Advancement in polymer-based membranes for water remediation sanjay k. nayak - The ebook in PDF form

Page 1


https://ebookmass.com/product/advancement-in-polymer-based-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Innovations in Graphene-Based Polymer Composites Sanjay Mavinkere Rangappa

https://ebookmass.com/product/innovations-in-graphene-based-polymercomposites-sanjay-mavinkere-rangappa/ ebookmass.com

Polymer Nanocomposite Membranes for Pervaporation 1st Edition Sabu Thomas

https://ebookmass.com/product/polymer-nanocomposite-membranes-forpervaporation-1st-edition-sabu-thomas/

ebookmass.com

New Polymer Nanocomposites for Environmental Remediation 1st Edition Chaudhery Mustansar Hussain (Editor)

https://ebookmass.com/product/new-polymer-nanocomposites-forenvironmental-remediation-1st-edition-chaudhery-mustansar-hussaineditor/ ebookmass.com

Nature-Based Allied Health Practice : Creative and Evidence-Based Strategies Amy Wagenfeld

https://ebookmass.com/product/nature-based-allied-health-practicecreative-and-evidence-based-strategies-amy-wagenfeld/ ebookmass.com

Intravascular Ultrasound: From Acquisition to Advanced Quantitative Analysis 1st Edition Simone Balocco (Editor)

https://ebookmass.com/product/intravascular-ultrasound-fromacquisition-to-advanced-quantitative-analysis-1st-edition-simonebalocco-editor/

ebookmass.com

Knowing Illusion: Bringing a Tibetan Debate into Contemporary Discourse: Volume II: Translations The Yakherds

https://ebookmass.com/product/knowing-illusion-bringing-a-tibetandebate-into-contemporary-discourse-volume-ii-translations-theyakherds/

ebookmass.com

Detective Book Club Mystery Omnibus August 1946. Detective Book Club

https://ebookmass.com/product/detective-book-club-mystery-omnibusaugust-1946-detective-book-club/

ebookmass.com

Devi: Goddesses of India John Stratton Hawley

https://ebookmass.com/product/devi-goddesses-of-india-john-strattonhawley/

ebookmass.com

Compassionate Leadership Paul Axtell

https://ebookmass.com/product/compassionate-leadership-paul-axtell/

ebookmass.com

https://ebookmass.com/product/python-for-finance-mastering-datadriven-finance-2nd-edition/

ebookmass.com

ADVANCEMENTINPOLYMER-BASED MEMBRANESFORWATERREMEDIATION

ADVANCEMENTIN POLYMER-BASED MEMBRANESFOR WATER REMEDIATION

ViceChancellor,RavenshawUniversity,Cuttack,Odisha,India

KINGSHUK DUTTA

Scientist,AdvancedPolymerDesignandDevelopmentResearchLaboratory(APDDRL), SchoolforAdvancedResearchinPetrochemicals(SARP),CentralInstituteofPetrochemicalsEngineering andTechnology(CIPET),Devanahalli,Bengaluru,India

JAYDEVSINH M.GOHIL

Scientist,AdvancedPolymerDesignandDevelopmentResearchLaboratory(APDDRL), SchoolforAdvancedResearchinPetrochemicals(SARP),CentralInstituteofPetrochemicalsEngineeringand Technology(CIPET),Devanahalli,Bengaluru,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-323-88514-0

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: AeraF.Gariguez

ProductionProjectManager: JoyChristelNeumarinHonestThangiah

CoverDesigner: MilesHitchen

TypesetbyMPSLimited,Chennai,India

Listofcontributorsxiii

Abouttheeditorsxvii

Forewordxxi

Prefacexxiii

Acknowledgmentsxxvii

I

Waterremediationusingpolymeric microfiltrationandultrafiltration membranetechnologies

1.Microfiltrationandultrafiltration membranetechnologies3

AnanyaBardhan,AanishaAkhtarandSenthilmuruganSubbiah

1.1Introduction3

1.1.1Basicsofmembraneprocess3

1.1.2Historicaloverviewofultrafiltration andmicrofiltrationmembranes5

1.2Membranescienceandtheory6

1.2.1Soluteandsolventtransportthrough microfiltration/ultrafiltration membranes6

1.2.2Concentrationpolarization9

1.2.3Membranematerialandgeometry11

1.2.4Modeofoperationinthemembrane process12

1.2.5Foulinginmicrofiltrationand ultrafiltrationmembranes14

1.3Membranecharacterizationmethods18

1.3.1Invasivemethods19

1.3.2Noninvasivemethods22

1.4Moduledesignandprocessconfiguration25

1.4.1Moduledesign25

1.4.2Processconfiguration27

1.4.3Commercialfabricationtechniques employedforpolymericflatsheetand hollow-fibermembranes30

1.5Applicationofpolymericultrafiltrationand microfiltrationmembranes33

1.5.1Potablewaterreuse33

1.5.2Recoveryofdyeandpigments36

1.5.3Treatmentofeffluentgeneratedbydairy processingindustries36

1.5.4Treatmentofoilywastewater37

1.5.5Recoveryofheavymetalfromindustry effluent37

1.6Summary39 References39

2.Polymer-basedmicrofiltration/ ultrafiltrationmembranes43

AnanyaBardhanandSenthilmuruganSubbiah

2.1Introduction43

2.2Polymersasrawmaterialtosynthesize microfiltration/ultrafiltration membranes44

2.2.1Classification44

2.2.2Membranefabricationmethod microfiltration/ultrafiltration44

2.2.3Commercialstatusofmembrane fabricationtechniques53

2.3Effectofpolymer-enhancedmicrofiltration/ ultrafiltrationmembranes59

2.3.1Structuralproperty59

2.3.2Functionalizationmethodsformembrane surface61

2.3.3Physiochemicalproperties66

2.4Recentadvancesmadeinpolymeric microfiltration/ultrafiltrationmembranesfor waterremediationapplication68

2.4.1Polymericnanocomposite membranes69

2.4.2Literaturereviewontherecentadvances madeinthefieldofpolymeric microfiltration/ultrafiltrationforwater remediationapplication71

2.5Microplasticsandpolymericmembranes73

2.6Prospective74 References75

3.Polymer-basednano-enhanced microfiltration/ultrafiltration membranes81

3.1Introduction81

3.2Nanocompositemembranes83

3.3Hollowfibernano-enhancedmembranes84

3.4Mainaspectsinmembraneperformances88

3.4.1Foulingmembranes88

3.4.2Permeabilityandselectivity89

3.4.3Physicalproperties89

3.5Carbonnanotubesandgrapheneoxide89

3.5.1Fouling92

3.5.2Permeabilityandselectivity93

3.5.3Physicalproperties94

3.6Metallicnanoparticles95

3.6.1Titaniumdioxide95

3.6.2Silver96

3.6.3Copper100

3.6.4Zincoxide101

3.6.5Fouling102

3.6.6Permeabilityandselectivity104

3.6.7Physicalproperties104

3.7Stabilityofnanocompositemembranes105

3.8Futureresearch106

3.9Challengesandfutureperspectives107

3.10Conclusions108

References108 Furtherreading118

Waterremediationusingpolymeric

nanofiltrationmembrane technologies

4.Nanofiltrationmembrane technologies121

4.1Introduction121

4.2Operationprincipleandtransport mechanism124

4.2.1Nanofiltrationporemodeldevelopment andprogress124

4.2.2Diffusionandfiltrationmechanism125

4.2.3RoleofmembranechargeonNF performance126

4.3Typesofpolymericmembranesandapplication domain127

4.3.1Polymerusedinmembrane synthesis128

4.3.2OthertypesofNFmembranes129

4.3.3ApplicationofNFmembrane132

4.4Polymericmembranestructureand configurations134

4.5NFmembranepreparationtechnologies136

4.5.1Interfacialpolymerization136

4.5.2Phaseinversion137

4.5.3Posttreatmentofporoussupport138

4.5.4Layer-by-layerassembly139

4.5.5HollowfiberNFmembrane140

4.6Commerciallyavailablemembranes141

4.7Limitationsandkeymitigationstrategies145

4.7.1NexusbetweenNFproperties:fouling andantifouling145

4.7.2Generationofmembraneretentate147

4.8Summaryandfuturedirections148 References149

5.Polymer-basednanofiltration membranes159

AbdulazizAlammarandGyorgySzekely

5.1Introduction159

5.2Polymer-basednanofiltrationmembranes161

5.2.1Naturalandbioinspirednanofiltration membranes164

5.2.2Mixed-matrixnanofiltration membranes165

5.2.3Block-copolymernanofiltration membrane166

5.2.4Intrinsicmicroporouspolymer-based nanofiltrationmembrane167

5.3Preparationofpolymer-basednanofiltration membranes168

5.3.1Phaseinversion168

5.3.2Interfacialpolymerization170

5.3.3Layer-by-layerassembly171

5.3.4Posttreatment172

5.4Thin-filmpolymercompositenanofiltration membranes174

5.5Effectofpolymericsupport175

5.6Potentialofpolymer-compositenanofiltration membranesforwaterdesalination178

5.7Polymersforsolvent-resistantnanofiltration membranes180

5.8Commercializationstatusandcommercial viability181

5.9Summaryandfuturedirection185 References187

6.Polymer-basednanoenhanced nanofiltrationmembranes197

ShaghayeghGoudarzi,NahidAzizi,RezaEslamiandHadisZarrin

6.1Introduction197

6.1.1Introductiontonanoenhanced nanofiltrationmembranes197

6.2Mixedmatrixpolymer-basednanoenhanced nanofiltrationmembranes203

6.2.1Introduction203

6.2.2Asymmetricmixedmatrixnanofiltration membranespreparedbyphase inversion204

6.2.3Thin-filmpolymernanocomposite nanofiltrationmembranes208

6.3Electrospunnanofibrouspolymersfor nanofiltrationapplications217

6.3.1Introductiontoelectrospinning217

6.3.2Electrospunnanofiberapplicationin nanofiltration219

6.4Nanoenhancedhollow-fibernanofiltration membranes224

6.5Commercializationstatusandcommercial viability225

6.6Summaryandfuturedirections226

Abbreviations227 References227

7.Polymer-basedbioinspired,biomimetic, andstimuli-responsivenanofiltration membranes237

NahidAzizi,ShaghayeghGoudarzi,RezaEslamiandHadisZarrin

7.1Introduction237

7.2Bioinspiredmembranesandtheir applications238

7.2.1Dopamine-basednanofiltration membrane238

7.2.2Tannicacid-basednanofiltration membranes246

7.2.3Otherbioinspirednanofiltration membranesandtheirapplication249

7.3Biomimeticmembranes251

7.3.1Aquaporin-basedbiomimetic membranes251

7.3.2Applicationofaquaporin-based biomimeticnanofiltration membranes254

7.3.3Aquaporin-basedbiomimetic nanofiltrationmembraneswithhollow fiberconfiguration256

7.4Stimuli-responsive/smartmembranes257

7.4.1pH-responsivemembranes257

7.4.2Magneticallyresponsive membranes258

7.4.3Temperature-responsivemembrane260

7.4.4Photo-responsivemembranes261

7.4.5CO2-responsivenanofiltration membranes263

7.4.6Stimuli-responsivemembraneswith hollowfiberconfiguration263

7.5Commercialstatusandfuturedirections264

7.6Summary266 Nomenclature266 References267

Waterremediationusingpolymeric reverseandforwardosmosis membranetechnologies

8.Reverseandforwardosmosismembrane technologies275

SoleymanSahebi,MohammadSheikhi,MohammadKahriz, NasimFadaie,ZahraShabani,SanazGhiasi,NorollahKasiri andTorajMohammadi

8.1Introduction275

8.2Classificationofosmoticprocessesandbasic concept276

8.2.1Transportmembranemechanism277

8.3Reverseosmosisandforwardosmosis membranes280

8.4Concentrationpolarizationinanosmoticdrivenmembrane281

8.4.1Externalconcentration polarization281

8.4.2Internalconcentrationpolarization282

8.5Reverseosmosisandforwardosmosismembrane fabricationmethods283

8.6Advancesinforwardosmosisandreverse osmosismembranes’structuresand properties284

8.6.1Reverseosmosismembrane development284

8.6.2Forwardosmosismembrane development285

8.7Customdesignsofflatsheetforwardosmosis andreverseosmosismembranes292

8.7.1Selectiverejectionlayer296

8.7.2Supportpolymericlayer297

8.7.3Supportbackingfabric298

8.8Concludingremarksand recommendations301 References301

9.Polymer-basedreverseosmosis membranes311

9.1Introduction311

9.2Asymmetricpolymer-basedreverseosmosis membranes312

9.3Thin-filmcompositemembrane316

9.3.1Reverseosmosismembranesforboron removal321

9.3.2Reverseosmosismembranesfor antifouling/chlorinetolerant321

9.3.3Hollowfiberreverseosmosis membranes322

9.4Potentialofdifferentpolymer-basedreverse osmosismembranesforbrackishwater desalination323

9.5Polymer-basedreverseosmosismembranesfor seawaterdesalination324

9.5.1Polyelectrolytemembranes325

9.5.2Aquaporinbiomimeticmembranes326

9.5.3Supramolecularpolymersandwatersolublepolymers327

9.6Commercializationstatusandcommercial viability328

9.7Summaryandfuturedirection329 References331

10.Polymer-basednano-enhancedreverse osmosismembranes335

HirenD.RavalandMrinmoyMondal

10.1Introduction335

10.2Preparationstrategiesofpolymer-based nano-enhancedreverseosmosis membranes337

10.2.1Conventionalnanocompositeor mixedmatrixmembrane338

10.2.2Thin-filmcompositewith nanocompositesubstrate338

10.2.3Thin-filmnanocomposite338

10.2.4Nanocompositelocatedatmembrane surface339

10.3Polymernanocompositereverseosmosis membranes341

10.3.1Carbonbased342

10.3.2Metalandmetaloxidesbased350

10.3.3Othernanoparticles360

10.4Potentialofdifferentpolymer-based nanocompositereverseosmosismembranesfor waterdesalination363

10.5Potentialotherapplicationsofpolymer nanocompositereverseosmosismembranesin watertreatment368

10.6Commercializationstatusandviability369

10.7Wayforward369

10.8Conclusion370 Acknowledgment370 References370

11.Reuseandrecyclingofend-of-life reverseosmosismembranes381

J.Contreras-Martınez,J.A.Sanmartino,M.Khayet andM.C.Garcı´a-Payo

11.1Introduction381

11.2Reverseosmosismembranetechnology382

11.3Reverseosmosismembranesand modules384

11.4Foulinginreverseosmosisseparationprocess: problem,prevention,andcleaning protocols386

11.4.1Inorganicfouling387

11.4.2Colloidalfouling388

11.4.3Organicfouling389

11.4.4Biofouling390

11.4.5Foulingpreventionand mitigation391

11.5End-of-lifereverseosmosismembrane modules:reuseandrecyclingtechniques394

11.5.1Cleaningstrategiesadoptedforreverse osmosisfouledmembranesand discardedmodules395

11.5.2Reuseofdiscardedreverseosmosis membranemodules399

11.5.3Recyclingdiscardedreverseosmosis membranemodules399

11.6Applicationsofreverseosmosisrecycled membranesinothermembraneprocesses403

11.6.1Reverseosmosisrecycledmembranes inultrafiltrationandmicrofiltration process406

11.6.2Reverseosmosisrecycledmembranes inmembranedistillation,membrane biofilmsreactors,andelectrodialysis separationprocesses407

11.7Conclusions408 Acknowledgments409 References409

12.Polymer-basedforwardosmosis membranes419

SoheilaShokrollahzadehandYasaminBide

12.1Introduction419

12.1.1Importantnotesinforwardosmosis membranetransport419

12.1.2Concentrationpolarization420

12.2Polymer-basedflatsheetforwardosmosis membranes422

12.2.1Single-layermembranes422

12.2.2Dual-layermembranes429

12.2.3Layer-by-layermembranes438

12.2.4Double-skinnedmembranes446

12.2.5Impregnatedmembranes446

12.2.6Biomimeticmembranes448

12.3Polymer-basedhollowfiberforwardosmosis membranes449

12.3.1Single-layermembranes449

12.3.2Dual-layermembranes453

12.3.3Layer-by-layermembranes454

12.3.4Double-skinnedmembranes454

12.3.5Biomimeticmembranes456

12.4Commercializationstatusandcommercial viability458

12.5Summaryandfuturedirections460 Abbreviations461 Nomenclature462 References463

13.Polymer-basednano-enhancedforward osmosismembranes471

SalamBakly,IbrarIbrar,HaleemaSaleem,SudeshYadav, RaedAl-Juboori,OsamahNaji,AliAltaeeandSyedJavaidZaidi

13.1Introduction471

13.2Polymer-basedmixedmatrixforwardosmosis membranes472

13.2.1Overview472

13.2.2Commonmembranepreparationand modificationapproaches473

13.2.3Nanomaterialsclassification474

13.3Polymer-basednanocompositeflatsheet forwardosmosismembranes475

13.3.1Methodsfornanocomposite forwardosmosismembrane preparation479

13.3.2Nanomaterials-incorporatedsupport/ substratelayer479

13.3.3Nanomaterials-incorporatedselective/ activelayer483

13.3.4Nanomaterials-incorporatedsupport/ substrateandselective/active layers486

13.4Polymer-basednanocompositehollowfiber forwardosmosismembranes486

13.4.1Activelayermodifications487

13.5Nanofibrous-basedforwardosmosis membranes490

13.6Nanomaterialsusedinsurfacemodificationof forwardosmosismembranes491

13.7Polymer-basedstimuli-responsiveforward osmosismembranes491

13.8Commercializationstatusoftheforward osmosismembranes495

13.9Summaryandfuturedirections496 References498

Waterremediationusingpolymeric membranesinelectrodialysis, electrodialysisreversal,capacitive deionizationandmembrane distillationtechnologies

14.Electrodialysis,electrodialysisreversal andcapacitivedeionization technologies505

TatianeBenvenuti,AlexandreGiacobbo, CarolinadeMoraesdaTrindade,KayoSantanaBarros andTatianaScarazzato

14.1Introduction505

14.2Structureofion-exchangemembranes507

14.2.1Anion-exchangemembranes511

14.2.2Cation-exchangemembranes511

14.2.3Bipolarmembranes512

14.3Electrodialysis,electrodialysisreversal,and selectiveelectrodialysis513

14.3.1Generaldescriptionofelectrodialysis cells:configurationandoperating principles513

14.3.2Transportequationsanddriving forces515

14.3.3Achievementsintheuseof electrodialysis,electrodialysisreversal, andselectiveelectrodialysisaswater remediationmethods517

14.4Capacitivedeionization-based technologies519

14.4.1Generaldescriptionofcapacitive deionizationcells:configuration, operatingprinciples,andflow patterns520

14.4.2Evaluationoftheefficiencyand performanceofthecapacitive deionization-basedtechnologies522

14.4.3Achievementsinuseofcapacitive deionization-basedtechnologiesas waterremediationmethods523

14.5Limitationsandkeymitigationstrategies526

14.5.1Processcost526

14.5.2Membraneclogging528

14.5.3Membraneselectivity530

14.6Summaryandfuturedirections531 Acknowledgments532 References532

15.Polymericmembranesin

electrodialysis,electrodialysisreversal,and capacitivedeionizationtechnologies541 K.Khoiruddin,AnitaK.Wardani,PutuT.P.Aryanti andI.G.Wenten

15.1Introduction541

15.2Ion-exchangemembranesandtheirfabrication processes543

15.2.1Ion-exchangemembranes’ classification543

15.2.2Preparationofion-exchange membranes543

15.2.3Recentdevelopmentsinpolymeric ion-exchangemembranes546

15.3Applicationandperformanceofion-exchange membranesinelectrodialysis546

15.3.1Desalinationwithelectrodialysis546

15.3.2Wastewatertreatment549

15.3.3Preferentialionseparation550

15.3.4Otherionicseparations550

15.4Applicationandperformanceofion-exchange membranesinelectrodialysisreversal551

15.4.1Principleofelectrodialysis reversal551

15.4.2Desalinationofhigh-concentration solution552

15.4.3Otherionseparationprocesses555

15.5Applicationandperformanceofion-exchange membranesinmembranecapacitive deionization556

15.5.1Roleofion-exchangemembranein membranecapacitive deionization556

15.5.2Desalinationprocesses558

15.5.3Membranecapacitivedeionization applicationsinotherdeionization processes558

15.6Concludingremarks559 References559

16.Polymericnano-enhancedmembranes inelectrodialysis,electrodialysisreversal andcapacitivedeionization technologies569

ElhamJashniandSayedMohsenHosseini

16.1Introduction569

16.2Preparationofpolymer-basednano-enhanced ion-exchangemembranes580

16.2.1Blending583

16.2.2Insitutechnique584

16.3Analysisofdifferention-exchangemembranes forwatertreatment586

16.4Commercializationstatusandcommercial viability587

16.5Summaryandfuturedirections590 References591

17.Polymer-basedmembranesfor membranedistillation597

Abbreviations597

Nomenclature598

17.1Introduction598

17.1.1Dearthofwater598

17.1.2Historyofmembrane distillation599

17.1.3Recenttrendsinpolymer-based membranesinmembrane distillation600

17.2Principleanddifferentconfigurationsof membranedistillation600

17.2.1Membranedistillation principle600

17.2.2Directcontactmembrane distillation601

17.2.3Airgapmembranedistillation601

17.2.4Sweepgasmembrane distillation602

17.2.5Vacuummembranedistillation603

17.3Fabricationtechniquesandmoduledesignsof MDmembrane603

17.3.1Phaseinversion604

17.3.2Stretching605

17.3.3Sintering605

17.3.4Electrospinning605

17.3.5MDmembranemodulesand designs608

17.4MembranematerialsforMD610

17.5CharacteristicsofMDmembrane611

17.5.1Liquidentrypressure611

17.5.2Membranethickness612

17.5.3Poresizeandporesize distribution612

17.5.4Porosityandtortuosityof membrane613

17.5.5Mechanicalproperties614

17.5.6Thermalconductivity614

17.6Operationalparametersinmembrane distillation615

17.6.1Feedtemperature615

17.6.2Flowrate615

17.6.3Feedconcentration616

17.6.4Airgapandlongoperation616

17.6.5Membranetype617

17.7Foulingandwettingphenomena617

17.8Preventionmethodsoffoulingand wetting619

17.9Temperatureandconcentration polarization623

17.10Applicationsofmembranedistillation624

17.11Economicsandenergyconsumptionof membranedistillation624

17.12Conclusionandfuturedirectionsin membranedistillation626

Acknowledgments627 References627

Preface

Intheever-increasingquestforenvironmentallyfriendlyandlowenergyseparation processes,membrane-basedtechnologiesare rapidlyovertakingtheconventionalthermalandchemical-basedtechnologies.Sincethe inceptionofLoeb-Sourirajanandcomposite polymermembranes,membrane-basedseparationtechnologyhasbeenabletoestablisha solidfoundation.Accordingly,thisbook focusesontheadvancedmembranescience andengineeringbehindtheseparationprocesses,withinthedomainofpolymer-based membranesystems.

Chapter1istheintroductorychapterof Section1,anditcontainsfundamental aspectsofpolymericmicrofiltration(MF)/ ultrafiltration(UF)flatsheetandhollow fibermembranes,transportphenomenafor solute/solventmolecules,anddifferent typesofMF/UFmembranesusedfordifferentapplications.

Chapter2elaboratesontheuseofdifferent polymersasrawmaterialsformembrane (flatsheetandhollowfiber)fabrications, including3Dprintingtechnique,alongwith morphologicalcharacteristics.Thischapter coversthemostrecentadvancementsmade regardingthepreparation,modification,and performanceofpolymericMFandUFmembranesforwaterremediation(including industrialapplications).

Chapter3particularlyfocusesonthe mixedmatrixandnano-poweredUFand MFmembranes.Detaileddiscussionson membranefouling,permselectivity,and physicalpropertiesofnano-enhancedhollowfiberandflatsheetmembraneshave beenincluded.

Chapter4istheintroductorychapterof Section2,anditcontainsfundamentaldiscussiononthenanofiltrationprocess,with emphasesontheoperatingprincipleand transportmechanism,differenttypesof polymer-basednanofiltration(NF)membranes,structureandconfiguration,and applicationdomain.Inaddition,membrane preparationtechniquesforcommercialNF membraneshavebeendiscussed,along withtheirproperties.Limitationsandkey mitigationstrategieshavealsobeen highlighted.

Chapter5dealswiththeintrinsicpropertiesandseparationmechanismsofultrathinNFmembranesforwatertreatment, desalination,andorganicsolventnanofiltration.Potentialsofadvancedpolymers, suchasnaturalpolymers,bioinspiredpolymers,blockcopolymers,andintrinsic microporouspolymers,havebeendiscussed,withfocusonscalabilityprospects andapplicationviabilityinNFprocesses.

Chapter6coverstheadvancesmadein variousnano-enhancedNFmembranes(flat sheetandhollowfiber),preparedbyincorporationofnanoscalematerials(likegraphene oxideandcarbonnanotubes).Applicationsof mixedmatrix,thin-filmnanocomposites, thin-filmpolymernanocomposites,metal organicframework integratedthin-film nanocomposites,electrospunnanofibrous polymericmembranes,etc.inwaterremediationhavebeenincluded.

Chapter7isfocusedonthepreparation andapplicationpotentialofvariousNF membranes,basedondopamine,tannic acid,andproteinchannels(including

aquaporinandlipids).Italsoincludes modificationsofporesandsurfacesof membranes,aswellasincorporationof artificialchannelswithinblockcopolymers tofabricatebiomimetic-basednanofiltration membranes.Inaddition,applicationefficiencyofvarioussmartmembranesthatare pH,temperature,CO2,lightand/ormagneticresponsive,preparedusingvarious functionalandblockcopolymers,hasbeen discussed.

Chapter8istheintroductorychapterof Section3,anditisspeciallyfocusedonthe fundamentalaspectsofpolymericreverse osmosis(RO)andforwardosmosis(FO) membranes,transportphenomena,transportmodelsandequations,anddifferent typesofROandFOmembranesusedfor differentapplications.Alsoincludedare detaileddiscussionsontheconcentration polarizationinosmotic-drivenmembrane processes.

Chapter9reviewsthecommercially availableROmembranes,alongwiththe recentdevelopmentsinadvancedpolymericROmembranes.Inaddition,discussiononperformance-enhancedchlorineresistantROmembranes,basedonthe modificationofexistingmembranesaswell assynthesizednewpolymericmembranes, hasbeenincluded.

Chapter10presentsacomprehensive analysisofnano-enhancedROmembranes. Carbonmaterials,metalsandmetaloxides, andothernano-sizedmaterialsusedforthe preparationofnano-enhancedROmembranehavebeendiscussed.Theeffectof nanomaterialsonthepropertiesofthe resultingmembranes,suchaspermeate flux,selectivity,chlorineresistance,and antifoulingcharacteristics,hasbeenanalyzed,alongwiththecommentsondesalinationapplication,commercialviability, andfuturescopeofnano-enhancedRO membranes.

Chapter11providesanoverviewonthe differentproceduresadoptedandtechniquesdevelopedtoavoidthedisposalof discardedROmembranemodulesinlandfills,andtorecycleorreusetheminother applications.

Chapter12providesanin-depthanalysis offlatsheetandhollowfiberFOmembranes, basedonpolymers.TheuseofvariouspolymersforfabricationofdifferenttypesofFO membraneshasbeenreviewed.Inaddition, effectsofsupportlayer,multilayercoating, typesofpolymers,solvents,monomers,additives,surfacemodifications,andsoonhave beenincluded,alongwithwaterfluxand reversesaltfluxforflatsheetandhollow fiberFOmembranes.Applicationpotentials ofvariouscommercialFOmembraneshave alsobeenincluded.

Chapter13comprehensivelycoversfabricationprocessesofflatsheetandhollow fibermembranesthataremodifiedby incorporationofnanoparticlesanddiscussesonstimuli-responsivemembranes, suchaspH-responsive,electricfieldresponsive,andsalt-responsivemembranes,forwaterpurification.Themain challengesassociatedwiththecommercializationarealsodiscussedtoidentifythe futureresearchdirections.

Chapter14istheintroductorychapterof Section4,anditespeciallydealswithmembranetechnologiesbasedoniontransport, usingion-exchangemembranes,under appliedelectricalpotentialgradients. Operationalprinciples,transportequations, configurations,applications,andlimitations ofelectromembraneprocesses(suchaselectrodialysis,electrodialysisreversal,selectiveelectrodialysis,andcapacitive deionization)havebeendiscussed.

Chapter15reviewstheclassifications, preparations,andcharacterizationsofionexchangemembranes.Applicationsofelectrodialysis,electrodialysisreversal,and

capacitivedeionizationtechnologiesfor desalination,ionremovalandrecovery, deacidificationanddemineralization,and preferentialionseparationusing laboratory-madeandcommercialpolymeric ion-exchangemembraneshavebeendiscussed,alongwithcommentsonseparation efficiency,energyconsumption,andoperationalcost.

Chapter16focusesontheuseofnanoscalematerialsforthefabricationofpolymericnano-enhancedion-exchange membranestogetimprovedelectrochemicalpropertiesandstabilityinindustrial applications.Itparticularlyincludesan overviewontheuseofpolymericnanoenhancedion-exchangemembranesinelectrodialysis,electrodialysisreversal,and capacitivedeionizationprocessesrelatedto watertreatmentanddesalination,suggestingpossibledirectionstoovercomethe existingchallengesinfuture.

Chapter17isdevotedtotherudimentary concepts,literaturereviewsonmembrane distillation(MD)development,variousMD configurations,methodstofabricateMD polymericmembranes,MDmodules,operationalparameters,andchallengesformitigatingthewettingandfoulingeffects.

Enrichedwithcriticallyanalyzedand expertlyopinedcontributionsfromseveral

well-knownresearchersaroundtheworld, thisbookislikelytoserveasoneofthe mostcomprehensiveandauthoritativeliteraturethathaseverbeenpublishedinthis fieldandwillundoubtedlyserveasa potentsourceofinformationforthose interestedinthisfield.Therefore,asthe editors,webelievethatthisbookwillenjoy readershipsfromallconcernedsectorsof oursociety,thatis,academia,industries, policymakers,andgeneralpublic.Wewish youallanenrichingreadingexperience!

SanjayK.Nayak1,KingshukDutta2 and JaydevsinhM.Gohil3

1DirectorGeneralandChiefExecutiveOfficer, SchoolforAdvancedResearchinPolymersLARPM,CentralInstituteofPlastic EngineeringandTechnology,Bhubaneswar, Odisha,India 2Scientist,AdvancedPolymer DesignandDevelopmentResearchLaboratory (APDDRL),SchoolforAdvancedResearchin Polymers(SARP),CentralInstituteofPlastics EngineeringandTechnology(CIPET), Devanahalli,Bengaluru,India 3Scientist, CIPET:SARP–APDDRL,Hi-TechDefence andAerospacePark,Devanahalli,Bengaluru, Karnataka,India

Foreword

Itisdifficulttoestimatethenumberof researchpapersstartingwithsentenceslike “Waterislife;itisessentialforallhuman activities”or“Theavailabilityofpure waterdefinesthepotentialfordevelopment.”Itseemsthatweallagreeonthis point.Tobringitintopracticeisadifferent story.Theneedforwaterpurification remainscriticalinallpartsoftheworld. Thescopemaybedifferentfromthecrave fordrinkingwaterinrefugeecamps,in slumareas,andincrowdedvillagestothe needofwaterforincreasedproductionin industrialzones.However,itisashared searchforwater,morewater,andmore purewater.Eyesareuponthetechnologies thatwillmakethispossible.

Isthethirstoftheworldevergoingto bequenched?Itishardlylikelythatthis willbethecase.Thereisthecommendable initiativeofaimingatprovidingwaterfor everypersononthisplanet,aspartofthe sustainabledevelopmentgoals.Cleanwater isconsideredtobeahumanright. However,“humanrights”donotexist, sincetheyareahumaninvention.Theyare notenforceable.Categorizingtheneedof waterasarightmaydeviatethediscussion tothequestionofwhoislegallyobligedto providethiswater.Thismaybeavulnerablestartingpositioninprovidingwater, whileitalsoconfirmsinequality.Theright forwaterhidesanenormousmisdistributionofwatersources:whywouldan AustralianoraCanadianhaveaccessto muchmorewaterthanacitizenofNigeror Sudan,simplybecausesheorheisborn there?Instead,itmaybewisernottogive

waterrightstoanyone,buttosharewhat theEarthisofferingus.The“waterright” thenbecomesaconcernforallofus,andis notadonationfromtherichtothepoor anymore.Itconvertsintoaneedfortechnologiesthatcanoptimizewhatwehave. Indeed,whensharedequally,theaverage standardsofapersonwoulddecreasewith growingworldpopulation,makingclear thattechnologicalsolutionsareineveryone’sinterest.Thisiswhatthisbookis about:waterremediation,inviewofsharingtheresourceswehave,withthehelpof themostuniversaltechnologiesthatcando this:membranes.Achoicewasmadefor polymericmembranes,sincethesewould offerthebroadestpotentialforsolutions, takingtechnicalaspectsintoaccount,but alsoeconomic,environmental,andsocietal factors.

Thebookisdividedintofourparts.In thefirstpart,low-pressuretechnologies (microfiltrationandultrafiltration)are addressedinthreechapters.Thekeyquestionis:whatcanthesetechnologiesofferus toresolvethechallengesmentionedabove? Theauthorsofthesechaptersarenotsitting backtorelaxandlookatwhatwasdonein thepast;theyhaveaddressedhowmembranescanbefabricatedinvariousways, withvariouspolymers,forvariousapplications.Thisstretchesfromfundamental principlestofancynovelsolutionswith mixed-matrixmembranesandnanoenhancedmembranes.

Inthesecondpart,theattentionisfor watersourcesrequiringtheremovalof smallersubstances,whichistypically

necessaryforlow-gradewatersourcessuch aswastewaterforrecyclingorother impairedwatersources.Differenttypes, structures,andconfigurationsarediscussed,alongwiththeuseofnewpolymers:naturalpolymers,bioinspired polymers,blockcopolymers,andintrinsic microporouspolymers.Thisgoesasfaras membranemodificationsandhybridstructureswithdopamine,tannicacid,andproteinchannels,andfunctionalmembranes withresponsetovariousexternalfactors.

Thethirdpartiscrucialforthe“waterfor-all”idea.Aviabletechnologyfordesalinationwouldsolvemostofthethreatthat notenoughwaterisavailableforeveryone, particularlyforthenextgenerationsto come.Reverseosmosis(RO)isthetechnologythatgiveshopetoachievethis,with provenperformanceforlarge-scaleapplicationsbutwithmuchroomleftforimprovementinviewofdevelopingacost-effective, high-performancetechnologythatcanbe appliedallovertheworld.Thesixchapters inthisparttakecommercialmembranesas astartingpoint,andexpandthistonanoenhancedmembranes,andotheradvanced materialssuchasdopamine-basedpolymers, rigidstaramphiphilicpolymers,zeolitechannel,andCNT-inducedchannel-based

bioinspiredmembranes;biomimeticmembranes;andstimuliresponsiveROmembrane.Asimilarapproachcanbeusedfor integratedprocesseswhereforwardosmosis (FO)mayplayarole.

Thelastpartofthebookaddressesnonpressure-drivenmembranetechnologies suchaselectrodialysis,capacitivedeionization,andmembranedistillationinview oftheiruseinwaterremediation.These processesarecomplementarytopressuredrivenmembraneprocesses,andoneconclusionisthatacompleteportfolioofmembraneprocessesisneededforauniversal approachtowardsatisfyingtheworld’s thirst.Ifanythingistobedeclaredahuman right,itmayhavetobethetechnologyto purifywater,notthewateritself.Thisbook willgiveyoutheinspirationonhowthis canbedone—notbecauseweareobliged butbecauseconsumingwaterwithrespect forourneighborandgivingherorhimthe sametoolsforwatertreatmentaswehave, definesusashuman.

BartVanderBruggen Professor,ProcessEngineering forSustainableSystems,Departmentof ChemicalEngineering,KULeuven, Leuven,Belgium

Listofcontributors

AanishaAkhtar DepartmentofChemical Engineering,IndianInstituteofTechnology, Guwahati,India

AbdulazizAlammar DepartmentofChemical EngineeringandAnalyticalScience,The UniversityofManchester,Manchester, UnitedKingdom

RaedAl-Juboori WaterandEnvironmental EngineeringResearchGroup,Departmentof BuiltEnvironment,AaltoUniversity,Aalto, Espoo,Finland

AliAltaee CentreforGreenTechnology, SchoolofCivilandEnvironmental Engineering,UniversityofTechnology Sydney,Broadway,NSW,Australia

PutuT.P.Aryanti DepartmentofChemical Engineering,UniversitasJenderalAchmad Yani,Cimahi,Indonesia

NahidAzizi NanoengineeringLaboratoryfor EnergyandEnvironmentalTechnologies, DepartmentofChemicalEngineering, RyersonUniversity,Toronto,ON,Canada

SalamBakly CentreforGreenTechnology, SchoolofCivilandEnvironmental Engineering,UniversityofTechnology Sydney,Broadway,NSW,Australia

AnanyaBardhan DepartmentofChemical Engineering,IndianInstituteofTechnology, Guwahati,India

TatianeBenvenuti Science,Innovation,and ModelinginMaterialsPost-Graduation Programm–PROCIMM,Departmentof ExactandTechnologicSciences,State UniversityofSantaCruz–UESC,Ilhe ´ us, Brazil

YasaminBide DepartmentofChemical Technologies,IranianResearchOrganization forScienceandTechnology(IROST),Tehran, Iran

TinaChakrabarty TheEnvironmental ResearchGroup,R&D,TataSteel, Jamshedpur,India

J.Contreras-Martı ´ nez DepartmentofStructure ofMatter,ThermalPhysicsandElectronics, FacultyofPhysics,ComplutenseUniversity ofMadrid,Madrid,Spain

CarolinadeMoraesdaTrindade Federal InstituteofPara ´ -IFPA-CampusO ´ bidos, O ´ bidos,Brazil

RezaEslami NanoengineeringLaboratoryfor EnergyandEnvironmentalTechnologies, DepartmentofChemicalEngineering, RyersonUniversity,Toronto,ON,Canada

NasimFadaie CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

M.C.Garcı´a-Payo DepartmentofStructureof Matter,ThermalPhysicsandElectronics, FacultyofPhysics,ComplutenseUniversity ofMadrid,Madrid,Spain

SanazGhiasi CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

AsimK.Ghosh DesalinationandMembrane TechnologyDivision,BhabhaAtomic ResearchCentre,Mumbai,India

AlexandreGiacobbo DepartmentofMaterials Engineering,FederalUniversityofRio GrandedoSul-UFRGS,PortoAlegre,Brazil

ArnabKantiGiri DepartmentofChemistry, KarimCityCollege,Jamshedpur,India

AmaliaGordano ResearchInstituteon MembraneTechnology,Rende,Italy

ShaghayeghGoudarzi Nanoengineering LaboratoryforEnergyandEnvironmental Technologies,DepartmentofChemical Engineering,RyersonUniversity,Toronto, ON,Canada

SayedMohsenHosseini Departmentof ChemicalEngineering,Facultyof Engineering,ArakUniversity,Arak,Iran

IbrarIbrar CentreforGreenTechnology, SchoolofCivilandEnvironmental Engineering,UniversityofTechnology Sydney,Broadway,NSW,Australia

ElhamJashni DepartmentofChemical Engineering,FacultyofEngineering,Arak University,Arak,Iran

MohammadKahriz CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

NorollahKasiri CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

M.Khayet DepartmentofStructureofMatter, ThermalPhysicsandElectronics,Facultyof Physics,ComplutenseUniversityofMadrid, Madrid,Spain;MadridInstituteofAdvances StudiesofWater(IMDEAWaterInstitute), Madrid,Spain

K.Khoiruddin DepartmentofChemical Engineering,InstitutTeknologiBandung, Bandung,Indonesia;ResearchCenterfor NanosciencesandNanotechnology,Institut TeknologiBandung,Bandung,Indonesia

TorajMohammadi CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

MrinmoyMondal MembraneScienceand SeparationTechnologyDivision,CSIRCentralSaltandMarineChemicalsResearch Institute,Bhavnagar,India

OsamahNaji CentreforGreenTechnology, SchoolofCivilandEnvironmental Engineering,UniversityofTechnology Sydney,Broadway,NSW,Australia

KanupriyaNayak DepartmentofMaterials ScienceandEngineering,IndianInstituteof TechnologyDelhi,NewDelhi,India

JasneetKaurPala WaterEnergyNexus Laboratory,DepartmentofChemical Engineering,BITSPilani-Goa,Zuarinagar,India

HirenD.Raval MembraneScienceand SeparationTechnologyDivision,CSIRCentralSaltandMarineChemicalsResearch Institute,Bhavnagar,India

AnirbanRoy WaterEnergyNexusLaboratory, DepartmentofChemicalEngineering,BITS Pilani-Goa,Zuarinagar,India

SoleymanSahebi ManaEnergyandSorin RefiningCompanyPty.Ltd.,Tehran,Iran; CentreofExcellenceforMembraneScienceand Technology,SchoolofChemical,Petroleumand GasEngineering,IranUniversityofScienceand Technology(IUST),Tehran,Iran

HaleemaSaleem CenterforAdvancedMaterials (CAM),QatarUniversity,Doha,Qatar

J.A.Sanmartino DepartmentofStructureof Matter,ThermalPhysicsandElectronics, FacultyofPhysics,ComplutenseUniversity ofMadrid,Madrid,Spain

KayoSantanaBarros DepartmentofMaterials Engineering,FederalUniversityofRio GrandedoSul-UFRGS,PortoAlegre,Brazil

ArunSaravanan DepartmentofMaterials ScienceandEngineering,IndianInstituteof TechnologyDelhi,NewDelhi,India

SupriyaSarkar TheEnvironmentalResearch Group,R&D,TataSteel,Jamshedpur,India

TatianaScarazzato DepartmentofMaterials Engineering,FederalUniversityofRio GrandedoSul-UFRGS,PortoAlegre,Brazil

ZahraShabani CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

MohammadSheikhi CentreofExcellencefor MembraneScienceandTechnology,Schoolof Chemical,PetroleumandGasEngineering, IranUniversityofScienceandTechnology (IUST),Tehran,Iran

SoheilaShokrollahzadeh Departmentof ChemicalTechnologies,IranianResearch OrganizationforScienceandTechnology (IROST),Tehran,Iran

SenthilmuruganSubbiah Departmentof ChemicalEngineering,IndianInstituteof Technology,Guwahati,India

GyorgySzekely AdvancedMembranesand PorousMaterialsCenter,KingAbdullah UniversityofScienceandTechnology, Thuwal,SaudiArabia

BijayP.Tripathi DepartmentofMaterials ScienceandEngineering,IndianInstituteof TechnologyDelhi,NewDelhi,India

AnitaK.Wardani DepartmentofChemical Engineering,InstitutTeknologiBandung, Bandung,Indonesia

I.G.Wenten DepartmentofChemical Engineering,InstitutTeknologiBandung, Bandung,Indonesia;ResearchCenterfor NanosciencesandNanotechnology,Institut TeknologiBandung,Bandung,Indonesia

SudeshYadav CentreforGreenTechnology, SchoolofCivilandEnvironmental Engineering,UniversityofTechnology Sydney,Broadway,NSW,Australia

SyedJavaidZaidi CenterforAdvanced Materials(CAM),QatarUniversity,Doha, Qatar

HadisZarrin NanoengineeringLaboratoryfor EnergyandEnvironmentalTechnologies, DepartmentofChemicalEngineering, RyersonUniversity,Toronto,ON,Canada

Abouttheeditors

Prof.(Dr.)SanjayK. Nayak iscurrentlythe ViceChancellorof RavenshawUniversity, Odisha,India.Hewas theFormerDirector GeneralofCentral InstituteofPetro-chemicalsEngineering& Technology(CIPET),a HigherTechnical EducationInstituteunderDepartmentof Chemicals&Petrochemicals,Ministryof Chemicals&Fertilizers,Govt.ofIndia. Prof.Nayakhasmorethan33yearsof experienceinTeaching,Research,and TechnicalConsultancy.Asapassionate educationist,Prof.NayakholdsdualPhD degreebothinScienceandEngineering, andalsoconferredwithDScdegreeon “AdvancedThermoplasticComposites& Nanocomposites.”Hehasmentoredmore than50scholarsforPhDprogramand75 studentsfortheirMTech/MEtheses.He hasaround500publicationsinpeerreviewedinternationaljournals,morethan 300internationalconferencepapersand severalpatentsanddesignstohiscredit.In addition,hehasbeentheauthor/editorof 30books/bookchapterswithleadinginternationalpublishers.Moreover,hehasbeen activelycontributingtowardindigenous technologydevelopmentthroughfunded researchprojectsandconsultancyservices totheindustries.Heisalsotherecipientof manyawards,like“DistinguishedScientist Award”inappreciationtohiscontribution toPolymerScience&TechnologybyAsian

PolymerAssociation(APA), “CommendableFacultyAward”for ResearchinMaterialScience&High CitationIndex(asperScopus),National AwardsforTechnologyInnovationsin PetrochemicalsandDownstreamPlastics ProcessingIndustryandLifetime AchievementAwardbyFICCI/IndiaChem in2018,DepartmentofChemicals& Petrochemicals,Govt.ofIndia,for DistinguishedContributiontoIndian PlasticsIndustry.Hehasbeenawarded “HonorisCausa(HonoraryDoctorate)” fromUtkalUniversityandBijuPatnaik UniversityofTechnology(BPUT),Odisha, India,in2017and2020,respectively.He hasalsobeenfeaturedasoneofthetop2% oftheglobalscientistsinthefieldofpolymersinastudybyPrestigiousStanford University,UnitedStates.

Dr.KingshukDutta, FICS,iscurrently employedasascientist intheAdvanced PolymerDesignand DevelopmentResearch Laboratoryofthe CentralInstituteof PetrochemicalsEngineeringandTech-nology,India.Priortothis appointment,hehadworkedasanIndo-US postdoctoralFellowattheCornell University,UnitedStates(2018 19)andasa nationalpostdoctoralfellowattheIndian InstituteofTechnology Kharagpur,India

(2016 17),bothfundedbytheScienceand EngineeringResearchBoard,Govt.ofIndia. Earlier,asaseniorresearchfellowfundedby theCouncilofScientificandIndustrial Research,Govt.ofIndia.,hehadcarriedout hisdoctoralstudyattheUniversityof Calcutta,India(2013 16).Hepossesses degreesinbothtechnology(BTechand MTech)andscience(BSc.),allfrom UniversityofCalcutta.HewasalsoarecipientoftheprestigiousGraduateAptitude TestinEngineering(GATE)andNational Scholarships,bothfromtheMinistryof HumanResourceDevelopment,Govt.of India.Hisareasofresearchinterestlieinthe fieldsofelectrochemical,bioelectrochemical andphotoelectrochemicaldevices,water treatment,andpolymers.Untildate,hehas contributedto51experimentalandreview papersinreputedinternationalplatforms,25 bookchapters,andmanynationalandinternationalpresentations.Inaddition,hehas edited/coeditedtwobookspublishedby Elsevier.Hehasalsoservedasaguestassociatehandlingeditorfor Frontiersin Chemistry andapeer-reviewerforover160 journalarticles,conferencepapers,book chapters,andresearchprojectproposals.He isalifememberandanelectedfellowofthe IndianChemicalSociety,alifememberof theInternationalExchangeAlumniNetwork (USDepartmentofState),andamemberof theScienceAdvisoryBoard(UnitedStates). Earlier,heheldmembershipsofthe InternationalAssociationforHydrogen Energy(UnitedStates),theInternational AssociationofAdvancedMaterials(Sweden), theInstituteforEngineeringResearchand Publication(India),andtheWileyAdvisors Group(UnitedStates).

Dr.JaydevsinhM. Gohil iscurrentlyholdingascientistposition attheSchoolfor AdvancedResearchin Polymers—Advanced PolymerDesign& DevelopmentResearch Laboratory(SARP: APDDRL)(Bengaluru, India),anR&DwingoftheCentralInstitute ofPlasticsEngineering&Technology (CIPET).HehadreceivedhisBScdegreein AppliedChemistry(SardarPatelUniversity) in2000,MScdegreeinPlasticsTechnology (SardarPatelUniversity)in2002,andPhD degreeinChemistry(BhavnagarUniversity) in2008.Priortohispresentappointment,he hadworkedasapostdoctoralfellowatthe UniversityofWesternOntario,Canada (2011 14)andattheIndianInstituteof Technology(IIT)Bombay,India(2009 11,) fundedbytheOntarioCentersfor Excellence/theNaturalScienceand EngineeringResearchCouncil/the BioGeneratorEnergySolutionInc.,Canada, andIITBombay/DOWChemicals,respectively.EarlierhewasawardedSenior ResearchFellowshipfromtheCouncilof ScientificandIndustrialResearch(CSIR), NewDelhi,India(2006 08),andduringthat period,hehadcarriedouthisdoctoralstudy attheCSIR-CentralSalt&MarineChemicals ResearchInstitute(CSMCRI),India.Hehad servedasanassistantprofessorinthe DepartmentofMaterialScienceatSardar PatelUniversityfromAugust2015to October2015,andlateronjoinedand workedatLaboratoryforAdvanced ResearchinPolymericMaterials(SARP:

LARPM),CIPET,Bhubaneswar,asapoolscientistfromOctober2015toNovember2016. Hehasmorethan30peer-reviewedpapers/ bookchapterstohiscreditpublishedininternationaljournals.Hisresearchinterest includesdevelopmentofmembranesand membraneprocessesforenvironmental applications(waterpurificationandtreatment)andenergygeneration(fuelcells), designanddevelopmentofnovelandsmart polymers,bioinspiredmaterials,andhybrid materialsformembranemolecularseparation andenergygeneration.

Acknowledgments

Tostartwith,wearethankfultothe publisherElsevier,Dr.KostasMarinakis andSusanDennis(both,SeniorAcquisition Editor,Elsevier),AeraGariguez(Editorial ProjectManager,Elsevier),andtheentire teamofElsevierforbringingoutthisbook.

Wearealsothankfultotheesteemed reviewersofourbookproposalfortheir suggestions,inputsandfinalapproval,as wellastothecontributingauthorsforcontributingtheirexcellentinformative chapters.

WearealsogratefultoDr.BartVander Bruggen(Professor,ProcessEngineering forSustainableSystems,Departmentof

ChemicalEngineering,KULeuven, Leuven,Belgium;Editor-in-Chief, SeparationandPurificationTechnology, Elsevier;andExecutiveEditor, Journalof ChemicalTechnologyandBiotechnology, Wiley)forwritinga“Foreword”forthis book.

Finally,wewouldliketoexpressour loveandgratitudetowardourfamilymembersfortheircontinuoussupportand unconditionalpatience.

SanjayK.Nayak KingshukDutta JaydevsinhM.Gohil

Microfiltrationandultrafiltration membranetechnologies

AnanyaBardhan,AanishaAkhtarand

SenthilmuruganSubbiah

DepartmentofChemicalEngineering,IndianInstituteofTechnology,Guwahati,India

1.1Introduction

1.1.1Basicsofmembraneprocess

Amembraneisasemipermeablebarrierthatallowsselectivepermeationofoneor moreconstituentsinthepresenceofchemicalpotentialasadrivingforceduetodifferencesinpressure,temperature,andconcentrationacrossthemembranesurface.Themembraneseparationphenomenoncanbecategorizedbasedontheseparationmechanism;for example,theconventionalfiltrationprocessessuchasmicrofiltration(MF),ultrafiltration (UF)areusedtoseparateimmisciblesolidparticlesfromthegaseousorliquidstreamby applyingdifferentialpressure.Theseparationefficiencyofthesemembranesisthefunctionofporesizeandchargeofthemembrane.Theadvancedmembraneseparationprocesses,suchasreverseosmosis(RO)andmembranedistillation(MD),separatethe dissolvedsolutesfromliquidandselectivelyallowwatertopassthroughamembraneby diffusionmechanism.Also,fewmembraneseparationprocessescombinemultipletransportphenomenaimprovingtheseparationefficiency;forexample,bothnanofiltration (NF)andelectrodialysis(ED)aredevelopedbycombiningtheconceptofmembraneporebasedseparation,diffusion,andcharge.Intheconventionalmembraneprocess(Fig.1.1), thefeedstreamisdividedintopermeate/productandretentate/rejectstreams.Thefractionoffeedstreamthatpermeatesthroughthemembraneiscalledpermeate,whereasthe fractionoffeedstreamrejectedbythemembraneistermedasretentate/reject.

Theperformanceofmembranesisdeterminedbasedontheirfluxandselectivityat standardoperatingconditions.Thefluxofthemembraneisdefinedassolventflowrate throughthemembraneperunitmembranesurfacearea.Theselectivityofamembrane

canbeexpressedintermsofretentionfactor(orrejection).Fortheliquidphase,theselectivityofamembraneisexpressedintermsofretentionfactor(R):

where cf and cp aresoluteconcentrationsofpermeateandfeedstreams. R isadimensionless factor,rangingfrom0(completeretention)to1(bothsolventandsolutemovesfreely).

Thepermeationrate(or,flux, J)throughthemembraneisdirectlyproportionaltothe drivingforce dX dx ,thatis, J α dX dx :

Basedonthedrivingforce,themembraneprocessescanbefurtherclassifiedinto (Mulder,1991):

1. Pressure-drivenmembraneprocess(suchasMF,UF,NF,andRO)

2. Concentrationdrivenmembraneprocess(suchasdialysis,pervaporation,membrane extraction,andforwardosmosis)

3. Temperaturedrivenmembraneprocess(suchasMDandthermos-osmosis)

4. Electricpotentialdrivenmembraneprocess(suchasED,electrofiltration,and electrochemicalionexchange)

Onanindustrialscale,thepressure-drivenmembraneprocessesaremostwidelyused andimplemented.Inthepressure-drivenmembraneprocess,thepressuregradient betweenthefeedandpermeatesideactsasadrivingforceforpermeation.Inthischapter, wecoveronlytheMFandUFprocesses.

TheapplicationofUF/MFforwaterpurificationisincreasingduetoitsremovable capacityofbacteriaandvirusesfromthecontaminatedwatersources.However,irreversiblefoulingisthemaindrawbackofthemembraneprocesscomparedtoconventional sandfiltration.TheUFprocesscanbeusedtoremoveunwantedparticlesthatarebigger thanthemembraneporesize;namelyviruses,color,odor,andsomecolloidalnatural organicmatter.Comparedwiththetraditionalwatertreatmentprocess,theUFtechnology hashigherprocessingefficiency,bettertreatmenteffect,andlowerenergyconsumption.In manywatertreatmentapplications,toreducethefoulingintensityontheRO/NFmembrane,theUF/MFprocessisusedasapretreatmentsystem(Li,Jiang,&Li,2018).The

FIGURE1.1 Schematicrepresentationofamembraneseparationprocess.

poresizeoftheUFmembranevariesfrom1to100nm,whereoperatingpressureisinthe rangeof2 10bar.UFcanretainthemoleculeswhicharemoresignificantthanitspore size(i.e.,molecularweight, Mw B1000 80,000Da)suchasvariousproteinsandviruses. Polysulfone(PSU)andpolyethersulfone(PES)membranesaremostcommonlyusedfor UFprocess.

AporousMFmembrane(poresizerangingbetween0.1and10 μm)isusuallyusedto retaintheliquid’sfinesuspendedparticlesorcolloids.Thesesubstancesarecomposedof organiccompoundssuchasemulsifiedoilyparticlesandreportedlyMFprocesscaneffectivelyremove95%oftheorganiccompounds(suchasoilandgrease)fromtheoilywastewater(Wang,Chen,Zhang,Yin,&Wang,2009).IntheMFprocess,theseparationoccurs bysimplesieving(orsizeexclusion)mechanismatrelativelylowoperatingpressure (0.1 2.5bar).ThemembranematerialsusedforthepreparationofMFmembranesare usuallyhydrophilic(orpartiallyhydrophilic)polymers[suchascelluloseacetate(CA), polycarbonate,polyimide,polyamide(PA)]orhydrophobicpolymers[suchaspolypropylene(PP)].MaterialssuchasPPandpolyvinylidenefluoride(PVDF)arefrequentlyused forMFapplication.

1.1.2Historicaloverviewofultrafiltrationandmicrofiltrationmembranes

Theseparationandpurificationprocessisoneofthecriticalunitoperationsinany chemicalprocesstorecoverthedesiredproducts.Comparedtoconventionalseparation andpurificationtechniques,theUFandMFprocessesaremostwidelyusedinvarious industriesduetotheirbenefitssuchaseasytouse,highseparationefficiency,andlow energyconsumption.

1.1.2.1Microfiltrationmembrane

TheMFmembraneisusedtoseparateimpurities(suchasparticles,viruses,andbacteria) withasizerangeof0.1 10 μmfromasolventorlowmolecularweightcomponent.IntheMF process,theseparationmechanismisbasedonthesievingprocess.Comparedtootherfiltrationprocesses,theappliedpressureintheMFprocessisrelativelylow( , 2bars).Thefirst commercialapplicationoftheMFmembranewasinbiologicalandpharmaceutical manufacturinginthe1960s.MFmembranesweremainlyusedinsterilefiltration(microorganisms’removal)inthepharmaceuticalindustryandfinalfiltration(particleremoval)ofthe rinsewaterinthesemiconductorindustry.Notsostringentasinthepharmaceuticalindustry, MFwasalsousedinthesterilizationofbeerand wine,andclarificationofciderandother juices.Inthemid-1980s,MFwasintroducedto thewatertreatmentindustrybecauseofits cost-effectivenessintheprefiltrationapplication.TheapplicationofMF(andUF)inwater treatmentgainedmassivemomentumafterthecryptosporidiumoutbreakintheUnitedStates in1992.From2000,desalinationindustrystartedusingbothMFandUFasanadvancedpretreatmentsystemforseawaterdesalinationtoreducefoulingpotentialintheROprocess.

1.1.2.2Ultrafiltrationmembrane

Inearly1907,theUFmembranewasfirststudiedinalaboratory(orsmallscale)for separationapplications.ThefirstcommercialUFmembranewasintroducedinthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.