreasedCu,Fe,sugar,organicacids,aminoacids,fattyacids
Table1.2 Continued
NanoparticlesNutrientsPlantspeciesEffectonplants
Iron-trioxideIron Arachishypogaea (peanut)
Glycine max(soybean)
Calciumoxide
Calciumcarbon trioxide
Calcium Arachishypogaea (peanut)
Vignamungo (black gram)
MagnesiumMagnesium Vignaunguiculata (cow pea)
SilverSilver Cucumissativus (cucumber)
Solanumlycopersicum (tomato)
Lactucasativa (lettuce)
IncreasedZn,growth,biomass
IncreasedCa,rootdevelopment,increasedrootandshootgrowth, biomass
Increasedphotosynthesis,growth,yield
Increasedgrowth,yield,biomass,totalsolublesolidsinfruit
Increasedsuperoxidedismutaseactivity
IncreasedAgcontent
ModifiedandadaptedfromChugh,G.,Siddique,K.H.M.,Solaiman,Z.M.2021.Nanobiotechnologyforagriculture:smarttechnologyforcombatingnutrientdeficiencieswithnanotoxicity challenges.Sustainability13(1781):1–20,throughopenaccesspolicy.
1.2.2Biomasswaste-basednanomaterialsandtheirefficacy
Thefluorescentcarbondot(Cdot)isoneofthenoveltypesofnanomaterials,which arepreparedfrombiomasswaste,andincomparisonwithquantumdots,ithassignificantadvantageduetoitsexcellentphotostabilityandbiocompatibility,lowcytotoxicity,andeasysurfacefunctionalization.Ithasverywideapplicationinthefieldsof bioimaging,chemicalsensing,environmentalmonitoring,diseasediagnosis,andphotocatalysisaswell(Kangetal.,2020; Xueetal.,2016; Zuoetal.,2016).Biomass wasteisanaturalorganiccarbonsource,whichmainlyconsistsofcellulose,hemicellulose,lignin,ash,proteins,andfewothercompounds.Perennialgrass,organic domesticwaste,agriculturalresidues,fishery,poultry,forestry,andanimalhusbandry arethemainsourcesofbiomass,whichoftengetdiscardedleadingtoenvironmental problems.Recently,biomasswastesareusedasrawmaterialsintheproductionofC dots.Variousapproacheslikepyrolysis,solvothermalmethod,microwave-assisted method,andultrasonic-assistedmethodareefficientlyemployedforpreparing fluorescentCdots(Kangetal.,2020; Tripathietal.,2016),whichisdepictedin Fig.1.2.Thus,thesenovelapproachesprovidevibrantnanomaterialsaswellasmitigatetheenvironmentalthreats.
1.2.3Nanofertilizers(NFs)
Traditionallyemployedfertilizershaveseverallimitations.Fertilizersareoftenused toenhancemicro-andmacronutrientsinsoilforenhancingcropproductivity.Most macronutrientsareinsolubleinsoil;hence,onlyasmallfractionisavailabletoplants andalargequantityoffertilizersrunoff,contributingtosoil,air,andwaterpollution. Thus,itcreatesalong-termthreattoagroecosystemdespiteitsshort-termgain.Owing tothesedisadvantages,chemicalfertilizersarebeingreplacedbyspeciallyformulated nanofertilizers(NFs)likehydroxyapatiteNPs,zeolite,mesoporoussilicaNPs,nitrogen,zinc,carbon,copper,silicananoparticles(Seleimanetal.,2021; Usmanetal., 2020),inwhichspecificmicro-andmacronutrientsareencapsulatedwithin nanoparticles.Meticulouslydesignednanofertilizerswiththepreciseuseof nanoparticleshavegreatadvantageoverconventionalfertilizers,andthesemaybe aneffectivetoolforsustainableagriculture.ThepossibleefficacyofNFsisillustrated in Fig.1.3.Nanofertilizersmaybeaplantnutrientitself,ortheyencapsulatetheagrochemicalsandmicro-/macronutrientscoatedwithathinfilm,andthesearedelivered asnanoemulsions,whichensureastrongholdofnutrientsontheplantsurfacedueto highsurfacetensionofthenanocoating.Additionally,theyreleasethenutrientsat slowandsteadypaceandcanholditupto40–50days(Seleimanetal.,2021). Nanozeolitesandnanoclaysareusedforsoilimprovementduetotheirpotentialin releaseandretentionofnutrientsandwater(Chughetal.,2021; Seleimanetal.,2021).
Nanofertilizersarehighlytargeted,site-specific,andendowedwithhighadsorption efficiencycontributinginenhancedphotosynthesisandexpandedleavesofplantsalong withreducedtoxicityofthesoilandpreventioninwaterpollution.Nanofertilizerscan besynthesizedbytwoapproaches:Inthetop-downapproach,abulkofnutrientisbrokendownintonanosizedparticles,andinbottom-upapproach,NFsaresynthesized Nanobiotechnology:Emergingtrends,prospects,andchallenges7
Fig.1.2 SynthesisandapplicationoffluorescentCdotsfromagriculturalwastebypyrolysis: (A)Synthesisofwater-solubleCdotsfromwatermelonpeel;(B)Preparationandapplication ofCdotfromlycheeseeds;(C)PreparationandapplicationofCdotfrompeanutshells.
AdaptedfromKang,C.,Huang,Y.,Yan,X.F.,Chen,Z.P.,2020.Areviewofcarbondots producedfrombiomasswastes.Nanomaterials10(2316),3–24,publishedinNanomaterials; throughopenaccesspolicy.
Fig.1.3 Advantagesof nanofertilizers.
AdaptedfromSeleiman,M.F., Almutairy,K.F.,Alotaibi,M.,etal., 2021.Nano-fertilizationasan emergingfertilizationtechnique: whycanmodernagriculturebenefit fromitsuse?Plan.Theory,10,1–27, publishedinPlants;throughopen accesssystem.
Nanobiotechnology:Emergingtrends,prospects,andchallenges9
Fig.1.4 MainapproachesforthesynthesisofnanofertilizersandNPs.
AdaptedfromSeleiman,M.F.,Almutairy,K.F.,Alotaibi,M.,etal.,2021.Nano-fertilizationas anemergingfertilizationtechnique:whycanmodernagriculturebenefitfromitsuse?Plan. Theory10,1–27,publishedinPlants;throughopenaccesspolicy.
fromatoms,molecules,andmonomers(Seleimanetal.,2021).VarioustoxicandnontoxicapproachestosynthesizeNPsaredepictedin Fig.1.4.Ithasbeenshownthatthe treatmentofTiO2 nanoparticlesonmaizeenhancesthegrowthandyield,andtheapplicationofSiO2 andTiO2 nanoparticlesincreasedtheactivityofnitrate-reductaseinsoybeansandintensifiedplantabsorptioncapacity(Sekhon,2014).Researchesinrice plantshaveindicatedthatureananohybridscandeliverureamanytimesoveraperiod oftimeleadingtoenhancedyieldofgrain.Likewise,thefoliarapplicationofpotassium nanofertilizeron Cucurbitapepo enhancedthebiomass,growth,andyield(Chughetal., 2021).Long-termapplicationofnanofertilizersisconsideredtobea“nano-bio-revolution”inthefieldofnanobiotechnology(Chughetal.,2021).However,moreresearches areneededinthisinterdisciplinaryareaofstudy.
1.2.4Nanobiosensors
Nanosensorsareelectronicdevices,whichpossessasensingpartandelectronicdata processingpart.Sensingpartishighlyvaluableforagriculturalsectorbecauseitcan senseheat,light,pathogens,humidity,andchemicals,therebymanagingtheneedbasedsystem.Nanosensorsandnanobaseddeliverysystemsareexpectedtoimprove agricultural,food,andenvironmentalsectors.Thesenanodevicescouldhelpin
efficientuseofagriculturalnaturalresourceslikenutrients,chemicals,andwater.The integratedapplicationofnanosensorsandremotesensingandgeographicinformation systemcoulddetectcroppests,stresslikedrought,levelofnutrientsandpathogensin soiltonameafew.Nanofibresandnanowiresareusedinsynthesisofnanosensors, whichareusedforsensingfertilizers,pesticides,herbicides,pathogens,moisture, andsoilpHwithhighefficacy,therebyresultinginenhancedcropproductivitywith betteragrochemicalandpastemanagement(Lvetal.,2018).Inaddition,thelevelof soilmicronutrientsandpresenceofmicrobesandvirusescanbeassessedby nanosensors.Nanosmartdustandgasnanosensorscanmeasurethelevelofenvironmentalpollution(Sekhon,2014).Manyfluorescentdyebiosensorsandmagnetic nanoparticle-basednanosensorshavebeenusedforthedetectionofpathogenicbacteria.Recently,abioluminescenceoxygenbiosensorhasbeendeveloped,whichis cheapandcompatibleforfoodpackaging,andimmuno-biosensorshavealsobeen developedforthedetectionofmicrobialtoxins(Luganietal.,2021).Hence,bionanosensorsallowthequantificationandrapiddetectionofbacteria,pathogens, andtoxicmaterialspresentincrops,therebyincreasingthebiosafety.
1.2.5Nanopesticidesandnanoherbicides
Traditionalpesticidesareusedtoimprovecropproductionandefficiency,butithas limitedefficacy.Recently,nanopesticidesarebeingtestedtoreplacegeneralpesticides,whichareplantprotectionproductsatnanoscale.Thesearepreparedthrough nanoformulations,whichcombineseveralsurfactants,organicpolymers,andinorganicmetalnanoparticlesincludingpolymericnanospheresandnanocapsules togetherwithnanogelsandnanofibres(Chughetal.,2021; Kangetal.,2020).These nanoparticlesprovidemicroencapsulationtopesticidesthroughnanoformulationsof existingpesticidesandfungicidesandareefficienttoolforhydrophobicpesticides withgreatersolubility,andtheseareeffectiveinpreciseandtargeteddeliveryofpesticideswithhighefficacyandlessconsumption.Silveriswell-knownforitsantimicrobialactivity,andtheapplicationofsilvernanoparticles(AgNPs)hasbeenreported toinhibitthegrowthofplantpathogenindose-dependentmanner(Chughetal.,2021). Thedose-dependentuseoftitanium-alumina-coppernanoparticles(TiO2-Al-CuNPs) hasbeenreportedtobeeffectiveagainstarangeofpestsenhancingtheplantgrowth andtoleranceagainstvariousabioticandbioticstresses.Theuseofsilica nanoparticlesandcoppernanoparticleshasbeenfoundtobehighlyeffectiveinthe formulationofnanopesticides(Sekhon,2014).Thus,researchanddevelopmentin theformulationofnanopesticidescouldbeahighlyefficienttoolinintegratedpest management,buttheenvironmentalriskassessmentandbiosafetyissuesneedto beaddressedinresearchesbeforeitscommercialization.
Inthesameway,theapplicationofnanoherbicidescanbeaviablealternativeto removeweeds,therebyincreasingcropyield.Thenanosiliconcarriercomprisingdiatomfrustuleshasbeenefficientlyusedforthedeliveryofpesticidesandherbicidesin plants.Zinclayeredhydroxideandzinc-aluminumlayereddoublehydroxidehave alsobeendemonstratedforthepreparationofnanohybridcompoundcontaining twoherbicidessimultaneously(Prasadetal.,2017).
Nanobiotechnology:Emergingtrends,prospects,andchallenges11
1.2.6Nanophoto-semiconductors
Titaniumdioxide(TiO2)hasbeenproventobethemosteffectivephotocatalystdueto itshighefficacy,photochemicalstability,andnontoxicnature.Theseuniquestructural,chemical,andopticalpropertiesofTiO2 makeitsuitablematerialfordesigning photo-semiconductorsatnanolevel,whichhaveverywidescopeinagriculturalsector includingdegradationofpesticides,plantprotectionandseedgermination,cropdiseasecontrol,waterpurification,andpesticideresiduedetection(Wangetal.,2016). Thesenanomaterial-basedphoto-semiconductorsdegradethenonbiodegradablepesticidesintowater,carbondioxide,andotherbiodegradableandlesstoxicmaterials withoutsecondarypollution.Manypesticideslikechlortoluron,cyproconazole,and paraquathavebeentestedforsuchkindofphotocatalysis(Wangetal.,2016).Inaddition,TiO2 semiconductorsproducesuperoxideandhydroxideionsinphotocatalysis process,whichincreasetheseedstressresistanceandwaterandoxygenintake, therebyenhancingthegerminationofseeds.Moreover,thesesuperoxidesandhydroxidesareeffectiveantimicrobialagents.ThesepropertiesofTiO2 nanomaterialshave madeitanintenseareaofresearchthatneedsmoreexplorationsthroughresearch.
1.2.7Nanomaterialsindrought-andsalinity-resistantcrop production
Droughtandsalinityarethetwoimportantenvironmentalstressesthatleadtoreductionincropgrowthandyieldacrosstheworld.ManynanoparticlesincludingNFs enhancingthewater-holdingcapacityofsoilhavebeentestedandproventocounter thesestresseswithhighefficacyandleasttoxicity.Duringstressconditioninplants, reactiveoxygenspecies(ROS)areaccumulatedwithinplantcellcontributioninlipid peroxidation,cellmembranedamage,andleakageofsolutescausingapoptosis. ResultshaveshownthatNPsenhancetheantioxidantactivityanddecreasetheproductionofsuperoxides(Seleimanetal.,2021).ZincandcopperNPshavebeentested toenhanceantioxidantactivityofenzymessuperoxidedismutase(SAD)andcatalase (CAT),therebykeepingthephysiologicalbalanceduringdroughtconditionupon plantsofsteppeecotype(Taranetal.,2017).Foliarsprayofironnanoparticle(FeNP)wasfoundtoreducewaterstresseffectandtoenhanceyieldandoilpercentage insafflower(Carthamustinctorius)(Seleimanetal.,2021).Selenium-andsilicabasedNPshavealsobeentestedtobeefficientinincreasingtheantioxidantenzyme andvitaminCactivityandreducingtheperoxidedegradationandlevelofhydrogen peroxideinstrawberryplantssubjectedtodroughtstress(Zahedietal.,2020).In nanoparticle-treatedstrawberryplantssubjectedtodroughtstress,photosyntheticpigmentswerefoundtobeconservedincomparisonwithuntreatedplant.Thus,these nanoparticlesenhancethenutritionalvalueandfruitqualityofplants.
Anothersignificantstressfactorissalinity,andmorethan20%ofthegloballycultivablelandsareaffectedbysaltstress.Theproblemofsalinitystressisgradually expandingduetoindiscriminateuseoffertilizers,industrialpollution,andpoorirrigationpractices,resultinginexcesssaltconcentration.Salt-affectedsoilhasalow osmoticpotential,resultinginnutritionalandionicimbalance.Applicationof silica-basedNPshasbeenproventobeeffectiveinreducingstressbymaintaining
ionicbalance,regulatingthesodiumionabsorption,transportanddistributionwithin tissues,regulatingthepolyaminelevels,andenhancingtheantioxidantefficacywithin plants(Zhuetal.,2019; Zhaoetal.,2011).Nanocalciumapplicationon Solanum lycopersicum growninsaltstressconditionexhibitedthehigheryieldandmorefruits (Seleimanetal.,2021).Thus,preciseuseofnanomaterialsmaybehelpfulincoping thestressresponsesinplants,whichneedsmoreexploration.
1.2.8Nanofabricationinagriculture
Withthevibrantapplicationofnanotechnologyinfabricationtechnology,newclasses ofmaterialsareexpectedtobemanufacturedinthenearfuture.Currentengineered nanomaterialsaregroupedintofourclasses,i.e.,metal-basedmaterials,carbon-based nanotools,dendrimers,andnanocompositematerials.Innanofabrication,specificand need-basednanomaterialsarefabricatedandlaserablation,X-ray,arcdischarge, focusedionbeams,andscanningprobesarebeingappliedbyindustriesfor nanomatchingofatoms(Mukherjeeetal.,2016).Intop-downapproachof nanofabricationjustbytheremovalofoneatomatnanoscale,desiredstructurecan bedesigned.Inbottom-upapproach,adesiredstructurecanbefabricatedbysophisticatedassemblyofatombyatom.Infarmingsector,boththesemethodscouldbe employedtofabricatethenanostructures.Forexample,applicationofclayminerals innanofabricationisinexperimentalstageinwhichcovalentandionicbondscouldbe manipulatedformanufacturingnutrientsupplydevice.
1.3Nanomaterialsforfoodandnutritionmanagement
Applicationofnanoparticlesinfoodsectorhasgiventremendousresults.Ithasrevolutionizedthewholefoodindustry.Advancedtechniqueslikemicrofluidics, microelectromechanicalsystems,andDNAmicroarrayshaveadvancedthefoodsectorbyseparationofpathogens,contaminants,smartdeliveryofnutrients,and nanocapsulationofnutraceuticals(Luganietal.,2021).Nanoparticlesimprovethe nutritionalvalueandtextureoffoodproducts,andtheyimproveconsistencyandphysicalperformanceoffood,preventlumpformation,removefoodcontaminants, enhanceproductshelflife,andhelpinlighter,stronger,andactivepackaging (Luganietal.,2021; Rossietal.,2014).
1.4DeliveryofDNAinplantsthroughencapsulated nanomaterials
Withtheapplicationofcarbonnanofibresandnanocapsules,ithasbeenpossibleto encapsulatetheforeignDNAandchemicalsanditspreciseandtargeteddeliveryinto specificcellandtissueforgeneticengineeringprograms.Throughtheencapsulation withcarbonnanofiber,preciseDNAdeliveryhasbeendonetogeneticallymodify goldenrice.Inaddition,withtheintegratedapplicationofgeneticengineering,
Nanobiotechnology:Emergingtrends,prospects,andchallenges13
nanotechnology,andbioinformatics,novelanddesiredplantvarietiescanbecreated andithasledtotheemergenceofanewbranchofscience,syntheticbiology.
1.5Nanomaterialsandenvironmentalhazards
Environmentalhazardsandpollutantsareamajorglobalchallenge.Releaseofvariouscontaminantsinenvironmentthrough agriculturalpracticesandothercommercialactivitieshasposedaseriousthreat. Nanomaterialsmaybeeffectiveinactive detectionandremediationofthesecontaminants.Effectivenanosensorsarebeing testedtobeusedasanalyticaldevicestomonitorawidevarietyofagrochemicals, heavymetals,organicpollutants,andpathogens( Chughetal.,2021 ).Nanosensors arebeingfabricatedforthemonitori ngofphysicochemicalpropertiesof agroecosystemsforeffectivemanagement.Furthermore,climatechangethatrefers tochangeinthebaselineofclimateover timespanincludingtemperature,water safety,cloud,salinity,alkalinity,and pollutionwithmetaltoxicityneedstobe detectedandmonitored( Shangetal.,2019).Nanomaterialshavemanyapplications inthefieldofenvironmentsuchasproduc tionofhighlyefficientrenewableenergy, solarcells,remediation,andnanobiosenso rsforpollutantswithgreatersensitivity, buttheyarealsosuspectedtohavenegativeimpactonmanyspeciesandtodisrupt theecologicaldynamics.Accordingtoa reportof2014,theglobalproductionof CNTsrangesbetween55and3300tons(Mukhopadhyay,2014).Metal nanoparticlesexertcytotoxicityde pendingonthesurfacechargeofcell(Prasad etal.,2017).Thesematerialscanentertheenvironmentaccidentallyoraswastedischarge,whichmaycontaminatethewater,andduetotheirhydrophobicity,theyare solubleinorganicsolvents,thusimpac tingtheuptakeofsoilcontentsbyplants alongwithco-contaminants.However,the fateofCNMsinsoildependsonitsphysicochemicalpropertiesaswellasedaph icfactorsalso.Thepossiblemeritsand demeritsofCNMsareillustratedin Fig.1.5.Thus,morestudiesarerequiredto extrapolateandinferaboutthefateofCNMsinenvironment.
1.5.1Nanotoxicity
Despitethepromisingresultsintheapplicationofnanotoolsinagriculture,thereare manyapprehensionstoberesolved.Toxicityofnanomaterialsinagroecosystemisof keyconcern;therefore,thetoxicityandimpactofreleasedNPsonenvironmentand plantsneedtobeaddressed.TheinteractionofNPsandsoilresultsinalteredphysicochemicalpropertiesofthesoil.Fewreportsarethereaboutthealterationinthe pHofsoil,organicsoilcontent,andcationexchangecapacityoninteractionwithsilvernanoparticles(AgNPs).Likewise,ZnONPsapplicationinsoilcausedtoxicityand reducedtheplantbiomass.Further,itisinterestingtonotethattheuseofTiO2 and ZnONPsalteredthebacterialcommunitystructurewithdistinctimpactonenvironment(Mishraetal.,2017).Inaddition,plantsdirectlyinteractwithNPsduetolarge surfaceareaofleafandrootsystem,resultinginphytotoxicity.Theminuscule-sized NPsentertheplanttissuethroughadsorptionandposenegativeimpactonplantsystem.ThephytotoxicityofNPsdependsontheirsizeandconcentration.Ithasbeen

Fig.1.5 Possibleadvantagesanddisadvantagesofnanobiotechnologyinagriculture. ModifiedandredrawnfromChugh,G.,Siddique,K.H.M.,Solaiman,Z.M.,2021. Nanobiotechnologyforagriculture:smarttechnologyforcombatingnutrientdeficiencieswith nanotoxicitychallenges.Sustainability13(1781),1–20,publishedinSustainability;through openaccesspolicy.
observedthatNPsintherangeof5–10nmpossessgreatertoxicity(Mishraetal., 2017).Hence,thetripartiteinteractionofNPswithplants,soil,andsoilmicrobiota mustbeanalyzedbeforethecommercialuseofagriculture-relatedNPsandmore emphasisshouldbegivenonfabricationandapplicationofbiologicallysynthesized NPsforagriculturalprocesses(ChenandYada,2011).
1.5.2Nanoremediation
Manynanoscalematerialssuchasmetal,metaloxide,CNTs,andbimetallicNPshave beeninvestigatedwithgreaterpotentialincleaningupcontaminatedsoilandwater sitesanddetoxificationofpollutants.Ironoxideshavebeenusedfortheremoval ofheavymetalsandorganiccompounds.Nanoscalezerovalentiron(ZVI-NPs)has beentestedforremediationduetoitslowtoxicityandlowcost.Nanoscalezerovalent ironnanoparticles(ZVI-NPs)arecapableofremovingheavymetalssuchascadmium fromaqueoussolution,andchromiumfrompollutedsoil,andwastewater(Lavicoli etal.,2017; Toscoetal.,2014).Nanostructuredbimetallicsystemslike palladium-iron(Pd Fe),silver-iron(Ag Fe),andnickel-iron(Ni Fe)stabilized withpolymersandsurfactantshavebeenstudiedtoremoveheavymetalsdyesand
Nanobiotechnology:Emergingtrends,prospects,andchallenges15
tokillbacteria.Inaddition,poroustitaniumsilicateandaluminumnanocomposites havebeenusedfortheremovalofheavymetalslikecadmiumandlead(Lavicoli etal.,2017; Toscoetal.,2014).ButreportsaretherethatthesebimetallicNPsgenerateintermediateproductsandtoxins.Theregenerationcapacity,reusability,and possibleenvironmentalhazardsoftheseNPsarelessknownthatneedtobesorted outbeforetheirlarge-scaleapplication.
1.5.3Nanomaterialsandbiosafetyissues
Keepinginviewbiosafetyissues,amultiprongedstrategylike,activationofplantenzymaticsystem,hormonalregulation,stressgeneactivation,avoidinguptakeandaccumulationoftoxicmetalswithinplantcellsshouldbeadoptedtomaintainandfoster sustainableagriculture(Shangetal.,2019).Applicationofgeneticallymodifiedcrops isamongthefastestadoptedtechnologyincropimprovementprograms;however,there isneedforapreciseandsensitivedetectionofthisuniquetechnologybeforeitscommercialrelease.However,sophisticatedtracertechniquesaretherefortheanalysisof NPswithintheplanttissuesusingpositronemissiontomography(PET)orsingle-photon emission-computedtomography(SPECT)(Lavicolietal.,2017).Moreover,anappropriateregulatoryframeworkshouldbesetuptoassesstheenvironmentalandhealthrelatedrisks(Prasadetal.,2017; ZhangandFang,2010).
1.5.4Biosynthesisofnanoparticlesforgreeneconomy
ThoughthepreciseapplicationofCNMsandNPshasthescopetorevolutionizethe wholeagriculturalsector,ithasmanydisadvantagesincludingnanotoxicity,highcost input,andmanyenvironmentalconcerns.Itisnowpossibletobiologicallysynthesize nanomaterialswithawiderangeofsize,shape,compositions,andphysicochemical propertiesviaeco-friendly,greenchemistry-basedtechniques.Itemploysbiological entitiessuchasactinomycetes,bacteria,fungi,plants,viruses,andyeasts,whichactas biologicalfactoriesforthesynthesisofnanomaterials(Shahetal.,2015).Thesize, shape,andcompositionofthebiologicalentitiesaresuitablefornanofabrication; forexample,thenanocompositionofbacteriophageissuitableforthe nanoencapsulationofgoldandironoxidetobeusedasNP.Viruseshavebeenused inthesynthesisofNPsforthedeliveryofsilicondioxide(SiO2),cadmiumsulfide (CdS),ironoxide(Fe2O3),andzincsulfide(ZnS)(Lavicolietal.,2017).Inaddition, unicellularalga Chlorellavulgaris wasusedtosynthesizetetrachloroaurateionsto formalgalboundgold,whichwassubsequentlyreducedintogoldnanoparticles (AuNPs).Reportsarethereaboutthesynthesisofsilverandgoldnanoparticlesfrom algae Chondruscrispus and Spirogyrainsignis (Shahetal.,2015).Plant Aloevera has beenusedtosynthesizeAgNPsandAuNPs.Likewise, Mangiferaindica hasbeenused forthesynthesisofAgNPsand Eucalyptusmacrocarpa hasbeenusedforthesynthesis ofAgNPsandAuNPs(Shahetal.,2015; Mittaletal.,2013).However,thesizeand shapeoftheseNPsarehighlyvariable,whichneedsintenseresearchtosynthesizethe NPsofdesirablesizeandshapebecausetheseareinexpensive,nontoxic,and environmental-friendly.