Advances in nanofluid heat transfer hafiz muhammad ali - The complete ebook version is now available

Page 1


https://ebookmass.com/product/advances-in-nanofluid-heat-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advances in heat transfer 52 1st Edition J.P. Abraham

https://ebookmass.com/product/advances-in-heat-transfer-52-1stedition-j-p-abraham/

ebookmass.com

Applications of hybrid nanofluids in solar energy, practical limitations and challenges_ A critical review Tayyab Raza Shah & Hafiz Muhammad Ali

https://ebookmass.com/product/applications-of-hybrid-nanofluids-insolar-energy-practical-limitations-and-challenges_-a-critical-reviewtayyab-raza-shah-hafiz-muhammad-ali/

ebookmass.com

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer 1st Edition Mohsen Sheikholeslami

https://ebookmass.com/product/application-of-control-volume-basedfinite-element-method-cvfem-for-nanofluid-flow-and-heat-transfer-1stedition-mohsen-sheikholeslami/

ebookmass.com

Hume's Imagination Tito Magri

https://ebookmass.com/product/humes-imagination-tito-magri/

ebookmass.com

Physics of Spin-Orbit-Coupled Oxides Gang Cao

https://ebookmass.com/product/physics-of-spin-orbit-coupled-oxidesgang-cao/

ebookmass.com

Sweet Surrender: The Epilogue (The Bitter Rival Book 2) Lm

Fox

https://ebookmass.com/product/sweet-surrender-the-epilogue-the-bitterrival-book-2-lm-fox/

ebookmass.com

A Deal with

a

Devilish Duke: A Steamy Marriage of Convenience Historical Regency Romance Novel (The Rules of Scandal Book 1) Tessa Brookman

https://ebookmass.com/product/a-deal-with-a-devilish-duke-a-steamymarriage-of-convenience-historical-regency-romance-novel-the-rules-ofscandal-book-1-tessa-brookman/ ebookmass.com

Sociologia generale. Teorie, metodo, concetti 3/ED 3rd Edition David Croteau

https://ebookmass.com/product/sociologia-generale-teorie-metodoconcetti-3-ed-3rd-edition-david-croteau/

ebookmass.com

Make Virtual Learning Matter: How to Turn Virtual Classrooms into a Remarkable, Authentic Experience for Kids Paul Axtell

https://ebookmass.com/product/make-virtual-learning-matter-how-toturn-virtual-classrooms-into-a-remarkable-authentic-experience-forkids-paul-axtell/

ebookmass.com

https://ebookmass.com/product/taming-the-megabanks-arthur-e-wilmarthjr/

ebookmass.com

AdvancesinNanofluidHeatTransfer

AdvancesinNanofluid HeatTransfer

MechanicalEngineeringDepartment, KingFahdUniversityofPetroleumandMinerals, Dhahran,SaudiArabia

InterdisciplinaryResearchCenterforRenewableEnergyand PowerSystems(IRC-REPS),KingFahdUniversityofPetroleumand Minerals,Dhahran,SaudiArabia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-88656-7

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: BrianGuerin

EditorialProjectManager: MarianaL.Kuhl

ProductionProjectManager: ManjuParamasivam

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Dedication

HafizMuhammadAlidedicatesthisworktohisbeloved sonsMuhammadIbraheemAli,MuhammadIsmaeelAli, andMuhammadIshaacAli.

1. ExperimentalcorrelationsforNusseltnumberand frictionfactorofnanofluids 1 L.SyamSundar,E.VenkataRamana,HafizMuhammadAliand AntonioC.M.Sousa

1.1Introduction

1.3Experimentalmethods 3 1.3.1Nusseltnumber4 1.3.2Frictionfactor5 1.3.3Nondimensionalnumbers5

1.4Nusseltnumbercorrelationsforsingle-phasefluid 6 1.4.1Laminarflow6 1.4.2Turbulentflow7

1.6Factorsinfluencingthedevelopmentofcorrelations

2. Preparationandevaluationofstablenanofluids

2.2.2One-stepmethod29

2.3Evaluationofnanofluidstability 30

2.3.1Zetapotentialanalysis31

2.3.2Sedimentationandcentrifugationmethods32

2.3.3Spectralanalysismethod33

2.3.43ω method34

2.3.5Electronmicroscopyandlightscattering34

2.3.6pHmeasurement36

2.4Stabilizationtechniques 36

2.4.1Physicalmethod37

2.4.2Chemicalstabilization38

2.5Stabilitymechanisms 40

2.5.1Electrostaticstabilization41

2.5.2Stericstabilization42

2.5.3Electrostericstabilization44

2.6Impactofnanofluidstabilityonthermophysicalproperties 45

2.6.1Effectsofstabilityondensity45

2.6.2Effectsofstabilityonviscosity45

2.6.3Effectsofstabilityonspecificheatcapacityof nanofluids48

2.6.4Effectsofstabilityonthermalconductivity49

3. Synthesis,characterization,andmeasurement techniquesforthethermophysicalpropertiesof

ArunKumarTiwari,AmitKumarandZafarSaid

3.1Introduction

3.2.1One-stepmethod60

3.2.2Two-stepmethod64

3.3Characterizationofnanofluid

3.3.1Zetapotential67

3.3.2Fourier-transforminfraredspectroscopy70

3.3.3Transmissionelectronmicroscopy71

3.3.4X-raycrystallography74

3.3.5UV Vistechnique74

3.4Thermophysicalpropertiesmeasurementtechniquesof nanofluid 75

3.4.1Thermalconductivity76

3.4.2Viscosityofnanofluids79

3.4.3Specificheat81

3.4.4Density83

3.5Conclusion

4. Thermophysicalandrheologicalpropertiesofunitary andhybridnanofluids 95

HaticeMercan,AliCelenandTolgaTaner

4.2.1Thermalconductivity96

5. Comparisonofphysicalpropertiesenhancement invariousheattransfernanofluidsbyMXene

LingenthiranSamylingam,KumaranKadirgama,NavidAslfattahi, M.SamykanoandR.Saidur

5.2.1PreparationofMXenenanomaterialasanadditive toheattransfernanofluids134

5.2.2PreparationofvariousheattransfernanofluidsbyMXene135

5.2.3Physicalproperties138

5.3Resultsanddiscussion

5.3.1Thermalconductivityofvariousheattransfernanofluids byMXene140

5.3.2Viscosityanalysisofvariousheattransfernanofluidsby MXene144

5.3.3ThermalStabilityofvariousheattransfernanofluidsby MXene146

6. Numericalmodelingofnanofluids’flowand heattransfer

TehminaAmbreen,ArslanSaleemandCheolWooPark

6.2Heattransferenhancementmechanismofnanofluid

6.2.1Particle particleinteractions155

6.2.2Particle liquidinteractions159

6.2.3Externalforcesonparticles161

Contents

6.3Thermophysicalpropertiesofnanofluids 162

6.3.1Thermalconductivity162

6.3.2Viscosity165

6.3.3Specificheat172

6.3.4Density173

6.4Mathematicalmodelstosimulatenanofluids 173

6.4.1Single-phasemodel173

6.4.2MultiphaseEulerian Eulerianmodel178

6.4.3Eulerianmodel180

6.4.4Volumeoffluidmodel181

6.4.5MultiphaseEulerian Lagrangianmodel183

6.5Numericaltechniquestosimulatenanofluid 186

6.5.1Macroscaletechniques187

6.5.2Microscaletechniques189

6.5.3Mesoscaletechniques191

6.6Conclusion 192 References 193

7. Recentadvancesinmachinelearningresearchfor nanofluidheattransferinrenewableenergy 203 ZafarSaid,MahamSohailandArunKumarTiwari

Nomenclature 203

7.1Introduction 203

7.1.1Datacollectionandrepresentation204

7.1.2Modelselectionandvalidation204

7.1.3Modeloptimization205

7.2Machinelearningtechniques 205

7.2.1Multilayerperceptionartificialneuralnetwork206

7.2.2Adaptiveneurofuzzyinferencesystem207

7.2.3Radialbasisfunctionnetwork208

7.2.4Leastsquaresupportvectormachine209

7.3Nanofluidheattransferandmachinelearning 210

7.4Machinelearningofnanofluids’thermophysicalproperties andthermalperformance 217

7.5Challengesandfutureopportunities 223

7.6Conclusion 223 References 223

8. Heattransferenhancementwithnanofluidsin automotive 229

XihuiWang,KuoHuang,YanYuyingandHailinCen

8.1Historicalbackground 229

8.1.1Applicationsofcomputationalfluiddynamicsin nanofluidsstudies229

8.1.2Applicationsofnanofluidinautomotivesystem232

8.2Physicalproperties 234

8.2.1Thermalconductivityofnanofluids234

8.2.2Viscosityofnanofluids234

8.3Thefundamentalrelationforcomputationalfluiddynamics model 239

8.3.1Macroscopicmodels239

8.3.2LatticeBoltzmannmethod240

8.4Heattransferenhancementwithnanofluidsinautomotive 243

8.4.1Utilizationinenginecoolant243

8.4.2Utilizationinrefrigerantofautomotiveairconditioning250

9. Theuseofnanofluidsinsolardesalinationofsaline waterresourcesasantibacterialagents 265

RoyaMehrkhah,MohammadMustafaGhafurian, HamidNiazmand,ElahehK.GoharshadiandOmidMahian Nomenclature 265

9.1Harvestingsolarenergybynanofluids 266

9.1.1Introduction266

9.1.2Solarsteamgenerationexperimentsbythenanofluids267

9.1.3Effectiveparametersonlightharvestingcapabilityofthe nanofluids271

9.1.4EffectofNFsonheatlocalization278

9.1.5ComparisonofeconomicperformanceofNFs278

9.1.6PhotocatalyticexperimentsbyNFs279

9.2AntibacterialactivityofsomeNFs 282

9.2.1Introduction282

9.2.2EffectofNFsonpreventionof Escherichiacoli proliferation284

9.2.3MechanismsofantibacterialactivityofNFs285

9.2.4EffectiveparametersonantibacterialactivityofNFs289

9.2.5RateofantibacterialactivityofNPs294

9.2.6TheeffectofNFsonthebacteriamorphology294 9.3Conclusion 296 References 296

10. Applicationofnanofluidsincombustionengines withfocusingonimprovingheattransferprocess 303

MohammadHemmatEsfe,SaeedEsfandehand MohammadHassanKamyab Nomenclature 303 10.1Introduction 305

10.1.1Historyofheattransferincombustionengines306

10.2Parametersaffectingtheheattransferofcombustion engines 307

10.2.1Enginesizeanddimension307

10.2.2Enginespeed307

10.2.3Engineload308

10.2.4Inletairtemperature309

10.2.5Coolanttemperature309

10.2.6Enginematerials309

10.2.7Frictioncoefficient310

10.2.8Heattransfercoefficient311

10.2.9Conductionheattransfercoefficient313

10.3Typeoflubricants 316

10.3.1Lubricationofcombustionengines316

10.3.2Basicengineoilsandchallenges319

10.4Usingnanoparticlesininternalcombustionengines 320

10.4.1Addingnanoparticlestoengineoils(nanooil)322

10.4.2Addingnanoparticlestofuel(nanofuel)327

10.4.3Effectsofnanoparticlesadditivesonfriction327

10.4.4Effectsofnanoparticlesadditivesonenginespower329

10.4.5Effectsofnanoparticleadditivesonthecoolingcycle ofcombustionengines331

10.5Conclusiononthreatsandopportunitiesofapplying nanoscienceincombustionengines

11. Applicationsofnanofluidsinsolarenergycollectors focusingonsolarstills

SaeedEsfandeh,MohammadHemmatEsfeand MohammadHassanKamyab Nomenclature

11.1Historyofsolarenergycollectors

11.2ClassificationofSolarenergycollectors 344

11.2.1Classificationbasedonsolarenergyapplication344

11.2.2Classificationbasedonconcentrationlevelability345

11.2.3Classificationbasedontrackingornontracking solarcollectors345

11.2.4Passiveandactivesolarsystems346

11.2.5Maintypesofsolarcollectors347

11.3Effectiveparametersonsolarstillperformance 356

11.3.1Variousdesignparameters356

11.3.2Climaticparameters359

11.4Applicationofnanofluidsinsolarstills 361

11.4.1Solarstillswithoutnanofluids361

11.4.2Solarstillswithnanofluids362

11.5Mostappliednanoparticlesinsolarstills

11.6Challengesofnanofluidapplicationinsolarcollectors

12. Utilizationofnanofluids(monoandhybrid)in parabolictroughsolarcollector:acomparativeanalysis

MuhammadSajidKhan,MiYanandHafizMuhammadAli

12.1Introduction

12.2Systemdescriptionandthermodynamicmodeling

12.2.1Energyandexergyanalysisofparabolictrough collector383

12.2.2Heattransferanalysis385

12.2.3Hybridandmononanofluidsspecifications386

12.2.4Performanceevaluationcriteria388

12.2.5Validationofparabolictroughcollectormodel389 12.3Resultsanddiscussion

13. Electronicsthermalmanagementapplyingheat pipesandpulsatingheatpipes

RogerR.Riehl,Jesu ´ sEsarteSanMartinandJuncalEstella 13.1Introduction

13.3.1Heatpipedesigns412

13.3.2Applicationofheatpipes414

13.4Pulsatingheatpipes 418

13.4.1Applicationofpulsatingheatpipes421

13.5Nanofluidscapabilitiesandmodels 424

13.6Nanofluidsinheattransfersystems:prosandcons 430

13.6.1Typesofnanoparticlesusedinnanofluids430

13.6.2Nanofluidpreparation432

13.6.3Nanofluidstabilitystrategies433

13.6.4Nanofluidstabilitymechanisms435

13.6.5Nanofluidstabilityevaluation436

13.6.6Nanofluidsafteroperationcycles437

13.6.7Nanofluidsapplications438

13.7Concludingremarks

14. Roleofnanofluidsinmicrochannelheatsinks 447

AliTurabJafry,SohailMalik,NaseemAbbas,UzairSajjad, HafizMuhammadAliandChi-ChuanWang

14.1Introduction

14.2Keycharacteristicsofnanofluids 449

14.2.1Thermophysicalproperties449

14.2.2Effectofnanoparticleconcentration454

14.2.3Effectofnanoparticlesize455

14.2.4Effectofnanoparticleshape456

14.2.5Effectofnanoparticlethermalconductivity456

14.2.6Effectofbasefluid457

14.2.7Effectofnanofluidtemperature457

14.2.8Effectofpreparationtechnique458 14.2.9Summary459

14.3Flowofnanofluidsinmicrochannels 459

14.4Thermalperformanceofnanofluidsinmicrochannels 461

14.5Entropyanalysisofnanofluid-basedmicrochannelheat sinks 464

14.6Geometryeffectofmicrochannels 467

14.6.1Changingshapeofchannels467

14.6.2Addinggeometricalinclusions/exclusionsinthe crosssection467

14.6.3Varyingpathofthefluid467

14.7Futureadvancesandchallenges

15. Nanofluidsforenhancedperformanceofbuilding thermalenergysystems 479

NaseemAbbas,MuhammadBilalAwan,MohsinAliBadshah, UzairSajjadandWaseemRaza

15.1Introduction

15.2Overviewofdomainknowledgerelatedtonanofluids 480

15.3Roleofnanofluidsinefficiencyenhancementofbuilding energysystems 483

15.3.1Nanofluidsforperformanceenhancementof photovoltaicthermalsystems483

15.3.2Nanofluidsforperformanceenhancementofheating, ventilation,andairconditioningsystems487

15.3.3Nanofluidsforperformanceenhancementofthermal storagesystems489

15.4Barriers 494

15.5Conclusions 495 References 496

16. Ionicnanofluids:preparation,characteristics, heattransfermechanism,andthermalapplications 503 TayyabRazaShah,ChaoZhou,HafizMuhammadRizwan, MuhammadAbdullah,AsadIqbal,AwaisAwanand HafizMuhammadAli

Abbreviations

16.1Introduction

16.2Preparationmethods

16.3Characteristics

16.3.1Thermalconductivity511 16.3.2Viscosity512

16.4Heattransfermechanism

16.5Thermalapplications

16.6Futureprospectsandchallenges

16.7Conclusions

17. Hybridnanofluidstowardsadvancementin nanofluidsforheatsink

FurqanJamil,TahaBaig,HafizMuhammadAli, MuhammadShehryar,ShahabKhushnoodandFaisalHassan

17.2.2One-stepmethod540

17.3Varioushybridnanofluidsusedindifferentheatsinks 541

17.3.1Thermalmanagementofelectronicsusingother

Listofcontributors

Naseem Abbas DepartmentofMechanicalEngineering,SejongUniversity,Seoul, SouthKorea

Muhammad Abdullah MechanicalEngineeringDepartment,Quaid-E-AzamCollege ofEngineeringandTechnology,Sahiwal,Pakistan

HafizMuhammad Ali MechanicalEngineeringDepartment,KingFahdUniversityof PetroleumandMinerals,Dhahran,SaudiArabia;InterdisciplinaryResearch CenterforRenewableEnergyandPowerSystems(IRC-REPS),KingFahd UniversityofPetroleumandMinerals,Dhahran,SaudiArabia

Tehmina Ambreen SchoolofMechanicalEngineering,KyungpookNational University,BukguDaegu,SouthKorea

Navid Aslfattahi DepartmentofFluidMechanicsandThermodynamics,Facultyof MechanicalEngineering,CzechTechnicalUniversityinPrague,Prague,Czech Republic

Awais Awan MechanicalEngineeringDepartment,Quaid-E-AzamCollegeof EngineeringandTechnology,Sahiwal,Pakistan

MuhammadBilal Awan DepartmentofMechanicalEngineering,Universityof CentralPunjab,Lahore,Pakistan

MohsinAli Badshah DepartmentofChemicalEngineeringandMaterialsScience, TheHenrySamueliSchoolofEngineering,UniversityofCalifornia,Irvine,CA, UnitedStates

Taha Baig MechanicalEngineeringDepartment,UniversityofWah,Wah Cantonment,Pakistan;MechanicalEngineeringDepartment,Universityof EngineeringandTechnology,Taxila,Pakistan

Ali Celen DepartmentofMechanicalEngineering,FacultyofEngineering,Erzincan BinaliYıldırımUniversity,Erzincan,Turkey

Hailin Cen SchoolofMechanicalandAutomotiveEngineering,SouthChina UniversityofTechnology,GuangZhou,P.R.China

Saeed Esfandeh DepartmentofMechanicalEngineering,Jundi-ShapurUniversityof Technology,Dezful,Iran;DepartmentofMechanicalEngineering,ImamHossein University,Tehran,Iran

Juncal Estella NAITEC—CentroTecnolo ´ gicoenAutomocio ´ nyMecatro ´ nica, Pamplona,Spain

Rong Fu InstituteofEngineeringThermophysics,ChineseAcademyofSciences, Beijing,P.R.China

xviii Listofcontributors

MohammadMustafa Ghafurian DepartmentofMechanicalEngineering, BozorgmehrUniversityofQaenat,Qaen,Iran;CenterforNanotechnologyin RenewableEnergies,FerdowsiUniversityofMashhad,Mashhad,Iran

ElahehK. Goharshadi DepartmentofChemistry,FacultyofScience,Ferdowsi UniversityofMashhad,Mashhad,Iran

Faisal Hassan MechanicalEngineeringDepartment,UniversityofEngineeringand Technology,Taxila,Pakistan

Mohammad HemmatEsfe DepartmentofMechanicalEngineering,ImamHossein University,Tehran,Iran

Kuo Huang FacultyofEngineering,TheUniversityofNottingham,Nottingham, UnitedKingdom

Asad Iqbal MechanicalEngineeringDepartment,Quaid-E-AzamCollegeof EngineeringandTechnology,Sahiwal,Pakistan

AliTurab Jafry FacultyofMechanicalEngineering,GhulamIshaqKhanInstituteof EngineeringSciencesandTechnology,Topi,Pakistan

Furqan Jamil MechanicalEngineeringDepartment,UniversityofWah,Wah Cantonment,Pakistan

Kumaran Kadirgama FacultyofMechanicalEngineering,UniversitiMalaysia Pahang,Pekan,Malaysia;AutomotiveEngineeringCentre,UniversitiMalaysia Pahang,Pekan,Malaysia

MohammadHassan Kamyab DepartmentofMechanicalEngineering,ImamHossein University,Tehran,Iran;DepartmentofMechanicalEngineering,Universityof Kashan,Kashan,Iran

MuhammadSajid Khan InstituteofEnergyandPowerEngineering,Collegeof MechanicalEngineering,ZhejiangUniversityofTechnology,Hangzhou,P.R. China;DepartmentofMechanicalEngineering,MirpurUniversityofScience& Technology(MUST),Mirpur,AJK,Pakistan

Shahab Khushnood MechanicalEngineeringDepartment,UniversityofWah,Wah Cantonment,Pakistan

Amit Kumar MechanicalEngineeringDepartment,InstituteofEngineering& Technology,Dr.A.P.J.AbdulKalamTechnicalUniversity,Lucknow,Uttar Pradesh,India

Zeyu Liu MarineEngineeringCollege,DalianMaritimeUniversity,Dalian, Liaoning,P.R.China;FacultyofEngineering,TheUniversityofNottingham, Nottingham,Nottinghamshire,UnitedKingdom

Omid Mahian CenterforNanotechnologyinRenewableEnergies,Ferdowsi UniversityofMashhad,Mashhad,Iran;SchoolofChemicalEngineeringand Technology,Xi’anJiaotongUniversity,Xi’an,Shaanxi,P.R.China

Sohail Malik FacultyofMechanicalEngineering,GhulamIshaqKhanInstituteof EngineeringSciencesandTechnology,Topi,Pakistan

Jesu ´ sEsarteSan Martin NAITEC—CentroTecnolo ´ gicoenAutomocio ´ ny Mecatro ´ nica,Pamplona,Spain

Listofcontributors xix

Roya Mehrkhah DepartmentofChemistry,FacultyofScience,FerdowsiUniversity ofMashhad,Mashhad,Iran

Hatice Mercan DepartmentofMechatronicsEngineering,YildizTechnical University,Istanbul,Turkey

Hamid Niazmand CenterforNanotechnologyinRenewableEnergies,Ferdowsi UniversityofMashhad,Mashhad,Iran

CheolWoo Park SchoolofMechanicalEngineering,KyungpookNational University,BukguDaegu,SouthKorea

E.Venkata Ramana DepartmentofPhysics,UniversityofAveiro,Aveiro,Portugal

Waseem Raza DepartmentofMechanicalEngineering,JejuNationalUniversity, Jeju,SouthKorea

RogerR. Riehl GamaTechThermalSolutions,SaoJose ´ dosCampos,Brazil

HafizMuhammad Rizwan FacultyofMechanicalEngineering,GIKInstituteof EngineeringSciencesandTechnology,Topi,Pakistan

Zafar Said U.S.-PakistanCenterforAdvancedStudiesinEnergy(USPCAS-E), NationalUniversityofSciencesandTechnology(NUST),Islamabad,Pakistan; DepartmentofSustainableandRenewableEnergyEngineering,Universityof Sharjah,Sharjah,UnitedArabEmirates

R. Saidur ResearchCenterforNano-MaterialsandEnergyTechnology(RCNMET), SchoolofEngineeringandTechnology,SunwayUniversity,SelangorDarul Ehsan,Malaysia;DepartmentofEngineering,LancasterUniversity,Lancaster, UnitedKingdom

Uzair Sajjad DepartmentofEnergyandRefrigeratingAir-ConditioningEngineering, NationalTaipeiUniversityofTechnology,Taipei,Taiwan

Arslan Saleem SchoolofEngineering,CardiffUniversity,Cardiff,Wales,United Kingdom

M. Samykano FacultyofMechanicalEngineering,UniversitiMalaysiaPahang, Pekan,Malaysia

Lingenthiran Samylingam ResearchCenterforNano-MaterialsandEnergy Technology(RCNMET),SchoolofEngineeringandTechnology,Sunway University,SelangorDarulEhsan,Malaysia

TayyabRaza Shah CollegeofEngineering,PekingUniversity,Beijing,P.R.China

Muhammad Shehryar MechanicalEngineeringDepartment,Universityof EngineeringandTechnology,Taxila,Pakistan

Maham Sohail DepartmentofSustainableandRenewableEnergyEngineering, UniversityofSharjah,Sharjah,UnitedArabEmirates

AntonioC.M. Sousa DepartmentofMechanicalEngineering,PrinceMohammadBin FahdUniversity,Al-Khobar,SaudiArabia

L.Syam Sundar DepartmentofMechanicalEngineering,PrinceMohammadBin FahdUniversity,Al-Khobar,SaudiArabia

Tolga Taner DepartmentofMotorVehiclesandTransportationTechnology, AksarayUniversity,Aksaray,Turkey

ArunKumar Tiwari MechanicalEngineer ingDepartment,InstituteofEngineering andTechnology,Dr.A.P.J.AbdulKal amTechnicalUniversity,Lucknow, UttarPradesh,India

Chi-Chuan Wang DepartmentofMechanicalEngineering,NationalYangMing ChiaoTungUniversity,Hsinchu,Taiwan

Xihui Wang SchoolofMechanicalandAutomotiveEngineering,SouthChina UniversityofTechnology,GuangZhou,P.R.China

Mi Yan InstituteofEnergyandPowerEngineering,CollegeofMechanical Engineering,ZhejiangUniversityofTechnology,Hangzhou,P.R.China

Yan Yuying FacultyofEngineering,TheUniversityofNottingham,Nottingham, Nottinghamshire,UnitedKingdom

Chao Zhou CollegeofEngineering,PekingUniversity,Beijing,P.R.China xx Listofcontributors

Acknowledgment

HafizMuhammadAliacknowledgesthesupportreceivedfromtheKing FahdUniversityofPetroleumandMinerals,Dhahran,31261,Kingdomof SaudiArabia.

Experimentalcorrelationsfor Nusseltnumberandfriction factorofnanofluids

L.SyamSundar1,E.VenkataRamana2,HafizMuhammadAli3,4 and AntonioC.M.Sousa1

1DepartmentofMechanicalEngineering,PrinceMohammadBinFahdUniversity,Al-Khobar, SaudiArabia, 2DepartmentofPhysics,UniversityofAveiro,Aveiro,Portugal, 3Mechanical EngineeringDepartment,KingFahdUniversityofPetroleumandMinerals,Dhahran, SaudiArabia, 4InterdisciplinaryResearchCenterforRenewableEnergyandPowerSystems (IRC-REPS),KingFahdUniversityofPetroleumandMinerals,Dhahran,SaudiArabia

1.1Introduction

Heattransferaugmentationisnecessaryforeachandeveryindustry.Heat transferaugmentationcanbeachievedbyusingactivetechniquesandpassivetechniques.Anactivemethodofheattransferenhancementispossible byusingmechanicalstirring,surfacevibrations,electrostaticfields,jet impingement,spray,etc. [1 3].Toachievetheactivemethodofheattransferenhancementitneedsextradevices,whichmeansthatitrequiresextra power.So,thistypeofheattransferenhancementisnotadvisable,becauseit needsmorepower.Apassivemethodofheattransferenhancementispossiblebyprovidingsurfacetexturing [4],extendedsurfaces [5],andflowturbulence [6,7] andaddingadditivestothefluid [8,9].Justaddingadditives (metalornonmetalparticles)tothebasefluidmaygetheattransferenhancement,sincetheadditiveshavemorethermalconductivitythanthefluids. Thistypeofheattransferenhancementdoesnotrequireanyextraaccessories.Theinitialresearchworkwasrelatedtothedispersionofmicron-size 1 3 10 6 m particlesinthefluidanditgivestheenhancedheattransferbut facedtheproblemofparticleagglomerationinthebasefluid [10].

Duetothedevelopmentinnanotechnology,themicrosizeparticlesarefurtherreducedtonanosize1 3 10 9 m .Thedilutionofnanosizedparticles withsometreatmentontheparticlesurfacecanavoidparticleagglomeration inthebasefluid.Dilutednanosizedparticlesinthebasefluidarecalled

nanofluid,andwerefirstinventedbyChoi [11].Improvedthermalconductivitywasobservedfornanofluidscomparedwiththebasefluid.Theproblemof particleclogging,sedimentation,anderosionisminimizedwiththeuseof nanofluidswhiletheyflowinatubeorminichannel.

Discussionhasbeengoingonformorethan20yearsbutthemechanismbehindtheimprovementofheattransferforthesenanofluidsisstill doubtful [12 16] .However,thesenanofluidspossessaugmentedthermalconductivity,whichisthekeypara meterforheattransferintensification.Manytheorieshavebeenavailableintheopenliteraturetoknow aboutthethermalconductivityaugmentationofthesenanofluids [17,18] .

ThedilutednanoparticlesBrownianmotion,liquid particleinterface, microconvectionplayasignificantvitalroleinthermalconductivityaugmentation [19].TheinfluenceofBrownianmotionofnanoparticlescausesthe heattransferaugmentationofnanofluids [20].Basedonthestaticmodelof Maxwell,particleconductionisthemodeofheattransferaugmentation,but basedonthedynamicmodel,theparticle particleandparticle liquidinteractionsisthemodeforheattransferenhancement.

Whenusingthesenanofluidsinheatexchangerdevices,heattransferis important.Severalstudiesareavailableintheliteratureforheattransfer characteristicsofvariousnanofluids.Sincethesingle-phasecorrelationsfor Nusseltnumberandfrictionfactorarenotvalidfornanofluids,theauthors havedevelopedtheirowncorrelationsbasedontheuseofthenanofluids. UntilnowthereisnostandardNusseltnumberandfrictionfactorcorrelation applicableforalltypeofnanofluids.Developingasinglecorrelationforall thenanofluidsisdifficultbecausetheheattransferaugmentationdependson severalparameters,suchasparticlesize,shape,concentration,geometry,and operatingconditions.

ThischaptercoverstheNusseltnumberandfrictioncorrelationsfordifferentnanofluidsinvariousgeometricalandoperatingconditions.These developedequationsarehelpfultoidentifythenecessityofdeveloping anotherkindofequationforforthcomingresearch.

1.2Preparationofnanofluids

Thepreparationofnanofluidsisnecessarybeforetheyareusedinanyequipment.Therearetwomethodstopreparethenanofluids:(1)one-stepmethod and(2)two-stepmethod.Stablenanofluidsareimportantforheattransfer applications.Thenanofluidsarestablewiththeuseofsurfactants.Ifthe nanofluidsarenotstable,theremaybeacloggingoflargerparticlesin pumps,pipes,andalsofoulinginthetubesmayoccurusingthesenanofluids inthermalequipments.

1.2.1One-stepmethod

Theone-stepmethodofnanofluidsisthatthenanoparticlesaredirectlymade anddilutedinthebasefluid.Thismethodisadvantageousbecausethenanoparticlescannotreactwithoxygenintheatmosphere.Mostoftheresearchhas beenusedthisone-stepmethodofnanofluidpreparationtechnique.Theaccessorieslikedryersandstoragearenotrequiredforthismethod.Thismethod alsohastheadvantageoflessnanoparticlesaggregationinthebasefluid, resultinginanincreaseinnanofluidstability.Thelaserablationmethodand submergedarcnanoparticlessynthesissystemarethecommonlyusedmethods forthepreparationofnanofluidsbytheone-stepmethod.

1.2.2Two-stepmethod

Inthetwo-stepmethodofnanofluidsthenanoparticles,nanotubes,andother nanomaterialsareprimarilypreparedintheformofdrypowersbyusing chemical,physical,andmechanicalmethods.Thepreparednanoparticlesare dispersedinthebasefluid.Thismethodisthemosteconomicalmethodfor thepreparationofnanofluids.Nanoparticleagglomerationandsedimentation arethemaindifficultiesinthistypeofnanofluidspreparation.Ultrasonication orthestirringprocesswilldecreasethenanoparticlesedimentationinthebase fluid.BecauseofthevanderWaalsforces,thenanoparticlesaggregatevery easilyinthebasefluids.Byusingthesurfactantinthebasefluidnanoparticle sedimentationisavoided.Nanoparticleagglomerationwillaffectthethermophysicalpropertiesofthenanofluid.However,thismethodofnanofluidspreparationismosteconomicalandalsosuitableforlarge-scalenanofluids preparation.Forpreparingtheoxides-basednanofluids,thismethodismore suitable.Commonlyusedmethodsforthesynthesisofnanoparticlesarethe directsynthesismethod,sol gelmethod,andchemicalprecipitationmethod. CommonlyusedsurfactantsaregumArabic,SDBS,chitosan,polyvinylpyrolidine,andcetyltrimethylammoniumbromide.

Onecanuseeithertheone-stepmethodortwo-stepmethodforthepreparationofnanofluids,butthenanofluidsshouldbestabletoavoidtheparticle agglomerationinthetubesandchannel.Thereforefornanofluidapplication inengineeringsystemsnewtechnologyisrequiredtoincreasethestabilityof nanofluid.

1.3Experimentalmethods

Theexperimentalequationstoevaluatetheheattransfercoefficient,Nusselt number,andfrictionfactoraregivenbelow.Sundaretal. [21] experimental schematicdiagramofforcedconvectionequipmentisshownin Fig.1.1.

FIGURE1.1 Schematicdiagramofforcedconvectionapparatus [21]

1.3.1Nusseltnumber

TheNewton’slawofcoolingequationisusedtoestimatetheheattransfer coefficient.

a. Heatsuppliedtothetesttube,

b. Heatabsorbedbythefluid,

TheaverageQag 5

c. Heattransfercoefficient,

d. Nusseltnumber,

e. Prandtlnumber,

1.3.2Frictionfactor

Thefluidpressuredropforbothwaterandnanofluidsbetweeninletandoutletismeasuredthroughthepressuregauge.Whenthefluidisflowinginside thetube,theresistancebetweenthefluidandtubewallprovidesthepressure drop.

f. Pressuredrop,

Thetermsin Eq.(1.6) aredensityofthefluid ρ ðÞ (kg/m3),accelerationduetogravity ðgÞ (m/s2),andmanometricfluidheight ðH Þ (m).The manometricfluidheightisconvertedintoequivalentworkingfluidheight forpressuredropcalculations.

Thepumpingpowerofwaterandnanofluidscanbegivenas:

g. Pumpingpower

Fromthepressuredrop,thefrictionfactorofwaterandnanofluidis estimated.

h. Frictionfactor,

where _ m 5 ρAv.v 5 m ρA

1.3.3Nondimensionalnumbers

ThenondimensionalnumberssuchasReynoldsnumber,Nusseltnumber, Prandtlnumber,andPecletnumberaregenerallyusedtodevelop correlations.

i. Reynoldsnumber,

j. Prandtlnumber,

k. Nusseltnumber,

l. Pecletnumber,

Thethermaldiffusivityis:

1.4Nusseltnumbercorrelationsforsingle-phasefluid

DifferentcorrelationsareavailabletoestimatetheNusseltnumberforthe caseofsingle-phasefluidsflowinatube.Thefluidflowmaybedefinedas laminarandturbulentflow.WhentheReynoldsnumberislessthanorequal to2300,theflowiscalledlaminarflow;whentheReynoldsnumberis greaterthan2300,theflowiscalledasturbulentflow.Thegenerallyused correlationsarecompiledbelow.

1.4.1Laminarflow

a. Shah [22]:

b. ChurchillandUgasi [23]

Nul 5 LaminarNusseltnumber

Nulc 5 NusseltnumberatcriticalReynoldsnumberof2200

Nut 5 TurbulentNusseltnumber

c. TamandGhajar [24]

d. Sider-Tate [25]

1.4.2Turbulentflow

e. Dittus-Boelter [26]

f. Gnelinski’s [27]

AnotherGnelinski [27] equationis,

g. Petukhov [28]

h. Notter-Sleicher [29]

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.