https://ebookmass.com/product/advances-in-food-rheology-and-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Rheology: Concepts, Methods, and Applications Alexander Y. Malkin
https://ebookmass.com/product/rheology-concepts-methods-andapplications-alexander-y-malkin/
ebookmass.com
Rheology: Concepts, Methods, and Applications 3rd Edition Alexander Ya. Malkin
https://ebookmass.com/product/rheology-concepts-methods-andapplications-3rd-edition-alexander-ya-malkin/
ebookmass.com
Advances in Food and Nutrition Research 1st Edition Fidel Toldrá
https://ebookmass.com/product/advances-in-food-and-nutritionresearch-1st-edition-fidel-toldra/
ebookmass.com
The Oxford handbook of economic imperialism Zak Cope (Editor)
https://ebookmass.com/product/the-oxford-handbook-of-economicimperialism-zak-cope-editor/
ebookmass.com
Texas Politics: Ideal and Reality 13th Edition Charldean Newell
https://ebookmass.com/product/texas-politics-ideal-and-reality-13thedition-charldean-newell/
ebookmass.com
Bad Words: Philosophical Perspectives On Slurs David Sosa
https://ebookmass.com/product/bad-words-philosophical-perspectives-onslurs-david-sosa/
ebookmass.com
Hegemony and Class Struggle: Trotsky, Gramsci and Marxism Dal Maso
https://ebookmass.com/product/hegemony-and-class-struggle-trotskygramsci-and-marxism-dal-maso/
ebookmass.com
Physical Activity Instruction of Older Adults 2nd Edition, (Ebook PDF)
https://ebookmass.com/product/physical-activity-instruction-of-olderadults-2nd-edition-ebook-pdf/
ebookmass.com
The Wicked Remain Laura Pohl
https://ebookmass.com/product/the-wicked-remain-laura-pohl/
ebookmass.com
5 Steps to a 5: 500 AP European History Questions to Know by Test Day 3rd Edition
https://ebookmass.com/product/5-steps-to-a-5-500-ap-european-historyquestions-to-know-by-test-day-3rd-edition-sergei-alschen/
ebookmass.com
AdvancesinFood RheologyandIts Applications
DevelopmentinFoodRheology
SecondEdition
Editor
JasimAhmed
AssociateEditor
SantanuBasu
WoodheadPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom Copyright©2023ElsevierLtd.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
MATLABs isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorks doesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussion ofMATLABs softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLABs software.
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-12-823983-4(print)
ISBN:978-0-12-823984-1(online)
ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: NikkiP.Levy
AcquisitionsEditor: MeganR.Ball
EditorialProjectManager: MarianaL.Kuhl
ProductionProjectManager: SuryaNarayananJayachandran
CoverDesigner: GregHarris
TypesetbyMPSLimited,Chennai,India
3.Dynamicsofthixotropicliquidsandtimedependency 63
M.Hou ˇ skaandR. ˇ Zitny ´ Symbols 63
3.1Introduction 64
3.1.1Thixotropy64
3.1.2Definitionsofthixotropyandrelatedbehavior, includingantithixotropyandrheomalaxy64
3.2Rheologicalmodelsofthixotropicfluids 65
3.2.1Structuralmodelswithadifferentialkineticequation65
3.2.2Structuralmodelswithanintegralofdeformationrate history66
3.2.3Presentationofspecificconstitutivemodel67
3.3Identifyingtheparametersforaselectedmodelof thixotropicbehavior 67
3.3.1Rheologicalexperimentconditions67
3.3.2Nonlinearregressionofexperimentalshearstress versustimedatabyselectedmodelequations68
3.4Examplesofrealthixotropicfluids 69
3.5Applicationsofrheologicalmodelsofthixotropicbehaviorfor solvingselectedengineeringtasks 70
3.5.1Startinguparotationalrheometer70
3.5.2Isothermalstationaryflowofathixotropicfluidina horizontalcirculartube70
3.5.3Poweroftheanchoragitatorinthecreepingflowregime73
3.6Futuretrendsinthixotropicfluidmodeling 75 3.7Conclusions
4.Rheologytotribology:applicationsoftribology instudyingfoodoralprocessingandtexture perception 81
S.Prakash
4.1Introduction 81
4.2Tribometer—principle,operation,measurementof lubricationpropertiesanddifferenttypes 83
4.2.1Basicprincipleofatribometer83
4.2.2Operationofatribometer84
4.2.3Measurementoflubricationpropertiesoffoodproducts84
4.2.4Varioustribometersusedinfoodapplications86
4.3Sensoryperceptionandtribology 95 4.4Conclusions
5.Largeamplitudeoscillatoryshearmeasurementand Fourier-transformrheology:applicationtofood
P.Ptaszek
5.1Introduction
5.2LAOSmethodsanddataanalysis 106
5.2.1G0 ,Gv Curves106
5.2.2AnalysisofG0 andGv 107
5.2.3TimeseriesanalysisandFouriertransformrheology110
5.2.4SimpleLissajousfigures113
5.2.5ExtendedanalysisofLissajousfigureandgeometrical decomposition115
5.3Applications 121
5.3.1TheanalysisofthecorrelationofG0 andGv inthe functionofthedeformationamplitude122
5.3.2Comparisonofmethodstodeterminetheyieldstress124
5.3.3ApplicationofFourierRheologyandthebasicanalysis oftheLissajouscurves125
5.3.4AdvancedanalysisoftheLissajouscurvesand geometricdecomposition129
5.3.5Chebyshevharmonicsanalysis132
5.3.6Recentworksonselectedbiomaterialsusing LAOSandFTR136
6.Extensionalrheologyinfoodprocessing
SylwiaRo´˙za ´ nska
6.1Introductionandbasicconcept 143
6.1.1Thegeneraloutlineoftheextensionalflowand applicationsinfoodprocessing146
6.1.2Measurementofextensionalrheology149
6.1.3Capillarythinningandbreak-upoffluids161
6.1.4Typicalexperimentalresultsofselectedfluids166 Funding176
7.Applicationsofrheologicaldatainthefoodindustry
7.1Introduction
7.3Heattransfercalculations
7.3.1Residencetimemeasurementforflowingfoods189 7.4Computationalfluiddynamics
8.Applicationofartificialintelligenceandmachine learningtofoodrheology
ImranAhmadandToni-AnnBenjamin
8.1Theneedformodeling
8.2Artificialintelligenceandmachinelearning
8.3.1Datapreprocessing205
9.Time-temperaturesuperpositionprinciples: applicabilityinfoodandbiopolymerrheology
9.4Elasticmodulusandrelaxationmodulussuperposition
9.6Time-temperature-stresssuperpositionprinciple
9.7ConstructingTTSPmastercurvefordynamicmoduli
9.8OtherTTSPapproachesforoscillatoryrheology
9.9TTSPforcreepbehavior
9.10Constructingofmastercurvebasedonthe Williams Landel Ferryequation
9.12.3Fruitproducts248 9.12.4Cerealsandlegumeproducts250
10.Influenceofdietaryfibersandparticlesize distributiononfoodrheology
E.Tornberg
10.1Introduction
10.2Originofthefibersinthepreparationofapaste
10.2.1Tomatopaste,hotbreak,andcoldbreak262
10.3Compositionofthefibersinsolubleandinsolublepart
10.4.1Measurementsystems265
10.4.2Dynamicoscillatoryrheology266
10.5Importantpropertiesofthefiberforitsrheological behaviorinsuspensions
10.5.1Relativeimportanceofthesolubleversus insolublefiber268
10.5.2Theconcentrationofparticles,water-insoluble solids,andvolumefractionofparticles269
10.5.3Morphologyoftheinsolublefiber275
10.5.4Particlesizedistributionoftheinsolublefiber277
10.6Influenceofvalvehomogenizationandshearingonthe rheologicalpropertiesoffibersuspensions
10.6.1InfluenceofValveHomogenization280
10.7Concludingremarks
11.2Rheologyofcheese
Contents
11.2.3Uniaxialtesting299
11.2.4Stressrelaxation299
11.2.5Creepandrecoveryofcheese301 11.2.6Cheesestretchability309
11.4.1Factorsaffectingfunctionality317
11.4.2Meltandflowproperties321
11.4.3Textureproperties328
12.Rheologyandmicrostructureofyogurt
JasimAhmed,SreejaniBaruaandSayantiRoy
13.Foodgels:Gellingprocessandnewapplications
AliAsghar,AkmalNazir,AbidAslamMaanandAbdullah
13.2.1Polysaccharidegels367
13.2.2Proteingels370
13.2.3Binary,mixedorcompositegels372
13.3Rheologicalcharacterizationofgels 375
13.3.1Microrheologyofgels376
13.3.2Oralprocessingandtextureperceptionofgels378
13.4Rheologicalbehaviorsofdifferentgums 379
13.4.1Rheologicalbehavioroftamarindseedgumin aqueoussolutions379
13.4.2Rheologicalbehaviorofaqueousdispersionsof cashewgumandgumarabic:effectof concentrationandblending379
13.4.3Rheologicalmodelsforxanthangum380
13.4.4Modelingtherheologicalbehaviorof galactomannanaqueoussolutions380 References 381
14.Influenceofsugarsubstitutesinrheologyoffruitgel 385 SantanuBasuandSiddharthaSingha
14.1Introduction
14.2Foodgels
14.3Fruitgels
14.4Fruitgelrheology 392
14.4.1Steadystaterheology393
14.4.2Thixotropy/timedependency394
14.4.3Dynamicrheology397
14.5Effectofsugarsubstitutioninfruitgelrheology 400
14.6Molecularfingerprintandrheologicalattributesoffruit gelsmanufacturedwithlow-caloriesweeteners
15.Rheologyandtextureofbasilseedgum:anew hydrocolloidsource 413
SeyedM.A.RazaviandSaraNaji-Tabasi
15.1Introduction 413
15.2Basil(Ocimum)
15.3Basilseedmucilage 415
15.3.1Extractionoptimization415
15.3.2Physicochemicalproperties416
15.3.3Rheologicalproperties417
15.3.4Texturalproperties446
15.3.5Rheologicalinteraction447
15.4Futuretrends 454
16.Creep recoveryandoscillatoryrheologyof flour-basedsystems 459
T.Sanz,A.SalvadorandM.J.Hern ´ andez
16.1Elastic,viscous,andviscoelasticbehavior 459
16.2Linearviscoelastictests 460
16.2.1Smallamplitudeoscillatorysheartests460
16.2.2Creepandrecoverytests463
16.3Creep recoveryandoscillatoryrheologicalmeasurement offlour-basedsystems 465
16.3.1Generalexperimentalconsiderations465
16.3.2Wheatflourdoughs466
16.3.3Breaddoughs469
16.3.4Biscuitandcookiedoughs471
16.3.5Gluten-freedoughs473
17.Rheologicalpropertiesofgluten-freebreaddoughs andtheirmodification:improvebreadquality
F.Ronda,S.Pe ´ rez-QuirceandM.Villanueva 17.1Introduction
17.2Glutenflourdoughversusgluten-freeflourdoughs
17.3Rheologicaltestsongluten-freedoughs
17.3.1Fundamentaltest483
17.3.2Empiricaltests488
17.4Effectofdoughhydrationondoughrheologyandbread quality
17.5Effectoffiberadditionongluten-freedoughsrheology
18.Rheologyandrheologicalmeasurementsofstarch 517
JasimAhmed,SanjuBalaDhulandAnkitaChandak
18.1Introduction
18.2.1Macroscopicmeasurements518
18.2.2Steady-shear(flow)measurements519
18.2.3Smallamplitudeoscillatoryshearmeasurements521
18.2.4Largeamplitudeoscillatoryshearmeasurements525
18.2.5Creepandrecovery528
18.2.6Starchgelatinization530
18.2.7Rheologicalbehaviorofstarchgels535
18.2.8Pastingpropertiesofstarch542 18.3Conclusions
19.Nonlinearviscoelasticrheologyofwheatdough 553
AbdulwahabS.Almusallam
19.1Introduction 553
19.2Theoreticalbackground 555
19.2.1Smallamplitudeoscillatoryshear555
19.2.2Largeamplitudeoscillatoryshearrheological framework556
19.2.3Thepowerlawmodeldescribingthelinear viscoelasticresponseofdough558
19.2.4Differentialconstitutiveequations559
19.2.5Integralconstitutiveequations561
19.2.6TheTaylorseriesexpansionformulas562
19.3Usingclassicalconstitutivemodelstodescribedough rheology 565
19.3.1Modelfilteringbasedonthedampingfunction565
19.3.2ModelfilteringbasedonTaylorseriesexpansion567
19.3.3Modelfilteringbasedontheoriginalconstitutive models573
19.3.4Quantitativemeasuresoflargeamplitude oscillatoryshearresults580
19.3.5Summaryoftestsandrecommendations583 19.4Conclusions 584 References 584
20.Rheologyofgelatinandadvancesinrheological measurements 587
JasimAhmed
20.1Introduction 587
20.2Structureandaminoacidcomposition 589
20.3Meltingandglasstransitiontemperature 591
20.4Gelpoint 592
20.5Bloomvalue
20.6Viscosity
20.7Gelationmechanism
20.8Rheologicalbehaviorofgelatingel
20.8.1Steadyflow596
20.8.2Oscillatoryrheology597
20.8.3Largeamplitudeoscillatoryshearmeasurement605
20.8.4Creep608
20.9Factorsaffectingthegelatinrheology 612
20.9.1Concentration612
20.9.2pHandelectrolyte615
20.9.3Molecularweight619
20.9.4Enzymetreatment621
20.10Advancesingelatinmeasurementtechniques 622
20.10.1Fouriertransformmechanicalspectroscopy622
20.10.2OptimalFourierrheometry623
20.10.3Resonantacousticrheometry623
20.11Conclusions 626 References 626
21.Emulsionrheology 633 BetulCilekTatar,GulumSumnuandSerpilSahin
21.1Introduction 633
21.1.1Emulsions,nanoemulsions,andpickering emulsions633
21.1.2Foodemulsionsintheindustry635
21.2Majorfactorsaffectingtherheologyofemulsions 637
21.2.1Volumefraction637
21.2.2Phaserheology637
21.2.3Dropletsize638
21.2.4Interactionsincolloidaldispersions639
21.3Casestudiesonnanoemulsionandpickeringemulsions 644
21.4Futuretrends 650 References
22.Rheologyoffoodhydrogels,andorganogels 657
BarisOzelandMecitHalilOztop
22.1Introduction 657
22.2Rheologicalcharacterization 658
22.2.1Steadyshearflowcharacterization658
22.2.2Dynamicoscillatoryshearcharacterization660
22.3Texturalcharacterization 678
22.3.1Textureprofileanalysis678
22.3.2Tensiletesting680
22.4Concludingremarks
23.Rheologyoffoodbigelsystem
FrancescaLupi(Romana),A.Shakeel,NoemiBaldinoand DomenicoGabriele
23.1Introduction 685
23.2Preparationmethodsofbigels 688
23.3Characterizationofbigels 689
23.3.1Rheologicalcharacterization689
23.3.2Rheologicalmodeling691
23.3.3Microstructuralinvestigationandsensoryproperties695
23.4Industrialusesandfoodapplications:futureperspectives 696
23.5Conclusions 697 References 698
24.Advancesinyieldstressmeasurementsforchocolate 703
V.GlicerinaandS.Romani
24.1Introduction 703
24.2Chocolate:ingredientsandmanufacturingprocess 704
24.2.1Ingredients704
24.2.2Manufacturingprocess706
24.3Rheologicalbehaviorofchocolatetypedispersions: yieldstress 708
24.3.1Testinganddetermination709
24.3.2Methods:traditionalandadvanced711
24.4Rheologicalmodels 713
24.4.1Power-lawmodel714
24.4.2Cassonmodel714
24.4.3Windhabmodel715
24.5Effectofformulationandprocessingonchocolate yieldstress 716
24.5.1Formulation717
24.5.2Manufacturingprocess719
24.6Conclusions
Foodrheology:Scientific developmentandimportance tothefoodindustry
JasimAhmedandSantanuBasu
1Rheologyandfood
Rheologydealswiththedeformationandflowofmaterialsunderadefined condition.Understandingrheologyisofgreatimportanceforeveryfacetof processingandproduction.Ithasastrongpresenceinarangeofindustries (e.g.,petroleum,polymers,food,pharmaceuticals)asapartofmaterialcharacterization,process,andequipmentdesign.Thesubjectofrheology,however,hasdifferentinterestsineachfield,sothecoreelementmergeswith otheremergingareastomatureasanindependentfield.Foodrheologyis oneofthebestexamples,wheretheconceptofrheologyfrompolymersciencewellmergeswithfoodconstituents,inparticularproteinsandpolysaccharides,toemergeasasuccessfulareaofinterest.Thepracticeofrheology infoodhasafewcategories:(1)productdevelopersuseitasatooland relateittosensoryanalysis;(2)engineersstudyrheology processrelationshipsofthefoodanduserheologicaldataforprocess/productoptimization andnumericalflowprocesssimulations,and(3)foodmaterialscientists focusonrheology structurerelationshipsinmodelfoodsystems,rheometric modelflowsaswellasanalyticaltosemi-empiricalmodelingandsimulation (FischerandWindhab,2011).
Foodrheologyencompassesanin-depthanalysisofthemicrostructure anddeformation/fluidityoffoodsfromlowstraintomediumandlargestrain measurements.Atransformationofmeasurementfromarotationalviscometertoeitheracontrolledstress/strainrheometerormoreadvancedoptimal Fouriertransformationrheometryorquartzcrystal-microbalancewithdissipation(QCM-D)improvedtheaccuracy,sophistication,andreliabilityto rheologicaldataoffood.Foodrheology,furthermore,compliments microstructureandthermalanalysistopreciselyunderstandthestructural andphasechangeofthefoodmaterialsduringprocessing,storage,or
xxii Foodrheology:Scientificdevelopmentandimportancetothefoodindustry
transportation.Suchintegratedstudieshelptocontroltexturaldefectsinprocessedfoodsandimproveconsumersatisfaction.
Rheologicalmeasurementandcharacterizationoffoodmaterialscouldbe usefultounderstandinthefollowingareas:
● Interactionsofingredientsatdifferentlengthscales(molecularscale, macro-tomicro-scaleinteractions)andbulkmechanicalproperties
● Processoptimizationandproductdevelopment
● Microstructureandrheology
● Understandingtheconnectionbetweensensoryperceptionandtextural/ rheologicalprofileoffoods.
● Foodoralprocessingandbolusrheology
● Rheologyinthegastrointestinaltractandsatiety/satiationcascade
● Additivemanufacturing(3D-printing)anddevelopmentoffood-based ink
2Innovationsinrheologicalmeasurementsoffood
Rheologicalmeasurementshavecontinuallyevolvedtoencompassnovel technologiestoproduceprecision.Re searchersinrecenttimeswouldlike toextractmoreinformationfromasinglerunonapieceofequipment. Couplingoftherheometerwithotheranalyticaltoolssuchasmicroscopy, spectroscopy,small-angleX-rayscattering(SAXS),small-angleneutron scattering(SANS),ormagneticresonanceequipmentcouldenhanceits applicationsandscientificmerits .Rheologicalequipmentattachedto nuclearmagneticresonance(NMR)( Nicolasetal.,2003;Callaghan,2006; Rebryetal.,2021 ),magneticresonanceimaging(MRI)( Williamsetal., 2011 ),atomicforcemicroscopy(AFM)( Filipetal.,2006 ),confocalscanninglasermicroscopy(CSLM)( Nicolasetal.,2003;Filipetal.,2006 ), small-angleneutronscattering( EberleandPorcar,2012;Iwaseetal., 2019 )anddiffusingwavespectroscopy(DWS)(Hemaretal.,2004; Alexanderetal.,2008 )havealreadybeenusedinresearchanddevelopmentinvariousapplications,andthefieldhasextendedtofoodapplicationstoo.Theseemergingtoolshavethepotentialtoprovidesignificant newinformationaboutcomplexfood materialsatboththemacro-and micro-levels( CicutaandDonald,2007;NicolasandPaques,2003;Melito andDaubert,2011 ).Themicro-rheologicalapproacheswillbecrucialin understandingthemicroscaleinter actionsofdifferentfoodcomponents comprehensively.Ontheotherhand,tribologycoupledwithQCM-Dmay addafundamentalunderstandingoftheadsorbedlayersofproteinsand boostthedesignofnewingredientformulationsforuseinlow-fat/high proteinfooddevelopment( Kewetal.,2021 ).Thechallengesremainin correlatingmicro-scalerheologicalbehaviortomacroscalerheological attributesoffoodmaterials.
Foodrheology:Scientificdevelopmentandimportancetothefoodindustry xxiii
3Aboutthebook
Thesecondeditionofthebook“AdvancesinFoodRheologyand Applications”hasbeenrevisedextensively,andsevennewchaptershave beenadded,keepinginviewadvancesandbroadeningthefieldoffoodrheology.Wehavethematicallystructuredthebookintotwosections.Thefirst section(Chapters1 10)isdedicatedtotheoreticalconceptsoffoodrheology,whicharethebasisofrheologyandmeasurements.Thesecondsection (Chapters11 24)discussesapplicationsofrheologyindifferentfood products.
Interfacialrheologyoftwoimmisciblepolymersystemsimpartsinsight intothemechanicalpropertiesofadsorptionlayersonliquid-liquidinterfaces andisexploredbystudyingtheresponseoftheinterfacetoappliedstressor strain.InChapter1,basicconceptsofinterfacialrheologyandthemaincharacteristicsofproteinswiththeirprincipalaspectsconnectedtointerfacestabilityarediscussed.Theprocessingoffoodsinducesrheologicaland structuralchanges.Rheologicalresponsesoccuratthemacroscopiclevel, whilechangesinpropertiesandstructuresareatthemicroscopiclevel.In Chapter2,theinter-relationshipbetweenmicrostructureandrheologyisdiscussed.Morespecifically,therheologyandmicrostructureofcheeseand yogurtarecoveredinChapters11and12,respectively.
Fluidflowcanpersuadereversibleandirreversiblestructuralchanges understress.Therheologicalindicatorofflow-inducedstructuralchangesis variableviscosity.Thereversibleandtime-dependentfluidsareknownas thixotropic.Chapter3discussesthethixotropicbehavioroffood.Somefoods requireaminimumforcebeforeflow,whichismeasuredintermsofyield stress.Measurementoftheyieldstressofchocolateiscoveredin Chapter24.
Oralprocessingoffoodhasattractedattentionbecauseofitsimportance inregulatingsensoryappreciationandsatisfactionofconsumingfoods, whichultimatelycontrolsnutrientintake.Inadditiontorheology,frictional propertiesarealsoimportantinoralprocessing.Thefrictionalproperties relatedtosensoryperceptioncanbemeasuredusingtribologicalparameters. Applicationsoftribologyinfoodoralprocessingandtextureperceptionare elucidatedinChapter4.
Dynamicoscillatorysheartestscanbeexecutedinthelinearornonlinear regime.Thelinearregimeinducesalinearviscoelasticresponse,whichis knownasasmallamplitudeoscillatoryshear(SAOS)response.SAOStests arethecanonicalmethodforprobingthelinearviscoelasticpropertiesof foodsbecauseoftheirsolidtheoreticalbackgroundandtheeaseofimplementingsuitabletestprotocols.Ontheotherhand,thenonlinearviscoelastic responsetermedlargeamplitudeoscillatoryshear(LAOS)occurswhenthe applieddeformationbecomeslargerandthematerialfunctionsusedtoquantifythelinearbehaviorinSAOStestsarenolongervalid.Furthermore,
xxiv Foodrheology:Scientificdevelopmentandimportancetothefoodindustry
LAOStestscanprovideabetterunderstandingofcomplexrheological behaviorandadeeperinsightintomicrostructuralchangesunderlargedeformation(Songetal.,2022).LAOSmeasurementsandapplicationstofoods havebeenpresentedinChapters5and19.
Amongvarioustypesofflows,theextensionalflowhasindustrialsignificance.Measurementsoftheextensionalviscosityofliquidfoodsareimportantinstructuralcharacterization,processandqualitycontrolofproducts, andprocessmodelinganddesign.Onechapter(Chapter6)hasbeendevoted tomeasuringtheextensionalviscosityoffluidswithlowandhighviscosities.Additionally,extensionalflowmeasurementsofpolymersolutions, emulsions,andotherfluidsarealsodiscussed.
Creeptestsareusedforviscoelasticfoodmaterials(e.g.,dough,cheese, gel)toascertaintexturestability.Acreeptestassessesthetime-dependency ofviscoelasticfoodmaterial.Creep-recoveryexperimentaldatacanbeanalyzedbyfittingthefour-parameterBurger’smodel,whichcombinesa MaxwellelementandaKelvin Voigtelementinseries.Creepandrecovery areelaboratelydiscussedinthebookinvariouschapters,inparticular, Chapter16.Therheologicalpropertiesofgluten-freedoughhavebeendiscussedinachapter(Chapter17).
Therheologicalpropertiesoffoodandbiopolymersaresignificantly influencedbytemperatureandmeasuringtime.Time-temperaturesuperposition(TTS)isaneminenttechniquethatisusedtoenlargethefrequency regimesignificantlyatareferencetemperatureatwhichthematerialis tested.InTTS,isothermaldataobtainedbyfrequencysweepsatselected temperaturescanbeshiftedalongthefrequencyaxisandsuperimposedto obtainasingle“mastercurve”atthereferencetemperature.Theapplication oftheTTStofoodmaterialsisdescribedinChapter9.Particlesizecontrols therheologicalbehavioroffood,eitherindispersionorinthedough.The foodmatrixwiththefinestparticlesbehavesdifferentlyfromthecoarseparticleenrichedfood.Theinfluenceofparticlesizeontherheologyofdietary fiber(DF)suspensionsandtheirmicrostructuralpropertiesisthesubjectof discussionasreportedinChapter10.
Gelsaresemi-solidstructurescontainingasolidandaliquidcomponent inwhichthesolidcomponentdevelopsa3Dnetworkthattrapstheliquid phase.Gelplaysanimportantroleinfoodandbiopolymerswithsignificant technologicalinterest.Mostly,proteins,starch,andpolysaccharidesform gelsuponheatorpressuretreatment.Bycontrollingthegel’smicrostructure, awidevarietyofphysicalpropertiescanbeattained,rangingfromhardrubberyplasticstosofthydrogels.Gelformationisdetectedrheologically throughacross-overpointbetweentheelastic(G0 )andviscous(Gv)moduli, knownasthegelpoint.Gelshavebeenelucidatedinthebook:themechanismofgelformation(Chapter13),fruitgel(Chapter14),gelatingel (Chapter20),basilseedgumgel(Chapter15),yogurtgel(Chapter12),and starchgel(Chapter18).
Foodrheology:Scientificdevelopmentandimportancetothefoodindustry xxv
Basedonthepolarityoftheliquidcomponent,gelsareclassifiedinto hydrogelsandorganogels.Forhydrogels,wateristheliquidcomponent, whereasapolarsolventsincludinghexane,isopropylmyristate,sunfloweroil, andpalmoilareusedtodeveloporganogels.Biodegradablepolymers,in particular,proteinsandpolysaccharides,areusedforthedevelopmentof hydrogels.Organogels,ontheotherhand,areself-standing,thermoreversible,anhydrous,viscoelasticmaterialsstructuredbyathree-dimensional supramolecularnetworkofself-assembledmoleculeswithrestrictedsolubilityinanorganicliquid(Co&Marangoni,2012).Bigelsareanotherkindof gel,whichresultfrommixingahydrogelandanorganogel;theaqueous phaseismostlyformedbyahydrophilicbiopolymer,whiletheorganicphase containsagelledvegetableoilbecauseofthepresenceofanorganogelator. Becausetheincorporationofthesegelsintofoodsystemsinfluencesrheologicalbehaviorsandsensoryscores,therheologicalcharacterizationofhydrogelandorganogelsystemsisveryinteresting.Threechapters(Chapters 21 23)inthebookprovideanin-depthanalysisofthosetopics,including emulsion.
Reliableandaccuraterheologicaldataarecriticalasinputsformodeling, andengineeringcalculationsintheprocessoperationandequipmentdesign. Computationalfluiddynamics,alongwithcodes,iscapableofcomputing complexrheologicalsolutionsoffoodwithvariousgeometries.Furthermore, artificialintelligence(AI)isbeingusedtosolveamultitudeofengineering problems.Inadditiontoconventionalequation-basedsolutionsandnumericalmethodstosolverheologicalproblems,thealgorithm-basedapproaches havecreatedaninterestamongresearchersbecauseoftheirsuperiorcomputationalpower;robustalgorithms,and,aboveall,complexproblem-solving ability.Therheologicaldatarelatedtothefoodindustryisdiscussedin Chapter7;artificialintelligence(AI)inrheologicalcalculationshasbeen coveredinChapter8.
Intheend,westronglybelievethebookwillbehelpfultoprofessionals andgraduatestudentsinfood,pharmaceuticals,biopolymers,andallied sciences.Wegratefullyacknowledgethecontributionsofallcolleaguesand thetechnicalassistanceofElsevier.
References
Alexander,M.,Piska,I.,Dalgleish,D.G.,2008.Investigationofparticledynamicsingelsinvolvingcaseinmicelles:adiffusingwavespectroscopyandrheologyapproach.FoodHydrocoll. 22,1124 1134. Callaghan,P.T.,2006.Rheo-NMRandvelocityimaging.Curr.Opin.ColloidInterfaceSci.11, 13 18.
Cicuta,P.,Donald,A.M.,2007.Microrheology:areviewofthemethodandapplications.Soft Matterials3,1449 1455. Co,E.D.,Marangoni,A.G.,2012.Organogels:analternativeedibleoil-structuringmethod. J.Am.OilChemists’Soc.89,749 780.
xxvi Foodrheology:Scientificdevelopmentandimportancetothefoodindustry
Eberle,A.P.R.,Porcar,L.,2012.Flow-SANSandRheo-SANSappliedtosoftmatter.Curr. Opin.ColloidInterfaceSci.17,33 43.
Filip,D.,Duits,M.G.H.,Uricanu,V.I.,Mellema,J.,2006.Plastic-to-elastictransitioninaggregatedemulsionnetworks,studiedwithatomicforcemicroscopy-confocalscanninglaser microscopymicrorheology.Langmuir22(10),4558 4566.
Fischer,P.,Windhab,E.J.,2011.Rheologyoffoodmaterials.Curr.Opin.Colloid&Interface Sci.16,36 40.
Hemar,Y.,Singh,H.,Horne,D.S.,2004.Determinationofearlystagesofrennet-inducedaggregationofcaseinmicellesbydiffusingwavespectroscopyandrheologicalmeasurements. Curr.Appl.Phys.4,362 365.
Iwase,H.,Kawai,R.,Morishima,K.,Takata,S.,Yoshimura,T.,Shibayama,M.,2019.RheoSANSstudyonrelationshipbetweenmicellarstructuresandrheologicalbehaviorofcationic geminisurfactantsinsolution.J.ColloidInterfaceSci.538,357 366.
Kew,B.,Holmes,M.,Stieger,M.,Sarkar,A.,2021.Oraltribology,adsorptionandrheologyof alternativefoodproteins.FoodHydrocoll.116,106636.
Melito,H.S.,Daubert,C.R.,2011.Rheologicalinnovationsforcharacterizingfoodmaterial properties.Annu.Rev.FoodSci.Technol.11(2:1),153 179.
Nicolas,Y.,Paques,M.,2003.Microrheology:anexperimentaltechniquetovisualizefoodstructurebehaviorundercompression-extensiondeformationconditions.J.FoodSci.68, 1990 1994.
Nicolas,Y.,Paques,M.,vandenEnde,D.,Dhont,J.K.G.,Polanen,R.C.V.,vanAken,G., 2003.Microrheology:Newmethodstoapproachthefunctionalpropertiesoffood.Food Hydrocolloids17(6),907 913.
Rebry,F.,Declerck,A.,Ratzsch,K.-F.,Wilhelm,M.,Dewettinck,K.,VanderMeeren,P., 2021.Rheo-NMRtoinvestigatefatcrystallizationundershear.Curr.Res.FoodSci.4, 414 420.
Song,H.Y.,Park,S.Y.,Kim,S.,Youn,H.J.,Hyun,K.,2022.Linearandnonlinearoscillatory rheologyofchemicallypretreatedandnon-pretreatedcellulosenanofibersuspensions. Carbohydr.Polym.275,118765.
Williams,P.D.,Oztop,M.H.,Mccarthy,M.J.,Mccarthy,K.L.,Lo,Y.M.,2011.Characterization ofwaterdistributioninxanthan-curdlanhydrogelcomplexusingmagneticresonanceimaging,nuclearmagneticresonancerelaxometry,rheology,andscanningelectronmicroscopy. J.FoodSci.76,472 478.
Listofcontributors
Abdullah CollegeofFoodSciences,SouthChinaAgriculturalUniversity, Guangzhou,Guangdong,China
ImranAhmad Food,AgricultureandBio-InnovationLab(FABIL),ChaplinSchool ofHospitalityandTourismManagement,FloridaInternationalUniversity, BiscayneBayCampus,NorthMiami,FL,UnitedStates
JasimAhmed EnvironmentandLifeSciencesResearchCenter,KuwaitInstitutefor ScientificResearch,Safat,Kuwait
AbdulwahabS.Almusallam DepartmentofChemicalEngineering,Kuwait University,Kuwait
AliAsghar NationalInstituteofFoodScience&Technology,Universityof Agriculture,Faisalabad,Pakistan
NoemiBaldino DepartmentofInformation,Modeling,ElectronicsandSystem Engineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy
A.Bannikova SchoolofAppliedSciences,RMITUniversity,Melbourne,VIC,Australia
SreejaniBarua AgriculturalandFoodEngineeringDepartment,IndianInstituteof TechnologyKharagpur,Kharagpur,WestBengal,India
SantanuBasu DepartmentofMolecularSciences,SwedishUniversityof AgriculturalSciences,Uppsala,Sweden
Toni-AnnBenjamin Food,AgricultureandBio-InnovationLab(FABIL),Chaplin SchoolofHospitalityandTourismManagement,FloridaInternationalUniversity, BiscayneBayCampus,NorthMiami,FL,UnitedStates
AnkitaChandak DepartmentofFoodScienceandTechnology,ChaudharyDeviLal University,Sirsa,Haryana,India
BetulCilekTatar DepartmentofGastronomyandCulinaryArts,AnkaraMedipol University,Ankara,Turkey
SanjuBalaDhul DepartmentofFoodScienceandTechnology,ChaudharyDeviLal University,Sirsa,Haryana,India
DomenicoGabriele DepartmentofInformation,Modeling,ElectronicsandSystem Engineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy
V.Glicerina InterdepartmentalCentreforAgri-FoodIndustrialResearch,Alma MaterStudiorum,UniversityofBologna,Cesena(FC),Italy
M.J.Herna ´ ndez DepartmentofEarthPhysicsandThermodynamics,Facultiesof PhysicsandPharmacy,UniversityofValencia,Valencia,Spain
xviii Listofcontributors
M.Hous ˇ ka FoodResearchInstitutePrague,Prague,CzechRepublic
S.Kasapis SchoolofAppliedSciences,RMITUniversity,Melbourne,VIC,Australia
FrancescaLupi(Romana) DepartmentofInformation,Modeling,Electronicsand SystemEngineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy
AbidAslamMaan NationalInstituteofFoodScience&Technology,Universityof Agriculture,Faisalabad,Pakistan
OlgaMileti DepartmentofInformation,Modeling,ElectronicsandSystem Engineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy
KasiviswanathanMuthukumarappan DepartmentofAgricultureandBiosystems Engineering,SouthDakotaStateUniversity,Brookings,SD,UnitedStates
SaraNaji-Tabasi DepartmentofFoodNanotechnology,ResearchInstituteofFood ScienceandTechnology,Mashhad,Iran
AkmalNazir NationalInstituteofFoodScience&Technology,Universityof Agriculture,Faisalabad,Pakistan
BarisOzel DepartmentofFoodEngineering,MiddleEastTechnicalUniversity, Ankara,Turkey;DepartmentofFoodEngineering,AhiEvranUniversity, Kirsehir,Turkey
MecitHalilOztop DepartmentofFoodEngineering,MiddleEastTechnical University,Ankara,Turkey
S.Pe ´ rez-Quirce DepartmentofAgricultureandForestryEngineering,Food Technology,CollegeofAgriculturalandForestryEngineering,Universityof Valladolid,Palencia,Spain
S.Prakash TheUniversityofQueensland,Brisbane,QLD,Australia
P.Ptaszek DepartmentofEngineeringandMachineryforFoodIndustry, AgriculturalUniversityofKrakow,Krakow,Poland
SeyedM.A.Razavi CenterofExcellenceinNativeNaturalHydrocolloidsofIran, DepartmentofFoodScienceandTechnology,FerdowsiUniversityofMashhad, Mashhad,Iran
S.Romani InterdepartmentalCentreforAgri-FoodIndustrialResearch,AlmaMater Studiorum,UniversityofBologna,Cesena(FC),Italy;DepartmentofAgri-Food ScienceandTechnology,AlmaMaterStudiorum,UniversityofBologna,Cesena (FC),Italy
F.Ronda DepartmentofAgricultureandForestryEngineering,FoodTechnology, CollegeofAgriculturalandForestryEngineering,UniversityofValladolid, Palencia,Spain
SayantiRoy DepartmentofFoodTechnologyandBiochemicalEngineering, JadavpurUniversity,Kolkata,WestBengal,India
SylwiaRo ´ z ˙ an ´ ska DepartmentofChemicalEngineeringandEquipment,Facultyof ChemicalTechnology,PoznanUniversityofTechnology,Poznan,Poland
SerpilSahin DepartmentofFoodEngineering,MiddleEastTechnicalUniversity, Ankara,Turkey
Listofcontributors xix
A.Salvador InstituteofAgriculturalChemistryandFoodTechnology(IATA-CSIC), Valencia,Spain
T.Sanz InstituteofAgriculturalChemistryandFoodTechnology(IATA-CSIC), Valencia,Spain
A.Shakeel FacultyofCivilEngineeringandGeosciences,DepartmentofHydraulic Engineering,DelftUniversityofTechnology,Delft,TheNetherlands;Department ofChemical,Polymer&CompositeMaterialsEngineering,Universityof Engineering&Technology,Lahore,Pakistan
SiddharthaSingha SchoolofAgro&RuralTechnology,IndianInstituteof TechnologyGuwahati,Guwahati,Assam,India
GulumSumnu DepartmentofFoodEngineering,MiddleEastTechnicalUniversity, Ankara,Turkey
GabrielaJohnSwamy SanJoseStateUniversity,SanJose,CA,UnitedStates
E.Tornberg DepartmentofFoodTechnology,EngineeringandNutrition,Lund University,Lund,Sweden
GaryTucker CampdenBRI,ChippingCampden,UnitedKingdom
M.Villanueva DepartmentofAgricultureandForestryEngineering,Food Technology,CollegeofAgriculturalandForestryEngineering,Universityof Valladolid,Palencia,Spain
R.Z ˇ itny ´ CzechTechnicalUniversityinPrague,Prague,CzechRepublic
Chapter1
Interfacialrheologyoffood: proteinasamodelfood
NoemiBaldino,OlgaMileti,FrancescaLupi(Romana)and DomenicoGabriele
DepartmentofInformation,Modeling,ElectronicsandSystemEngineering(D.I.M.E.S.), UniversityofCalabria,Rende,CS,Italy
1.1Introduction
Thebehaviorofdispersedsystems,whichisconstitutedbytwoormore immisciblephasesincontactwitheach other,andthereforeconstituted byhighinterfacialareas,becameasu bjectofstudyonlyatthebeginning ofthe1900s( Myers,1999 ).Thefinalstructureofthesesystemsand thereforetheirmacroscopicproper ties,suchasstabilityandrheological characteristics,strong lydependonthenatureandinteractionstrengthof thedispersedphaseelemen ts(drops,bubbles,orsolidparticles)present inthecontinuousordispersingphasean dthecharacteristicsoftheseparationsurfacebetweenthephases.Thelatter,inturn,arestronglyinfluencedbythecompositionofthemolecularmonolayeradsorbedatthe interface.
Acategoryofmultiphasesystemsofconsiderableinterest,bothfortheir potentialapplicationsandfortheproblemstheypose,isthatoffood.Inthis case,andthereforeforsystemsthatcanbeclassifiedasfoamsandfood emulsions,thequantitiesandtypesofadditives,whichcanbeusedforthe controlofthefinalpropertiesoftheproducts,includinginterfacialones,are regulatedbythesectorregulations.Inanycase,anoptimizationcarriedout inthedefinitionphaseoftheproductformulation,alsobasedonthestudyof theinterfacialpropertiesofthesesystemscouldbefundamentalforthecontroloftheirfinalmacroscopicproperties,andthedesignoftheprocessconditionsandorganolepticcharacteristics.
Thefinalstructureofsuchsystems,andtherefore,theirmacroscopic properties,suchasstabilityandrheologicalcharacteristics,stronglydepend onthenatureandinteractionstrengthofthedispersedphaseelements(drops, bubbles,orsolidparticles)presentinthecontinuousphaseordispersantand
thecharacteristicsoftheseparationsurfacebetweenthephases.Thelatter,in turn,arestronglyinfluencedbythecompositionofthemolecularmonolayer adsorbedattheinterface.Thismonolayerconfersstabilityandthefinaltexturetofoodsthatweeateverydaythatonlyapparentlyappeartobesimple materials,butthatinrealityshouldbedefinedas“complexfluids.”Infact, veryoften,thefinalconsistency,liquidorsolid-like,andtextureofthese foodsaregiventothematadifferentlevelfromthemacroscopicone:the levelassociatedwiththedifferentproteinsphenomenaattheinterfacepresentinthefoodconsidered.
Manyfoodsontheshelvesofoursupermarketsarerichinproteins,be theyofanimalorvegetableorigin,becauseproteinsrepresentanimportant sourceofnutritionforthehumanbeing,thereforetheirpresenceinfoodsis justifiedinthefirstplacebytheirnecessityasacontributiontotheorganism, and,inthesecondplace,togivethefoodthestabilityitneeds.Theproteins arecapableofmigratingattheinterface,givingthisviscoelasticproperty, capableofgivingstabilitytodifferenttypesoffoodsystemsbothonashort scaleandonaslightlylongerscale.Thankstothestrongviscoelasticityof someinterfacesobtainedbyproteins,theyhavebecomeverypopularas modelsystems.
Inthelightoftheabove,interfacialrheologycanbeanimportant toolfortheanalysisandstudyoftheformationandstabilizationoffood systems.Theinterfacialrheologycancoverdifferentfoodaspectsfrom emulsionstofoams.Infact,itisknownfromtheliteraturethatfoodstuffsareoftenmultiphasicsystems, likefoams,emulsions,anddispersions,inwhichthepresenceofinterfaciallayersisfrequentbut,also, criticalbecausetheinterfaciallayersarepointsofinstabilitythatrequire studyandattention.Interfacialrheologyallows,withdifferenttechniques,toinvestigatethemechanicalresistanceoftheinterfaciallayersin differentkinematicconditionswiththeaimofhavinginformationabout theabilitytocreateastablefoodsystem.Infact,forthesaleabilityofa foodproduct,stabilityisanimportantrequirementforfoodscharacterizedbyseveralphasesincontactwitheachother.Thefoodindustrytypicallyusesproteinsasstabilizingag entsforinterfaciallayersdueto theiruniquepropertiesofloweringtheinterfacialtensionandforming rheologicallystableandstructuredfilms.Moreover,thewidevarietyof dietaryproteinsallowsperformingw ellthestability-producteffect, choosingthemostsuitabletypeofproteinforthefoodinwhichitis used.
Thischapterwillfocusontheimportanceofinterfacialrheologyinthe studyoffoods,focusingonproteins,andessentialcomponentsoffoodformulationsfortheirformationandstabilization.Theinstrumentationand methodswithwhichmodelinterfacescanbestudiedareexplainedand examplesofstructuredinterfaceswithproteinfilmsareproposed.