Affine arithmetic-based methods for uncertain power system analysis alfredo vaccaro - Read the ebook

Page 1


https://ebookmass.com/product/affine-arithmetic-basedmethods-for-uncertain-power-system-analysis-alfredo-vaccaro/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Interval Methods for Uncertain Power System Analysis

Alfredo Vaccaro

https://ebookmass.com/product/interval-methods-for-uncertain-powersystem-analysis-alfredo-vaccaro/

ebookmass.com

Graph Database and Graph Computing for Power System Analysis Renchang Dai

https://ebookmass.com/product/graph-database-and-graph-computing-forpower-system-analysis-renchang-dai/

ebookmass.com

Power System Analysis and Design 6th Edition J. Duncan Glover

https://ebookmass.com/product/power-system-analysis-and-design-6thedition-j-duncan-glover/

ebookmass.com

Serial Revolutions 1848 Clare Pettitt

https://ebookmass.com/product/serial-revolutions-1848-clare-pettitt/

ebookmass.com

Ocean Science Data: Collection, Management, Networking and Services Giuseppe Manzella

https://ebookmass.com/product/ocean-science-data-collectionmanagement-networking-and-services-giuseppe-manzella/

ebookmass.com

Somebody to Love: 11 (Blessings, Georgia) Sharon Sala [Sala

https://ebookmass.com/product/somebody-to-love-11-blessings-georgiasharon-sala-sala/

ebookmass.com

Foundations of ARM64 Linux Debugging, Disassembling, and Reversing: Analyze Code, Understand Stack Memory Usage, and Reconstruct Original C/C++ Code with ARM64 1st Edition

Dmitry Vostokov

https://ebookmass.com/product/foundations-of-arm64-linux-debuggingdisassembling-and-reversing-analyze-code-understand-stack-memoryusage-and-reconstruct-original-c-c-code-with-arm64-1st-edition-dmitryvostokov/ ebookmass.com

Pragmatics: A Slim Guide Betty J. Birner

https://ebookmass.com/product/pragmatics-a-slim-guide-betty-j-birner/

ebookmass.com

Physics of Long-Range Interacting Systems Campa

https://ebookmass.com/product/physics-of-long-range-interactingsystems-campa/

ebookmass.com

Evidence■Based Neurological Disorders-Symptoms, Causes, and Therapy 1st Edition Upadhyay

https://ebookmass.com/product/evidence%e2%80%90based-neurologicaldisorders-symptoms-causes-and-therapy-1st-edition-upadhyay/

ebookmass.com

AFFINE ARITHMETICBASEDMETHODS FORUNCERTAIN POWERSYSTEM ANALYSIS

AFFINE ARITHMETICBASEDMETHODS FORUNCERTAIN POWERSYSTEM ANALYSIS

ALFREDOVACCARO
ANTONIOPEPICIELLO

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticular useoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90502-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

AcquisitionsEditor: GrahamNisbet

EditorialProjectManager: SaraValentino

ProductionProjectManager: ManjuThirumalaivasan

Designer: MarkRogers

TypesetbyVTeX

Preface xi Acknowledgmentsxiii

1.Uncertaintymanagementinpowersystems1

1.1. Samplingmethods2

1.2. Analyticalmethods3

1.3. Approximatemethods3

1.4. Non-probabilisticmethods4 References6

2.Elementsofreliablecomputing9

2.1. Intervalarithmetic9

2.2. Affinearithmetic10

2.3. SolvinguncertainequationsbyAA14

2.4. Reliablesolutionofnon-linearequations16

2.5. Reliablesolutionsofconstrainedoptimizationproblems18 References22

3.Uncertainpowerflowanalysis23

3.1. Problemformulation24

3.2. Affinearithmeticbasedsolutionofthepowerflowequations25

3.3. Numericalresults29

3.4. Robustformulationofthepowerflowequations39

3.5. Casestudy42 References47

4.Uncertainoptimalpowerflowanalysis49

4.1. Mathematicalbackground49

4.2. Numericalresults55

4.3. Robustformulationofoptimalpowerflowproblems58

4.4. Casestudy62

4.5. Remarks63 References63

5.UnifiedAA-basedsolutionofuncertainPFandOPFproblems65

5.1. Theoreticalframework65

5.2. Applications70

5.3. Numericalresults72

5.4. Computationalrequirements79

5.5. Remarks79 References79

6.Uncertainpowersystemreliabilityanalysis81

6.1. MarkovChains82

6.2. UncertainMarkovChainsanalysisbyAA85

6.3. Casestudies88 References91

7.Uncertainanalysisofmulti-energysystems93

7.1. Optimalschedulingofanenergyhub94

7.2. Casestudy98 References104

8.Enablingmethodologiesforreducingthecomputationalburden inAA-basedcomputing105

8.1. PFanalysis105

8.2. OPFanalysis106

8.3. AA-basedcomputing106

8.4. Numericalresults108

8.5. Remarks122 References122

9.Uncertainvoltagestabilityanalysisbyaffinearithmetic123

9.1. AA-basedcalculationofPVcurves128

9.2. Numericalresults129

9.3. Remarks133 References133

10.Reliablemicrogridsschedulinginthepresenceofdata uncertainties135

10.1. Deterministicoptimization136

10.2. Robustoptimization138

10.3. Affinearithmetic-basedoptimization138

10.4. Numericalresultsanddiscussion140 10.5. Remarks143

References143

Index 145

InmemoryofmyFather(AlfredoVaccaro)

Tomyfamily(AntonioPepiciello)

Preface

Reliablepowersystemoperationrequirescomplexnumericalanalyses aimedatstudyingandimprovingthesecurityandresiliencyofelectrical grids.Manymathematicaltoolscansupportpowersystemoperatorsinaddressingthischallengingissue,suchaspowerflowandoptimalpowerflow analyses,static/dynamicsecurityassessment,andpowersystemreliability analysis.Theconventionalformalizationoftheseproblemsisbasedonthe assumptionthattheinputdataarespecifiedbydeterministicparameters, whichshouldbedefinedbytheanalysteitherfromasnapshotofthepower systemorinferredonthebasisofsomeassumptionsontheanalyzedsystem.

Consequently,thesolutionscomputedbysolvingthesedeterministic problemsarerigorouslyvalidonlyfortheconsideredpowersystemstate, whichrepresentsalimitedsetofsystemconditions.Thus,whentheinput dataareuncertain,numerousscenariosneedtobeevaluatedinthetaskof computingrobustproblemsolutions.

Toaddressthisproblem,thisBookintroducesthebasicelementsof AffineArithmetic-basedcomputing,outliningitsimportantroleinuncertainpowersystemanalysis.

AffineArithmeticisanenhancedmodelforreliablecomputingin whichtheinputdataandtheproblemvariablesarerepresentedbyaffine combinationsofprimitivenoisesymbols,whicharesymbolicvariablesrepresentingtheindependentuncertaintysourcesaffectingtheinputdata(i.e. exogenousuncertainties),orapproximationerrorsgeneratedduringthe computations(i.e.endogenousuncertainties).

AfterintroducingthemathematicalfoundationsofAffineArithmetic, itsdeploymentinsolvingthemostfundamentalpowersystemoperation problemsispresentedanddiscussed.Inthesecontextstheadoptionof AffineArithmetic-basedcomputingallowsformalizingthepowersystem stateequationsinamoreconvenientformalismcomparedtotheconventionalandwidelyusedformulationadoptedininterval-basedNewton methods.Thankstothisfeatureareliableestimationofthesolutionshull canbereliablyestimatedbyconsideringtheparameteruncertaintycorrelationsandthecumulativeeffectofalltheuncertaintysources.

Theseresultscanbegeneralizedinthetaskofsolvingagenericmathematicalprogrammingproblemunderuncertainty,whichcanbeformalized byanequivalentdeterministicproblem,definingacoherentsetofminimization,equality,andinequalityaffinearithmetic-basedoperators.This

AffineArithmetic-basedformulationallowscomputingfeasibleandrobust solutionenclosuresofcomplexuncertainoptimizationproblems,reducing theapproximationerrors,andtheestimationover-conservatism.

Thedeploymentofthiscomputingparadigmisappliedforsolvinga widerangeofpowersystemoperationproblems,asfarasoptimalpower flow,voltagestabilityanalysis,equipmentreliabilityassessment,andmicrogridschedulingareconcerned.

Finally,toreducethecomputationalburdenofAffineArithmetic-based computing,thisBookanalyzestheroleofformalmethodsforknowledge discoveryfromhistoricalpowersystemoperationdata,whichcouldalso playanimportantroleinoptimallyidentifyingtheparametersoftheaffine formsdescribingtheuncertaininputparameters.

Tothisaim,adataprocessingtechnique-basedonPrincipalcomponent Analysisisintroducedforidentifyingcomplexfeaturesandhiddenrelationshipspotentiallydescribingregularitiesintheproblemsolutions,hence reducingtheproblemcardinalityandthealgorithmcomplexity.Thanksto thistechniqueitisalsopossibletodefineaformalconnectionbetween theprincipalcomponentsandthenoisesymbolsoftheuncertainvariables, whichfurnishaneffectivemethodfortheoptimalidentificationofthe affineforms.

Acknowledgments

TheAuthorswishtothankProf.ClaudioA.Canizareswhoinspiredour researchwork.SpecialthanksgotoProf.KankarBhattacharyaandDr. JuanCarlosMunozfortheirvaluablecontributionsinapplyingAffine Arithmetic-basedcomputinginvoltagestabilityanalysis,andProf.Alberto Berizziforhisusefulinsightsabouttherelationsbetweenaffinearithmetic androbustoptimization.

CHAPTER1

Uncertaintymanagementin powersystems

Stateoftheartandenablingmethodologies

Powersystemoperatorsrequiresophisticatednumericaltoolsaimedatanalyzingthecurrentandtheexpectedoperationstates,guaranteeingsecure andreliablegridoperation.Inthiscontext,numericalprogrammingrepresentsthemathematicalbackbonesupportingthemostfundamentalpower engineeringtools,suchasPowerFlow(PF)andOptimalPowerFlow (OPF)analyses,stateestimation,voltageandfrequencyregulation,and contingencyanalysis.Thesestudiescouldalsosupportthedevelopmentof advancedoperationstoolsforintegratedsystemsmanagement,suchasreliabilityandresilienceassessmentofmulti-carrierenergysystems,oroptimal energyflowmanagementindistributedenergyhubs,whicharerelevant applicationsinthelightoftheevolutionofmodernpowergridstowards moreintegrated,smarter,andsustainablesystems.

Numericalprogrammingproblemsinpowersystemanalysisareconventionallyformalizedbydeterministicmodels,whoseparametersareassumed tobeexactlyknownonthebasisofseveralassumptionsonthecurrent powersystemstate.However,boththemodelsandtheirparametersareintrinsicallyaffectedbycomplexandcorrelateduncertaintysources,which canberoughlyclassifiedinaleatoryandepistemic.Theformerisirreducible,i.e.ithastobeacceptedandcannotbecontrolled,whereasthe latterisrelatedtotheaccuracyofmeasurements,models,andparameters characterizingthesystem.

Uncertaintysourcesaremostlyrelatedtothecomplexdynamicsof activeandreactivepowersupplyanddemand,whichmayvaryduetodifferentcauses[1]:

• Variablegenerationmixdependingonthemarketclearing.

• Theincreasingpenetrationofnon-dispatchablegeneratorsbasedon renewableenergysources.

• Theunpredictablefluctuationofloadsduetounexpectedevents.

• Theincreasinggeographicaldispersionofenergygeneration.

AffineArithmetic-BasedMethodsforUncertainPowerSystemAnalysis https://doi.org/10.1016/B978-0-32-390502-2.00008-9

Copyright©2022ElsevierInc. Allrightsreserved. 1

Thepresenceofuncertaintieshinderstheeffectivenessofdeterministic methods.Indeed,theycanaffecttheproblemsolutionstoaconsiderable extent.Hence,reliablesolutionparadigms,whichincorporateinformation aboutdatauncertaintyarerequired.Theseparadigmsallowtocharacterize theuncertaintyassociatedtoinputdata,andtoassessitspropagationover iterativecalculations,henceprovidingacertainlevelofconfidenceabout theproblemsolutions,andassessingtheirsensitivitytochangesininput datauncertainties.

Thescientificliteratureproposesawiderangeofmethodologiestohandleuncertaintyinpowersystemanalysis[2,3],andthemostpromisingare summarizedinthenextsections.

1.1Samplingmethods

Samplingmethodsconsistingeneratingasetofscenarios,givensome randomvariableswithadefinedprobabilitydistributionfunction.Monte Carloisthebestexampleofsuchmethods:althoughitcanprovideveryaccuratesolutions,itinvolvesalargecomputationalburden,whichisdueto thelargenumberofproblemsthathavetobesolved,oneforeachscenario [4].Thisconditionpreventsitseffectiveutilizationforlarge-scalepower systemanalysis,wherethecomputationalburdencouldbeprohibitively expensive[5,6].

Duetothisreason,muchresearchefforthasbeenputinproposingenhancementsofMonteCarlomethods,whichtrytoimprovethesampling processatthecostofacceptinganincreasinglevelofrisk.Forexample, [7]integratesLatinhypercubesamplingandCholeskydecompositioninthe MonteCarlomethod.In[8],ahybridsolutionalgorithmbasedondeterministicannealingexpectationmaximizationalgorithmandMarkovChain MonteCarloisproposed.Correlationbetweenwindvariablesthroughan extendedLatinhypercubesamplingispresentedin[9].Finally,chanceconstrainedprogrammingproblemscanbeemployedforsolvinguncertain OPFanalysis,inwhichMonteCarloanddeterministicoptimizationare combinedtohandlethestochasticfeaturesoftheinputvariables[10].

Aspreviouslyhighlighted,thesemethodsrequirethedefinitionofa propertrade-offbetweenaccuracyandcomputationalburden,hencethey areusefulonlywhenadefineddegreeofriskcanbeaccepted.

1.2Analyticalmethods

Analyticalmethodsrequireasimplificationoftherealproblemandacertain numberofassumptionsinordertomaketheproblemtractable[11].Some simplificationscanbeobtainedbycharacterizingtheoutputrandomvariablesthroughmulti-linearization[12],convolutiontechniquesorFourier Transform[13].

Anexampleofthesemethodsisthecumulantmethod[14,15]orits combinationwiththeGram-Charlierexpansion[15]ortheintegrationof VonMisesfunctions,tohandlediscretedistributions[16].Anotherformulationispresentedin[6],throughchance-constrainedprogrammingmodel. However,manyofthesetechniquesrequirethelinearizationofPFequations,whicharenon-linear,andthisprocessgeneratesadditionalinaccuracy.

Theshortcomingsofanalyticaltechniquesaremultiple,asdiscussedin [17–20].Oneexamplecouldbethecommonassumptionofstatisticalindependenceoftheinputdata,ortheapproximationoftherealprobability distributionwithanidealrandomvariable.Inthissense,thelackofdeterminism,whichischaracteristicofpowersystems,especiallyasanincreasing amountofdispersedgeneratorsisbeinginstalled,canbeaprobleminthe correctformulationoftheprobabilisticmodels.Furthermore,whenvalidationofthesetechniquesisperformed,theassumptionsmadeareoftennot supportedbyempiricalevidence.

1.3Approximatemethods

Approximatemethods,suchaspointestimatemethods,havebeenproposed aspossiblealternativestobothanalyticalandsamplingmethods[21].These methodsaimatapproximatingthestatisticalpropertiesofthevariablesresultingasoutputsofPFandOPFanalyses.Forexample,incaseoffirstor secondordermethod,themeanandthevariancearepropagatedthrough thecalculations,byusingTaylorseriesexpansion[22].

Incaseofthepointestimationmethods,acertainnumberofdeterministicproblems,inparticular m,whichisthenumberofuncertainvariables, hastobesolvedinordertoestimatethestatisticalmomentsoftheproblem solutions[23].Extensionsofthismethodare,forexample,Hong’spointestimatemethod[24],whicharemuchfasterbuttheiraccuracyisguaranteed onlyforlowuncertaintyranges,andthelinearizationisagoodapproximationonlyaroundthenominaloperationpoint.

Otherapproachesarebasedonprimal-dualinteriorpointmethod[25], whichallowscomputingthesensitivityoftheuncertainparameterswith

respecttotheproblemsolution.Robustdesigntheorycanalsobeusedto approximateOPFsolutionsinthepresenceofmultipleuncertaintysources [26].

Finally,approximatemethodshavetheirshortcomingsaswell.Forexampletwo-pointestimatemethodsarenotfeasibleforanalyzinglargescale systems,especiallyinthepresenceofalargenumberofrandomvariables.

1.4Non-probabilisticmethods

Thespectrumofavailablemethodsforcarryingoutreliableanalysesin powersystemsinthepresenceofuncertaintysourceshasenrichedoverthe lastdecades.Thetheoryofevidence[27]andthetheoryofpossibility[28] aretwoexamples.

Thesemathematicalformulationsareassociatedtotheimprecisehumanknowledgeaboutthesystem,whichallowsonlyimpreciseestimates ofvaluesandrelationsbetweenvariables[29].Anexampleinpowersystemsisrelatedtowindenergyproduction:indeed,windcanbemeasured onlylocally,butitsspatialdistributionoveralargeareaisdifficultusing probabilities.Additionally,weatherforecastsprovidequalitativeinformation,whichisdifficulttoberepresentedinaprobabilisticway.Therefore, non-probabilisticmodelingandsimulationscanbeusefultopowersystem engineers.

Theapplicationoffuzzy-settheorytopowersystemanalysishasbeen proposedinseveralpapers[30–32].Inthiscase,bothinputdataandconstraintsaremodeledthroughfuzzynumbers,whichareparticularinstances offuzzysets[33].

Self-validatedcomputingisanotherwayofrepresentinguncertainty.Its advantageisthepossibilityofkeepingtrackoftheuncertaintypropagation throughthecalculations.Thispropagationdoesnotrequiremuchinformationabouttheuncertaintysourcesaffectingtheproblemvariables[34].The firstexampleofself-validatedmodelsisIntervalArithmetic(IA),which representseachvariablethroughintervalofrealnumbers,withoutaprobabilitystructure[35].Asetofoperationscanbedefinedovertheseintervals, suchthatthefinalcomputedintervalisguaranteedtocontaintheuncertain valueoftheoutputvariablewhichitrepresents.

IAhasbeenproposedasatoolforhandlinguncertaintyinpowersystems bymanyauthors[18,19,36,37].However,thesolutionobtainedinthiscase isaffectedbythedependencyproblemandthewrappingeffect[34,38], whichcouldreducetheeffectivenessofthemethodintermsofresults

interpretation.ThisismainlyduetotheimpossibilityofIAtorepresent correlationsbetweenuncertainvariables.Theseproblemsrequirespecial structuresoftheJacobianmatrices(e.g.M-matrices,H-matrices,diagonallydominantmatrices,tri-diagonalmatrices)[39]inorderforIAtobe effectiveinsolvingpowersystemoperationproblems,whicharecommonly notfoundinrealsystems.

Toovercometheselimitations,AffineArithmetic-based(AA)methods foruncertainpowersystemanalysishavebeenproposed.Inthisparadigm, eachvariableisdefinedbyafirstdegreepolynomial,representedbya centralvalueandanumberofpartialdeviations,eachonerepresenting astatisticalindependentuncertaintysource.Inthisway,theequationsdescribingtheproblemunderstudycanbeexpressedmoreconvenientlyand thecorrelationbetweentheuncertaininputvariablescanbeeffectively takenintoaccount.

Themainadvantageofthisparadigmisthatitissuitableforsolvinglarge-scaleproblems,bothcomputationallyandintermsofaccuracy androbustnessoftheobtainedsolution.In[40]andin[41],AAmethods havebeenadoptedtosolveuncertainPFandOPFproblems,byrepresentingallthestateandcontrolvariablesbyaffineforms,withoutassuminga probabilitydensityfunctionforeachofthem.Thisrepresentsapromising alternativetostochasticinformationmanagementinsmartgrids[42].

Severalpaperexploredthisidea,startedin[43],oftheapplicationofAA topowersystemanalysis.In[44],theeffectofnetworkuncertaintieswas processedthroughAAforsolvingthestateestimationprobleminpresence ofbothsynchrophasorsandconventionalmeasurements.

In[45],thecomplementarityconditionswereusedtorepresentbus voltagecontrolthroughanAA-basedmodel,whichreturnedoperationintervalsforPFvariablesinthepresenceofuncertainty.In[46],anuncertain PFproblemissolved,byformalizingitthroughintervalPFandsolvinga quadraticprogrammingoptimization.

Additionalapplicationsandbenefitsderivingfromtheapplicationof AAinpowersystemshavebeenproposedin[40,41,47–49].Inparticular, someofthemareplanningandoperationinthepresenceofalargepenetrationofrenewableenergysources,electricvehiclesintegrationordemand response.ThemainadvantageofAAoverIAderivesbyitscapacityin narrowingthetoleranceintervaloftheproblemsolutions,whichIA-based computationstendtoover-estimate,especiallywhenintegratediniterative solutionschemes.

Inthisbook,solutionmethodologiesbasedonAAareintroducedto solvethemostfundamentalpowersystemoperationproblems.AAisan enhancedmodelofself-validatednumericalanalysis,whichrepresentsthe variablesofinterestasaffinecombinationsofprimitivevariablesdescribingstatisticalindependentuncertaintysources.Thesecombinationsallow describingtheeffectsofcomplexandcorrelatedsourcesofexogenousuncertainty,andapproximationerrorsinvolvedinthecomputations.

Thismethodologycanbeenhancedbycombiningitwithadvanced techniquesforinformationdiscoveryanddatacompression,suchasprincipalcomponentanalysis.Inthisway,theparametersoftheaffineforms describingtheinputdatauncertaintycanberigorouslyidentifiedonthe basisofhistoricalinformation,andthecardinalityoftheconsideredproblemcanbesensiblyreduced.

References

[1]G.Verbic,C.Cañizares,Probabilisticoptimalpowerflowinelectricitymarketsbased onatwo-pointestimatemethod,IEEETransactionsonPowerSystems21(4)(2006) 1883–1893.

[2]P.Chen,Z.Chen,B.Bak-Jensen,Probabilisticloadflow:Areview,in:Proceedings ofthe3rdInternationalConferenceonDeregulationandRestructuringandPower Technologies,DRPT2008,2008,pp.1586–1591.

[3]B.Zou,Q.Xiao,SolvingprobabilisticoptimalpowerflowproblemusingquasiMonte Carlomethodandninth-orderpolynomialnormaltransformation,IEEETransactions onPowerSystems29(1)(2014)300–306.

[4]M.Hajian,W.Rosehart,H.Zareipour,ProbabilisticpowerflowbyMonteCarlo simulationwithLatinsupercubesampling,IEEETransactionsonPowerSystems28(2) (2013)1550–1559.

[5]C.Su,Probabilisticload-flowcomputationusingpointestimatemethod,IEEETransactionsonPowerSystems20(4)(2005)1843–1851.

[6]H.Zhang,P.Li,Probabilisticanalysisforoptimalpowerflowunderuncertainty,IET Generation,Transmission&Distribution4(5)(2010)553–561.

[7]H.Yu,C.Chung,K.Wong,H.Lee,J.Zhang,Probabilisticloadflowevaluationwith hybridLatinhypercubesamplingandCholeskydecomposition,IEEETransactionson PowerSystems24(2)(2009)661–667.

[8]H.Mori,W.Jiang,AnewprobabilisticloadflowmethodusingMCMCinconsiderationofnodalloadcorrelation,in:Proceedingsofthe15thInternationalConference onIntelligentSystemApplicationstoPowerSystems,2009,pp.1–6.

[9]H.Yu,W.D.Rosehart,Probabilisticpowerflowconsideringwindspeedcorrelation ofwindfarms,in:Proceedingsofthe17thPowerSystemsComputationConference, 2011,pp.1–7.

[10]M.Hajian,W.D.Rosehart,H.Zareipour,ProbabilisticpowerflowbyMonteCarlo simulationwithLatinsupercubesampling,IEEETransactionsonPowerSystems28(2) (2012)1550–1559.

[11]A.Schellenberg,W.Rosehart,J.Aguado,Cumulant-basedprobabilisticoptimalpower flow(P-OPF)withGaussianandgammadistributions,IEEETransactionsonPower Systems20(2)(2005)773–781.

[12]A.S.Meliopoulos,G.J.Cokkinides,X.Y.Chao,Anewprobabilisticpowerflowanalysismethod,IEEETransactionsonPowerSystems5(1)(1990)182–190.

[13]R.Allan,A.daSilva,R.Burchett,Evaluationmethodsandaccuracyinprobabilistic loadflowsolutions,IEEETransactionsonPowerApparatusandSystemsPAS-100(5) (1981)2539–2546.

[14]R.Allan,M.Al-Shakarchi,Probabilistictechniquesinacload-flowanalysis,ProceedingsoftheInstitutionofElectricalEngineers124(2)(1977)154–160.

[15]P.Zhang,S.T.Lee,Probabilisticloadflowcomputationusingthemethodofcombined cumulantsandGram-Charlierexpansion,IEEETransactionsonPowerSystems19(1) (2004)676–682.

[16]L.Sanabria,T.Dillon,StochasticpowerflowusingcumulantsandVonMisesfunctions,InternationalJournalofElectricalPower&EnergySystems8(1)(1986)47–60.

[17]A.Dimitrovski,K.Tomsovic,Boundaryloadflowsolutions,IEEETransactionson PowerSystems19(1)(2004)348–355.

[18]F.Alvarado,Y.Hu,R.Adapa,Uncertaintyinpowersystemmodelingandcomputation,in:ProceedingsoftheIEEEInternationalConferenceonSystems,Manand Cybernetics,1992,pp.754–760.

[19]A.Vaccaro,D.Villacci,Radialpowerflowtoleranceanalysisbyintervalconstraint propagation,IEEETransactionsonPowerSystems24(1)(2009)28–39.

[20]Z.Wang,F.Alvarado,Intervalarithmeticinpowerflowanalysis,IEEETransactions onPowerSystems7(3)(1992)1341–1349.

[21]M.Madrigal,K.Ponnambalam,V.Quintana,Probabilisticoptimalpowerflow,in: ProceedingsoftheIEEECanadianConferenceonElectricalandComputerEngineering,vol.1,1998,pp.385–388.

[22]X.Li,Y.Li,S.Zhang,Analysisofprobabilisticoptimalpowerflowtakingaccount ofthevariationofloadpower,IEEETransactionsonPowerSystems23(3)(2008) 992–999.

[23]G.Verbic,C.Canizares,Probabilisticoptimalpowerflowinelectricitymarketsbased onatwo-pointestimatemethod,IEEETransactionsonPowerSystems21(4)(2006) 1883–1893.

[24]J.M.Morales,J.Perez-Ruiz,Pointestimateschemestosolvetheprobabilisticpower flow,IEEETransactionsonPowerSystems22(4)(2007)1594–1601.

[25]A.Mohapatra,P.Bijwe,B.Panigrahi,Optimalpowerflowwithmultipledatauncertainties,ElectricPowerSystemsResearch95(2013)160–167.

[26]C.Boonchuay,K.Tomsovic,F.Li,W.Ongsakul,Robustoptimization-basedDC optimalpowerflowformanagingwindgenerationuncertainty,AIPConferenceProceedings1499(1)(2012)31–35.

[27]G.Shafer,AMathematicalTheoryofEvidence,vol.1,PrincetonUniversityPress, Princeton,1976.

[28]L.A.Zadeh,Fuzzysets,InformationandControl8(3)(1965)338–353.

[29]P.Smets,Imperfectinformation:Imprecisionanduncertainty,in:UncertaintyManagementinInformationSystems,Springer,1997,pp.225–254.

[30]P.Bijwe,G.V.Raju,Fuzzydistributionpowerflowforweaklymeshedsystems,IEEE TransactionsonPowerSystems21(4)(2006)1645–1652.

[31]V.Miranda,J.Saraiva,Fuzzymodellingofpowersystemoptimalloadflow, in:ProceedingsofthePowerIndustryComputerApplicationConference,1991, pp.386–392.

[32]P.Bijwe,M.Hanmandlu,V.Pande,Fuzzypowerflowsolutionswithreactivelimits andmultipleuncertainties,ElectricPowerSystemsResearch76(1)(2005)145–152.

[33]X.Guan,W.E.Liu,A.D.Papalexopoulos,Applicationofafuzzysetmethodinan optimalpowerflow,ElectricPowerSystemsResearch34(1)(1995)11–18.

[34]J.Stolfi,L.H.DeFigueiredo,Self-validatednumericalmethodsandapplications,in: ProceedingsoftheMonographfor21stBrazilianMathematicsColloquium,Citeseer, 1997.

[35]R.Moore,MethodsandApplicationsofIntervalAnalysis,vol.2,SIAM,1979.

[36]S.Wang,Q.Xu,G.Zhang,L.Yu,Modelingofwindspeeduncertaintyandinterval powerflowanalysisforwindfarms,AutomationofElectricPowerSystems33(1) (2009)82–86.

[37]L.Pereira,V.DaCosta,A.Rosa,Intervalarithmeticincurrentinjectionpowerflow analysis,InternationalJournalofElectricalPower&EnergySystems43(1)(2012) 1106–1113.

[38]M.Neher,FromintervalanalysistoTaylormodels—Anoverview,in:Proceedingsof theInternationalAssociationforMathematicsandComputersinSimulation,2005.

[39]L.V.Barboza,G.P.Dimuro,R.H.Reiser,Towardsintervalanalysisoftheloaduncertaintyinpowerelectricsystems,in:ProceedingsoftheInternationalConferenceon ProbabilisticMethodsAppliedtoPowerSystems,2004,pp.538–544.

[40]A.Vaccaro,C.A.Cañizares,K.Bhattacharya,Arangearithmetic-basedoptimization modelforpowerflowanalysisunderintervaluncertainty,IEEETransactionsonPower Systems28(2)(2013)1179–1186.

[41]M.Pirnia,C.A.Cañizares,K.Bhattacharya,A.Vaccaro,Anaffinearithmeticmethod tosolvethestochasticpowerflowproblembasedonamixedcomplementarityformulation,IEEETransactionsonPowerSystems29(6)(2014)2775–2783.

[42]H.Liang,A.K.Tamang,W.Zhuang,X.Shen,Stochasticinformationmanagementin smartgrid,IEEECommunicationsSurveysandTutorials16(3)(2014)1746–1770.

[43]A.Vaccaro,C.A.Cañizares,D.Villacci,Anaffinearithmetic-basedmethodologyfor reliablepowerflowanalysisinthepresenceofdatauncertainty,IEEETransactionson PowerSystems25(2)(2010)624–632.

[44]C.Rakpenthai,S.Uatrongjit,S.Premrudeepreechacharn,Stateestimationofpower systemconsideringnetworkparameteruncertaintybasedonparametricintervallinear systems,IEEETransactionsonPowerSystems27(1)(2012)305–313.

[45]M.Pirnia,C.A.Cañizares,K.Bhattacharya,A.Vaccaro,Anovelaffinearithmetic methodtosolveoptimalpowerflowproblemswithuncertainties,in:Proceedingsof theIEEEPowerandEnergySocietyGeneralMeeting,2012,pp.1–7.

[46]R.Bo,Q.Guo,H.Sun,W.Wu,B.Zhang,Anon-iterativeaffinearithmeticmethodologyforintervalpowerflowanalysisoftransmissionnetwork,Proceedingsofthe ChineseSocietyforElectricalEngineering33(19)(2013)76–83.

[47]S.Wang,L.Han,P.Zhang,Affinearithmetic-baseddcpowerflowforautomatic contingencyselectionwithconsiderationofloadandgenerationuncertainties,Electric PowerComponentsandSystems42(8)(2014)852–860.

[48]G.Wei,L.Lizi,D.Tao,M.Xiaoli,S.Wanxing,Anaffinearithmetic-basedalgorithm forradialdistributionsystempowerflowwithuncertainties,InternationalJournalof ElectricalPower&EnergySystems58(2014)242–245.

[49]T.Ding,H.Z.Cui,W.Gu,Q.L.Wan,Anuncertaintypowerflowalgorithmbasedon intervalandaffinearithmetic,AutomationofElectricPowerSystems36(13)(2012) 51–55.

CHAPTER2

Elementsofreliablecomputing

Theoreticalfoundations

2.1Intervalarithmetic

InIA,eachvariable x isassumedtobe“unknownbutbounded”inan intervalofrealnumbers X =[xinf , xsup ],alsoknownasthetoleranceof x Thefollowingtheoremisofforemostimportancetodefineoperationson intervals[1]:

Theorem2.1 (FundamentalinvariantofrangeanalysisforIA). ∀ : p → q ,globallyLipschitzwithboundedslope.Thereexistsanintervalextension I : p → q suchthat:

Extendingelementaryoperations,suchassumsorproducts,tointervals istrivial.Forexample,giventwointervals X

[

],somebasicoperationsare: • Sum:

Difference:

Product:

• Division:

Morecomplexfunctionscanbeobtainedbycomposingtheseprimitive operators[1,2].ThankstoTheorem 2.1,theintervalresultingfromthese operationsisguaranteedtoenclosetherealrangeoffunctionvalues.

AffineArithmetic-BasedMethodsforUncertainPowerSystemAnalysis https://doi.org/10.1016/B978-0-32-390502-2.00009-0

IAhasbeenappliedtosolvesystemsoflinear[3,4]andnon-linear equations[5],andoptimizationproblems[6,7].Theobtainedsolutions, however,canyieldunexpectedresults[8,9],duetothelackofIAin representingthecorrelationbetweenuncertainvariables,whichleadsto thewrappingproblem,asillustratedinFig. 2.1 [9].Thisproblemcanbe demonstratedbyconsideringanharmonicoscillatorevolvingthroughthe statespace ˙ x1 = x2 , ˙ x2 =−x1 .At t = 0,itisrepresentedasarectangle, whoselengthandheightareparalleltocartesianaxes.Sincetheevolution oftherectangleleadstoanotheronewhichisnotparalleltotheaxes,the evolutionoftheintervalat t requiresaddingaseriesofspuriousstates, representedbytheblackregion(rotatedrectangle) A B C D .Duetothis reason,theevolutionoftheinterval,inafewiterations,diverges,covering theentirephasespace.

Anotherexampleisgivenbythissimpleoperation:

Theresultingintervalismuchwiderthanthetruerange,andlongcomputationchainsmayleadtoaberrantsolutions.Thisphenomenonrequires adoptingspecialcomputingtechniques[10].

Finally,the“dependencyproblem”isanotherlimitingaspectofinterval computation,whichisaconsequenceofthedefinitionofthedifference operator(2.2): X X =[xinf , xsup

ThisproblemisaconsequenceoftheinabilityofIAindiscriminating relationsbetweenuncertaintysources,whicharealwaysassumedtobeindependent.Iftheintervalvariablesareindependent,thentheresultsare correct,suchasfor X1 =[1, 2] and X2 =[1, 2]:inthiscase,theirdifference X1 X2 =[−1, 3],leadstocorrectresults.Ontheotherhand,iftheinterval variablesarethesame,theoverestimationerrorisextremelylarge.

Toaddresstheselimitations,moreadvancedparadigms,basedonAA, willbediscussedinnextsection.

2.2Affinearithmetic

AA,whichhasbeenintroducedin[2],isaself-validatedcomputingmethod thatallowsmodelingerrors,imprecisedata,andtruncationerrors.The

Figure2.1 DynamicbehaviorofanoscillatoranalyzedthroughIA.

approachoriginatesfromIA,butitkeepstrackofcorrelationsbetweenthe uncertainvariables.Forthisreason,theresultingboundsaremuchtighter andthedivergenceofthesolutionintervalsobservedinIAcanbeavoided ormitigated[11].

InAA,anuncertainvariable x isrepresentedbyanaffineform,which isafirstdegreepolynomial:

where x0 and xk areknownrealcoefficientsrepresentingthecentralvalue andthepartialdeviationsoftheaffineform ˆ x,respectively.

Thevariables εk ,calledthenoisesymbols,aredefinedovertheinterval [−1, 1].Thenoisesymbolsrepresentindependentuncertaintysourcesaffectingtheproblemvariables,whichcanbeinducedbycomputationerrors orexogenousuncertainsources.

Givenanaffineform,itcanbeconvertedtoanintervalbydefiningthe radius rad ( ˆ x),theupperbound x,thelowerbound x,andtherange |X |

Operationsonaffineformsrequirethereplacementofrealoperators withtheirassociatedAA-basedversion.Anaffineoperator ( ˆ x, ˆ y) canbe definedtomapagenericfunction (x, y) totheaffinedomain.Thisallows computinganaffineformfor ζ = (x, y),whichiscoherentwiththeinput affineforms ( ˆ x, ˆ y)

Anusefulfeatureoflinearfunctionsofaffineforms,isthattheiraffine representationcanbeobtainedbyrearrangingalltheoriginalnoisesymbols intoanaffineform,asinthefollowingequations:

Unfortunately,non-linearfunctionsdonotallow ζ tobeexpressedonly intermsoftheoriginalnoisesymbols:

Inthiscase,aproperapproximatingaffinefunctionshouldbedefined:

thisnon-affineoperatorapproximatesthefunction ( ˆ x, ˆ y) reasonablywell overitsdomain:

wherethelasttermrepresentstheresidualorapproximationerror:

Inordertohandlethisapproximationerror,anadditionalnoisesymbol εp+1 isaddedin(2.17),inordertoproperlyboundthecorresponding approximationerrors:

Furthermore,affineapproximationsofdifferentfunctions,suchas a in(2.16),canbedifferentdependingontherequiredaccuracy,andthe maximumacceptablecomputationalburden.Thefollowingapproximation representsadecenttrade-offbetweentheserequirements:

wheretheunknowncoefficients α , β ,and ξ canbeidentifiedbythefollowingtheorem:

Theorem2.2 (Chebyshevapproximationtheoremforunivariatefunctions). Givenaboundedandtwicedifferentiablefunction ,definedinsome intervalxI =[xinf , xsup ],whosesecondderivativedoesnotchangesigninsidex. Let a ( ˆ x) = α ˆ x + ξ beitsChebyshevaffineapproximationinxI .Then:

= (xsup ) (xinf ) xsup xinf

andthemaximumabsoluteerroris:

Inthiscase,theoptimalcoefficients α and ξ canbeeasilycalculated. Indeed,byconsideringthelineinterpolatingthepoints (xinf , f (xinf )) and (xsup , f (xsup )),theslope d (u) dx = α canbeobtained.

Givenalltheseproperties,AAcanbedefinedasanintermediate paradigmbetweenTaylorformsandzonotopes,asdescribedin[12],which ischaracterizedbyasetofadvantages,lackingfromotherfirstorderapproximationparadigms.

2.3SolvinguncertainequationsbyAA

Aparticularclassofnon-linearoperationisthemultiplicationbetweentwo affineforms ˆ x and ˆ y:

Thisnon-affineoperationistraditionallyapproximatedbyboundingthe secondorderterms:

wherethe R (.) istheradiusoftheaffineform.Startingfromthisresult, anewnoisesymboldescribingtheapproximationerrorcanbedefinedas follows:

Asetofuncertainnon-linearequations,wherethenon-linearityderivesfromthemultiplicationofaffineforms,canbesolvedbyusingthe mathematicaloperatorsproposedin[13].

Inparticular,let’sconsiderthefollowingnon-linearequation:

Thesolutionofthisequationrequirescomputingthecentralvalue x0 and thepartialdeviations x1 and x2 oftheaffineform ˆ x,whichsharesthesame primitivenoisesymbolsoftheknownterm ˆ zF ,suchthat: ˆ x 2 = x 2 0 + 2x0 x1 ε1 + 2x0 x2 ε2 + R ( ˆ x)2 ε3 = 4 + 0.8ε1 + 0.4ε2 (2.25)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.