Advances in food rheology and its applications: development in food rheology 2nd edition jasim ahmed

Page 1


https://ebookmass.com/product/advances-in-food-rheology-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Rheology: Concepts, Methods, and Applications Alexander Y. Malkin

https://ebookmass.com/product/rheology-concepts-methods-andapplications-alexander-y-malkin/

ebookmass.com

Rheology: Concepts, Methods, and Applications 3rd Edition Alexander Ya. Malkin

https://ebookmass.com/product/rheology-concepts-methods-andapplications-3rd-edition-alexander-ya-malkin/

ebookmass.com

Advances in Food and Nutrition Research 1st Edition Fidel Toldrá

https://ebookmass.com/product/advances-in-food-and-nutritionresearch-1st-edition-fidel-toldra/

ebookmass.com

The Oxford handbook of economic imperialism Zak Cope (Editor)

https://ebookmass.com/product/the-oxford-handbook-of-economicimperialism-zak-cope-editor/

ebookmass.com

Texas Politics: Ideal and Reality 13th Edition Charldean Newell

https://ebookmass.com/product/texas-politics-ideal-and-reality-13thedition-charldean-newell/

ebookmass.com

Bad Words: Philosophical Perspectives On Slurs David Sosa

https://ebookmass.com/product/bad-words-philosophical-perspectives-onslurs-david-sosa/

ebookmass.com

Hegemony and Class Struggle: Trotsky, Gramsci and Marxism Dal Maso

https://ebookmass.com/product/hegemony-and-class-struggle-trotskygramsci-and-marxism-dal-maso/

ebookmass.com

Physical Activity Instruction of Older Adults 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/physical-activity-instruction-of-olderadults-2nd-edition-ebook-pdf/

ebookmass.com

The Wicked Remain Laura Pohl

https://ebookmass.com/product/the-wicked-remain-laura-pohl/

ebookmass.com

5 Steps to a 5: 500 AP European History Questions to Know by Test Day 3rd Edition

https://ebookmass.com/product/5-steps-to-a-5-500-ap-european-historyquestions-to-know-by-test-day-3rd-edition-sergei-alschen/

ebookmass.com

AdvancesinFood RheologyandIts Applications

DevelopmentinFoodRheology

SecondEdition

AssociateEditor

WoodheadPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom Copyright©2023ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

MATLABs isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorks doesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussion ofMATLABs softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLABs software.

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-823983-4(print)

ISBN:978-0-12-823984-1(online)

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: NikkiP.Levy

AcquisitionsEditor: MeganR.Ball

EditorialProjectManager: MarianaL.Kuhl

ProductionProjectManager: SuryaNarayananJayachandran

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

3.Dynamicsofthixotropicliquidsandtimedependency 63

M.Hou ˇ skaandR. ˇ Zitny ´ Symbols 63

3.1Introduction 64

3.1.1Thixotropy64

3.1.2Definitionsofthixotropyandrelatedbehavior, includingantithixotropyandrheomalaxy64

3.2Rheologicalmodelsofthixotropicfluids 65

3.2.1Structuralmodelswithadifferentialkineticequation65

3.2.2Structuralmodelswithanintegralofdeformationrate history66

3.2.3Presentationofspecificconstitutivemodel67

3.3Identifyingtheparametersforaselectedmodelof thixotropicbehavior 67

3.3.1Rheologicalexperimentconditions67

3.3.2Nonlinearregressionofexperimentalshearstress versustimedatabyselectedmodelequations68

3.4Examplesofrealthixotropicfluids 69

3.5Applicationsofrheologicalmodelsofthixotropicbehaviorfor solvingselectedengineeringtasks 70

3.5.1Startinguparotationalrheometer70

3.5.2Isothermalstationaryflowofathixotropicfluidina horizontalcirculartube70

3.5.3Poweroftheanchoragitatorinthecreepingflowregime73

3.6Futuretrendsinthixotropicfluidmodeling 75 3.7Conclusions

4.Rheologytotribology:applicationsoftribology instudyingfoodoralprocessingandtexture perception 81

S.Prakash

4.1Introduction 81

4.2Tribometer—principle,operation,measurementof lubricationpropertiesanddifferenttypes 83

4.2.1Basicprincipleofatribometer83

4.2.2Operationofatribometer84

4.2.3Measurementoflubricationpropertiesoffoodproducts84

4.2.4Varioustribometersusedinfoodapplications86

4.3Sensoryperceptionandtribology 95 4.4Conclusions

5.Largeamplitudeoscillatoryshearmeasurementand Fourier-transformrheology:applicationtofood

P.Ptaszek

5.1Introduction

5.2LAOSmethodsanddataanalysis 106

5.2.1G0 ,Gv Curves106

5.2.2AnalysisofG0 andGv 107

5.2.3TimeseriesanalysisandFouriertransformrheology110

5.2.4SimpleLissajousfigures113

5.2.5ExtendedanalysisofLissajousfigureandgeometrical decomposition115

5.3Applications 121

5.3.1TheanalysisofthecorrelationofG0 andGv inthe functionofthedeformationamplitude122

5.3.2Comparisonofmethodstodeterminetheyieldstress124

5.3.3ApplicationofFourierRheologyandthebasicanalysis oftheLissajouscurves125

5.3.4AdvancedanalysisoftheLissajouscurvesand geometricdecomposition129

5.3.5Chebyshevharmonicsanalysis132

5.3.6Recentworksonselectedbiomaterialsusing LAOSandFTR136

6.Extensionalrheologyinfoodprocessing

SylwiaRo´˙za ´ nska

6.1Introductionandbasicconcept 143

6.1.1Thegeneraloutlineoftheextensionalflowand applicationsinfoodprocessing146

6.1.2Measurementofextensionalrheology149

6.1.3Capillarythinningandbreak-upoffluids161

6.1.4Typicalexperimentalresultsofselectedfluids166 Funding176

7.Applicationsofrheologicaldatainthefoodindustry

7.1Introduction

7.3Heattransfercalculations

7.3.1Residencetimemeasurementforflowingfoods189 7.4Computationalfluiddynamics

8.Applicationofartificialintelligenceandmachine learningtofoodrheology

ImranAhmadandToni-AnnBenjamin

8.1Theneedformodeling

8.2Artificialintelligenceandmachinelearning

8.3.1Datapreprocessing205

9.Time-temperaturesuperpositionprinciples: applicabilityinfoodandbiopolymerrheology

9.4Elasticmodulusandrelaxationmodulussuperposition

9.6Time-temperature-stresssuperpositionprinciple

9.7ConstructingTTSPmastercurvefordynamicmoduli

9.8OtherTTSPapproachesforoscillatoryrheology

9.9TTSPforcreepbehavior

9.10Constructingofmastercurvebasedonthe Williams Landel Ferryequation

9.12.3Fruitproducts248 9.12.4Cerealsandlegumeproducts250

10.Influenceofdietaryfibersandparticlesize distributiononfoodrheology

E.Tornberg

10.1Introduction

10.2Originofthefibersinthepreparationofapaste

10.2.1Tomatopaste,hotbreak,andcoldbreak262

10.3Compositionofthefibersinsolubleandinsolublepart

10.4.1Measurementsystems265

10.4.2Dynamicoscillatoryrheology266

10.5Importantpropertiesofthefiberforitsrheological behaviorinsuspensions

10.5.1Relativeimportanceofthesolubleversus insolublefiber268

10.5.2Theconcentrationofparticles,water-insoluble solids,andvolumefractionofparticles269

10.5.3Morphologyoftheinsolublefiber275

10.5.4Particlesizedistributionoftheinsolublefiber277

10.6Influenceofvalvehomogenizationandshearingonthe rheologicalpropertiesoffibersuspensions

10.6.1InfluenceofValveHomogenization280

10.7Concludingremarks

11.2Rheologyofcheese

Contents

11.2.3Uniaxialtesting299

11.2.4Stressrelaxation299

11.2.5Creepandrecoveryofcheese301 11.2.6Cheesestretchability309

11.4.1Factorsaffectingfunctionality317

11.4.2Meltandflowproperties321

11.4.3Textureproperties328

12.Rheologyandmicrostructureofyogurt

JasimAhmed,SreejaniBaruaandSayantiRoy

13.Foodgels:Gellingprocessandnewapplications

AliAsghar,AkmalNazir,AbidAslamMaanandAbdullah

13.2.1Polysaccharidegels367

13.2.2Proteingels370

13.2.3Binary,mixedorcompositegels372

13.3Rheologicalcharacterizationofgels 375

13.3.1Microrheologyofgels376

13.3.2Oralprocessingandtextureperceptionofgels378

13.4Rheologicalbehaviorsofdifferentgums 379

13.4.1Rheologicalbehavioroftamarindseedgumin aqueoussolutions379

13.4.2Rheologicalbehaviorofaqueousdispersionsof cashewgumandgumarabic:effectof concentrationandblending379

13.4.3Rheologicalmodelsforxanthangum380

13.4.4Modelingtherheologicalbehaviorof galactomannanaqueoussolutions380 References 381

14.Influenceofsugarsubstitutesinrheologyoffruitgel 385 SantanuBasuandSiddharthaSingha

14.1Introduction

14.2Foodgels

14.3Fruitgels

14.4Fruitgelrheology 392

14.4.1Steadystaterheology393

14.4.2Thixotropy/timedependency394

14.4.3Dynamicrheology397

14.5Effectofsugarsubstitutioninfruitgelrheology 400

14.6Molecularfingerprintandrheologicalattributesoffruit gelsmanufacturedwithlow-caloriesweeteners

15.Rheologyandtextureofbasilseedgum:anew hydrocolloidsource 413

SeyedM.A.RazaviandSaraNaji-Tabasi

15.1Introduction 413

15.2Basil(Ocimum)

15.3Basilseedmucilage 415

15.3.1Extractionoptimization415

15.3.2Physicochemicalproperties416

15.3.3Rheologicalproperties417

15.3.4Texturalproperties446

15.3.5Rheologicalinteraction447

15.4Futuretrends 454

16.Creep recoveryandoscillatoryrheologyof flour-basedsystems 459

T.Sanz,A.SalvadorandM.J.Hern ´ andez

16.1Elastic,viscous,andviscoelasticbehavior 459

16.2Linearviscoelastictests 460

16.2.1Smallamplitudeoscillatorysheartests460

16.2.2Creepandrecoverytests463

16.3Creep recoveryandoscillatoryrheologicalmeasurement offlour-basedsystems 465

16.3.1Generalexperimentalconsiderations465

16.3.2Wheatflourdoughs466

16.3.3Breaddoughs469

16.3.4Biscuitandcookiedoughs471

16.3.5Gluten-freedoughs473

17.Rheologicalpropertiesofgluten-freebreaddoughs andtheirmodification:improvebreadquality

F.Ronda,S.Pe ´ rez-QuirceandM.Villanueva 17.1Introduction

17.2Glutenflourdoughversusgluten-freeflourdoughs

17.3Rheologicaltestsongluten-freedoughs

17.3.1Fundamentaltest483

17.3.2Empiricaltests488

17.4Effectofdoughhydrationondoughrheologyandbread quality

17.5Effectoffiberadditionongluten-freedoughsrheology

18.Rheologyandrheologicalmeasurementsofstarch 517

JasimAhmed,SanjuBalaDhulandAnkitaChandak

18.1Introduction

18.2.1Macroscopicmeasurements518

18.2.2Steady-shear(flow)measurements519

18.2.3Smallamplitudeoscillatoryshearmeasurements521

18.2.4Largeamplitudeoscillatoryshearmeasurements525

18.2.5Creepandrecovery528

18.2.6Starchgelatinization530

18.2.7Rheologicalbehaviorofstarchgels535

18.2.8Pastingpropertiesofstarch542 18.3Conclusions

19.Nonlinearviscoelasticrheologyofwheatdough 553

AbdulwahabS.Almusallam

19.1Introduction 553

19.2Theoreticalbackground 555

19.2.1Smallamplitudeoscillatoryshear555

19.2.2Largeamplitudeoscillatoryshearrheological framework556

19.2.3Thepowerlawmodeldescribingthelinear viscoelasticresponseofdough558

19.2.4Differentialconstitutiveequations559

19.2.5Integralconstitutiveequations561

19.2.6TheTaylorseriesexpansionformulas562

19.3Usingclassicalconstitutivemodelstodescribedough rheology 565

19.3.1Modelfilteringbasedonthedampingfunction565

19.3.2ModelfilteringbasedonTaylorseriesexpansion567

19.3.3Modelfilteringbasedontheoriginalconstitutive models573

19.3.4Quantitativemeasuresoflargeamplitude oscillatoryshearresults580

19.3.5Summaryoftestsandrecommendations583 19.4Conclusions 584 References 584

20.Rheologyofgelatinandadvancesinrheological measurements 587

JasimAhmed

20.1Introduction 587

20.2Structureandaminoacidcomposition 589

20.3Meltingandglasstransitiontemperature 591

20.4Gelpoint 592

20.5Bloomvalue

20.6Viscosity

20.7Gelationmechanism

20.8Rheologicalbehaviorofgelatingel

20.8.1Steadyflow596

20.8.2Oscillatoryrheology597

20.8.3Largeamplitudeoscillatoryshearmeasurement605

20.8.4Creep608

20.9Factorsaffectingthegelatinrheology 612

20.9.1Concentration612

20.9.2pHandelectrolyte615

20.9.3Molecularweight619

20.9.4Enzymetreatment621

20.10Advancesingelatinmeasurementtechniques 622

20.10.1Fouriertransformmechanicalspectroscopy622

20.10.2OptimalFourierrheometry623

20.10.3Resonantacousticrheometry623

20.11Conclusions 626 References 626

21.Emulsionrheology 633 BetulCilekTatar,GulumSumnuandSerpilSahin

21.1Introduction 633

21.1.1Emulsions,nanoemulsions,andpickering emulsions633

21.1.2Foodemulsionsintheindustry635

21.2Majorfactorsaffectingtherheologyofemulsions 637

21.2.1Volumefraction637

21.2.2Phaserheology637

21.2.3Dropletsize638

21.2.4Interactionsincolloidaldispersions639

21.3Casestudiesonnanoemulsionandpickeringemulsions 644

21.4Futuretrends 650 References

22.Rheologyoffoodhydrogels,andorganogels 657

BarisOzelandMecitHalilOztop

22.1Introduction 657

22.2Rheologicalcharacterization 658

22.2.1Steadyshearflowcharacterization658

22.2.2Dynamicoscillatoryshearcharacterization660

22.3Texturalcharacterization 678

22.3.1Textureprofileanalysis678

22.3.2Tensiletesting680

22.4Concludingremarks

23.Rheologyoffoodbigelsystem

FrancescaLupi(Romana),A.Shakeel,NoemiBaldinoand DomenicoGabriele

23.1Introduction 685

23.2Preparationmethodsofbigels 688

23.3Characterizationofbigels 689

23.3.1Rheologicalcharacterization689

23.3.2Rheologicalmodeling691

23.3.3Microstructuralinvestigationandsensoryproperties695

23.4Industrialusesandfoodapplications:futureperspectives 696

23.5Conclusions 697 References 698

24.Advancesinyieldstressmeasurementsforchocolate 703

V.GlicerinaandS.Romani

24.1Introduction 703

24.2Chocolate:ingredientsandmanufacturingprocess 704

24.2.1Ingredients704

24.2.2Manufacturingprocess706

24.3Rheologicalbehaviorofchocolatetypedispersions: yieldstress 708

24.3.1Testinganddetermination709

24.3.2Methods:traditionalandadvanced711

24.4Rheologicalmodels 713

24.4.1Power-lawmodel714

24.4.2Cassonmodel714

24.4.3Windhabmodel715

24.5Effectofformulationandprocessingonchocolate yieldstress 716

24.5.1Formulation717

24.5.2Manufacturingprocess719

24.6Conclusions

Foodrheology:Scientific developmentandimportance tothefoodindustry

1Rheologyandfood

Rheologydealswiththedeformationandflowofmaterialsunderadefined condition.Understandingrheologyisofgreatimportanceforeveryfacetof processingandproduction.Ithasastrongpresenceinarangeofindustries (e.g.,petroleum,polymers,food,pharmaceuticals)asapartofmaterialcharacterization,process,andequipmentdesign.Thesubjectofrheology,however,hasdifferentinterestsineachfield,sothecoreelementmergeswith otheremergingareastomatureasanindependentfield.Foodrheologyis oneofthebestexamples,wheretheconceptofrheologyfrompolymersciencewellmergeswithfoodconstituents,inparticularproteinsandpolysaccharides,toemergeasasuccessfulareaofinterest.Thepracticeofrheology infoodhasafewcategories:(1)productdevelopersuseitasatooland relateittosensoryanalysis;(2)engineersstudyrheology processrelationshipsofthefoodanduserheologicaldataforprocess/productoptimization andnumericalflowprocesssimulations,and(3)foodmaterialscientists focusonrheology structurerelationshipsinmodelfoodsystems,rheometric modelflowsaswellasanalyticaltosemi-empiricalmodelingandsimulation (FischerandWindhab,2011).

Foodrheologyencompassesanin-depthanalysisofthemicrostructure anddeformation/fluidityoffoodsfromlowstraintomediumandlargestrain measurements.Atransformationofmeasurementfromarotationalviscometertoeitheracontrolledstress/strainrheometerormoreadvancedoptimal Fouriertransformationrheometryorquartzcrystal-microbalancewithdissipation(QCM-D)improvedtheaccuracy,sophistication,andreliabilityto rheologicaldataoffood.Foodrheology,furthermore,compliments microstructureandthermalanalysistopreciselyunderstandthestructural andphasechangeofthefoodmaterialsduringprocessing,storage,or

xxii Foodrheology:Scientificdevelopmentandimportancetothefoodindustry

transportation.Suchintegratedstudieshelptocontroltexturaldefectsinprocessedfoodsandimproveconsumersatisfaction.

Rheologicalmeasurementandcharacterizationoffoodmaterialscouldbe usefultounderstandinthefollowingareas:

● Interactionsofingredientsatdifferentlengthscales(molecularscale, macro-tomicro-scaleinteractions)andbulkmechanicalproperties

● Processoptimizationandproductdevelopment

● Microstructureandrheology

● Understandingtheconnectionbetweensensoryperceptionandtextural/ rheologicalprofileoffoods.

● Foodoralprocessingandbolusrheology

● Rheologyinthegastrointestinaltractandsatiety/satiationcascade

● Additivemanufacturing(3D-printing)anddevelopmentoffood-based ink

2Innovationsinrheologicalmeasurementsoffood

Rheologicalmeasurementshavecontinuallyevolvedtoencompassnovel technologiestoproduceprecision.Re searchersinrecenttimeswouldlike toextractmoreinformationfromasinglerunonapieceofequipment. Couplingoftherheometerwithotheranalyticaltoolssuchasmicroscopy, spectroscopy,small-angleX-rayscattering(SAXS),small-angleneutron scattering(SANS),ormagneticresonanceequipmentcouldenhanceits applicationsandscientificmerits .Rheologicalequipmentattachedto nuclearmagneticresonance(NMR)( Nicolasetal.,2003;Callaghan,2006; Rebryetal.,2021 ),magneticresonanceimaging(MRI)( Williamsetal., 2011 ),atomicforcemicroscopy(AFM)( Filipetal.,2006 ),confocalscanninglasermicroscopy(CSLM)( Nicolasetal.,2003;Filipetal.,2006 ), small-angleneutronscattering( EberleandPorcar,2012;Iwaseetal., 2019 )anddiffusingwavespectroscopy(DWS)(Hemaretal.,2004; Alexanderetal.,2008 )havealreadybeenusedinresearchanddevelopmentinvariousapplications,andthefieldhasextendedtofoodapplicationstoo.Theseemergingtoolshavethepotentialtoprovidesignificant newinformationaboutcomplexfood materialsatboththemacro-and micro-levels( CicutaandDonald,2007;NicolasandPaques,2003;Melito andDaubert,2011 ).Themicro-rheologicalapproacheswillbecrucialin understandingthemicroscaleinter actionsofdifferentfoodcomponents comprehensively.Ontheotherhand,tribologycoupledwithQCM-Dmay addafundamentalunderstandingoftheadsorbedlayersofproteinsand boostthedesignofnewingredientformulationsforuseinlow-fat/high proteinfooddevelopment( Kewetal.,2021 ).Thechallengesremainin correlatingmicro-scalerheologicalbehaviortomacroscalerheological attributesoffoodmaterials.

Foodrheology:Scientificdevelopmentandimportancetothefoodindustry xxiii

3Aboutthebook

Thesecondeditionofthebook“AdvancesinFoodRheologyand Applications”hasbeenrevisedextensively,andsevennewchaptershave beenadded,keepinginviewadvancesandbroadeningthefieldoffoodrheology.Wehavethematicallystructuredthebookintotwosections.Thefirst section(Chapters1 10)isdedicatedtotheoreticalconceptsoffoodrheology,whicharethebasisofrheologyandmeasurements.Thesecondsection (Chapters11 24)discussesapplicationsofrheologyindifferentfood products.

Interfacialrheologyoftwoimmisciblepolymersystemsimpartsinsight intothemechanicalpropertiesofadsorptionlayersonliquid-liquidinterfaces andisexploredbystudyingtheresponseoftheinterfacetoappliedstressor strain.InChapter1,basicconceptsofinterfacialrheologyandthemaincharacteristicsofproteinswiththeirprincipalaspectsconnectedtointerfacestabilityarediscussed.Theprocessingoffoodsinducesrheologicaland structuralchanges.Rheologicalresponsesoccuratthemacroscopiclevel, whilechangesinpropertiesandstructuresareatthemicroscopiclevel.In Chapter2,theinter-relationshipbetweenmicrostructureandrheologyisdiscussed.Morespecifically,therheologyandmicrostructureofcheeseand yogurtarecoveredinChapters11and12,respectively.

Fluidflowcanpersuadereversibleandirreversiblestructuralchanges understress.Therheologicalindicatorofflow-inducedstructuralchangesis variableviscosity.Thereversibleandtime-dependentfluidsareknownas thixotropic.Chapter3discussesthethixotropicbehavioroffood.Somefoods requireaminimumforcebeforeflow,whichismeasuredintermsofyield stress.Measurementoftheyieldstressofchocolateiscoveredin Chapter24.

Oralprocessingoffoodhasattractedattentionbecauseofitsimportance inregulatingsensoryappreciationandsatisfactionofconsumingfoods, whichultimatelycontrolsnutrientintake.Inadditiontorheology,frictional propertiesarealsoimportantinoralprocessing.Thefrictionalproperties relatedtosensoryperceptioncanbemeasuredusingtribologicalparameters. Applicationsoftribologyinfoodoralprocessingandtextureperceptionare elucidatedinChapter4.

Dynamicoscillatorysheartestscanbeexecutedinthelinearornonlinear regime.Thelinearregimeinducesalinearviscoelasticresponse,whichis knownasasmallamplitudeoscillatoryshear(SAOS)response.SAOStests arethecanonicalmethodforprobingthelinearviscoelasticpropertiesof foodsbecauseoftheirsolidtheoreticalbackgroundandtheeaseofimplementingsuitabletestprotocols.Ontheotherhand,thenonlinearviscoelastic responsetermedlargeamplitudeoscillatoryshear(LAOS)occurswhenthe applieddeformationbecomeslargerandthematerialfunctionsusedtoquantifythelinearbehaviorinSAOStestsarenolongervalid.Furthermore,

xxiv Foodrheology:Scientificdevelopmentandimportancetothefoodindustry

LAOStestscanprovideabetterunderstandingofcomplexrheological behaviorandadeeperinsightintomicrostructuralchangesunderlargedeformation(Songetal.,2022).LAOSmeasurementsandapplicationstofoods havebeenpresentedinChapters5and19.

Amongvarioustypesofflows,theextensionalflowhasindustrialsignificance.Measurementsoftheextensionalviscosityofliquidfoodsareimportantinstructuralcharacterization,processandqualitycontrolofproducts, andprocessmodelinganddesign.Onechapter(Chapter6)hasbeendevoted tomeasuringtheextensionalviscosityoffluidswithlowandhighviscosities.Additionally,extensionalflowmeasurementsofpolymersolutions, emulsions,andotherfluidsarealsodiscussed.

Creeptestsareusedforviscoelasticfoodmaterials(e.g.,dough,cheese, gel)toascertaintexturestability.Acreeptestassessesthetime-dependency ofviscoelasticfoodmaterial.Creep-recoveryexperimentaldatacanbeanalyzedbyfittingthefour-parameterBurger’smodel,whichcombinesa MaxwellelementandaKelvin Voigtelementinseries.Creepandrecovery areelaboratelydiscussedinthebookinvariouschapters,inparticular, Chapter16.Therheologicalpropertiesofgluten-freedoughhavebeendiscussedinachapter(Chapter17).

Therheologicalpropertiesoffoodandbiopolymersaresignificantly influencedbytemperatureandmeasuringtime.Time-temperaturesuperposition(TTS)isaneminenttechniquethatisusedtoenlargethefrequency regimesignificantlyatareferencetemperatureatwhichthematerialis tested.InTTS,isothermaldataobtainedbyfrequencysweepsatselected temperaturescanbeshiftedalongthefrequencyaxisandsuperimposedto obtainasingle“mastercurve”atthereferencetemperature.Theapplication oftheTTStofoodmaterialsisdescribedinChapter9.Particlesizecontrols therheologicalbehavioroffood,eitherindispersionorinthedough.The foodmatrixwiththefinestparticlesbehavesdifferentlyfromthecoarseparticleenrichedfood.Theinfluenceofparticlesizeontherheologyofdietary fiber(DF)suspensionsandtheirmicrostructuralpropertiesisthesubjectof discussionasreportedinChapter10.

Gelsaresemi-solidstructurescontainingasolidandaliquidcomponent inwhichthesolidcomponentdevelopsa3Dnetworkthattrapstheliquid phase.Gelplaysanimportantroleinfoodandbiopolymerswithsignificant technologicalinterest.Mostly,proteins,starch,andpolysaccharidesform gelsuponheatorpressuretreatment.Bycontrollingthegel’smicrostructure, awidevarietyofphysicalpropertiescanbeattained,rangingfromhardrubberyplasticstosofthydrogels.Gelformationisdetectedrheologically throughacross-overpointbetweentheelastic(G0 )andviscous(Gv)moduli, knownasthegelpoint.Gelshavebeenelucidatedinthebook:themechanismofgelformation(Chapter13),fruitgel(Chapter14),gelatingel (Chapter20),basilseedgumgel(Chapter15),yogurtgel(Chapter12),and starchgel(Chapter18).

Foodrheology:Scientificdevelopmentandimportancetothefoodindustry xxv

Basedonthepolarityoftheliquidcomponent,gelsareclassifiedinto hydrogelsandorganogels.Forhydrogels,wateristheliquidcomponent, whereasapolarsolventsincludinghexane,isopropylmyristate,sunfloweroil, andpalmoilareusedtodeveloporganogels.Biodegradablepolymers,in particular,proteinsandpolysaccharides,areusedforthedevelopmentof hydrogels.Organogels,ontheotherhand,areself-standing,thermoreversible,anhydrous,viscoelasticmaterialsstructuredbyathree-dimensional supramolecularnetworkofself-assembledmoleculeswithrestrictedsolubilityinanorganicliquid(Co&Marangoni,2012).Bigelsareanotherkindof gel,whichresultfrommixingahydrogelandanorganogel;theaqueous phaseismostlyformedbyahydrophilicbiopolymer,whiletheorganicphase containsagelledvegetableoilbecauseofthepresenceofanorganogelator. Becausetheincorporationofthesegelsintofoodsystemsinfluencesrheologicalbehaviorsandsensoryscores,therheologicalcharacterizationofhydrogelandorganogelsystemsisveryinteresting.Threechapters(Chapters 21 23)inthebookprovideanin-depthanalysisofthosetopics,including emulsion.

Reliableandaccuraterheologicaldataarecriticalasinputsformodeling, andengineeringcalculationsintheprocessoperationandequipmentdesign. Computationalfluiddynamics,alongwithcodes,iscapableofcomputing complexrheologicalsolutionsoffoodwithvariousgeometries.Furthermore, artificialintelligence(AI)isbeingusedtosolveamultitudeofengineering problems.Inadditiontoconventionalequation-basedsolutionsandnumericalmethodstosolverheologicalproblems,thealgorithm-basedapproaches havecreatedaninterestamongresearchersbecauseoftheirsuperiorcomputationalpower;robustalgorithms,and,aboveall,complexproblem-solving ability.Therheologicaldatarelatedtothefoodindustryisdiscussedin Chapter7;artificialintelligence(AI)inrheologicalcalculationshasbeen coveredinChapter8.

Intheend,westronglybelievethebookwillbehelpfultoprofessionals andgraduatestudentsinfood,pharmaceuticals,biopolymers,andallied sciences.Wegratefullyacknowledgethecontributionsofallcolleaguesand thetechnicalassistanceofElsevier.

References

Alexander,M.,Piska,I.,Dalgleish,D.G.,2008.Investigationofparticledynamicsingelsinvolvingcaseinmicelles:adiffusingwavespectroscopyandrheologyapproach.FoodHydrocoll. 22,1124 1134. Callaghan,P.T.,2006.Rheo-NMRandvelocityimaging.Curr.Opin.ColloidInterfaceSci.11, 13 18.

Cicuta,P.,Donald,A.M.,2007.Microrheology:areviewofthemethodandapplications.Soft Matterials3,1449 1455. Co,E.D.,Marangoni,A.G.,2012.Organogels:analternativeedibleoil-structuringmethod. J.Am.OilChemists’Soc.89,749 780.

xxvi Foodrheology:Scientificdevelopmentandimportancetothefoodindustry

Eberle,A.P.R.,Porcar,L.,2012.Flow-SANSandRheo-SANSappliedtosoftmatter.Curr. Opin.ColloidInterfaceSci.17,33 43.

Filip,D.,Duits,M.G.H.,Uricanu,V.I.,Mellema,J.,2006.Plastic-to-elastictransitioninaggregatedemulsionnetworks,studiedwithatomicforcemicroscopy-confocalscanninglaser microscopymicrorheology.Langmuir22(10),4558 4566.

Fischer,P.,Windhab,E.J.,2011.Rheologyoffoodmaterials.Curr.Opin.Colloid&Interface Sci.16,36 40.

Hemar,Y.,Singh,H.,Horne,D.S.,2004.Determinationofearlystagesofrennet-inducedaggregationofcaseinmicellesbydiffusingwavespectroscopyandrheologicalmeasurements. Curr.Appl.Phys.4,362 365.

Iwase,H.,Kawai,R.,Morishima,K.,Takata,S.,Yoshimura,T.,Shibayama,M.,2019.RheoSANSstudyonrelationshipbetweenmicellarstructuresandrheologicalbehaviorofcationic geminisurfactantsinsolution.J.ColloidInterfaceSci.538,357 366.

Kew,B.,Holmes,M.,Stieger,M.,Sarkar,A.,2021.Oraltribology,adsorptionandrheologyof alternativefoodproteins.FoodHydrocoll.116,106636.

Melito,H.S.,Daubert,C.R.,2011.Rheologicalinnovationsforcharacterizingfoodmaterial properties.Annu.Rev.FoodSci.Technol.11(2:1),153 179.

Nicolas,Y.,Paques,M.,2003.Microrheology:anexperimentaltechniquetovisualizefoodstructurebehaviorundercompression-extensiondeformationconditions.J.FoodSci.68, 1990 1994.

Nicolas,Y.,Paques,M.,vandenEnde,D.,Dhont,J.K.G.,Polanen,R.C.V.,vanAken,G., 2003.Microrheology:Newmethodstoapproachthefunctionalpropertiesoffood.Food Hydrocolloids17(6),907 913.

Rebry,F.,Declerck,A.,Ratzsch,K.-F.,Wilhelm,M.,Dewettinck,K.,VanderMeeren,P., 2021.Rheo-NMRtoinvestigatefatcrystallizationundershear.Curr.Res.FoodSci.4, 414 420.

Song,H.Y.,Park,S.Y.,Kim,S.,Youn,H.J.,Hyun,K.,2022.Linearandnonlinearoscillatory rheologyofchemicallypretreatedandnon-pretreatedcellulosenanofibersuspensions. Carbohydr.Polym.275,118765.

Williams,P.D.,Oztop,M.H.,Mccarthy,M.J.,Mccarthy,K.L.,Lo,Y.M.,2011.Characterization ofwaterdistributioninxanthan-curdlanhydrogelcomplexusingmagneticresonanceimaging,nuclearmagneticresonancerelaxometry,rheology,andscanningelectronmicroscopy. J.FoodSci.76,472 478.

Listofcontributors

Abdullah CollegeofFoodSciences,SouthChinaAgriculturalUniversity, Guangzhou,Guangdong,China

ImranAhmad Food,AgricultureandBio-InnovationLab(FABIL),ChaplinSchool ofHospitalityandTourismManagement,FloridaInternationalUniversity, BiscayneBayCampus,NorthMiami,FL,UnitedStates

JasimAhmed EnvironmentandLifeSciencesResearchCenter,KuwaitInstitutefor ScientificResearch,Safat,Kuwait

AbdulwahabS.Almusallam DepartmentofChemicalEngineering,Kuwait University,Kuwait

AliAsghar NationalInstituteofFoodScience&Technology,Universityof Agriculture,Faisalabad,Pakistan

NoemiBaldino DepartmentofInformation,Modeling,ElectronicsandSystem Engineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy

A.Bannikova SchoolofAppliedSciences,RMITUniversity,Melbourne,VIC,Australia

SreejaniBarua AgriculturalandFoodEngineeringDepartment,IndianInstituteof TechnologyKharagpur,Kharagpur,WestBengal,India

SantanuBasu DepartmentofMolecularSciences,SwedishUniversityof AgriculturalSciences,Uppsala,Sweden

Toni-AnnBenjamin Food,AgricultureandBio-InnovationLab(FABIL),Chaplin SchoolofHospitalityandTourismManagement,FloridaInternationalUniversity, BiscayneBayCampus,NorthMiami,FL,UnitedStates

AnkitaChandak DepartmentofFoodScienceandTechnology,ChaudharyDeviLal University,Sirsa,Haryana,India

BetulCilekTatar DepartmentofGastronomyandCulinaryArts,AnkaraMedipol University,Ankara,Turkey

SanjuBalaDhul DepartmentofFoodScienceandTechnology,ChaudharyDeviLal University,Sirsa,Haryana,India

DomenicoGabriele DepartmentofInformation,Modeling,ElectronicsandSystem Engineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy

V.Glicerina InterdepartmentalCentreforAgri-FoodIndustrialResearch,Alma MaterStudiorum,UniversityofBologna,Cesena(FC),Italy

M.J.Herna ´ ndez DepartmentofEarthPhysicsandThermodynamics,Facultiesof PhysicsandPharmacy,UniversityofValencia,Valencia,Spain

xviii Listofcontributors

M.Hous ˇ ka FoodResearchInstitutePrague,Prague,CzechRepublic

S.Kasapis SchoolofAppliedSciences,RMITUniversity,Melbourne,VIC,Australia

FrancescaLupi(Romana) DepartmentofInformation,Modeling,Electronicsand SystemEngineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy

AbidAslamMaan NationalInstituteofFoodScience&Technology,Universityof Agriculture,Faisalabad,Pakistan

OlgaMileti DepartmentofInformation,Modeling,ElectronicsandSystem Engineering(D.I.M.E.S.),UniversityofCalabria,Rende,CS,Italy

KasiviswanathanMuthukumarappan DepartmentofAgricultureandBiosystems Engineering,SouthDakotaStateUniversity,Brookings,SD,UnitedStates

SaraNaji-Tabasi DepartmentofFoodNanotechnology,ResearchInstituteofFood ScienceandTechnology,Mashhad,Iran

AkmalNazir NationalInstituteofFoodScience&Technology,Universityof Agriculture,Faisalabad,Pakistan

BarisOzel DepartmentofFoodEngineering,MiddleEastTechnicalUniversity, Ankara,Turkey;DepartmentofFoodEngineering,AhiEvranUniversity, Kirsehir,Turkey

MecitHalilOztop DepartmentofFoodEngineering,MiddleEastTechnical University,Ankara,Turkey

S.Pe ´ rez-Quirce DepartmentofAgricultureandForestryEngineering,Food Technology,CollegeofAgriculturalandForestryEngineering,Universityof Valladolid,Palencia,Spain

S.Prakash TheUniversityofQueensland,Brisbane,QLD,Australia

P.Ptaszek DepartmentofEngineeringandMachineryforFoodIndustry, AgriculturalUniversityofKrakow,Krakow,Poland

SeyedM.A.Razavi CenterofExcellenceinNativeNaturalHydrocolloidsofIran, DepartmentofFoodScienceandTechnology,FerdowsiUniversityofMashhad, Mashhad,Iran

S.Romani InterdepartmentalCentreforAgri-FoodIndustrialResearch,AlmaMater Studiorum,UniversityofBologna,Cesena(FC),Italy;DepartmentofAgri-Food ScienceandTechnology,AlmaMaterStudiorum,UniversityofBologna,Cesena (FC),Italy

F.Ronda DepartmentofAgricultureandForestryEngineering,FoodTechnology, CollegeofAgriculturalandForestryEngineering,UniversityofValladolid, Palencia,Spain

SayantiRoy DepartmentofFoodTechnologyandBiochemicalEngineering, JadavpurUniversity,Kolkata,WestBengal,India

SylwiaRo ´ z ˙ an ´ ska DepartmentofChemicalEngineeringandEquipment,Facultyof ChemicalTechnology,PoznanUniversityofTechnology,Poznan,Poland

SerpilSahin DepartmentofFoodEngineering,MiddleEastTechnicalUniversity, Ankara,Turkey

Listofcontributors xix

A.Salvador InstituteofAgriculturalChemistryandFoodTechnology(IATA-CSIC), Valencia,Spain

T.Sanz InstituteofAgriculturalChemistryandFoodTechnology(IATA-CSIC), Valencia,Spain

A.Shakeel FacultyofCivilEngineeringandGeosciences,DepartmentofHydraulic Engineering,DelftUniversityofTechnology,Delft,TheNetherlands;Department ofChemical,Polymer&CompositeMaterialsEngineering,Universityof Engineering&Technology,Lahore,Pakistan

SiddharthaSingha SchoolofAgro&RuralTechnology,IndianInstituteof TechnologyGuwahati,Guwahati,Assam,India

GulumSumnu DepartmentofFoodEngineering,MiddleEastTechnicalUniversity, Ankara,Turkey

GabrielaJohnSwamy SanJoseStateUniversity,SanJose,CA,UnitedStates

E.Tornberg DepartmentofFoodTechnology,EngineeringandNutrition,Lund University,Lund,Sweden

GaryTucker CampdenBRI,ChippingCampden,UnitedKingdom

M.Villanueva DepartmentofAgricultureandForestryEngineering,Food Technology,CollegeofAgriculturalandForestryEngineering,Universityof Valladolid,Palencia,Spain

R.Z ˇ itny ´ CzechTechnicalUniversityinPrague,Prague,CzechRepublic

Chapter1

Interfacialrheologyoffood: proteinasamodelfood

NoemiBaldino,OlgaMileti,FrancescaLupi(Romana)and DomenicoGabriele

DepartmentofInformation,Modeling,ElectronicsandSystemEngineering(D.I.M.E.S.), UniversityofCalabria,Rende,CS,Italy

1.1Introduction

Thebehaviorofdispersedsystems,whichisconstitutedbytwoormore immisciblephasesincontactwitheach other,andthereforeconstituted byhighinterfacialareas,becameasu bjectofstudyonlyatthebeginning ofthe1900s( Myers,1999 ).Thefinalstructureofthesesystemsand thereforetheirmacroscopicproper ties,suchasstabilityandrheological characteristics,strong lydependonthenatureandinteractionstrengthof thedispersedphaseelemen ts(drops,bubbles,orsolidparticles)present inthecontinuousordispersingphasean dthecharacteristicsoftheseparationsurfacebetweenthephases.Thelatter,inturn,arestronglyinfluencedbythecompositionofthemolecularmonolayeradsorbedatthe interface.

Acategoryofmultiphasesystemsofconsiderableinterest,bothfortheir potentialapplicationsandfortheproblemstheypose,isthatoffood.Inthis case,andthereforeforsystemsthatcanbeclassifiedasfoamsandfood emulsions,thequantitiesandtypesofadditives,whichcanbeusedforthe controlofthefinalpropertiesoftheproducts,includinginterfacialones,are regulatedbythesectorregulations.Inanycase,anoptimizationcarriedout inthedefinitionphaseoftheproductformulation,alsobasedonthestudyof theinterfacialpropertiesofthesesystemscouldbefundamentalforthecontroloftheirfinalmacroscopicproperties,andthedesignoftheprocessconditionsandorganolepticcharacteristics.

Thefinalstructureofsuchsystems,andtherefore,theirmacroscopic properties,suchasstabilityandrheologicalcharacteristics,stronglydepend onthenatureandinteractionstrengthofthedispersedphaseelements(drops, bubbles,orsolidparticles)presentinthecontinuousphaseordispersantand

thecharacteristicsoftheseparationsurfacebetweenthephases.Thelatter,in turn,arestronglyinfluencedbythecompositionofthemolecularmonolayer adsorbedattheinterface.Thismonolayerconfersstabilityandthefinaltexturetofoodsthatweeateverydaythatonlyapparentlyappeartobesimple materials,butthatinrealityshouldbedefinedas“complexfluids.”Infact, veryoften,thefinalconsistency,liquidorsolid-like,andtextureofthese foodsaregiventothematadifferentlevelfromthemacroscopicone:the levelassociatedwiththedifferentproteinsphenomenaattheinterfacepresentinthefoodconsidered.

Manyfoodsontheshelvesofoursupermarketsarerichinproteins,be theyofanimalorvegetableorigin,becauseproteinsrepresentanimportant sourceofnutritionforthehumanbeing,thereforetheirpresenceinfoodsis justifiedinthefirstplacebytheirnecessityasacontributiontotheorganism, and,inthesecondplace,togivethefoodthestabilityitneeds.Theproteins arecapableofmigratingattheinterface,givingthisviscoelasticproperty, capableofgivingstabilitytodifferenttypesoffoodsystemsbothonashort scaleandonaslightlylongerscale.Thankstothestrongviscoelasticityof someinterfacesobtainedbyproteins,theyhavebecomeverypopularas modelsystems.

Inthelightoftheabove,interfacialrheologycanbeanimportant toolfortheanalysisandstudyoftheformationandstabilizationoffood systems.Theinterfacialrheologycancoverdifferentfoodaspectsfrom emulsionstofoams.Infact,itisknownfromtheliteraturethatfoodstuffsareoftenmultiphasicsystems, likefoams,emulsions,anddispersions,inwhichthepresenceofinterfaciallayersisfrequentbut,also, criticalbecausetheinterfaciallayersarepointsofinstabilitythatrequire studyandattention.Interfacialrheologyallows,withdifferenttechniques,toinvestigatethemechanicalresistanceoftheinterfaciallayersin differentkinematicconditionswiththeaimofhavinginformationabout theabilitytocreateastablefoodsystem.Infact,forthesaleabilityofa foodproduct,stabilityisanimportantrequirementforfoodscharacterizedbyseveralphasesincontactwitheachother.Thefoodindustrytypicallyusesproteinsasstabilizingag entsforinterfaciallayersdueto theiruniquepropertiesofloweringtheinterfacialtensionandforming rheologicallystableandstructuredfilms.Moreover,thewidevarietyof dietaryproteinsallowsperformingw ellthestability-producteffect, choosingthemostsuitabletypeofproteinforthefoodinwhichitis used.

Thischapterwillfocusontheimportanceofinterfacialrheologyinthe studyoffoods,focusingonproteins,andessentialcomponentsoffoodformulationsfortheirformationandstabilization.Theinstrumentationand methodswithwhichmodelinterfacescanbestudiedareexplainedand examplesofstructuredinterfaceswithproteinfilmsareproposed.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.