Aerodynamics for engineering students 7th edition e.l. houghton - The full ebook with complete conte

Page 1


https://ebookmass.com/product/aerodynamics-for-engineeringstudents-7th-edition-e-l-houghton/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chemistry for Engineering Students 4th Edition Lawrence S. Brown

https://ebookmass.com/product/chemistry-for-engineering-students-4thedition-lawrence-s-brown/

ebookmass.com

Fundamentals of Aerodynamics, 7e 7th Edition John D. Anderson Jr.

https://ebookmass.com/product/fundamentals-of-aerodynamics-7e-7thedition-john-d-anderson-jr/

ebookmass.com

Orbital Mechanics for Engineering Students Fourth Edition. Edition Howard D. Curtis

https://ebookmass.com/product/orbital-mechanics-for-engineeringstudents-fourth-edition-edition-howard-d-curtis/

ebookmass.com

The Coronavirus: Human, Social and Political Implications James Miller

https://ebookmass.com/product/the-coronavirus-human-social-andpolitical-implications-james-miller/

ebookmass.com

Soviet Adventures in the Land of the Capitalists: Ilf and Petrov's American Road Trip Kirschenbaum

https://ebookmass.com/product/soviet-adventures-in-the-land-of-thecapitalists-ilf-and-petrovs-american-road-trip-kirschenbaum/

ebookmass.com

Drinking in Victorian and Edwardian Britain: Beyond the Spectre of the Drunkard Thora Hands

https://ebookmass.com/product/drinking-in-victorian-and-edwardianbritain-beyond-the-spectre-of-the-drunkard-thora-hands/

ebookmass.com

Generalist Social Work Practice 1st Edition – Ebook PDF Version

https://ebookmass.com/product/generalist-social-work-practice-1stedition-ebook-pdf-version/

ebookmass.com

Applying Language Technology in Humanities Research: Design, Application, and the Underlying Logic 1st ed. Edition Barbara Mcgillivray

https://ebookmass.com/product/applying-language-technology-inhumanities-research-design-application-and-the-underlying-logic-1sted-edition-barbara-mcgillivray/ ebookmass.com

Safety Management Systems in Aviation 2nd Edition

https://ebookmass.com/product/safety-management-systems-inaviation-2nd-edition/

ebookmass.com

Evidence-Based Practice in School Mental Health: Addressing DSM-5 Disorders in Schools 2nd Edition James C. Raines

https://ebookmass.com/product/evidence-based-practice-in-schoolmental-health-addressing-dsm-5-disorders-in-schools-2nd-edition-jamesc-raines/

ebookmass.com

Aerodynamicsfor EngineeringStudents

SeventhEdition

Aerodynamicsfor EngineeringStudents SeventhEdition

E.L.Houghton P.W.Carpenter

StevenH.Collicott

DanielT.Valentine

Butterworth-HeinemannisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2017ElsevierLtd.Allrightsreserved

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnot warranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionofMATLAB® software orrelatedproductsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofaparticular pedagogicalapproachorparticularuseoftheMATLAB® software.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-08-100194-3

ForinformationonallButterworth-Heinemannpublications visitourwebsiteat https://www.elsevier.com/

Publisher: ToddGreen

AcquisitionEditor: StephenMerken

EditorialProjectManager: NateMcFadden

ProductionProjectManager: SujathaThirugnanaSambandam

Designer: VictoriaPearson

TypesetbyVTeX

Preface

Thisvolumeisintendedforengineeringstudentsinintroductoryaerodynamics coursesandasareferenceusefulforreviewingfoundationaltopicsforgraduate courses.Priorcompletionofanintroductorythermodynamicscoursewillassistthe studentwithunderstandingbestthesectionswhichincludecompressible(highspeed) flows.

Fourdivisionsinthevolumepresentanintroduction,fundamentalsoffluiddynamics,aerodynamicsofairfoils,bodies,andwings,andaerodynamicapplications. Thusthesubjectdevelopmentinthiseditionbeginswithdefinitionsandconcepts, developstheimportantequationsofmotion,andthenexploresboundarylayers,the importantflowalongaircraftsurfaces.Inclusionofbasicthermodynamicsleadsto thetopicofcompressibleflows,includingsupersonicphenomena.

Theequationsofmotionarethensimplifiedtostudyincompressibleflow,includingthepowerfultheoryknownaspotentialflow.Potentialflowisappliedtolow speedairfoilandwingtheory,generatinglessonswhichareactuallyapplicableasa foundationtobegintounderstandalmosteverycomplexairfoilandwing.Compressibleflowmodelsarethencombinedwithflowsoverairfoilsandwingstobeginto understandhighspeedflight.

Attentionisthenturnedtothecomputationsandapplicationsofaerodynamics. Obviouslyaerodynamicdesigntodayreliesextensivelyoncomputationalmethods. Thisisreflectedinpartinthisvolumebytheintroduction,whereappropriate,ofdescriptionsanddiscussionsofrelevantcomputationaltechniques.However,thistext isaimedatprovidingthefundamentalfluiddynamicsoraerodynamicsbackground necessaryforstudentstomovesuccessfullyintoadedicatedcourseoncomputation methodsorexperimentalmethods.Assuch,experienceincomputationaltechniques orexperimentaltechniquesarenotrequiredforacompleteunderstandingoftheaerodynamicsinthisbook.Theauthorsurgestudentsonwardtosuchadvancedcourses andexcitingcareersinaerodynamics.

ADDITIONALRESOURCES

Asetof.mfilesfortheMATLABroutinesinthebookareavailablebyvisitingthe book’scompanionsiteat www.textbooks.elsevier.com/9780081001943.Instructors usingthetextforacoursemayaccessthesolutionsmanualandimagebankbyvisiting www.textbooks.elsevier.com andfollowingtheonlineregistrationinstructions.

ACKNOWLEDGMENTS

Theauthorsthankthefollowingfaculty,whoprovidedfeedbackonthisproject throughsurveyresponses,reviewofproposal,and/orreviewofchapters:

Dr.GoetzBramesfeld RyersonUniversity

Dr.KursatKara KhalifaUniversity,AbuDhabi

BrianLandrum,Ph.D UniversityofAlabamainHuntsville

Dr.TorstenSchenkel SheffieldHallamUniversity,Sheffield,England

Prof.ChelakaraS.Subramanian FloridaInstituteofTechnology

DavidTucker NorthbrookCollege,Sussex,England

BruceVu NASAKennedySpaceCenter

ProfessorsCollicottandValentinearegratefulfortheopportunitytocontinuethe workofProfessorsHoughtonandCarpenterandthankJoeHayton,Publisher,forthe invitationtodoso.Inaddition,theprofessionaleffortsofSteveMerken,Acquisitions Editor,NateMcFadden,DevelopmentalEditor,SujathaThirugnanaSambandam, ProductionManager,andVictoriaPearsonEsser,Designerareinstrumentalinthe creationofthisseventhedition.

Theproductsofone’seffortsareofcoursetheculminationofallofone’sexperienceswithothers.Foremostamongstthepeoplewhoaretobethankedmostwarmly forsupportareourfamilies.CollicottandValentinethankJennifer,Sarah,andRachel andMary,Clara,Zoe,andZachT.,respectively,fortheirloveandforthecountless joysthattheybringtous.OurProfessorsandstudentsoverthedecadesaremajorcontributorstoouraerodynamicsknowledgeandwearethankfulforthem.Theauthors sharetheirdeepgratitudeforGod’sboundlessloveandgraceforall.

BasicConceptsand Definitions

“Toworkintelligently”(OrvilleandWilburWright)“one needstoknowtheeffectsofvariationsincorporatedinthe surfaces. Thepressuresonsquaresaredifferentfromthose onrectangles,circles,triangles,orellipses. Theshapeof theedgealsomakesadifference.” from TheStructureofthePlane –MurielRukeyser

LEARNINGOBJECTIVES

• Reviewthefundamentalprinciplesoffluidmechanicsandthermodynamics requiredtoinvestigatetheaerodynamicsofairfoils,wings,andairplanes.

• Recalltheconceptsofunitsanddimensionandhowtheyareappliedtosolving andunderstandingengineeringproblems.

• Learnaboutthegeometricfeaturesofairfoils,wings,andairplanesandhowthe namesforthesefeaturesareusedinaerodynamicscommunications.

• Exploretheaerodynamicforcesandmomentsthatactonairfoils,wings,and airplanesandlearnhowwedescribetheseloadsquantitativelyindimensional formandascoefficients.

• Determinetheconditionsforlongitudinallystable,steady,levelaircraftflight.

• Reviewcontrol-volumeanalysisbyexaminingthemomentumtheoryofpropellers andhelicopterrotors.

• Learnthefundamentalsofhydrostaticsandwhenthetopicappliesto aerodynamics.

1.1 INTRODUCTION

Thestudyofaerodynamicsrequiresanumberofbasicdefinitions,includinganunambiguousnomenclatureandanunderstandingoftherelevantphysicalproperties, relatedmechanics,andappropriatemathematics.Ofcourse,thesenotionsarecommontootherdisciplines,anditisthepurposeofthischaptertoidentifyandexplain

AerodynamicsforEngineeringStudents.DOI: 10.1016/B978-0-08-100194-3.00001-8 Copyright©2017ElsevierLtd.Allrightsreserved.

thosethatarebasicandpertinenttoaerodynamicsandthataretobeusedintheremainderofthevolume.

1.1.1 BasicConcepts

Thistextisanintroductoryinvestigationofaerodynamicsforengineeringstudents.1 Hence,weareinterestedintheorytotheextentthatitcanbepracticallyappliedto solveengineeringproblemsrelatedtothedesignandanalysisofaerodynamicobjects.

Thedesignofvehiclessuchasairplaneshasadvancedtothelevelwherewerequirethewealthofexperiencegainedintheinvestigationofflightoverthepast100 years.Weplantoinvestigatethecleverapproximationsmadebythefewwholearned howtoapplymathematicalideasthatledtoproductivemethodsandusefulformulas topredictthedynamicalbehaviorof“aerodynamic”shapes.Weneedtolearnthe strengthsand,moreimportant,thelimitationsofthemethodologiesanddiscoveries thatcamebeforeus.

Althoughwehaveextensivearchivesofrecordedexperienceinaeronautics,there arestillmanyopportunitiesforadvancement.Forexample,significantadvancements canbeachievedinthestateoftheartindesignanalysis.Aswedevelopideasrelatedtothephysicsofflightandtheengineeringofflightvehicles,wewilllearn thestrengthsandlimitationsofexistingproceduresandexistingcomputationaltools (commerciallyavailableorotherwise).Wewilllearnhowairfoilsandwingsperform andhowweapproachthedesignsoftheseobjectsbyanalyticalprocedures.

Thefluidofprimaryinterestisair,whichisagasatstandardatmosphericconditions.Weassumethatthedynamicsoftheaircanbeeffectivelymodeledintermsof thecontinuumfluiddynamicsmodel2 incompressibleorsimple-compressiblefluid. Airisafluidwhoselocalthermodynamicstateweassumeisdescribedeitherby itsmassdensity ρ = constant,orbytheidealgaslaw.Inotherwords,weassume airbehavesaseitheranincompressibleorasimple-compressiblemedium,respectively.Theconceptsofacontinuum,anincompressiblesubstance,andasimplecompressiblegaswillbeelaboratedoninChapter 4.

The equationofstate,knownastheidealgaslaw,relatestwothermodynamic propertiestootherpropertiesand,inparticular,thepressure.Itis

p = ρRT (1.1) where p isthethermodynamicpressure, ρ ismassdensity, T isabsolute(thermodynamic)temperature,andthespecificgasconstantforairis R = 287J/(kgK)or

1 Ithaslongbeencommoninengineeringschoolsforanelementary,macroscopicthermodynamicscourse tobecompletedpriortoacompressible-flowcourse.Theportionsofthistextthatdiscusscompressible flowassumethatsuchacourseprecedesthisone,andthusthediscussionsassumesomeelementaryexperiencewithconceptssuchasinternalenergyandenthalpy.

2 Thatis,airapproximatedasacontinuousformofmatter,whichissufficientlyaccurateformostformsof flightpropelledbyair-breathingengines.

R = 1716ft-lb/(slug°R) 1 .Pressureandtemperaturearerelativelyeasytomeasure. Forexample,“standard”barometricpressureatsealevelis p = 101,325Pascals, whereaPascal(Pa)is1N/m2 .InImperialunitsthisis14.675psi,wherepsiislb/in2 and1psiisequalto6895Pa(notethat14.675psiisequalto2113.2lb/ft2 ).Thestandardtemperatureis288.15K(or15°C,whereabsolutezeroequalto 273.15°C isused).InImperialunitsthisis519°R(or59°F,whereabsolutezeroequalto 459.67°Fisused).Substitutingintotheidealgaslaw,wegetforthestandarddensity ρ = 1.225kg/m3 inSIunits(and ρ = 0.00237slugs/ft3 inImperialunits).This isthedensityofairatsealevelgiveninthetableofdataforatmosphericair;thetable forstandardatmosphericconditionsisprovidedin AppendixB.

Thethermodynamicpropertiesofpressure,temperature,anddensityareassumed tobethepropertiesofamass-pointparticleofairatalocation x = (x,y,z) in spaceataparticularinstantintime, t .Weassumethemeasurementvolumetobe sufficientlysmalltobeconsideredamathematicalpoint.Wealsoassumethatitis sufficientlylargesothatthesepropertieshavemeaningfromtheperspectiveofequilibriumthermodynamics.Andwefurtherassumethatthepropertiesarethesameas thosedescribedinacourseonclassicalequilibriumthermodynamics.Therefore,we assumethat localthermodynamicequilibrium prevailswithinthemass-pointparticleat x and t regardlessofhowfastthethermodynamicstatechangesastheparticle movesfromonelocationinspacetoanother.Thisisanacceptableassumptionforour macroscopicpurposesbecausemolecularprocessesaretypicallymuchfasterthan anychangesintheflowfieldweareinterestedinfromamacroscopicpointofview are.Inaddition,weinvokethe continuumhypothesis,withwhichweassumethat theairisacontinuousformofmatterratherthandiscretemolecules.Thuswecan defineallflowpropertiesascontinuousfunctionsofpositionandtimeandthatthese functionsaresmooth,thatis,theirderivativesarecontinuous.Thisallowsustoapply differentialintegralcalculustosolvepartialdifferentialequationsthatsuccessfully modeltheflowfieldsofinterestinthiscourse.Inotherwords,predictionsbasedon thetheoryreportedinthistexthavebeenexperimentallyverified.TheContinuum Hypothesisisvalidformostatmosphericflightbecausetherearesomanymolecules perunitvolume(approximately1019 cm 3 atsealevel)thatthemotionofanyindividualmoleculecannotbesensed.

Todevelopthetheory,thefundamentalprinciplesofclassicalmechanicsareassumed.Theyare

•Conservationofmass

•Newton’ssecondlawofmotion

•Firstlawofthermodynamics

•Secondlawofthermodynamics

Theprincipleofconservationofmassdefinesamass-pointparticle,whichisafixedmassparticle.Thustheprinciplealsodefinesmassdensity ρ ,whichismassperunit volume.Ifamass-pointparticleconservesmass,aswehavepostulated,thendensity changescanonlyoccurifthevolumeoftheparticlechanges,becausethedimension

ofmassdensityisM/L3 ,whereMismassandLislength.TheSIunitofdensityis thuskg/m3 .

Avehiclemovingthroughtheairorairinmotionaroundthevehicleareofcourse causesofourstudyofthetopicofaerodynamics.Itisnaturalforthestudentreading thistexttowishtogetstartedquicklyintoastudyofsuchmotion.Aerodynamics, andfluiddynamicsingeneral,arerichlynon-linearandthus,arerarelysimpleand quickstudies.However,thestudentwillfindoneimportantconceptinfluidmotion developedinSection 2.2.1 andthatconceptisarelationshipbetweenpressureand velocityknownasBernoulli’sequation.Itcanbewritteninseveralforms,buthere consideritthisway:

Heretheleftside, po ,isknownbythesynonyms“totalpressure”and“stagnation pressure.”Inmany,butnotall,ofthesimpleflowsastudentencounters,thistotal pressureisconserved—itisaconstant.Inthesecases,andalongastreamlineinsome morecomplexflows,thetwotermsontherighthandsidemustsumtoaconstant. Thefirsttermontherightisthestaticpressure,generallyjustcalledpressure.For pressuretobereduced,suchasoverthetopofanairfoilorwing,thesecondtermon therightsidemustbecomegreater.Becauseinlow-speedaerodynamicsthedensity isconstant,anyincreaseinthemagnitudeofthesecondtermiscausedbyanincrease inairvelocity, V .EvenwhenBernoulli’sequationisnotquantitativelycorrectfor acertainsituation,theenergyexchangebetweenstaticpressureandvelocityofthe flowexists.

Studentsshouldapplythisequationwithcarewhilelearning,insubsequentSectionsandChapters,theconditionsunderwhichBernoulli’sequationcanbeused properly.

Newton’ssecondlawdefinestheconceptofforceintermsofacceleration(F = ma ).Theaccelerationofamass-pointparticleisthechangeinitsvelocitywithrespecttoachangeintime.Letthevelocityvector V = (u,v,w);thisisthevelocity ofamass-pointparticleatapointinspace, x = (x,y,z),ataparticularinstantin time t .Theaccelerationofthismass-pointparticleis

Thisisknownasthesubstantialderivativeofthevelocityvector.Sinceweareinterestedinthepropertiesatfixedpointsinspaceinacoordinatesystemattachedtothe objectofinterest(i.e.,the“laboratory”coordinates),therearetwopartstomass-point particleacceleration.Thefirstisthelocalchangeinvelocitywithrespecttotime.The secondtakesintoaccounttheconvectiveaccelerationassociatedwithachangeinvelocityofthemass-pointparticlefromitslocationupstreamofthepointofinterestto theobservationpoint x attime t

Wewillalsobeinterestedinthespatialandtemporalchangesinanyproperty f ofamass-pointparticleoffluid.Thesechangesaredescribedbythesubstantial

derivativeasfollows:

Thisequationdescribesthechangesinanymaterialproperty f ofamasspointat aparticularlocationinspaceataparticularinstantintime.Thisisinalaboratory referenceframe,theso-called Eulerianviewpoint. Thenextstepinconceptualdevelopmentofatheoryistoconnectthechanges inflowpropertieswiththeforces,moments,andenergyexchangethatcausethese changestohappen.Themathematicalconceptspresentedandappliedinthisbook describethedynamicbehaviorofathermo-mechanicalfluid.Inotherwords,weneglectelectromagnetic,relativistic,andquantumeffectsondynamics.Wedothisby firstadoptingtheNewtoniansimple-compressibleviscousfluidmodelforrealfluids (e.g.,waterandair),whichisdescribedindetailinChapter 2.Moreover,wewill applythesimpler,yetquiteuseful,Euler’sperfectfluidmodel,alsodescribedin Chapter 2.Itisquitefortunatethatthelattermodelhassignificantpracticaluseinthe designanalysisofaerodynamicobjects.

BeforeweproceedtoChapter 2 andlookatthedevelopmentoftheequations ofmotionandthesimplificationswewillapplytopotentialflowsinChapters 5, 6, and 7,wereviewsomeusefulmathematicaltools,definethegeometryofthewing, andprovideanoverviewofwingperformanceinthenextthreesections,respectively.

AERODYNAMICSAROUNDUS

IsBernoulli’sEquationaSpring-MassSystem?

YouhaveseenthatBernoulli’sequationinaerodynamicsiswritten

wherethe 1 2 ρV 2 termiscalledthe“dynamicpressure”.Butatfirstyoulikelyare unsureofjustwhatthedynamicpressure,whichwecall q ,is.Staticpressureyou experienceclearlyinyourearsasyouascendordescendathousandfeetinairora coupleoffeetunderwater.Total,orstagnation,pressureyoumightconsiderasthe increasedstaticpressureyoufeelwhenyourhandisheldoutthecarwindowwith palmfacingforward.Dynamicpressureseemsfarlessphysicaltomoststudents. Recallanelementaryphysicsproblem,amassonafrictionlesssurfaceand attachedtoaspring:

Whenthemassispulledtoextendthespring,energyisstoredinthespring.If youreleasethemass,itmovestowardsthespring,convertingspringenergyinto

kineticenergy.Thesumofspringenergyandkineticenergyisconstant;ifthe energyisnotinthemotion,it’sinthespring.Prettysimple.

Considerpressure,whichyouarelikelyaccustomedtothinkingofasaforce perarea.Buttheunitsofforceperareaarealsounitsofenergypervolume.So Bernoulli’sequationisalsoadescriptionofhowthreeenergies(pervolume)are related.Whatthreeenergies?Becausedensityismasspervolume,dynamicpressureisakineticenergypervolume.Thisisaddedtoanotherenergypervolume, staticpressure,toequalstagnationpressure,whichisaconstantinmanyflows. Thus,staticpressureislikeaspringenergypervolume.Inthisview,Bernoulli’s equationtellsusthatanincompressiblesteadyflowislikeaspring-masssystem; iftheenergyisnotinthespring,(staticpressure)thenit’sinthemotion(kinetic energy).There’ssimplynootherplacefortheenergytogoinsuchasystem.

Bernoulli’slawsimplytellsusthemotionandcompressiontradeoffbackand forthinasteadyincompressibleflow,likeamass–springsystem.

1.2 UNITSANDDIMENSIONS

Measurementandcalculationrequireasystemofunitsinwhichquantitiesaremeasuredandexpressed.Aerospaceisaglobalindustry,andtobebestpreparedfora globalcareer,engineersneedtobeabletoworkinbothsystemsinusetoday.Even whenoneworksforacompanywithastrictstandardforuseofonesetofunits, customers,suppliers,andcontractorsmaybebetterversedinanother,anditisthe engineer’sjobtoefficientlyreconcilethevariousdocumentsorspecificationswithoutintroducingconversionerrors.Consider,too,thephysicsbehindtheunits.That is,oneknowsthatforlinearmotion,forceequalstheproductofmassandacceleration.Theunitsoneusesdonotchangethephysicsbutchangeonlyourquantitative descriptionsofthephysics.Whenconfusedaboutunits,focusontheprocessorstate beingdescribedandstepthroughtheanalysis,trackingunitstheentireway.

IntheUnitedStates,“Imperial”or“English”unitsremaincommon.Distance (withinthescaleofanaerodynamicdesign)isdescribedininchesorfeet.Massis describedbyeithertheslugorthepound-mass(lbm).Weightisdescribedbypounds (lb)orbytheequivalentunitwitharedundantname,thepound-force(lbf).Large distances—forexample,therangeofanaircraft—aredescribedinmilesornautical miles.Speedisfeetpersecond,milesperhour,orknots,whereoneknotisone nauticalmileperhour.Multimilliondollaraircraftarestillmarketedandsoldusing knotsandnauticalmiles(tryawebsearchon“777range”),sotheseunitsarenot obsolete.

Inotherpartsoftheworld,andinK-12educationintheUnitedStates,thedominantsystemofunitsistheSystèmeInternationald’Unités,commonlyabbreviatedas “SIunits.”Itisusedthroughoutthisbook,exceptinaveryfewplacesasspecially noted.

Itisessentialtodistinguishbetween“dimension”and“unit.”Forexample,the dimension“length”expressesthe qualitative conceptoflineardisplacement,ordistancebetweentwopoints,asanabstractidea,withoutreferencetoactualquantitative measurement.Theterm“unit”indicatesaspecifiedamountofaquantity.Thusameterisaunitoflength,beinganactual“amount”oflineardisplacement,andsoisa mile.Themeterandmilearedifferent units,sinceeachcontainsadifferent amount oflength,butbothdescribelengthandthereforeareidentical dimensions 3

Expressingthisinsymbolicform:

• x meters = [L](aquantityof x metershasthedimensionoflength)

• x miles = [L](aquantityof x mileshasthedimensionoflength)

• x meters = x miles(x milesand x metersareunequalquantitiesoflength)

•[x meters] = [x miles](thedimensionof x metersisthesameasthedimensionof x miles).

1.2.1 FundamentalDimensionsandUnits

Therearefivefundamentaldimensionsintermsofwhichthedimensionsofallother physicalquantitiesmaybeexpressed.Theyaremass[M],length[L],time[T],temperature[θ ],andcharge.4 (Chargeisnotusedinthistextsoisnotdiscussedfurther.)

Aconsistentsetofunitsisformedbyspecifyingaunitofparticularvalueforeachof thesedimensions.Inaeronauticalengineeringtheacceptedunitsare,respectively,the kilogram,themeter,thesecond,andtheKelvinordegreeCelsius.Theseareidentical withtheunitsofthesamenamesincommonuseandaredefinedbyinternational agreement.

Itisconvenientandconventionaltorepresentthenamesoftheseunitsbyabbreviations:

kgforkilogram,slugsforslugs,andlbmforpound-mass mformeterandftforfeet sforsecond

◦ CfordegreeCelsiusand ◦ FfordegreeFahrenheit KforKelvinandRforRankine(butalsoforthespecificgasconstant)

ThedegreeCelsiusisoneone-hundredthpartofthetemperatureriseinvolved whenpurewateratfreezingtemperatureisheatedtoboilingtemperatureatstandard

3 Quiteoften“dimension”appearsintheform“adimensionof8meters,”meaningaspecifiedlength. Thisisthuscloselyrelatedtotheengineer’s“unit,”andimplieslinearextensiononly.Anothercommon exampleoftheuseof“dimension”isin“three-dimensionalgeometry,”implyingthreelinearextensionsin differentdirections.Referencesinlaterchapterstotwo-dimensionalflow,forexample,illustratethis.The meaningheremustnotbeconfusedwitheitheroftheseuses.

4 Someauthoritiesexpresstemperatureintermsoflengthandtime.Thisintroducescomplicationsthatare brieflyconsideredinSection 1.3.8

pressure.IntheCelsiusscale,purewateratstandardpressurefreezesat0 ◦ C(32◦ F) andboilsat100 ◦ C(212◦ F).

TheunitKelvin(K)isidenticalinsizetothedegreeCelsius(◦ C),buttheKelvin scaleoftemperatureismeasuredfromtheabsolutezerooftemperature,whichis approximately 273 ◦ C.ThusatemperatureinKisequaltoatemperaturein ◦ Cplus 273.15.Similarly,degreesRankineequals ◦ Fplus459.69.

1.2.2 FractionsandMultiples

Sometimes,thefundamentalunitsjustdefinedareinconvenientlylargeorinconvenientlysmallforaparticularcase.Ifso,thequantitycanbeexpressedasafraction ormultipleofthefundamentalunit.Suchmultiplesandfractionsaredenotedbya prefixappendedtotheunitsymbol.Theprefixesmostusedinaerodynamicsare:

M(mega)—1million k(kilo)—1thousand m(milli)—1-thousandthpart µ(micro)—1-millionthpart n(nano)—1-billionthpart

Thus

1MW = 1,000,000W

1mm = 0.001m 1µm = 0.001mm

Aprefixattachedtoaunitmakesanewunitso,forexample, 1mm2 = 1(mm)2 = 10 6 m2

Forsomepurposes,thehourortheminutecanbeusedastheunitoftime.

ForImperialunits,everydayscientificnotationisusedratherthansuffixesorprefixes.Oneexceptionisstressorpressureofthousandsofpoundspersquareinch, knownaskpsi.Additionally,lengthmayswitchfromfeettoinchesormiles.Itis commontousefractionalinches,butthestudentengineerneedstobeawarethat theimpliedprecisioninafractionincreasesrapidly.Forexample,1/2 = 0.5,but 1/32 = 0.03125.

1.2.3 UnitsofOtherPhysicalQuantities

Havingdefinedthefourfundamentaldimensionsandtheirunits,itispossibleto establishunitsofallotherphysicalquantities(see Table1.1).Speed,forexample,is definedasthedistancetraveledinunittime.ItthereforehasthedimensionLT 1 and ismeasuredinmeterspersecond(ms 1 ).Itissometimesdesirabletousekilometers

Table1.1 UnitsandDimensions

Quantity

Dimension Unit(abbreviation)

LengthLMeter(m)orfeet(ft)

MassMKilogram(kg)orslugorpound-mass(lbm)

TimeTSecond(s)

Temperature θ

AreaL2

VolumeL3

SpeedLT 1

AccelerationLT 2

DegreeCelsius(◦ C)orFahrenheit(◦ F)orKelvin(K)or Rankine(R)

Squaremeter(m2 )orsquarefoot(ft2 )

Cubicmeter(m3 )orcubicfoot(ft3 )

Meterspersecond(ms 1 )orfeetpersecond(fts 1 )

Meterspersecondpersecond(ms 2 )orfeetpersecond squared(fts 2 )

Angle1Radianordegree(◦ )(radianisexpressedasaratioand isthereforedimensionless)

AngularvelocityT 1

AngularaccelerationT 2

FrequencyT 1

DensityML 3

ForceMLT 2

StressML 1 T 2

Radianspersecond(s 1 )

Radianspersecondpersecond(s 2 )

Cyclespersecond,Hertz(s 1 ,Hz)

Kilogramspercubicmeter(kgm 3 )orslugspercubic foot(slugft 3 )orpound-masspercubicfoot(lbmft 3 )

Newton(N)orpound(lb)

NewtonspersquaremeterorPascal(Nm 2 orPa)or poundspersquareinch(psi)orpoundspersquarefoot (psf)

Strain1None(expressedasanondimensionalratio)

PressureML 1 T 2

EnergyworkML2 T 2

PowerML2 T 3

MomentML2 T 2

AbsoluteviscosityML 1 T 1

KinematicviscosityL2 T 1

BulkelasticityML 1 T 2

NewtonspersquaremeterorPascal(Nm 2 orPa)or poundspersquareinch(psi)orpoundspersquarefoot (psf)

Joule(J)orfoot-pounds(ftlb)

Watt(W)orhorsepower(Hp)

Newtonmeter(Nm)orfoot-pounds,(ftlb)

KilogramspermeterpersecondorPoiseuilles (kgm 1 s 1 orPI)orslugsperfootpersecond (slugft 1 s 1 )

Meterssquaredpersecond(m2 s 1 )orfeetsquaredper second(ft2 s 1 )

NewtonspersquaremeterorPascal(Nm 2 orPa)or poundspersquareinch(psi)orpoundspersquarefoot (psf).

perhourorknots(nauticalmilesperhour;see AppendixD)asunitsofspeed;care mustbeexercisedtoavoiderrorsofconsistency.

Tofindthedimensionsandunitsofmorecomplexquantities,weusetheprinciple of dimensionalhomogeneity.Thissimplymeansthat,inanyvalidphysicalequation, thedimensionsofbothsidesmustbethesame.Thus,forexample,if(mass)n appears ontheleft-handsideoftheequation,itmustalsoappearontheright-handside; similarlyforlength,time,andtemperature.

Thus,tofindthedimensionsofforce,weuseNewton’ssecondlawofmotion

Force = mass × acceleration whereaccelerationisspeed ÷ time.Expresseddimensionally,thisis

Writingintheappropriateunits,itisseenthataforceismeasuredinunitsofkgms 2 . Since,however,theunitofforceisgiventhenameNewton(abbreviatedusuallytoN), itfollowsthat

1N = 1kgms 2

Itshouldbenotedthattherecanbeconfusionbetweentheuseofmbothfor “milli”andfor“meter.”Thisisavoidedbyuseofaspace.Thusmsdenotesmillisecondwhilemsdenotestheproductofmeterandsecond.

Theconceptofdimensionformsthebasisofdimensionalanalysis,whichisused todevelopimportantandfundamentalphysicallaws.Itstreatmentispostponedto Section 1.5

1.2.4 ImperialUnits

Engineersinsomepartsoftheworld,theUnitedStatesinparticular,useasetofunits basedontheImperialsystems5 inwhichthefundamentalunitsare

Mass—slug

Length—foot

Time—second

Temperature—degreeFahrenheitorRankine

5 SincemanyvaluabletextsandpapersexistusingImperialunits,thisbookcontains,as AppendixD, atableoffactorsforconvertingfromtheImperialtotheSIsystem.

1.3 RELEVANTPROPERTIES

Anyfluidthatwewishtodescribeexistsinsomestateofmatter.Forexample,ifwe areworkingwithaflowofnitrogen,isitgaseousnitrogenorliquidnitrogen?For whateverthestatethefluidisin,weneedacollectionof“tools”tousetodescribe thethermodynamicstateofthefluidatapoint,overtime,andthroughoutafield. Anunambiguousdescriptionofthethermodynamicstateofthefluidisimportantof coursetoamathematicalmodelofaflowandisvitaltoeffectiveengineeringcommunication.Thusinthissectionwedevelopthetoolstousetoformtheseunambiguous descriptions.

1.3.1 FormsofMatter

Mattermayexistinthreeprincipalforms—solid,liquid,orgas—correspondingin thatordertodecreasingrigidityofthebondsbetweenthemoleculesthemattercomprises.Aspecialformofagas,a plasma,haspropertiesdifferentfromthoseofa normalgas;althoughbelongingtothethirdgroup,itcanberegardedjustifiablyas aseparate,distinctformofmatterthatisrelevanttothehighest-speedaerodynamics suchasflowsoverspacecraftreenteringtheatmosphere.

Inasolidtheintermolecularbondsareveryrigid,maintainingthemoleculesin whatisvirtuallyafixedspatialrelationship.Thusasolidhasafixedvolumeand shape.Thisisseenclearlyincrystals,inwhichthemoleculesoratomsarearranged inadefinite,uniformpattern,givingallcrystalsofthatsubstancethesamegeometric shape.

Aliquidhasweakerbondsbetweenitsmolecules.Thedistancesbetweenthe moleculesarefairlyrigidlycontrolled,butthearrangementinspaceisfree.Therefore,liquidhasacloselydefinedvolumebutnodefiniteshape,andmayaccommodate itselftotheshapeofitscontainerwithinthelimitsimposedbyitsvolume.

Agashasveryweakbondingbetweenthemoleculesandthereforehasneither definiteshapenordefinitevolume,butratherwillfillthevesselcontainingit.

Aplasmaisaspecialformofgasinwhichtheatomsareionized—thatis,they havelostorgainedoneormoreelectronsandthereforehaveanelectricalcharge. Anyelectronsthathavebeenstrippedfromtheatomsarewanderingfreewithinthe plasmaandhaveanegativeelectricalcharge.Ifthenumberofionizedatomsandfree electronsissuchthatthetotalpositiveandnegativechargesareapproximatelyequal, sothatthegasasawholehaslittleornocharge,itistermedaplasma.Inastronautics plasmaisofparticularinterestforthereentryofrockets,satellites,andspacevehicles intotheatmosphere.

1.3.2 Fluids

Afluidisaliquidoragas.Thefieldofsciencewecall“FluidDynamics”thusencompassesbothaerodynamicsandhydrodynamics.Equationsofmotionforafluiddo notdependonthatfluidbeingliquidorgas,buttheequationofstatewilldiffer.The basicfeatureofafluidisthatitcanflow—thisistheessenceofanydefinitionofit.

However,flowappliestosubstancesthatarenottruefluids—forexampleafinepowderpiledonaslopingsurfacewillflow.Forexample,flourpouredinacolumnonto aflatsurfacewillformaroughlyconicalpile,withalargeangleofrepose,whereas water,whichisatruefluid,pouredontoahorizontalsurfacewillspreaduniformly overit.Equally,apowdermaybeheapedinaspoonorbowl,whereasaliquidwill alwaysformalevelsurface.Anydefinitionofafluidmustallowforthesefacts,soa fluidmaybedefinedas“mattercapableofflowing,andeitherfindingitsownlevel (ifaliquid),orfillingthewholeofitscontainer(ifagas).”Oncewerestrictourselves toanidealgas,suchasforsteady,levelatmosphericflight,distinctionsbetweenair asa“Newtonianfluid”andfineparticulatesareclear.ANewtonianfluidisonein whichshearstressisproportionaltorateofshearingstrain;thisisneverfoundin particulates.

Experimentshowsthatanextremelyfinepowder,inwhichtheparticlesarenot muchlargerthanmolecularsize,findsitsownlevelandmaythuscomeunderthe commondefinitionofaliquid.Also,aphenomenonwellknowninthetransportof sands,gravels,andsoforth,isthatthesesubstancesfindtheirownleveliftheyare agitatedbyvibrationorthepassageofairjetsthroughtheparticles.Thesearespecial cases,however,anddonotdetractfromtheauthorityofthedefinitionofafluidasa substancethatflowsor(tautologically)thatpossessesfluidity.

1.3.3 Pressure

Atanypointinafluid,whetherliquidorgas,thereisapressure.Ifabodyisplacedin afluid,itssurfaceisbombardedbyalargenumberofmoleculesmovingatrandom. Undernormalconditionsthecollisionsonasmallareaofsurfacearesofrequentthat theycannotbedistinguishedasindividualimpactsbutappearasasteadyforceonthe area.The intensity ofthis“molecularbombardment”isits staticpressure. Veryfrequentlythestaticpressureisreferredtosimplyaspressure.Theterm static israthermisleadingasitdoesnotimplythatthefluidisatrest.

Forlargebodiesmovingoratrestinthefluid(e.g.,air),thepressureisnotuniform overthesurface,andthisgivesriseto aerodynamic or aerostaticforce,respectively.

Sinceapressureisforceperunitarea,ithasthedimensions

[Force]÷[area]=[MLT 2 ]÷[L2 ]=[ML 1 T 2 ] (1.5) andisexpressedinunitsofNewtonspersquaremeterorinPascals(Nm 2 orPa). Pressureisalsocommonlyspecifiedinpoundspersquareinch(psi)orpoundsper squarefoot(psf).Itcanalsobeofusetoconsidertheaboveequationmultipliedby lengthoverlength:

[Force]∗[Length]÷ ([Area]∗[Length]) =[ML2 T 2 ]÷[L3 ]=[Energy]÷[Volume]

Thus,besidesthemostcommonviewofitasaforceperarea,pressurealsohasunits ofenergypervolume.

FIGURE1.1

Fictitioussystemsoftangentialforcesinstaticfluid.

PressureinFluidatRest

Considerasmallcubicelementcontainingfluidatrestinalargerbulkoffluidalso atrest.Thefacesofthecube,assumedconceptuallytobemadeofsomethinflexible material,aresubjecttocontinualbombardmentbythemoleculesofthefluidandthus experiencea force.Theforceonanyfacemayberesolvedintotwocomponents,one actingperpendiculartothefaceandtheotheralongit(i.e.,tangentialtoit).Considerthetangentialcomponentsonly;therearethreesignificantlydifferentpossible arrangements(Fig.1.1).System(a)wouldcausetheelementtorotate,andthusthe fluidwouldnotbeatrest;system(b)wouldcausetheelementtomove(upwardand totherightforthecaseshown),and,onceagain,thefluidwouldnotbeatrest.Since afluidcannotresistshearstressbutonlyrateofchangeinshearstrain(Sections 1.3.6 and 2.8.2),system(c)wouldcausetheelementtodistort,thedegreeofdistortion increasingwithtime,andthefluidwouldnotremainatrest.Theconclusionisthata fluidatrestcannotsustaintangentialstresses.

Pascal’sLaw

Considertherightprismoflength δz inthedirectionintothepageandcross-section ABC,theangleABCbeingarightangle(Fig.1.2).Theprismisconstructedofmaterialofthesamedensityasthefluidinwhichtheprismfloatsatrestwiththeface BChorizontal.

Pressures p1 , p2 ,and p3 actonthefacesshownand,asjustproved,actinthe directionperpendiculartotherespectiveface.Otherpressuresactontheendfacesof theprism,butareignoredinthepresentproblem.Inadditiontothesepressures,the weight W oftheprismactsverticallydownward.Considertheforcesactingonthe wedgethatisinequilibriumandatrest.

Resolvingforceshorizontally,

FIGURE1.2 PrismforPascal’sLaw.

thatis,

Resolvingforcesvertically, p3 δxδy p2 (δx sec α)δy cos α W = 0(1.7)

Now W = ρg(δx)2 tan αδy/2

Therefore,substitutingthisinEq. (1.7) anddividingby δxδy ,

Ifnowtheprismisimaginedtobecomeinfinitelysmall,sothat δx → 0,thethird termtendstozero,leaving p3 p2 = 0(1.8)

Thus,finally,

Havingbecomeinfinitesimallysmall,theprismisineffectapoint,sothisanalysis showsthat,atapoint,thethreepressuresconsideredareequal.Inaddition,theangle α ispurelyarbitraryandcantakeanyvalue,whilethewholeprismcanberotated throughacompletecircleaboutaverticalaxiswithoutaffectingtheresult.Itmaybe

concluded,then,thatthepressureactingatapointinafluidatrestissensedthesame byvarioussurfacesinalldirections.

1.3.4 Temperature

Inanyformofmatterthemoleculesareinmotionrelativetoeachother.Ingasesthe motionisrandommovementofmagnituderangingfromapproximately60nmunder normalconditionstosometensofmillimetersatverylowpressures.Thedistanceof freemovementofamoleculeofgasisthedistanceitcantravelbeforecollidingwith anothermoleculeorthewallsofthecontainer.Themeanvalueofthisdistanceforall moleculesinagasiscalledthelengthofthemeanmolecularfreepath.

Byvirtueofthismotion,themoleculespossesskineticenergy,andthisenergyis sensedasthe temperature ofthesolid,liquid,orgas.Inthecaseofagasinmotion itiscalledthestatictemperatureor,moreusually,justthetemperature.Temperature hasthedimension[θ ]andtheunitsK, ◦ C, ◦ F,or ◦ R(Section 1.2).Inpracticallyall calculationsinaerodynamics,temperatureismeasuredinKor ◦ R(i.e.,measured fromabsolutezero).

1.3.5 Density

Thedensityofamaterialisameasureofthemass(amount)ofthematerialcontained inagivenvolume.Inafluidthedensitymayvaryfrompointtopoint.Considerthe fluidcontainedinasmallregionofvolume δV centeredatsomepointinthefluid, andletthemassoffluidwithinthissphericalregionbe δm.Thenthedensityofthe fluid, ρ ,atthepointonwhichthevolumeiscenteredisdefinedby

ThedimensionsofdensityarethusML 3 ,anddensityismeasuredinunitsof kilogrampercubicmeter(kgm 3 ).Atstandardtemperatureandpressure(288K, 101,325Nm 2 ),thedensityofdryairis1.2256kgm 3 or0.0023781slugft 3

Difficultiesariseinrigorouslyapplyingthedefinitiontoarealfluidcomposedof discretemolecules,sincethevolume,whentakentothelimit,eitherwillorwillnot containpartofamolecule.Ifitdoescontainamolecule,thevalueobtainedforthe densitywillbefictitiouslyhigh.Ifitdoesnotcontainamolecule,theresultantvalue willbezero.Thisdifficultyisgenerallyavoidedintherangeoftemperaturesand pressuresnormallyencounteredinaerodynamicsbecausethemolecularnatureofa gasmayformanypurposes—infact,fornearlyeveryterrestrialflightapplication—be ignoredandtheassumptionmadethatthefluidisacontinuum—thatis,itdoesnot consistofdiscreteparticles.This“continuumassumption”sufficesbecausethemean freepathofthemolecularmotionismuchlessthanthesmallestlengthscaleonthe vehicleforalmosteveryatmosphericflightregime.

FIGURE1.3

Simpleflowgeometrytocreateauniformshear.

1.3.6

Viscosity

Viscosityisregardedasthetendencyofafluidtoresistslidingbetweenlayersor, morerigorously(asexplainedlater)arateofchangeinshearstrain.Thereisvery littleresistancetothemovementofaknifebladeedge-onthroughair,buttoproduce thesamemotionthroughthickoilrequiresmuchmoreeffort.Thisisbecausethe viscosityofoilishighcomparedwiththatofair.

DynamicViscosity

Thedynamic(moreproperly,coefficientofdynamic,orabsolute)viscosityisadirect measureofthemagnitudeoftheviscosityofafluid.Considertwoparallelflatplates placedadistance h apart,withthespacebetweenthemfilledwithfluid(see Fig.1.3). Oneplateisheldfixed,andtheotherismovedinitsownplaneataspeed V .Thefluid immediatelyadjacenttoeachplatewillmovewithit(i.e.,thereisnoslipofthefluid pastthesurface).Thusthefluidincontactwiththelowerplatewillbeatrestwhile thatincontactwiththeupperplatewillbemovingwithspeed V .Betweentheplates thespeedofthefluidwillvarylinearly,asshownin Fig.1.3,intheabsenceofother influences.Asadirectresultofviscosity,aforce F hastobeappliedtoeachplateto maintainthemotion,thefluidtendingtoretardthemovingplateanddragthefixed platetotheright.Iftheareaoffluidincontactwitheachplateis A,theshearstress is F/A.Therateofshearstraincausedbytheupperplateslidingovertheloweris V/h.

ThesequantitiesareconnectedbyNewton’sequation,whichservestodefinethe dynamicviscosity μ:

andtheunitsof μ arethereforekgm 1 s 1 ;intheSIsystemthenamePoiseuille (Pl)hasbeengiventothiscombinationoffundamentalunits.At0 ◦ C(273K)the dynamicviscosityfordryairis1.714 × 10 5 kgm 1 s 1 .

NotethatwhiletherelationshipofEq. (1.11) withconstant μ appliesnicelyto aerodynamics,itdoesnotapplytoallfluids.Foranimportantclassoffluids,which includesblood,someoils,andsomepaints, μ isnotconstantbutisafunctionof V/h—thatis,therateatwhichthefluidisshearing.Numerousclassesof“nonNewtonianfluids”areimportantinfieldsoutsideofaerodynamics,andtheeager studentcanexplorethesebestwithgoodknowledgeofNewtonianfluidbehavioras discussedinthisbook.

KinematicViscosity

Thecoefficientofkinematicviscosity(or,morecommonly,thekinematicviscosity) isaconvenientnumericalforminwhichthemagnitudeoftheviscosityofafluidis oftenexpressed.Itisformedbycombiningthedensity ρ andthedynamicviscosity μ accordingtotheequation

andhasthedimensionsL2 T 1 andtheunitsm2 s 1 .Itmayberegardedasameasure oftherelativemagnitudesoffluidviscosityandinertiaandhasthepracticaladvantage,incalculations,ofreplacingtwovaluesrepresenting μ and ρ withasinglevalue.

1.3.7 SpeedofSoundandBulkElasticity

Bulkelasticityisameasureofhowmuchafluid(orsolid)willbecompressedbythe applicationofexternalpressure.Ifacertainsmallvolume V offluidissubjectedto ariseinpressure δp ,thisreducesthevolumebyanamount δV .Inotherwords,it producesavolumetricstrainof δV/V .Accordingly,bulkelasticityisdefinedas

Thevolumetricstrainistheratiooftwovolumesandisevidentlydimensionless,so thedimensionsof K arethesameasthoseforpressure:ML 1 T 2 .TheSIunitis Nm 2 (orPa)andtheImperialunitispsi.Whenwrittenintermsofdensityoftheair ratherthanvolume,Eq. (1.12) becomes

Thepropagationofsoundwavesinvolvesalternatingcompressionandexpansion ofthemedium.Accordingly,bulkelasticityiscloselyrelatedtothespeedofsound a

asfollows:

Letthemassofthesmallvolumeoffluidbe M ;thenbydefinitionthedensity ρ = M/V .Bydifferentiatingthisdefinition,keeping M constant,weobtain

Therefore,combiningthiswithEqs. (1.13) and (1.14),itcanbeseenthat

Thepropagationofsoundinaperfectgasisregardedasalosslessprocess;thatis, noenergyislostandthewaveprocesslacksheattransfertoorfromthesurrounding fluid.Accordingly(seethepassageon Entropy tocome),thepressureanddensityare relatedbyEq. (1.34),soforaperfectgas,forwhich P = ρRT ,

where γ istheratioofthespecificheatsand R isthespecificgasconstantforthatgas. Eq. (1.16) istheformulanormallyusedtodeterminethespeedofsoundingasesfor aerodynamicsapplications.Thisformulacanalsobederivedfromone-dimensional waveequationforcompressibleflow,suchasinChapter 4

1.3.8 ThermodynamicProperties

Heat,likework,isaformofenergytransfer.Consequently,ithasthesamedimensionsasenergy(i.e.,ML2 T 2 )andismeasuredinJoules(J)orfoot-pounds(ft-lb).

SpecificHeat

Thespecificheatofamaterialistheamountnecessarytoraisethetemperatureof aunitmassofthematerialbyonedegree.ThusithasthedimensionsL2 T 2 θ 1 andismeasuredinSIunitsofJkg 1 K 1 .Imperialunitsofft-lbslug 1 ◦ F 1 or ft-lbslug 1 ◦ R 1 aremostcommon.

Therearecountlesswaysinwhichgasmaybeheated.Twoimportantanddistinctwaysareatconstantvolumeandatconstantpressure.Thesedefineimportant thermodynamicpropertiesofthegas.

SpecificHeatatConstantVolume

Ifaunitmassofthegasisenclosedinacylindersealedbyapiston,andthepiston islockedinposition,thevolumeofthegascannotchange.Itisassumedthatthe

cylinderandpistondonotreceiveanyoftheheat.Thespecificheatofthegasunder theseconditionsisthespecificheatatconstantvolume cV .Fordryairatnormal aerodynamictemperatures, cV = 718Jkg 1 K 1 = 4290ft-lbslug 1 °R 1 .

Internalenergy(e )isameasureofthekineticenergyofthemoleculesthatmake upthegas,so

internalenergyperunitmass e = cV T

ormoregenerally

SpecificHeatatConstantPressure

Assumethatthepistonjustreferredtoisnowfreedandactedonbyaconstantforce. Thepressureofthegasisthatnecessarytoresisttheforceandisthereforeconstant aswell.Theapplicationofheattothegascausesitstemperaturetorise,whichleads toanincreaseinitsvolumeinordertomaintaintheconstantpressure.Thusthe gasdoesmechanicalworkagainsttheforce,soitisnecessarytosupplytheheat requiredtoincreaseitstemperature(asinthecaseatconstantvolume)aswellasheat equivalenttothemechanicalworkdoneagainsttheforce.Thistotalamountiscalled thespecificheatatconstantpressure cp andisdefinedasthatamountrequiredtoraise thetemperatureofaunitmassofthegasbyonedegree,thepressureofthegasbeing keptconstantwhileheating.Therefore, cp isalwaysgreaterthan cV .Fordryairat normalaerodynamictemperatures, cp = 1005Jkg 1 K 1 = 6006ft-lbslug 1 °R 1 . Thesumofinternalenergyperunitmassandpressureenergyperunitmassis knownas enthalpy (h perunitmass)(discussedmomentarily).Thus

ormoregenerally

RatioofSpecificHeats

Theratioofspecificheatsisapropertyimportantinhigh-speedflowsandisdefined bytheequation

(Thevalueof γ forairdependsonthetemperature,butformuchofpracticalaerodynamicsitmayberegardedasconstantatabout1.403.Thisvalueisofteninturn approximatedto γ = 1.4,whichisinfactthetheoreticalvalueforanidealdiatomic gas.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.