https://ebookmass.com/product/advances-in-nanofluid-heat-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Advances in heat transfer 52 1st Edition J.P. Abraham
https://ebookmass.com/product/advances-in-heat-transfer-52-1stedition-j-p-abraham/
ebookmass.com
Applications of hybrid nanofluids in solar energy, practical limitations and challenges_ A critical review Tayyab Raza Shah & Hafiz Muhammad Ali
https://ebookmass.com/product/applications-of-hybrid-nanofluids-insolar-energy-practical-limitations-and-challenges_-a-critical-reviewtayyab-raza-shah-hafiz-muhammad-ali/
ebookmass.com
Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer 1st Edition Mohsen Sheikholeslami
https://ebookmass.com/product/application-of-control-volume-basedfinite-element-method-cvfem-for-nanofluid-flow-and-heat-transfer-1stedition-mohsen-sheikholeslami/
ebookmass.com
Hume's Imagination Tito Magri
https://ebookmass.com/product/humes-imagination-tito-magri/
ebookmass.com
Physics of Spin-Orbit-Coupled Oxides Gang Cao https://ebookmass.com/product/physics-of-spin-orbit-coupled-oxidesgang-cao/
ebookmass.com
Sweet Surrender: The Epilogue (The Bitter Rival Book 2) Lm Fox
https://ebookmass.com/product/sweet-surrender-the-epilogue-the-bitterrival-book-2-lm-fox/
ebookmass.com
A Deal with a
Devilish Duke: A Steamy Marriage of Convenience Historical Regency Romance Novel (The Rules of Scandal Book 1) Tessa Brookman https://ebookmass.com/product/a-deal-with-a-devilish-duke-a-steamymarriage-of-convenience-historical-regency-romance-novel-the-rules-ofscandal-book-1-tessa-brookman/ ebookmass.com
Sociologia generale. Teorie, metodo, concetti 3/ED 3rd Edition David Croteau
https://ebookmass.com/product/sociologia-generale-teorie-metodoconcetti-3-ed-3rd-edition-david-croteau/
ebookmass.com
Make Virtual Learning Matter: How to Turn Virtual Classrooms into a Remarkable, Authentic Experience for Kids Paul Axtell
https://ebookmass.com/product/make-virtual-learning-matter-how-toturn-virtual-classrooms-into-a-remarkable-authentic-experience-forkids-paul-axtell/
ebookmass.com
https://ebookmass.com/product/taming-the-megabanks-arthur-e-wilmarthjr/
ebookmass.com
AdvancesinNanofluidHeatTransfer AdvancesinNanofluid HeatTransfer Editedby HafizMuhammadAli
MechanicalEngineeringDepartment, KingFahdUniversityofPetroleumandMinerals, Dhahran,SaudiArabia
InterdisciplinaryResearchCenterforRenewableEnergyand PowerSystems(IRC-REPS),KingFahdUniversityofPetroleumand Minerals,Dhahran,SaudiArabia
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-88656-7
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: BrianGuerin
EditorialProjectManager: MarianaL.Kuhl
ProductionProjectManager: ManjuParamasivam
CoverDesigner: ChristianJ.Bilbow
TypesetbyMPSLimited,Chennai,India
Dedication HafizMuhammadAlidedicatesthisworktohisbeloved sonsMuhammadIbraheemAli,MuhammadIsmaeelAli, andMuhammadIshaacAli.
1. ExperimentalcorrelationsforNusseltnumberand frictionfactorofnanofluids 1 L.SyamSundar,E.VenkataRamana,HafizMuhammadAliand AntonioC.M.Sousa
1.1Introduction
1.3Experimentalmethods 3 1.3.1Nusseltnumber4 1.3.2Frictionfactor5 1.3.3Nondimensionalnumbers5
1.4Nusseltnumbercorrelationsforsingle-phasefluid 6 1.4.1Laminarflow6 1.4.2Turbulentflow7
1.6Factorsinfluencingthedevelopmentofcorrelations
2. Preparationandevaluationofstablenanofluids
2.2.2One-stepmethod29
2.3Evaluationofnanofluidstability 30
2.3.1Zetapotentialanalysis31
2.3.2Sedimentationandcentrifugationmethods32
2.3.3Spectralanalysismethod33
2.3.43ω method34
2.3.5Electronmicroscopyandlightscattering34
2.3.6pHmeasurement36
2.4Stabilizationtechniques 36
2.4.1Physicalmethod37
2.4.2Chemicalstabilization38
2.5Stabilitymechanisms 40
2.5.1Electrostaticstabilization41
2.5.2Stericstabilization42
2.5.3Electrostericstabilization44
2.6Impactofnanofluidstabilityonthermophysicalproperties 45
2.6.1Effectsofstabilityondensity45
2.6.2Effectsofstabilityonviscosity45
2.6.3Effectsofstabilityonspecificheatcapacityof nanofluids48
2.6.4Effectsofstabilityonthermalconductivity49
3. Synthesis,characterization,andmeasurement techniquesforthethermophysicalpropertiesof
ArunKumarTiwari,AmitKumarandZafarSaid
3.1Introduction
3.2.1One-stepmethod60
3.2.2Two-stepmethod64
3.3Characterizationofnanofluid
3.3.1Zetapotential67
3.3.2Fourier-transforminfraredspectroscopy70
3.3.3Transmissionelectronmicroscopy71
3.3.4X-raycrystallography74
3.3.5UV Vistechnique74
3.4Thermophysicalpropertiesmeasurementtechniquesof nanofluid 75
3.4.1Thermalconductivity76
3.4.2Viscosityofnanofluids79
3.4.3Specificheat81
3.4.4Density83
3.5Conclusion
4. Thermophysicalandrheologicalpropertiesofunitary andhybridnanofluids 95
HaticeMercan,AliCelenandTolgaTaner
4.2.1Thermalconductivity96
5. Comparisonofphysicalpropertiesenhancement invariousheattransfernanofluidsbyMXene
LingenthiranSamylingam,KumaranKadirgama,NavidAslfattahi, M.SamykanoandR.Saidur
5.2.1PreparationofMXenenanomaterialasanadditive toheattransfernanofluids134
5.2.2PreparationofvariousheattransfernanofluidsbyMXene135
5.2.3Physicalproperties138
5.3Resultsanddiscussion
5.3.1Thermalconductivityofvariousheattransfernanofluids byMXene140
5.3.2Viscosityanalysisofvariousheattransfernanofluidsby MXene144
5.3.3ThermalStabilityofvariousheattransfernanofluidsby MXene146
6. Numericalmodelingofnanofluids’flowand heattransfer
TehminaAmbreen,ArslanSaleemandCheolWooPark
6.2Heattransferenhancementmechanismofnanofluid
6.2.1Particle particleinteractions155
6.2.2Particle liquidinteractions159
6.2.3Externalforcesonparticles161
Contents
6.3Thermophysicalpropertiesofnanofluids 162
6.3.1Thermalconductivity162
6.3.2Viscosity165
6.3.3Specificheat172
6.3.4Density173
6.4Mathematicalmodelstosimulatenanofluids 173
6.4.1Single-phasemodel173
6.4.2MultiphaseEulerian Eulerianmodel178
6.4.3Eulerianmodel180
6.4.4Volumeoffluidmodel181
6.4.5MultiphaseEulerian Lagrangianmodel183
6.5Numericaltechniquestosimulatenanofluid 186
6.5.1Macroscaletechniques187
6.5.2Microscaletechniques189
6.5.3Mesoscaletechniques191
6.6Conclusion 192 References 193
7. Recentadvancesinmachinelearningresearchfor nanofluidheattransferinrenewableenergy 203 ZafarSaid,MahamSohailandArunKumarTiwari
Nomenclature 203
7.1Introduction 203
7.1.1Datacollectionandrepresentation204
7.1.2Modelselectionandvalidation204
7.1.3Modeloptimization205
7.2Machinelearningtechniques 205
7.2.1Multilayerperceptionartificialneuralnetwork206
7.2.2Adaptiveneurofuzzyinferencesystem207
7.2.3Radialbasisfunctionnetwork208
7.2.4Leastsquaresupportvectormachine209
7.3Nanofluidheattransferandmachinelearning 210
7.4Machinelearningofnanofluids’thermophysicalproperties andthermalperformance 217
7.5Challengesandfutureopportunities 223
7.6Conclusion 223 References 223
8. Heattransferenhancementwithnanofluidsin automotive 229
XihuiWang,KuoHuang,YanYuyingandHailinCen
8.1Historicalbackground 229
8.1.1Applicationsofcomputationalfluiddynamicsin nanofluidsstudies229
8.1.2Applicationsofnanofluidinautomotivesystem232
8.2Physicalproperties 234
8.2.1Thermalconductivityofnanofluids234
8.2.2Viscosityofnanofluids234
8.3Thefundamentalrelationforcomputationalfluiddynamics model 239
8.3.1Macroscopicmodels239
8.3.2LatticeBoltzmannmethod240
8.4Heattransferenhancementwithnanofluidsinautomotive 243
8.4.1Utilizationinenginecoolant243
8.4.2Utilizationinrefrigerantofautomotiveairconditioning250
9. Theuseofnanofluidsinsolardesalinationofsaline waterresourcesasantibacterialagents 265
RoyaMehrkhah,MohammadMustafaGhafurian, HamidNiazmand,ElahehK.GoharshadiandOmidMahian Nomenclature 265
9.1Harvestingsolarenergybynanofluids 266
9.1.1Introduction266
9.1.2Solarsteamgenerationexperimentsbythenanofluids267
9.1.3Effectiveparametersonlightharvestingcapabilityofthe nanofluids271
9.1.4EffectofNFsonheatlocalization278
9.1.5ComparisonofeconomicperformanceofNFs278
9.1.6PhotocatalyticexperimentsbyNFs279
9.2AntibacterialactivityofsomeNFs 282
9.2.1Introduction282
9.2.2EffectofNFsonpreventionof Escherichiacoli proliferation284
9.2.3MechanismsofantibacterialactivityofNFs285
9.2.4EffectiveparametersonantibacterialactivityofNFs289
9.2.5RateofantibacterialactivityofNPs294
9.2.6TheeffectofNFsonthebacteriamorphology294 9.3Conclusion 296 References 296
10. Applicationofnanofluidsincombustionengines withfocusingonimprovingheattransferprocess 303
MohammadHemmatEsfe,SaeedEsfandehand MohammadHassanKamyab Nomenclature 303 10.1Introduction 305
10.1.1Historyofheattransferincombustionengines306
10.2Parametersaffectingtheheattransferofcombustion engines 307
10.2.1Enginesizeanddimension307
10.2.2Enginespeed307
10.2.3Engineload308
10.2.4Inletairtemperature309
10.2.5Coolanttemperature309
10.2.6Enginematerials309
10.2.7Frictioncoefficient310
10.2.8Heattransfercoefficient311
10.2.9Conductionheattransfercoefficient313
10.3Typeoflubricants 316
10.3.1Lubricationofcombustionengines316
10.3.2Basicengineoilsandchallenges319
10.4Usingnanoparticlesininternalcombustionengines 320
10.4.1Addingnanoparticlestoengineoils(nanooil)322
10.4.2Addingnanoparticlestofuel(nanofuel)327
10.4.3Effectsofnanoparticlesadditivesonfriction327
10.4.4Effectsofnanoparticlesadditivesonenginespower329
10.4.5Effectsofnanoparticleadditivesonthecoolingcycle ofcombustionengines331
10.5Conclusiononthreatsandopportunitiesofapplying nanoscienceincombustionengines
11. Applicationsofnanofluidsinsolarenergycollectors focusingonsolarstills
SaeedEsfandeh,MohammadHemmatEsfeand MohammadHassanKamyab Nomenclature
11.1Historyofsolarenergycollectors
11.2ClassificationofSolarenergycollectors 344
11.2.1Classificationbasedonsolarenergyapplication344
11.2.2Classificationbasedonconcentrationlevelability345
11.2.3Classificationbasedontrackingornontracking solarcollectors345
11.2.4Passiveandactivesolarsystems346
11.2.5Maintypesofsolarcollectors347
11.3Effectiveparametersonsolarstillperformance 356
11.3.1Variousdesignparameters356
11.3.2Climaticparameters359
11.4Applicationofnanofluidsinsolarstills 361
11.4.1Solarstillswithoutnanofluids361
11.4.2Solarstillswithnanofluids362
11.5Mostappliednanoparticlesinsolarstills
11.6Challengesofnanofluidapplicationinsolarcollectors
12. Utilizationofnanofluids(monoandhybrid)in parabolictroughsolarcollector:acomparativeanalysis
MuhammadSajidKhan,MiYanandHafizMuhammadAli
12.1Introduction
12.2Systemdescriptionandthermodynamicmodeling
12.2.1Energyandexergyanalysisofparabolictrough collector383
12.2.2Heattransferanalysis385
12.2.3Hybridandmononanofluidsspecifications386
12.2.4Performanceevaluationcriteria388
12.2.5Validationofparabolictroughcollectormodel389 12.3Resultsanddiscussion
13. Electronicsthermalmanagementapplyingheat pipesandpulsatingheatpipes
RogerR.Riehl,Jesu ´ sEsarteSanMartinandJuncalEstella 13.1Introduction
13.3.1Heatpipedesigns412
13.3.2Applicationofheatpipes414
13.4Pulsatingheatpipes 418
13.4.1Applicationofpulsatingheatpipes421
13.5Nanofluidscapabilitiesandmodels 424
13.6Nanofluidsinheattransfersystems:prosandcons 430
13.6.1Typesofnanoparticlesusedinnanofluids430
13.6.2Nanofluidpreparation432
13.6.3Nanofluidstabilitystrategies433
13.6.4Nanofluidstabilitymechanisms435
13.6.5Nanofluidstabilityevaluation436
13.6.6Nanofluidsafteroperationcycles437
13.6.7Nanofluidsapplications438
13.7Concludingremarks
14. Roleofnanofluidsinmicrochannelheatsinks 447
AliTurabJafry,SohailMalik,NaseemAbbas,UzairSajjad, HafizMuhammadAliandChi-ChuanWang
14.1Introduction
14.2Keycharacteristicsofnanofluids 449
14.2.1Thermophysicalproperties449
14.2.2Effectofnanoparticleconcentration454
14.2.3Effectofnanoparticlesize455
14.2.4Effectofnanoparticleshape456
14.2.5Effectofnanoparticlethermalconductivity456
14.2.6Effectofbasefluid457
14.2.7Effectofnanofluidtemperature457
14.2.8Effectofpreparationtechnique458 14.2.9Summary459
14.3Flowofnanofluidsinmicrochannels 459
14.4Thermalperformanceofnanofluidsinmicrochannels 461
14.5Entropyanalysisofnanofluid-basedmicrochannelheat sinks 464
14.6Geometryeffectofmicrochannels 467
14.6.1Changingshapeofchannels467
14.6.2Addinggeometricalinclusions/exclusionsinthe crosssection467
14.6.3Varyingpathofthefluid467
14.7Futureadvancesandchallenges
15. Nanofluidsforenhancedperformanceofbuilding thermalenergysystems 479
NaseemAbbas,MuhammadBilalAwan,MohsinAliBadshah, UzairSajjadandWaseemRaza
15.1Introduction
15.2Overviewofdomainknowledgerelatedtonanofluids 480
15.3Roleofnanofluidsinefficiencyenhancementofbuilding energysystems 483
15.3.1Nanofluidsforperformanceenhancementof photovoltaicthermalsystems483
15.3.2Nanofluidsforperformanceenhancementofheating, ventilation,andairconditioningsystems487
15.3.3Nanofluidsforperformanceenhancementofthermal storagesystems489
15.4Barriers 494
15.5Conclusions 495 References 496
16. Ionicnanofluids:preparation,characteristics, heattransfermechanism,andthermalapplications 503 TayyabRazaShah,ChaoZhou,HafizMuhammadRizwan, MuhammadAbdullah,AsadIqbal,AwaisAwanand HafizMuhammadAli
Abbreviations
16.1Introduction
16.2Preparationmethods
16.3Characteristics
16.3.1Thermalconductivity511 16.3.2Viscosity512
16.4Heattransfermechanism
16.5Thermalapplications
16.6Futureprospectsandchallenges
16.7Conclusions
17. Hybridnanofluidstowardsadvancementin nanofluidsforheatsink
FurqanJamil,TahaBaig,HafizMuhammadAli, MuhammadShehryar,ShahabKhushnoodandFaisalHassan
17.2.2One-stepmethod540
17.3Varioushybridnanofluidsusedindifferentheatsinks 541
17.3.1Thermalmanagementofelectronicsusingother
Listofcontributors Naseem Abbas DepartmentofMechanicalEngineering,SejongUniversity,Seoul, SouthKorea
Muhammad Abdullah MechanicalEngineeringDepartment,Quaid-E-AzamCollege ofEngineeringandTechnology,Sahiwal,Pakistan
HafizMuhammad Ali MechanicalEngineeringDepartment,KingFahdUniversityof PetroleumandMinerals,Dhahran,SaudiArabia;InterdisciplinaryResearch CenterforRenewableEnergyandPowerSystems(IRC-REPS),KingFahd UniversityofPetroleumandMinerals,Dhahran,SaudiArabia
Tehmina Ambreen SchoolofMechanicalEngineering,KyungpookNational University,BukguDaegu,SouthKorea
Navid Aslfattahi DepartmentofFluidMechanicsandThermodynamics,Facultyof MechanicalEngineering,CzechTechnicalUniversityinPrague,Prague,Czech Republic
Awais Awan MechanicalEngineeringDepartment,Quaid-E-AzamCollegeof EngineeringandTechnology,Sahiwal,Pakistan
MuhammadBilal Awan DepartmentofMechanicalEngineering,Universityof CentralPunjab,Lahore,Pakistan
MohsinAli Badshah DepartmentofChemicalEngineeringandMaterialsScience, TheHenrySamueliSchoolofEngineering,UniversityofCalifornia,Irvine,CA, UnitedStates
Taha Baig MechanicalEngineeringDepartment,UniversityofWah,Wah Cantonment,Pakistan;MechanicalEngineeringDepartment,Universityof EngineeringandTechnology,Taxila,Pakistan
Ali Celen DepartmentofMechanicalEngineering,FacultyofEngineering,Erzincan BinaliYıldırımUniversity,Erzincan,Turkey
Hailin Cen SchoolofMechanicalandAutomotiveEngineering,SouthChina UniversityofTechnology,GuangZhou,P.R.China
Saeed Esfandeh DepartmentofMechanicalEngineering,Jundi-ShapurUniversityof Technology,Dezful,Iran;DepartmentofMechanicalEngineering,ImamHossein University,Tehran,Iran
Juncal Estella NAITEC—CentroTecnolo ´ gicoenAutomocio ´ nyMecatro ´ nica, Pamplona,Spain
Rong Fu InstituteofEngineeringThermophysics,ChineseAcademyofSciences, Beijing,P.R.China
xviii Listofcontributors
MohammadMustafa Ghafurian DepartmentofMechanicalEngineering, BozorgmehrUniversityofQaenat,Qaen,Iran;CenterforNanotechnologyin RenewableEnergies,FerdowsiUniversityofMashhad,Mashhad,Iran
ElahehK. Goharshadi DepartmentofChemistry,FacultyofScience,Ferdowsi UniversityofMashhad,Mashhad,Iran
Faisal Hassan MechanicalEngineeringDepartment,UniversityofEngineeringand Technology,Taxila,Pakistan
Mohammad HemmatEsfe DepartmentofMechanicalEngineering,ImamHossein University,Tehran,Iran
Kuo Huang FacultyofEngineering,TheUniversityofNottingham,Nottingham, UnitedKingdom
Asad Iqbal MechanicalEngineeringDepartment,Quaid-E-AzamCollegeof EngineeringandTechnology,Sahiwal,Pakistan
AliTurab Jafry FacultyofMechanicalEngineering,GhulamIshaqKhanInstituteof EngineeringSciencesandTechnology,Topi,Pakistan
Furqan Jamil MechanicalEngineeringDepartment,UniversityofWah,Wah Cantonment,Pakistan
Kumaran Kadirgama FacultyofMechanicalEngineering,UniversitiMalaysia Pahang,Pekan,Malaysia;AutomotiveEngineeringCentre,UniversitiMalaysia Pahang,Pekan,Malaysia
MohammadHassan Kamyab DepartmentofMechanicalEngineering,ImamHossein University,Tehran,Iran;DepartmentofMechanicalEngineering,Universityof Kashan,Kashan,Iran
MuhammadSajid Khan InstituteofEnergyandPowerEngineering,Collegeof MechanicalEngineering,ZhejiangUniversityofTechnology,Hangzhou,P.R. China;DepartmentofMechanicalEngineering,MirpurUniversityofScience& Technology(MUST),Mirpur,AJK,Pakistan
Shahab Khushnood MechanicalEngineeringDepartment,UniversityofWah,Wah Cantonment,Pakistan
Amit Kumar MechanicalEngineeringDepartment,InstituteofEngineering& Technology,Dr.A.P.J.AbdulKalamTechnicalUniversity,Lucknow,Uttar Pradesh,India
Zeyu Liu MarineEngineeringCollege,DalianMaritimeUniversity,Dalian, Liaoning,P.R.China;FacultyofEngineering,TheUniversityofNottingham, Nottingham,Nottinghamshire,UnitedKingdom
Omid Mahian CenterforNanotechnologyinRenewableEnergies,Ferdowsi UniversityofMashhad,Mashhad,Iran;SchoolofChemicalEngineeringand Technology,Xi’anJiaotongUniversity,Xi’an,Shaanxi,P.R.China
Sohail Malik FacultyofMechanicalEngineering,GhulamIshaqKhanInstituteof EngineeringSciencesandTechnology,Topi,Pakistan
Jesu ´ sEsarteSan Martin NAITEC—CentroTecnolo ´ gicoenAutomocio ´ ny Mecatro ´ nica,Pamplona,Spain
Listofcontributors xix
Roya Mehrkhah DepartmentofChemistry,FacultyofScience,FerdowsiUniversity ofMashhad,Mashhad,Iran
Hatice Mercan DepartmentofMechatronicsEngineering,YildizTechnical University,Istanbul,Turkey
Hamid Niazmand CenterforNanotechnologyinRenewableEnergies,Ferdowsi UniversityofMashhad,Mashhad,Iran
CheolWoo Park SchoolofMechanicalEngineering,KyungpookNational University,BukguDaegu,SouthKorea
E.Venkata Ramana DepartmentofPhysics,UniversityofAveiro,Aveiro,Portugal
Waseem Raza DepartmentofMechanicalEngineering,JejuNationalUniversity, Jeju,SouthKorea
RogerR. Riehl GamaTechThermalSolutions,SaoJose ´ dosCampos,Brazil
HafizMuhammad Rizwan FacultyofMechanicalEngineering,GIKInstituteof EngineeringSciencesandTechnology,Topi,Pakistan
Zafar Said U.S.-PakistanCenterforAdvancedStudiesinEnergy(USPCAS-E), NationalUniversityofSciencesandTechnology(NUST),Islamabad,Pakistan; DepartmentofSustainableandRenewableEnergyEngineering,Universityof Sharjah,Sharjah,UnitedArabEmirates
R. Saidur ResearchCenterforNano-MaterialsandEnergyTechnology(RCNMET), SchoolofEngineeringandTechnology,SunwayUniversity,SelangorDarul Ehsan,Malaysia;DepartmentofEngineering,LancasterUniversity,Lancaster, UnitedKingdom
Uzair Sajjad DepartmentofEnergyandRefrigeratingAir-ConditioningEngineering, NationalTaipeiUniversityofTechnology,Taipei,Taiwan
Arslan Saleem SchoolofEngineering,CardiffUniversity,Cardiff,Wales,United Kingdom
M. Samykano FacultyofMechanicalEngineering,UniversitiMalaysiaPahang, Pekan,Malaysia
Lingenthiran Samylingam ResearchCenterforNano-MaterialsandEnergy Technology(RCNMET),SchoolofEngineeringandTechnology,Sunway University,SelangorDarulEhsan,Malaysia
TayyabRaza Shah CollegeofEngineering,PekingUniversity,Beijing,P.R.China
Muhammad Shehryar MechanicalEngineeringDepartment,Universityof EngineeringandTechnology,Taxila,Pakistan
Maham Sohail DepartmentofSustainableandRenewableEnergyEngineering, UniversityofSharjah,Sharjah,UnitedArabEmirates
AntonioC.M. Sousa DepartmentofMechanicalEngineering,PrinceMohammadBin FahdUniversity,Al-Khobar,SaudiArabia
L.Syam Sundar DepartmentofMechanicalEngineering,PrinceMohammadBin FahdUniversity,Al-Khobar,SaudiArabia
Tolga Taner DepartmentofMotorVehiclesandTransportationTechnology, AksarayUniversity,Aksaray,Turkey
ArunKumar Tiwari MechanicalEngineer ingDepartment,InstituteofEngineering andTechnology,Dr.A.P.J.AbdulKal amTechnicalUniversity,Lucknow, UttarPradesh,India
Chi-Chuan Wang DepartmentofMechanicalEngineering,NationalYangMing ChiaoTungUniversity,Hsinchu,Taiwan
Xihui Wang SchoolofMechanicalandAutomotiveEngineering,SouthChina UniversityofTechnology,GuangZhou,P.R.China
Mi Yan InstituteofEnergyandPowerEngineering,CollegeofMechanical Engineering,ZhejiangUniversityofTechnology,Hangzhou,P.R.China
Yan Yuying FacultyofEngineering,TheUniversityofNottingham,Nottingham, Nottinghamshire,UnitedKingdom
Chao Zhou CollegeofEngineering,PekingUniversity,Beijing,P.R.China xx Listofcontributors
Acknowledgment HafizMuhammadAliacknowledgesthesupportreceivedfromtheKing FahdUniversityofPetroleumandMinerals,Dhahran,31261,Kingdomof SaudiArabia.
Experimentalcorrelationsfor Nusseltnumberandfriction factorofnanofluids L.SyamSundar1,E.VenkataRamana2,HafizMuhammadAli3,4 and AntonioC.M.Sousa1
1DepartmentofMechanicalEngineering,PrinceMohammadBinFahdUniversity,Al-Khobar, SaudiArabia, 2DepartmentofPhysics,UniversityofAveiro,Aveiro,Portugal, 3Mechanical EngineeringDepartment,KingFahdUniversityofPetroleumandMinerals,Dhahran, SaudiArabia, 4InterdisciplinaryResearchCenterforRenewableEnergyandPowerSystems (IRC-REPS),KingFahdUniversityofPetroleumandMinerals,Dhahran,SaudiArabia
1.1Introduction
Heattransferaugmentationisnecessaryforeachandeveryindustry.Heat transferaugmentationcanbeachievedbyusingactivetechniquesandpassivetechniques.Anactivemethodofheattransferenhancementispossible byusingmechanicalstirring,surfacevibrations,electrostaticfields,jet impingement,spray,etc. [1 3].Toachievetheactivemethodofheattransferenhancementitneedsextradevices,whichmeansthatitrequiresextra power.So,thistypeofheattransferenhancementisnotadvisable,becauseit needsmorepower.Apassivemethodofheattransferenhancementispossiblebyprovidingsurfacetexturing [4],extendedsurfaces [5],andflowturbulence [6,7] andaddingadditivestothefluid [8,9].Justaddingadditives (metalornonmetalparticles)tothebasefluidmaygetheattransferenhancement,sincetheadditiveshavemorethermalconductivitythanthefluids. Thistypeofheattransferenhancementdoesnotrequireanyextraaccessories.Theinitialresearchworkwasrelatedtothedispersionofmicron-size 1 3 10 6 m particlesinthefluidanditgivestheenhancedheattransferbut facedtheproblemofparticleagglomerationinthebasefluid [10].
Duetothedevelopmentinnanotechnology,themicrosizeparticlesarefurtherreducedtonanosize1 3 10 9 m .Thedilutionofnanosizedparticles withsometreatmentontheparticlesurfacecanavoidparticleagglomeration inthebasefluid.Dilutednanosizedparticlesinthebasefluidarecalled
nanofluid,andwerefirstinventedbyChoi [11].Improvedthermalconductivitywasobservedfornanofluidscomparedwiththebasefluid.Theproblemof particleclogging,sedimentation,anderosionisminimizedwiththeuseof nanofluidswhiletheyflowinatubeorminichannel.
Discussionhasbeengoingonformorethan20yearsbutthemechanismbehindtheimprovementofheattransferforthesenanofluidsisstill doubtful [12 16] .However,thesenanofluidspossessaugmentedthermalconductivity,whichisthekeypara meterforheattransferintensification.Manytheorieshavebeenavailableintheopenliteraturetoknow aboutthethermalconductivityaugmentationofthesenanofluids [17,18] .
ThedilutednanoparticlesBrownianmotion,liquid particleinterface, microconvectionplayasignificantvitalroleinthermalconductivityaugmentation [19].TheinfluenceofBrownianmotionofnanoparticlescausesthe heattransferaugmentationofnanofluids [20].Basedonthestaticmodelof Maxwell,particleconductionisthemodeofheattransferaugmentation,but basedonthedynamicmodel,theparticle particleandparticle liquidinteractionsisthemodeforheattransferenhancement.
Whenusingthesenanofluidsinheatexchangerdevices,heattransferis important.Severalstudiesareavailableintheliteratureforheattransfer characteristicsofvariousnanofluids.Sincethesingle-phasecorrelationsfor Nusseltnumberandfrictionfactorarenotvalidfornanofluids,theauthors havedevelopedtheirowncorrelationsbasedontheuseofthenanofluids. UntilnowthereisnostandardNusseltnumberandfrictionfactorcorrelation applicableforalltypeofnanofluids.Developingasinglecorrelationforall thenanofluidsisdifficultbecausetheheattransferaugmentationdependson severalparameters,suchasparticlesize,shape,concentration,geometry,and operatingconditions.
ThischaptercoverstheNusseltnumberandfrictioncorrelationsfordifferentnanofluidsinvariousgeometricalandoperatingconditions.These developedequationsarehelpfultoidentifythenecessityofdeveloping anotherkindofequationforforthcomingresearch.
1.2Preparationofnanofluids Thepreparationofnanofluidsisnecessarybeforetheyareusedinanyequipment.Therearetwomethodstopreparethenanofluids:(1)one-stepmethod and(2)two-stepmethod.Stablenanofluidsareimportantforheattransfer applications.Thenanofluidsarestablewiththeuseofsurfactants.Ifthe nanofluidsarenotstable,theremaybeacloggingoflargerparticlesin pumps,pipes,andalsofoulinginthetubesmayoccurusingthesenanofluids inthermalequipments.
1.2.1One-stepmethod Theone-stepmethodofnanofluidsisthatthenanoparticlesaredirectlymade anddilutedinthebasefluid.Thismethodisadvantageousbecausethenanoparticlescannotreactwithoxygenintheatmosphere.Mostoftheresearchhas beenusedthisone-stepmethodofnanofluidpreparationtechnique.Theaccessorieslikedryersandstoragearenotrequiredforthismethod.Thismethod alsohastheadvantageoflessnanoparticlesaggregationinthebasefluid, resultinginanincreaseinnanofluidstability.Thelaserablationmethodand submergedarcnanoparticlessynthesissystemarethecommonlyusedmethods forthepreparationofnanofluidsbytheone-stepmethod.
1.2.2Two-stepmethod Inthetwo-stepmethodofnanofluidsthenanoparticles,nanotubes,andother nanomaterialsareprimarilypreparedintheformofdrypowersbyusing chemical,physical,andmechanicalmethods.Thepreparednanoparticlesare dispersedinthebasefluid.Thismethodisthemosteconomicalmethodfor thepreparationofnanofluids.Nanoparticleagglomerationandsedimentation arethemaindifficultiesinthistypeofnanofluidspreparation.Ultrasonication orthestirringprocesswilldecreasethenanoparticlesedimentationinthebase fluid.BecauseofthevanderWaalsforces,thenanoparticlesaggregatevery easilyinthebasefluids.Byusingthesurfactantinthebasefluidnanoparticle sedimentationisavoided.Nanoparticleagglomerationwillaffectthethermophysicalpropertiesofthenanofluid.However,thismethodofnanofluidspreparationismosteconomicalandalsosuitableforlarge-scalenanofluids preparation.Forpreparingtheoxides-basednanofluids,thismethodismore suitable.Commonlyusedmethodsforthesynthesisofnanoparticlesarethe directsynthesismethod,sol gelmethod,andchemicalprecipitationmethod. CommonlyusedsurfactantsaregumArabic,SDBS,chitosan,polyvinylpyrolidine,andcetyltrimethylammoniumbromide.
Onecanuseeithertheone-stepmethodortwo-stepmethodforthepreparationofnanofluids,butthenanofluidsshouldbestabletoavoidtheparticle agglomerationinthetubesandchannel.Thereforefornanofluidapplication inengineeringsystemsnewtechnologyisrequiredtoincreasethestabilityof nanofluid.
1.3Experimentalmethods Theexperimentalequationstoevaluatetheheattransfercoefficient,Nusselt number,andfrictionfactoraregivenbelow.Sundaretal. [21] experimental schematicdiagramofforcedconvectionequipmentisshownin Fig.1.1.
FIGURE1.1 Schematicdiagramofforcedconvectionapparatus [21]
1.3.1Nusseltnumber
TheNewton’slawofcoolingequationisusedtoestimatetheheattransfer coefficient.
a. Heatsuppliedtothetesttube,
b. Heatabsorbedbythefluid,
TheaverageQag 5
c. Heattransfercoefficient,
d. Nusseltnumber,
e. Prandtlnumber,
1.3.2Frictionfactor
Thefluidpressuredropforbothwaterandnanofluidsbetweeninletandoutletismeasuredthroughthepressuregauge.Whenthefluidisflowinginside thetube,theresistancebetweenthefluidandtubewallprovidesthepressure drop.
f. Pressuredrop,
Thetermsin Eq.(1.6) aredensityofthefluid ρ ðÞ (kg/m3),accelerationduetogravity ðgÞ (m/s2),andmanometricfluidheight ðH Þ (m).The manometricfluidheightisconvertedintoequivalentworkingfluidheight forpressuredropcalculations.
Thepumpingpowerofwaterandnanofluidscanbegivenas:
g. Pumpingpower
Fromthepressuredrop,thefrictionfactorofwaterandnanofluidis estimated.
h. Frictionfactor,
where _ m 5 ρAv.v 5 m ρA
1.3.3Nondimensionalnumbers
ThenondimensionalnumberssuchasReynoldsnumber,Nusseltnumber, Prandtlnumber,andPecletnumberaregenerallyusedtodevelop correlations.
i. Reynoldsnumber,
j. Prandtlnumber,
k. Nusseltnumber,
l. Pecletnumber,
Thethermaldiffusivityis:
1.4Nusseltnumbercorrelationsforsingle-phasefluid
DifferentcorrelationsareavailabletoestimatetheNusseltnumberforthe caseofsingle-phasefluidsflowinatube.Thefluidflowmaybedefinedas laminarandturbulentflow.WhentheReynoldsnumberislessthanorequal to2300,theflowiscalledlaminarflow;whentheReynoldsnumberis greaterthan2300,theflowiscalledasturbulentflow.Thegenerallyused correlationsarecompiledbelow.
1.4.1Laminarflow a. Shah [22]:
b. ChurchillandUgasi [23]
Nul 5 LaminarNusseltnumber
Nulc 5 NusseltnumberatcriticalReynoldsnumberof2200
Nut 5 TurbulentNusseltnumber
c. TamandGhajar [24]
d. Sider-Tate [25]
1.4.2Turbulentflow
e. Dittus-Boelter [26]
f. Gnelinski’s [27]
AnotherGnelinski [27] equationis,
g. Petukhov [28]
h. Notter-Sleicher [29]