Aerodynamic heating in supersonic and hypersonic flows: advanced techniques for drag and aero-heatin

Page 1


AerodynamicHeatinginSupersonicandHypersonic Flows:AdvancedTechniquesforDragandAeroheatingReductionMostafaBarzegarGerdroodbary

https://ebookmass.com/product/aerodynamic-heating-insupersonic-and-hypersonic-flows-advanced-techniques-fordrag-and-aero-heating-reduction-mostafa-barzegargerdroodbary/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advanced district heating and cooling (DHC) systems Wiltshire

https://ebookmass.com/product/advanced-district-heating-and-coolingdhc-systems-wiltshire/

ebookmass.com

Solar heating and cooling systems Ioan Sarbu

https://ebookmass.com/product/solar-heating-and-cooling-systems-ioansarbu/

ebookmass.com

Electricity for Refrigeration, Heating, and Air Conditioning 10th Edition, (Ebook PDF)

https://ebookmass.com/product/electricity-for-refrigeration-heatingand-air-conditioning-10th-edition-ebook-pdf/ ebookmass.com

Advances in Parasitology, Volume 115 Russell Stothard

https://ebookmass.com/product/advances-in-parasitologyvolume-115-russell-stothard/

ebookmass.com

The Wolf of Cape Fen Juliana Brandt

https://ebookmass.com/product/the-wolf-of-cape-fen-juliana-brandt/

ebookmass.com

Handbook of Local Anesthesia – E-Book – Ebook PDF Version

https://ebookmass.com/product/handbook-of-local-anesthesia-e-bookebook-pdf-version/

ebookmass.com

(eBook PDF) Behavior Modification: What It Is and How To Do It 11th Edition

https://ebookmass.com/product/ebook-pdf-behavior-modification-what-itis-and-how-to-do-it-11th-edition/

ebookmass.com

Dirección de marketing 15ª ed. Edition Philip Kotler

https://ebookmass.com/product/direccion-de-marketing-15a-ed-editionphilip-kotler/

ebookmass.com

Storytelling in Participatory Arts with Young People: The Gaps in the Story 1st ed. Edition Catherine Heinemeyer

https://ebookmass.com/product/storytelling-in-participatory-arts-withyoung-people-the-gaps-in-the-story-1st-ed-edition-catherineheinemeyer/

ebookmass.com

Lived Nation as the History of Experiences and Emotions in Finland, 1800-2000 Ville Kivimäki

https://ebookmass.com/product/lived-nation-as-the-history-ofexperiences-and-emotions-in-finland-1800-2000-ville-kivimaki/

ebookmass.com

AerodynamicHeatinginSupersonic andHypersonicFlows

Thispageintentionallyleftblank

AerodynamicHeatingin Supersonicand

HypersonicFlows

AdvancedTechniquesforDrag andAero-heatingReduction

MostafaBarzegarGerdroodbary DepartmentofMechanicalEngineering,Babol NoshirvaniUniversityofTechnology,Babol,Iran

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2023ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91770-4

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: ChiaraGiglio

EditorialProjectManager: SaraGreco

ProductionProjectManager: SreejithViswanathan

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

3.10Counterfl

4Energetic(thermal)devices:energydepositiondevices161

4.1Effectiveparametersfortheperformanceofenergydeposition

4.2Surveyonkeystudiesonenergydepositiondevices

4.3Futureoutlinesinthe

5.1Fluid-structuredevices

6Currentpracticalapplicationsforforebodyshockcontroldevices227

6.1Conclusionandrecommendations

Biography

Dr.MostafaBarzegarGerdroodbary isa ResearchAssociateatBabolNoshirvaniUniversityofTechnology.Hehascurrentlyfocusedon thesimulationofthebloodstreamfortheevaluationoftheriskofruptureofdifferentcerebral aneurysmsviatheCFDmethod.Heobtainedhis Ph.D.inMechanicalEngineeringatBabol NoshirvaniUniversityofTechnology,IRANin 2019.HecompletedhisPh.D.onmodelingof rare fiedgas flowforcalibrationofgassensor usingDSMC.Inthiswork,anewmicrogas actuatorisdevelopedandfabricatedforthe detectionofthegasmixtureinlow-pressure environment.HegothisM.Sc.inAerospace Engineering(Aerodynamic)fromthefacultyofMechanicalEngineering,IranUniversityofScience&Technology(IUST)in2010.Heintroducedseveralnewtechniquesforreductionoftheaerodynamicheatingaroundthesupersonic/hypersonic flow.Inaddition,heconductedextensiveresearchforthedevelopmentoftheinjection systeminthecombustionchamberofthescramjetengine.Hepublishedtwoauthored books(Scramjets:fuelmixingandinjectionsystems,AerodynamicHeatinginSupersonicandHypersonicFlows)andtwobookchapters(GasSensors,NanotechnologyforLightPollutionReduction)andmorethan70journalarticlesinhighrank journals.HealsogotMBAonsupplychainmanagementfromKharazmiUniversity, IRANin2021.Forhisoutstandingresearch,Dr.BarzegarwasincludedintheWorld’s Top2%Scientists2021list(byStanfordUniversity).Heisalsoamemberofthe editorialboardformanyjournalssuchasScienti ficReport.

Thispageintentionallyleftblank

Introduction

1.1Introduction

Flightisthedreamofhumanstomoveinaninaccessible,unknownworld.Toachieve thispurpose,humanshavealwaystriedtoinventdevicesandvehicles,whichenable themtomoveinthesky.Duetothehighvelocityofthe fly,theairplanehasbeen widelydevelopedfortransportationforalong-distancejourney.Theadvantagesof flightintheskyhavemotivatedthegovernmenttousethisto fightagainsttheirenemies.Hence,various fightershavebeeninventedthatmoveatahigherspeedthan civilapplications.Then,scientistshavebelievedthattheycouldaccessspacewith high-speedspacecraft,whichmovesintheouteratmosphere.Intheatmospheric domain,thehighestspeedcraftisavailablesinceexistinggasinouterspaceislowdensityandcold.

Therangeofthe fl ightspeedismainlydividedaccordingtotheunitMachnumber knownassonic(M ¼ 1).Whenthe fl ightspeedislessthan M ¼ 1,itisknownassubsonic.Forgreaterspeed fl ight( M > 1),the fl owregimeiscalledsupersonic.When the fl ightspeedissigni fi cantlyhigherthansonic( M >> 1),itisrecognizedashypersonic.Theworldofhigh-speed fl ightisdirectlylinkedwithanentirelyunknown environment,named “hypersonicregime” Thetermhypersonicisintroducedto discriminate fl ow fi eldphenomenaandproblemsthatoccurat fl ightspeeds,and theyaregreaterenoughthanthetypicalsupersonicvelocities.Theadventofnew distinctivefeaturesinhypersonic fl owfeaturejusti fi estheuseofanewterm, differentfromthewell-establishedone supersonic.Hydrodynamicandchemical andphysicalnaturesarethetwomainaspectsofthesehypersonicfeatures.The formerisduetohigh fl ightMach,whilethelatterisrelatedtothehighenergyof the fl ow( Kuchemann,1978 ).Althoughthereareseveralde fi nitionsforthehypersonicaerodynamic, fl owswithMachnumbermorethan5areknownashypersonic regimeaspresentedin Fig.1.1

Indeed,thehypersonicregimeisbestdefinedasthatregimewherecertainphysical flowphenomenabecomeincreasinglymoresignificantandimperativeastheMach numberisincreasedtohighervalues.Forexample,theratioofthermaltohydrodynamicboundarylayerisoneoftheprogressivephenomenafordiscriminationofhypersonicregimefromasupersonicone.Thisratioandothersigni ficantfactorsmay varyaccordingtothegeometryandoperatingconditionofthemodelinthehighspeeddomain.Thisbookhasmainlyfocusedontheseaspectsofhypersonic fl owin detailfortheanalysisofaerodynamicsandaerothermodynamicsofahigh-speed vehicle.

2AerodynamicHeatinginSupersonicandHypersonicFlows

M∞ <0.3

Incompressible subsonic

V<a: M∞ <1

Compressible subsonic: 0.3<M∞ <Mcritical

=0.3

=1

Transonic: Mcritical<M∞ <1.4

V>a: M∞ >1

Supersonic: 1.4<M∞ <5 V>>a: Hypersonic

=5

Figure1.1 Ellipseofmotionregimes.

1.2Structureofthe flow fieldaroundthesuper/ hypersonicvehicles

Toinvestigatethetechniqueforthereductionofaeroheatinganddragforceonthehypersonicforebody,thestructureofthe flow fieldaroundvehiclesshouldbeinitially recognized. Fig.1.2 demonstratestheschematicofa flow fieldaroundatypicalhypersonicvehicle.Ingeneralview,wecandividethe flow fieldaroundthehypersonicvehiclesintothreemainregions:theboundarylayer,inviscid fl owregion,andthewake regionasillustratedin Fig.1.2.

- meyer expansion Outer inviscid

Figure1.2 Typicalhypersonicbody flow fieldincontinuumregime.

In1904,LudwigPrandtlintroducedtheaerodynamicboundarylayerasaregion adjacenttothebodysurface,subjectedtoviscouseffectsandheatconduction.The shearinginfluenceofviscosityresultsinthevelocitygradientoaringfromzeroat thewalltotheouter flowvelocityattheedgeoftheboundarylayer(see Fig.1.3). Inthesubsonicregime,theboundary-layerthickness99%(or)isdefi nedasthenormal distancetothewallwherethelocalvelocityis99%ofthe “free-stream” (orboundarylayeredge)velocityandisrelatedtoRe:

Particularly,asshownin Fig.1.2,thevelocityprofilesintheboundarylayerareunlikerangingfromlaminartoturbulentboundarylayer.Consequently,bothheat flux andshearstressarepresumedtobelargerinthecaseofturbulent flow(Viviani & Pezzella,2015).Thevelocityprofi leintheboundarylayerdeterminestheviscousforces actingonthebody.Thewallshearstress(cg/ms2),isgivenby

Figure1.3 Boundary-layervelocityprofiles.

andthelocalskinfrictioncoef ficient Cf(x)is

Fourier’slawofheatconductionisappliedforthecalculationoftheheattransfer rateonthewall.Thewallheattransferrate(W/m2),andStantonnumberSt,arecalculatedwiththefollowingequations:

where k (W/mK),isthethermalconductivity.

1.3Governingequationsforsupersonic/hypersonic flow

Therecognitionofthemaingoverningequationsforthestudyofeffectivetermsin aerodynamicheatingisessential.Therearethreemainconservationlawsthatgovern all fluid flow:

1. Conservationofmass:continuityequation

2. Conservationofmomentum:Newton’ssecondlawofmotion

3. Conservationofenergy: firstlawofthermodynamics

Byapplyingtheboundaryconditionsofourmodel,solvingtheseequationscould resultinthe flowfeatureandtemperaturedistribution.

Whenitisassumedthatthe flow fieldaroundthemainbodyiscontinuum,theconservationequationsresultinNavier Stokesequationsasasystemofequationsbased onthebulkpropertiesofair.

Incontrast,Boltzmannequation,whichisbasedonmolecularmechanics,isused forarare fied flow fi eld.Tode finethecontinuityofthe fl uid flow,Knnumberiscalculated.WhentheKnnumberishighenough(Kn > 1),thecontinuityassumptionfails, andtheBoltzmannequationmustbeadoptedsince flowismolecular.Regardingthe setofboundaryconditionswithadefinitionofthegas,the flow fi eldpastthebody isobtainedviatheNavier Stokesequations.Actually,airmaybedefinedasaperfect gasforawiderangeofproblems.Consequently,thepressure, p (Pa),calculated p ¼ rRT (1.5) where p isthedensity, T thetemperature,and R thegasconstant.TheNavier Stokes equationsforcompressibleandunsteady floware:

Where T representsthestresstensor, q isthevectorofheat flux,and finally, f and r are theexternalforce fieldperunitmassandtheheatsupplyperunitmassperunittime, respectively.

TheNavier Stokesequationsareasetofcoupled,nonlinear,partialdifferential equations.Theequationsareamixedsetofelliptic parabolicequationsforsteady flowandarehyperbolic parabolicwhentheunsteadytermisrecalled.

WhentheviscousandtheheattransfertermsareignoredfromtheNavier Stokes equations,weattainedasimplifiedsetofequationsknownastheEulerequations: vr

vt þ V:ðruÞ¼ 0 v

AlthoughtheEulerequationsarealsocoupled,nonlinearpartialdifferentialequations, theorderofEulerequationsislowerthantheNavier Stokesequations.TheunsteadyEuler equationsarehyperbolic,butthesteady-stateequationschangetheircharacterfromelliptic insubsonic flow(MN < 1)tohyperbolicinsupersonic flow(MN > 1).

1.4EffectsofMachon flowcharacteristics

Physicalunderstandingofsupersonic fl owishighlyimportanttorecognizethemechanismofaeroheatinganddragreductiondevices.Aperturbanceina fluidgenerates acousticwavesthatpropagatesphericallywiththespeedofsound,a,transmitting theexistenceofthesourcetothe flow field. Fig.1.4 demonstratesthetransmission

Figure1.4 Effectofmovingsourceonwavepropagation. FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

6AerodynamicHeatinginSupersonicandHypersonicFlows

Figure1.5 EffectofMachnumber(M)on flowcharacteristicspastanairfoil[2].

FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

oftheacousticwavesfromamovingsource(Viviani & Pezzella,2015).Consequently, whenthespeedofthesource, U,islessthansoundvelocity(a),theacousticwaveswill informthenearby fluidoftheupcomingofthesource.Ontheotherhand,theinformationcannottransmitbeyondthesourceandislimitedtoaconeofinfluence,calledthe Machconewhenthesourcemovesfasterthansonicvelocity(a).

Duetovelocityeffectsofsource,theboundaryconditionsarecriticalthroughout thewholeboundaryforsubsonicproblems,andhence,thesearecalled “boundary valueproblems” Conversely,supersonicproblemsareknownas “initialvalueproblems” sinceboundaryconditionsarerequiredonlyatanearlystepwiththesolution gainedbymarchingdownstream.

Accordingtotheaccuracyofsomeoftheassumptionsandthecharacterofthegoverningequations,thecontinuum fl owregimemaybedividedinto fivecategories:

(a) incompressible flow MN < 0.3(constant)

(b) Compressiblesubsonic flow0.3 < MN < 1

(c) Transonic flow0.8 < MN < 1.2

(d) Supersonic flow MN > 1

(e) Hypersonic flow MN > 5

Torecognizethemaindifferencebetweenthese flowtypes, Fig.1.5 demonstratesa prominent flowstructurearoundanairfoilwhenthevelocityofthefreestreamvaries (Viviani & Pezzella,2015).Asshowninthis fi gure,theformationofdifferentshocks andtheiranglesarethemainchangeswhenthefreestreamvelocityincreases.

1.5Aeroheating

Theformationofthestrongbowshockneartheforebodyofsupersonicvehiclesresults inthehigh-temperatureregion.Whenthetemperatureoftheairstreamexceedsa

threshold,theapproximationofperfectgasfortheairstreamisnotvalid.Inextremely highfree-streamMachnumber(M > 30),thetemperaturebehindthestrongshockexceeds10,000K,andthisresultsinthe flowionizationanddissociationthrougha chemicalreaction.Infact,thegasincludesmonatomicanddiatomicparticlesinadditiontoionsandelectronsandthusprogressingina “non-ideal” manner.

Hightemperatureaffectsthevibrationalenergyofthe flowmoleculeandhence,the speci ficheatscpandcvtobecomefunctionsoftemperature.Asthegastemperatureis augmentedfurther,chemicalreactionscanoccurinthisregion.Indeed,cpandcvare functionsofbothtemperatureandpressureforanequilibriumchemicallyreactinggas.

Sincetheairdensityislowatahighaltitude,energyexchangeandchemicalreactionsarenoticeable.Hence,thethermochemicalnonequilibriummodelingisessential fortheanalysisofare-entry flow field.

Torecognizetheeffectsofnonequilibrium flows,assumethatthegasmixturewill involveaconcentrationofatomsandmoleculesofonlyonespecies,N2 orO2 (a diatomicgas).Whenthetemperatureandpressureare800Kand1atm,respectively, thevibrationalenergyofthemoleculesbecomesimportant(Jr.,1989).

Thepropertiesofthegaschangealthoughachemicalreactiondoesnotoccur.When thetemperaturereachesabout2000K,theO2 dissociationsinitiate.Atthe4000K,the O2 dissociationisfundamentallycomplete;mostoftheoxygenisintheformofatomic oxygen,O.Furthermore,N2 initiatestodissociateat4000KandallofN2 dissociated whenthetemperaturereachesat90(X)K. Fig.1.6 summarizesthedissociationprocess indifferenttemperatureranges. Fig.1.7 confi rmsthathigh-temperaturegaseffectsare conventionalinthealtitude velocitymap.

1.6Keyfactorsinthehypersonicregime

Sincethemainobjectofthisbookistoinvestigatetherecenttechniquesforthereductionofdragandaerodynamicheatinginhypersonicvehicles,itisessentialtointroduce themainfeaturesofthehypersonicregime.Hypersonicvehiclesaremainlydivided intothreetypes:missiles,entrybodies,andlaunchvehicles.Aerodynamicheatingoccursduetothetransformationofhighenthalpyandmomentumoftheairstreamto stagnation flowonthetipofthesehigh-speedvehicles.Hence,thereareseveral flowfeaturesthatareconsideredeffectiveonthisphenomenon.Inthefollowing, themainsignificantkeyfeaturesofhypersonic flowassociatedwithaerodynamicheatingareexplained.

1.6.1Bowshock

Duetothehighvelocitiesandangleofincidenceofhypersonicvehicles,strongbow shockwavesaregeneratedaheadofvehicles.Infact, flowdisturbancescannotoperate theirwayupstream,andthedisturbancewavespileupandmergeataspecifi cdistance fromthebody,andastrongwaveisproducedinfrontofthebody(Jr.,1989).

8AerodynamicHeatinginSupersonicandHypersonicFlows

Figure1.6 Assortmentsofdissociation,vibrational,andionizationforairat1atmpressure.

FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

Figure1.7 Altitude velocitymapwithcoveredzonesofdissociation,vibrationalexcitation, andionization.

FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

1.6.2Aerodynamicheating

Themainchallengeforthedesignofhypersonicvehiclesistheaerodynamicstructure. Althoughslenderstructureseemseffi cientfordragreductionofthesupersonicvehicles,sharpleadingedgewouldresultintheheatingphenomenon. Eq.(1.8) presents therelationbetweenstatictemperatureandstagnationtemperature:

Meanwhile,thetemperatureoftheboundarylayerissubstantiallyhighduetoviscous dissipation(i.e.,frictionbetweenadjacent fluidlayers)producedbytheno-slip boundaryconditionatthewall.Indeed,heatwilltransfertothemainbodybecause ofthehigh-temperature fluidintheboundarylayeruntilthetemperaturegradientatthe walliszero(i.e.,adiabaticwall).

Accordingto Eqs.(1.8)and(1.9),itisfoundthattemperaturecouldincrease severelywhentheMachnumberofthe flightgoesup.Hence,speci ficmaterials, e.g.,titaniumareconsideredtoavoidburningatthetipofhypersonicvehicles.This showsthataerodynamicheatingcausedbyviscouseffectsistheprimaryconcernin thedesignofhypersonicconfigurations.Besides,theReynoldsnumberofhypersonic vehiclesissolow,andthe fl owregimeislaminarsincethey flyathighaltitudes. Indeed,theheattransferismuchlowerwhenthe flowislaminar.Thesephenomena wouldbeexplainedthoroughlyinthenextchapters.

Toavoidexcessiveheatproductioninthenoseofhypersonicvehicles,abluntnose coneisusedalthoughitsdragismorethanaslenderbody.

VanDriestpresentedthatthestagnationregionwiththeheatingrateq0 isproportionaltothesquarerootoftheedgevelocitygradient(due/dx)(Driest,1952).DeJarnetteetal.(1987)presented Eq.(1.10) todisclosetherelationshipbetweenthevelocity gradientandthestagnation-pointradiusasfollows:

Eq.(1.10) indicatesthatstagnation-pointheatingconsiderablyriseswhenthenose ofthebodybecomessharp(R-0).Hence,thebluntlendingedgeisappliedtohypersonicvehicles.Tominimizetheheattransferrate, Eq.(1.10), flatleadingedge(RN) ismorepreferablethroughtheraiseofdragforce,whichreducesthevelocitytoassist asofttouchdown.

10AerodynamicHeatinginSupersonicandHypersonicFlows

1.6.3Surfacepressureeffects

Thepressuredistributiononthebodyofthehypersonicvehicleisasignificantfactor. Intwo-dimensional flow,thepressurecoef ficientcouldbecalculatedby flowing equation:

¼ 2q M 2 1 q

Where q and M aresurfaceslopeandhypersonicMachnumbers,consequently.This estimationisnotsuitableforrealaircraftshapes.However,hypersonicrulesareuseful. TheconceptsofNewtonresultinthemostfamousrelation.AlthoughNewtonwas incorrectforlow-speed flow,hisideadoesapplytohypersonicvelocities.Inthis concept,thehypersonic flowisconsideredasastreamofparticles,whichlosealltheir momentumnormaltoasurfacewhentheyarrived.Thisresultsinthewell-known relation: Cp ¼ 2sin2 q

where q istheanglebetweensurfaceand fl owdirection.Hence,thegeometryofthe bodydeterminesthelocalsurfacepressure.Besides,inthisconcept,theportionofthe bodythatencountersthe fl owisconsideredforparticleseffectsasdepictedin Fig.1.8. Theotherportionofthebodyisrecognizedasshadowwhere Cp ¼ 0.

OneoftheinterestingaspectsofthisformulaistheabsenceofMachnumberinthis equation,theotheroneistherelationofpressurecoeffi cientandthesquareoftheinclinationangleandnotlinearly.Thisconfi rmsthatthehypersonic flowismeaningfully distinctfromthelinearized flowmodelsatlowervelocity.

1.6.4Temperatureeffects

Inhypersonic fl ow,temperatureovercomesathresholdbehindastrongshockwave, andtheaircannotbeconsideredasaperfectgas.Thevariationoftemperaturebehind anormalshockwaveforvariousfree-streamvelocitiesforavehicle flyingatastandard

Figure1.8 Shadowsketchforzonewith Cp ¼ 0. FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

Cp

Figure1.9 Temperatureaftera normalshockwaveasafunction offree-streamvelocityata standardaltitudeof52km. FromViviani,A., & Pezzella,G. (2015).Aerodynamicand aerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology. SpringerInternational Publishing. https://doi.org/10. 1007/978-3-319-13927-2

altitudeof52kmisplottedin Fig.1.9.Inthis fi gure,therearetwocurves:perfectgas andreactinggas.Intheformer,itisassumedthatairstreamactsasperfectnonreacting gaswiththeratioofspecificheat g ¼ 1.4.Inthelatter,theairbehindtheshockis consideredasequilibriumchemicallyreadinggaswhichismorerealistic.Thecomparisonofthesetwolinesindicatesthatairtemperatureinthenoseregionofahypersonic vehiclecouldbeexceedinglyhigh,e.g.,reachingapproximately11,000KataMach numberof36.Besides,thechemicallyreactingeffectsmustbeconsideredforthe calculationofapreciseshocklayertemperature.

1.6.5Viscouseffects

Viscosityisknownasasignificantparameterfortheanalysisofthe flowstructurein thehypersonic flow.Inaconstantpressureprocess,ariseintemperatureresultsina lowerdensity.Consequently,theboundary-layerthicknesswillhavetoincreasetopreservethesamemass flowinthehigher-temperatureboundarylayerlinkedwithsupersonic flows(Jr.,1989).Bythesimilarityapproach,thefollowingequationisachieved fortheestimationofthethicknessoftheboundarylayer.

Bythisequation,itisfoundthattheboundarylayerofthehypersonic flowisthicker thanthatofthesupersonicatacertainReynoldsnumber.Hence,theeffectsofhypersonic flowontheouterinviscid fl ow fi eldpastthevehiclearemoresubstantial.This interactionisknownasviscousinteraction.

d x f M 2 N Rex p (1.13)

1.6.6Entropygradient

Fig.1.10 demonstratesdifferentlayersaroundthebluntnoseatthehypersonicMach number.Athinshocklayerisproducedoverthebluntnosewithasmallshockdetachmentdistance, d.Theentropyofthe fl owrisesacrossashockwave,andthis expandsmorewhentheshockbecomeslarger.

Asdepictedinthe figure,the “entropylayer” extendsdownstreamalongthebody forlargedistancesfromthenose.Inthislayer,theentropygradientishigh,andthe boundarylayeriswithinthislayerandthisentropygradientaffectsthehydrodynamic boundarylayer.

Toperformastandardboundary-layercalculationonthesurface,theentropylayer isproblematic.Indeed,theproperconditionsattheouteredgeoftheboundarylayer areunknown.

1.6.7Shocklayer

Theshocklayerisknownasthe flowregionbetweenthebodyandtheshockwave.In thehypersonicregion,thislayerisverythin,asdemonstratedin Fig.1.11,i.e.,the angleoftheshocklayerisabout18degreesforawedgeof15semi-anglesina fl owat M ¼ 36whenstandardobliqueshocktheoryisappliedandtheairstreamis consideredaperfectgas.Byconsideringrealgasconditions,theseanglesalso decrease.Inhypersonic flow,theshocklayeristhinandhighlyclosetothemain body.In1687,IssacNewtonproposedathinshocklayertheoryformodelinghypersonic flow.Thismodelwaspresentedfortheestimationofthepressuredistribution overthesurfaceofahypersonicbody.

Figure1.10 Theentropylayer. FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2 12AerodynamicHeatinginSupersonicandHypersonicFlows

Figure1.11 Thinhypersonicshocklayer.

FromViviani,A., & Pezzella,G.(2015).Aerodynamicandaerothermodynamicanalysisof spacemissionvehicles.In Springeraerospacetechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

1.7Nondimensionalnumbers

Sincethe fl owfeaturearoundtheforebodyofhypersonicvehiclesiscomplicated, severalphysicalphenomenabecomecriticalforthesurvivabilityofthespacecraft. Hence,comparisonofthesephenomenaissignificant,andthisconfirmstheimportance ofdimensionalanalysis.Inthefollowing,importantdimensionlessratiosarelisted:

Machnumber M ðÞ¼ macroscopicspeedfluid speedofsoundinthefluid ¼ V =a

Reynoldsnumber ðReÞ¼ Inertialforce Viscousforce ¼ mv sA ¼ rAV 2 m V Lref A ¼ rVLref m ¼ Re

Prandtlnumber ðPr Þ¼ Viscousdissipationenergy Energyconducted ¼ sAV _

Lewisnumber ðLeÞ¼ thermaldiffusivity massdiffusivity ¼ a D

Stantonnumber ðStÞ¼ heattransfercoefficient heatcapacity ¼ h ruCp

1.8Differenttechniquesforthethermalprotectionand dragreductionofspacevehicles

Therearethreetypesofhypersonicvehicles:wingedreentryvehicles,unwinged reentryvehicles,andcruiseandaccelerationvehicles(Weiland & Hirschel,2015). Spaceshuttlesandinterplanetaryvehiclesarerecognizedastypicalwingedre-entry

14AerodynamicHeatinginSupersonicandHypersonicFlows

vehicles,whilecommercialreusablemissilesandballisticmissilesareunwinged re-entryhypersonicvehicles.Hypersoniccruisemissilesandhypersonicplanesare classifiedascruiseandacceleratingvehicles. Fig.1.12 demonstratesexamplesofthese categories.Theformertwohavebeencharacterizedbybluntforebodyconfi gurations. Indeed,themaindesignalternativeisbluntingtheforebodyofthesehypersonicvehicles(Bogdonoff & Vas,1959).Whentheforebodyofhypersonicvehiclesisblunted, thepeak(stagnation)aeroheating fluxlevelsdecline(Menezesetal.,2002),andoperationandaccommodationofcrewareimproved,andconsequently,volumetricefficiencyisincreased(Gauer & Paull,2008; Shoemaker,1990).Infact,existing launchfacilitiesbecomecost-effectiveforlongermissilesbythismethod(PeterRedingetal.,1977).Themaindisadvantagesofbluntforebodiesareextremelyhighdrag forceandaero-thermodynamicimpacts.

Themainobjectinthedesignoftheforebodiesistoreduceaeroheatinganddragforce simultaneously.Whenthedragforceofvehiclesisdecreased,therangeofcrewincreases, andthepropulsionsystemcanbelowandpayloadcapacityishigh,andfuelconsumption ismoreefficient.Asaeroheatingislimited,forebodystructure(Huebneretal.,1995)and on-boardequipment(Shoemaker,1990)areprotectedeffectively,whilealowthermal protectionsystem(TPS)isrequired.Astrongbowshockwaveaheadoftheforebody isthemainsourceofhighaeroheatinganddragforce,impactingtheforebodiesinsupersonic/hypersonic flightregime.Theformationofhighdragandaeroheatingontheforebodyismainlyduetoextremetemperatureandpressuregradientdownstreamof foreshock.Therefore,reformingthe flow fieldaheadoftheforebodytoweakenthe bowshockcoulddecreasebothaeroheatinganddrag,simultaneously.

Figure1.12 Typicalhypersonicvehiclesofdiversetypes. FromAhmed,M.Y.M., & Qin,N.(2020).Forebodyshockcontroldevicesfordragandaeroheatingreduction:Acomprehensivesurveywithapracticalperspective. ProgressinAerospace Sciences,112,100585. https://doi.org/10.1016/j.paerosci.2019.100585

Theprimarygoalofthisbookistopresentandevaluateconceptsofvariousshock controltechniquesforthereductionofaeroheatinganddraginthesupersonicforebody.Thisstudyfocusesontechniquesthatresultinhighdragandaeroheating,i.e., bowforeshock,ratherthanthoseactingtolightentheconsequencesoftheseorigins. Thisbookwouldstudytechniquesthatreformthe flowstructureaheadoftheforebody throughsubstitutingastrongbowforeshockwaveaheadwithamuchweakershock systemorremovingitfromthehypersonicvehicleforebody.Accordingtotheconcept bywhichthe fl ow fieldstructureismodi fied,therearethreemaintypesofthesedevices: fluidic,mechanical(structural),andthermal(energetic)devices.In fluidicdevices, fluidjetsareinjectedintotheincomingfreestream.Ontheotherhand,the applicationofaphysicalbodythatprotrudesaheadoftheforebodyintotheincoming freestreamisknownasastructuraldevice.Inenergeticdevices,anenergyspotis appliedtothefreestreamaheadoftheforebody.Besides,thecombinationofthese basicmethodsisalsousedasahybridtechniqueforthemanagementofdragandaeroheatinginthesupersonic flow field. Fig.1.13 demonstratesthesetypesofforebody shockcontroldevices(Ahmed & Qin,2020).

Themaingoalsofthisbookareto:

• Classifythediversestrategiesinaphysics-basedsystematicway

• Conductareasonableexaminationoftheprimaryphysicalprinciplesandmechanismsof operationforeachdevice

• provideaninclusiveandcriticalreviewofpreviousworksinthe fieldandestablishthecurrentknowledge,

• explainareasofdebateandknowledgegapsforforthcominginvestigationsratherthanreconsideringpreviouslyconventionalknowledge,

• disclosethesubjectsofpracticalimplementationanddesigntradeoffsassociatedwitheachof thesedevicesinrealsystems,

• listtheaccessiblecurrenthypersonicvehiclesthathavealreadyappliedthesedevices.

Figure1.13 Physics-basedarrangementofaeroheatinganddragreductiontechniques. FromAhmed,M.Y.M., & Qin,N.(2020).Forebodyshockcontroldevicesfordragandaeroheatingreduction:Acomprehensivesurveywithapracticalperspective. ProgressinAerospace Sciences,112,100585. https://doi.org/10.1016/j.paerosci.2019.100585

16AerodynamicHeatinginSupersonicandHypersonicFlows

References

Ahmed,M.Y.M.,&Qin,N.(2020).Forebodyshockcontroldevicesfordragandaero-heating reduction:Acomprehensivesurveywithapracticalperspective. ProgressinAerospace Sciences,112,100585. https://doi.org/10.1016/j.paerosci.2019.100585

Bogdonoff,S.M.,&Vas,I.E.(1959).Preliminaryinvestigationsofspikedbodiesathypersonic speeds. JournaloftheAerospaceSciences,26(2),65 74. https://doi.org/10.2514/8.7945

DeJarnette,F.R.,Hamilton,H.H.,Weilmuenster,K.J.,&Cheatwood,F.M.(1987).Areview ofsomeapproximatemethodsusedinaerodynamicheatinganalyses. JournalofThermophysicsandHeatTransfer,1(1),5 12. https://doi.org/10.2514/3.1 Driest.(1952). Investigationoflaminarboundarylayerincompressible fluidsusingtheCrocco method,NACA-TN-2597.NACAReport. Gauer,M.,&Paull,A.(2008).Numericalinvestigationofaspikedbluntnoseconeathypersonicspeeds. JournalofSpacecraftandRockets,45(3),459 471. https://doi.org/10.2514/ 1.30590

Huebner,L.D.,Mitchell,A.M.,&Boudreaux,E.J.(1995).Experimentalresultsonthe feasibilityofanaerospikeforhypersonicmissiles.In 33rdAerospacesciencesmeetingand exhibit.AmericanInstituteofAeronauticsandAstronauticsInc,AIAA. https://doi.org/ 10.2514/6.1995-737

Jr.(1989). Hypersonichightemperaturegasdynamics.McGraw-HillBookCompany. Kuchemann.(1978). Theaerodynamicdesignofaircraft Menezes,V.,Saravanan,S.,&Reddy,K.P.J.(2002).Shocktunnelstudyofspikedaerodynamicbodies flyingathypersonicMachnumbers. ShockWaves,12(3),197 204. https:// doi.org/10.1007/s00193-002-0160-3

PeterReding,J.,Guenther,R.A.,&Richter,B.J.(1977).Unsteadyaerodynamicconsiderations inthedesignofadrag-reductionspike. JournalofSpacecraftandRockets,14(1),54 60. https://doi.org/10.2514/3.57160

Shoemaker,J.M.(1990).Aerodynamicspike flowfieldscomputedtoselectoptimumconfigurationatMach2.5withexperimentalvalidation.In 28thAerospacesciencesmeeting, 1990.AmericanInstituteofAeronauticsandAstronauticsInc,AIAA. https://doi.org/ 10.2514/6.1990-414

Viviani,A.,&Pezzella,G.(2015). Aerodynamicandaerothermodynamicanalysisofspace missionvehicles.SpringerAerospaceTechnology.SpringerInternationalPublishing. https://doi.org/10.1007/978-3-319-13927-2

Weiland,C.,&Hirschel,E.(2015). Selectedaerothermodynamicdesignproblemsofhypersonic flightvehicles.AlAA,9783540899747.

Mechanicaltechniques(spike)

2.1Structuraldevices(mechanicalspike)

2.1.1Principleofmechanicalspike

Forthedesignofsupersonicvehicles,reductionofbothaerodynamicheatinganddrag forceisthemainchallengesincethesetwofactorsarecrucialtotheperformanceof hypersonicvehicles.Whenthedragforceislowinsupersonicvehicles,fuelconsumptionislow,andachievingthedesiredaltitudeismoreaccessible.Meanwhile,thefractionofloadtotake-offgrossweightismaximizedwithasimplepropulsionsystem (Menezesetal.,2002; Shoemaker,1990,pp.90 0414).Toreducethedragforceof supersonicvehicles,pointedbodiesaremoreeffi cientthanbluntcones.Therefore, thisconfigurationisanoptimumselectionwhendragreductionishighlysignifi cant forvehicles.Owingtothegreatranksofaerodynamicheatingrelatedtopointedbodies inhigh-velocityregimes,theyarenotconsideredforhypersonic flight.Infact,thesensitiveonboardelectronicdevicesfail(Gnemmietal.,2003; White,1993)ormalfunction(Mehta,2000a, 2000b)couldoccurduetosevereaeroheating.Besides,ablationof forebodymaterialcouldhappenduetoexcessiveheating,andthisdecreasestheperformanceofsupersonicvehicles.Surfaceerosion(Mehta,2000a, 2000b)andcomplete materialfailure(Heubneretal.,1995,pp.95 0737)aremoreprobablewhenthepressureandheatingratearehigh.Meanwhile,theburn-outweightincreases,orthenovel designweakens,andthedesignbecomescomplicatedforablatingshieldsinthecommonThermalProtectionSystems(TPS).Theformationoftheextremelyhightemperatureregionsinthere-entryvehiclesconfoundtheTPSnecessitiesandcause black-outbecauseofairionization,anissuethatcouldnotbe fi xedviaTPS.However, aerodynamicheatingismoderatedinthebluntbodysinceaeroheatinginclinesto disperseoveracomparativelygreaterareaparticularlyatthestagnationpoint(Maull, 1960; Menezesetal.,2002, 2003).Accordingly,thebluntforebodyisknownasthe mainchoiceinhypersonicsystems(Bogdonoff & Vas,1959).Actually,bluntshapes arewidelyusedinhypersonicandsupersonicvehicles,i.e.,interplanetaryspaceoperations,missiles,launchmissiles,andspaceplanes(Alexander,1947; Menezesetal., 2002).Meanwhile,apreferreddesignrequirementistobluntthenosesinceitoffers superioraccommodationandoperationinspeci ficvehiclesi.e.,creworexplorerdevices(infrared,optical,andradar)(Alexander,1947; Shoemaker,1990,pp. 90 0414).Forbluntingtheforebodyoflongmissiles,itisoccasionallyassumedto usesmallerlaunchersandlaunchtubesforcostreduction(Redingetal.,1977). Furthermore,thevolumetriceffectivenessofthepointednosesislowerthanthatof theirbluntones(Gauer & Paull,2008).

Itisnotasimpletasktodesignasupersonicforbodyofvehiclestoinstantaneously satisfybothminimumaerodynamicheatinganddrag.Indeed,thetrade-offbetween

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.