Advanced pedot thermoelectric materials fengxing jiang - Quickly download the ebook to never miss im

Page 1


https://ebookmass.com/product/advanced-pedot-thermoelectric-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Thermoelectricity and Advanced Thermoelectric Materials

Ranjan Kumar

https://ebookmass.com/product/thermoelectricity-and-advancedthermoelectric-materials-ranjan-kumar/

ebookmass.com

Thermoelectric Materials and Devices Lidong Chen

https://ebookmass.com/product/thermoelectric-materials-and-deviceslidong-chen/

ebookmass.com

Advanced Materials from Recycled Waste Sarika Verma

https://ebookmass.com/product/advanced-materials-from-recycled-wastesarika-verma/

ebookmass.com

Meeting the Challenges of Data Quality Management Laura Sebastian-Coleman

https://ebookmass.com/product/meeting-the-challenges-of-data-qualitymanagement-laura-sebastian-coleman/

ebookmass.com

New Venture Creation: An Innovator’s Guide to Entrepreneurship 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/new-venture-creation-an-innovatorsguide-to-entrepreneurship-2nd-edition-ebook-pdf/

ebookmass.com

American Corrections in Brief 3rd Edition – Ebook PDF Version

https://ebookmass.com/product/american-corrections-in-brief-3rdedition-ebook-pdf-version/

ebookmass.com

Global Physical Climatology 2nd Edition Hartmann

https://ebookmass.com/product/global-physical-climatology-2nd-editionhartmann/

ebookmass.com

eTextbook 978-1439836835 Handbook of Meat and Meat Processing, Second Edition

https://ebookmass.com/product/etextbook-978-1439836835-handbook-ofmeat-and-meat-processing-second-edition/

ebookmass.com

Sustainable Energy: Towards a Zero-Carbon Economy using Chemistry, Electrochemistry and Catalysis Julian R.H. Ross

https://ebookmass.com/product/sustainable-energy-towards-a-zerocarbon-economy-using-chemistry-electrochemistry-and-catalysis-julianr-h-ross/

ebookmass.com

https://ebookmass.com/product/the-politics-of-modelling-numbersbetween-science-and-policy-andrea-saltelli/

ebookmass.com

ADVANCEDPEDOT THERMOELECTRIC MATERIALS

FENGXINGJIANG

CONGCONGLIU

JINGKUNXU

WoodheadPublishingisanimprintofElsevier

TheOfficers ’ MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright © 2022ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-821550-0

ForinformationonallWoodheadPublishingpublicationsvisit ourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: ChiaraGiglio

ProductionProjectManager: SuryaNarayananJayachandran

CoverDesigner: ChristianJ.Bilbow

TypesetbyTNQTechnologies

Contributors

ChunmeiGao

ShenzhenKeyLaboratoryofPolymerScienceandTechnology,CollegeofMaterials ScienceandEngineering,ShenzhenUniversity,Shenzhen,PRChina;KeyLaboratoryof OptoelectronicDevicesandSystemsofMinistryofEducationandGuangdongProvince, CollegeofPhysicsandOptoelectronicEngineering,ShenzhenUniversity,Shenzhen,PR China

YanhuaJia

DepartmentofPhysics,JiangxiScienceandTechnologyNormalUniversity,Nanchang, Jiangxi,PRChina

FengxingJiang

DepartmentofPhysics,JiangxiScienceandTechnologyNormalUniversity,Nanchang, Jiangxi,PRChina;FlexibleElectronicsInnovationInstitute,JiangxiScienceand TechnologyNormalUniversity,Nanchang,Jiangxi,PRChina

QinglinJiang

InstituteofPolymerOptoelectronicMaterialsandDevices,StateKeyLaboratoryof LuminescentMaterialsandDevices,SouthChinaUniversityofTechnology,Guangzhou, Guangdong,PRChina

CongcongLiu

FlexibleElectronicsInnovationInstitute,JiangxiScienceandTechnologyNormal University,Nanchang,Jiangxi,PRChina

PeipeiLiu

DepartmentofPhysics,JiangxiScienceandTechnologyNormalUniversity,Nanchang, Jiangxi,PRChina

ShouliMing

CollegeofChemistryandChemicalEngineering,LiaochengUniversity,Liaocheng, Shandong,PRChina

HuiShi

KeyLaboratoryofJiangxiProvinceforPersistentPollutantsControlandResources Recycle,NanchangHangkongUniversity,Nanchang,PRChina;National-LocalJoint EngineeringResearchCenterofHeavyMetalsPollutantsControlandResource Utilization,NanchangHangkongUniversity,Nanchang,PRChina

HaijunSong

CollegeofMechanicalandElectricalEngineering,JiaxingUniversity,Jiaxing,Zhejiang Province,PRChina

XiaodongWang

SchoolofMaterialsScienceandEngineering,InstituteofMaterialsGenome&BigData, HarbinInstituteofTechnology,Shenzhen,PRChina

LeiWang

ShenzhenKeyLaboratoryofPolymerScienceandTechnology,CollegeofMaterials ScienceandEngineering,ShenzhenUniversity,Shenzhen,PRChina;KeyLaboratoryof OptoelectronicDevicesandSystemsofMinistryofEducationandGuangdongProvince, CollegeofPhysicsandOptoelectronicEngineering,ShenzhenUniversity,Shenzhen,PR China

JingkunXu

FlexibleElectronicsInnovationInstitute,JiangxiScienceandTechnologyNormal University,Nanchang,Jiangxi,PRChina;DepartmentofPhysics,JiangxiScienceand TechnologyNormalUniversity,Nanchang,Jiangxi,PRChina

GeZhang

SchoolofChemistryandChemicalEngineering,JiangxiScienceandTechnology NormalUniversity,Nanchang,Jiangxi,PRChina

ShijieZhen

GuangxiKeyLaboratoryofElectrochemicalandMagneto-ChemicalFunctional Materials,CollegeofChemistryandBioengineering,GuilinUniversityofTechnology, Guilin,Guangxi,PRChina

ZhengyouZhu

ShenzhenKeyLaboratoryofPolymerScienceandTechnology,CollegeofMaterials ScienceandEngineering,ShenzhenUniversity,Shenzhen,PRChina;KeyLaboratoryof OptoelectronicDevicesandSystemsofMinistryofEducationandGuangdongProvince, CollegeofPhysicsandOptoelectronicEngineering,ShenzhenUniversity,Shenzhen,PR China

Foreword

Conductingpolymersstandoutforanuniquecombinationoftheir mechanical,optical,electrical,andthermalproperties.Withthebenefitof advancedsynthesisanditsrelatedprocessingtechniques,tremendous breakthroughshavebeenmadeinthedevelopmentofhigh-performance organicthermoelectricmaterials;thesematerialshavepotentialusesin wearableheatingandcoolingdevicesaswellasnear-room-temperature energygeneration.Amongpolymerthermoelectricmaterials,Poly(3,4ethylenedioxythiophene)(PEDOT)-basedmaterialsareknownassomeof thebestorganicthermoelectricmaterialsandhavebeenextensivelyinvestigatedbecauseoftheirhighelectricalconductivityandthermalstability.With rationaldesign,somePEDOT-basedmaterialshaveachievedhigh figure-ofmeritvaluescomparabletothoseofconventionalinorganicthermoelectric materialsatroomtemperature.Thisprogresshastriggeredrenewedinterest fromthescientificcommunity,withover600publicationsincludingthe keywords “PEDOT” and “thermoelectric.” Thesescientificworkscoverthe designofmolecularstructuraldesign,morphology,advancedpolymer film preparationstrategy,theoreticalmechanisms,andthermoelectricdevices. Despiteawealthofreportedmethods,asystematicsummaryandaclear in-depthunderstandingofthethermoelectricconversionprocessesassociated withPEDOT-basedpolymersarestillneeded.

ThisbookaimstodescribethedevelopmentprocessofPEDOT-based thermoelectricmaterialsandpointoutfuturechallengesandopportunities. Tocomprehensivelydevelopfunctionalknowledgeofthis field,thiswork encompassesallrelevantaspectsofPEDOTthermoelectricmaterials,beginningwithahistoricaloverviewofconductivePEDOTandthermoelectric principles.Chaptertopicsincludevariousoptimizationpathwaystoimprove thethermoelectricperformanceofPEDOTs,aswellasdifferentmeasurement techniquestoexploreorganicthermoelectrictheory.Inaddition,various derivatives,heteroanalogs,copolymers,andnanocomposites/hybridsof PEDOT-basedthermoelectricmaterialsarealsointroduced.

Thisbookisprimarilyintendedforgraduatestudentsbeginningtheir researchonorganicthermoelectricmaterials,researchersworkingon PEDOTelectrondevices,andreaderswithanyleveloffamiliaritywith PEDOTmaterials.ThedetailsofthetheoreticalbasisofPEDOTare

addressed,includingpreparation,characterization,discussion,andapplications aswellasitsdevelopmentasahigh-performancethermoelectricmaterial. Balancingsufficientdetailsandreferencesforfurtherstudy,thisbookisa powerfulandtimelytoolforanyoneworkinginthe fieldofthermoelectricconjugatedpolymers.Iwishthebookgreatsuccessandforeseeithaving asubstantialimpactonthe fieldandalloftheareaswithwhichitconnects.

Zhi-GangChen ProfessorofEnergyMaterials, UniversityofSouthernQueensland, Australia

2021-06-09

Preface

Organicelectronicmaterialshavebecomeoneofthemaintopicsof discussionwithinmaterialsscience,physics,andchemistry.Thermoelectricityisatypicalrepresentativedirectionforthesefrontierinterdisciplinary subjects.Atpresent,researchonorganicthermoelectricmaterialsinvolvesa widevarietyofmaterials,includingp-typeandn-type,thatconsiderlight weight,good flexibility,andabundantresources.Nevertheless,fewbooks onorganicthermoelectricmaterialshavebeenpublishedtodate,especially notamonographsuchasthis,referringspecificallytoPEDOT-based thermoelectricmaterials.

Poly(3,4-ethylenedioxythiophene)(PEDOT),withexcellentair/environmentalstability,iscurrentlythemostwidelyusedpolymermaterialin researchanddevelopmentfororganicelectrondevices.Moreover,itshybrid poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) hasbecomeacommerciallyavailableproductandhasbeenwidelyusedin organicphotovoltaics,capacitors,transistors,andantistaticlayers.Many featuresareduefurtherexplorationandresearch,justlikethermoelectric performance.Withnumerousresearchefforts,PEDOT/PEDOT:PSSis regardedasapotentialorganicthermoelectricmaterialandhasgaineda breakthroughprocessinthermoelectric figure-of-merit(ZTw10 1)atroom temperature.Comparedwithotherconductingpolymers,ithassignificantly higherelectricalconductivityandbettermechanicalproperties.However, someproblemshavealreadyarisenwithcurrentPEDOTthermoelectric materials.ThechallengeforPEDOTtobeconsideredasapromisingthermoelectricmaterialishowtoimproveitsSeebeckcoefficientinresponseto highelectricalconductivitytoachieveahigherthermoelectricpowerfactor. Forthecurrentkeyscientificissuesandtechnologies,researchersstillneed continuouseffortsandinput.Therefore,itisnecessarytosummarizethe currentprogressandchallengesofPEDOTthermoelectricmaterialsand clarifythedirectionoffuturedevelopment.Wehopethismonographcan helpresearchersworkingonPEDOTmaterialstoprepare,characterize, analyze,test,andapplytheir findingswhilecontributingtothefuture developmentandapplicationoforganicthermoelectricmaterials.

OurgrouphaspersistedinthedevelopmentofPEDOT/PEDOT:PSS thermoelectricmaterialsformorethan10years.In2008,ourgroup

systematicallyreportedthethermoelectricperformanceofPEDOT:PSS pellets(ZTw10 3)forthe firsttime.Until2010,wereportedthe ZT value offree-standingPEDOT:PSS film(ZTw10 2).Since2010,PEDOT/ PEDOT:PSShasbecomeafocusofresearchersaroundtheworld.In2015, wedevelopedahighlythermoelectricperformanceofPEDOT:PSS film (ZTw10 1)withsubmicronthickness.Basedonourworkin,and understandingof,the fieldovermanyyears,wewereencouragedtostart writingamonographonthermoelectricPEDOT.Nevertheless,editing suchabookhasbeenahugechallengeforusbecause(1)itssuccessis boundedbythelimitsofourknowledgeandability;(2)thethermoelectric performanceofPEDOT/PEDOT:PSSinvolvesawiderangeof knowledge,coveringphysics,chemistry,andmaterialsscience;and(3) PEDOThasdevelopedrapidlyinrecentyears,makingitscurrentstatus, whichisinconstant flux,verydifficulttograspandelaborateon.

Thisbookiscomposedof10chapterswithtopicsfrombasictopotential applications. Chapter1 reviewsthedevelopmentofthermoelectricpropertiesofconductingpolymers(CPs),focusingonthedevelopmentalhistory andbasicsituationofPEDOTandPEDOT:PSS. Chapter2 systematically introducesPEDOT,includingderivativesynthesis,morphology,structural analysis,andthin-filmpreparationtechnologies. Chapters3and4 describe thebasicknowledgerelatedtoPEDOT/PEDOT:PSSthermoelectric transportproperties. Chapter5 summarizestheadvancedmethodsand principlesforoptimizingandimprovingthethermoelectricperformanceof PEDOT-basedmaterials. Chapter6 introducesthedevelopmentalstatusof PEDOTderivatives,analogs,andcopolymersinthermoelectricperformancefromtheperspectiveofmolecularstructure. Chapter7 isabout compositematerialsbasedonPEDOT/PEDOT:PSS,whichisalsooneof themostpopularresearchmethodscurrently. Chapter8 focusesontesting techniquesandmethodsformeasuringPEDOTthermoelectricperformancesuchaselectricalconductivity,Seebeckcoefficient,andthermal conductivity,aswellasincludingthetestingofcarrier-relatedinformation. Chapter9 describesthestate-of-the-artprogressofPEDOT/PEDOT:PSS as flexibleandwearablethermoelectricdevices.Finally, Chapter10 summarizesthechallengesthatPEDOT/PEDOT:PSSmayfaceinthe futureasathermoelectricmaterialandopportunitiesforitsdevelopment.

Preface xix

Itishopedthatthisbookwillbecomeachosenreferenceandguidance forthoseengagedinorwhowanttobecomeengagedinPEDOTthermoelectricperformanceresearch.Becausethestudyoforganicthermoelectricmaterialscoversabroadrangeofknowledge,thisbookmaynot provideacomprehensiveoverviewofeveryaspectofcurrentPEDOT/ PEDOT:PSSthermoelectric-relatedresearch.Atthesametime,duetoour relativelylimitedlevelsofknowledgeandexperience,mistakesand improprietieswillinevitablyappearinthebook.Wesincerelyaskreadersto providecriticismandcorrectionstojointlypromotethedevelopmentof PEDOTthermoelectricmaterials.

JingkunXu 2021-06-10

Abbreviations

AF Ammoniumformate

AFM Atomicforcemicroscopy

AS Cross-sectionalarea

B Magneticinductionintensity

BBL Benzimidazo-benzophenanthroline

BDT Benzodithiophene

BN Boronnitride

BP Blackphosphorus

BTFMSI Bis(tri fluoromethylsulfonyl)imide

2Cz-D 1,12-Bis(carbazolyl)dodecane

CB Conductionband

CNFs Carbonnanofibers

CNTs Carbonnanotubes

CPs Conjugated(orconducting)polymers

CSA Camphorsulfonicacid

CTAB Hexadecyltrimethylammoniumbromide

Cz Carbazole

D-A-D Donor-acceptor-donor

DBSA Dodecylbenzenesulfonicacid

DC Directcurrent

DEG Diethyleneglycol

DES Deepeutecticsolvents

DFT Densityfunctionaltheory

DMF N,N-Dimethylformamide

DMSO Dimethylsulfoxide

DN Doublenetworkstructure

DOS Densityofstates

DWCNT Double-wallcarbonnanotube

e Electroniccharge

Ea Activationenergy

ECAs Electricallyconductiveadhesives

EDOT 3,4-Ethylenedioxythiophene

EF Fermilevel

Eg Energybandgap

EG Ethyleneglycol

EMIM-BF4 1-Ethyl-3-methylimidazoliumtetrafluoroborate

ESR Electronspinresonance

Et Energyattransportedge

F Force

F4TCNQ Tetra fluorotetracyanoquinodimethane

FIT Fluctuation-inducedtunneling

FTS Tridecafluoro-1,1,2,2-tetrahydrooctyl-trichlorosilane

GE Graphene

GF Gaugefactor

GIWAXS GrazingincidencewideangleX-rayscattering

GNPs Graphenenanoplates

GQDs Graphenequantumdots

h Planckconstant

HI Hydroiodicacid

HOMO Highestoccupiedmolecularorbital

HRTEM Highresolutiontransmissionelectronmicroscope

HZ Hydrazine

I Current flow

ICPs Intrinsicconductingpolymers

IDT Indacenodithiophene

ILs Ionicliquids

IPA Isopropylalcohol

IPN Interpenetratingnetwork

ITO Indiumtinoxide

K Absolutetemperature

k,kB Boltzmannconstant

l Lengthofsamples

L Lorenznumber

LbL Layer-by-layerassembly

LCA Life-cycleassessment

Lnc Averagedistancebetweenadjacentnanocrystals

LUMO Lowestunoccupiedmolecularorbital

MGI MaterialsGenomeInitiative

MW Molecularweight

MWCNTs Multiwallcarbonnanotubes

n Chargecarrierconcentration

NMP N-Methyl-2-pyrrolidone

NP Nanoparticle

NSs Nanosheets

NWs Nanowires

oCVD Oxidativechemicalvapordeposition

OECTs Organicelectrochemicaltransistors

OFETs Organic field-effecttransistors

OLEDs Organiclightemittingdiodes

OMIEC Organicmixedionic-electronicconductor

OPV Organicphotovoltaics

OSC Organicsolarcells

OTE Organicthermoelectric

P Power

P2Cz-D Poly(1,12-bis(carbazolyl)dodecane)

P3HT Poly(3-hexylthiophene)

PAc Polyacetylene

PANi Polyaniline

PBTTT Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene)

PCB Printedcircuitboard

PCz Polycarbazole

PDADMAC Poly(diallyldimethylammoniumchloride)

PDMS Polydimethylsiloxane

PEDOS Poly(3,4-ethylenedioxyselenophene)

PEDOT Poly(3,4-ethylenedioxythiophene)

PEDOT:PSS Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)

PEG Polyethyleneglycol

PEI Polyethylenemine

PEIE Polyethylenimineethoxylated

PEO Poly(ethyleneoxide)

PET Polyethyleneterephthalate

PF Thermoelectricpowerfactor

ph Phonons

PI Polyimide

PIDT Polyindacenodithiophene

PMMA Polymethylmethacrylate

PPP Polypropyleneglycol-polyethyleneglycol

PProDOT Poly(3,4-propylenedioxythiophene)

PPV Poly(p-phenylenevinylene)

PPy Polypyrrole

ProDOT 3,4-Propylenedioxythiophene

PS Polystyrene

PSe Polyselenophene

PSS Polystyrenesulfonate

PTE Photo-thermo-electric

PTh Polythiophene

PU Polyurethane

PVA Polyvinylalcohol

PVC Polyvinylchloride

q, Q Chargequantity

R Resistance

R2R Roll-to-roll

rGO Grapheneoxide

RH Hallcoefficient

Rs Squareresistance

RT Roomtemperature

s Transportparameter

S Seebeckcoef ficientorthermopower

SCP Solutioncastingpolymerization

SEM Scanningelectronmicroscopy

SPS Sparkplasmasintering

SWCNTs Single-walledcarbonnanotubes

T Temperature

Tc Temperaturesatcoldside

TCR Temperaturecoefficientofresistivity

TDAE Tetrakis(dimethylamino)ethylene

TDTR Time-domainthermalreflectance Abbreviations

TE Thermoelectric

TEG Thermoelectricgenerator

TEM Transmissionelectronmicroscope

Th Temperaturesathotside

THF Tetrahydrofurane

Tos p-toluenesulfonate

UPS Ultravioletphotoelectronspectra

UV-Vis-NIR Ultravioletnearinfraredspectra

V Voltage

VA Vaporannealing

VB Valenceband

VPP Vaporphasepolymerization

VRH Variable-rangehopping

W Activationenergyorwidthofsamples

WFL Wiedemann-Franzlaw

WPU Waterbornepolyurethane

wt.% Masspercent

Xc Degreeofcrystallinity

XPS X-rayphotoelectronspectroscopy

ZT Figure-of-merit

Symbol

a ThermopowerorSeebeckcoefficient

s Electricalconductivity

k Thermalconductivity

m Carriermobility

h Thermoelectricconversionefficiency

F Workfunctions

r Resistivity

u Currentfrequency

ε Resistancecoef ficient

hc Carnotefficiency

ke Electronthermalconductivity

kl Latticeorphononthermalconductivity

sS2 Thermoelectricpowerfactor

DT Temperaturedifference

DV Thermopowervoltage

kǁ In-planethermalconductivity

kt Out-of-planethermalconductivity

Acknowledgments

Thecontentsofthisbookaremainlybasedonthethermoelectricresearch onPEDOTspublishedinrecentdecades.Intherun-uptothecompletion ofthemanuscript,wefeltdeeplyhonoredtoreceivemuchsupportand helpfrommanyteachersandfriends.Wehopethatreaderswillthinkofthe fruitofoureditingjourneyasacompellingread.Thesmoothcompilation ofthisbookisalsoinseparablefromthehardworkofthestaffatElsevier andtheirencouragementandassistance.Finally,ourdeepestgratitudegoes tothecontributorswhodedicatedtheirprecioustimetowriteandrevise thecorrespondingchapters.

FengxingJiang CongcongLiu JingkunXu

Biographies

ChunmeiGao isanAssociateProfessorattheCollegeofChemistryand ChemicalEngineering,ShenzhenUniversity.GaoreceivedherPhDdegree inPolymerChemistryandPhysicsfromGuangzhouInstituteofChemistry, ChineseAcademyofSciences,in2007.Gao’srecentresearchinterestsare focusedonthedesignandpreparationoforganic/carbonnanotube-based compositesandnewconductingpolymersasthermoelectricmaterials.

JiaYanhua receivedherMScdegreefromJiangxiScienceand TechnologyNormalUniversity(2019).Since2020,shehasbeenworking attheStateKeyLaboratoryofLuminescentMaterialsandDevicesatSouth ChinaUniversityofTechnologyforaPhDdegree.Hercurrentresearch interestsincludeorganicthermoelectricmaterialsanddevices.

FengxingJiang receivedhisPhDdegreeinPhysicalChemistryin 2013fromSoochowUniversity.HeisaProfessorintheDepartmentof PhysicsatJiangxiScienceandTechnologyNormalUniversity.Dr.Jiang’ s researchinterestsarecenteredonthedesignandsynthesisofnewPEDOTbasedconductingpolymersandtheirapplicationsinthermoelectricconversion,supercapacitors,biochemicalsensors,andfuelcells.Hisprimary goalistodevelopnewhigh-quality,freestandingconductingpolymer films andtheircompositesfor flexibleorganicelectronicdevices.

QinglinJiang isaPostdoctoralScholarattheStateKeyLaboratoryof LuminescentMaterialsandDevices,SouthChinaUniversityofTechnology, China.HeobtainedhisMScdegreefromJiangxiScienceandTechnology NormalUniversity(2015).In2017,hecarriedoutcollaborativeresearchat LinköpingUniversity,Sweden.HeobtainedhisPhDfromSouthChina UniversityofTechnologyin2019.Hisresearchinterestsarefocusedon organicthermoelectricmaterialsandwearablethermoelectricdevices.

CongcongLiu receivedhisPhDdegreefromtheSchoolofMaterials ScienceandEngineeringfromtheTongjiUniversityin2019.Hismain contributionisareportonfreestandingPEDOT:PSS filmasapromising thermoelectricpolymerwithastablethermoelectric figure-of-merit (ZTw10 2)atroomtemperature(Synth.Met. 2010, 160,2481 2485). Thisisthehighestvaluetodate.Hiscurrentresearchinterestscenteronthe designandsynthesisofconductingpolymers/2-Dinorganiccompositesand theirapplicationsinenergyconversionandenergystorage.

PeipeiLiu receivedherPhDdegreeinGreenEnergyChemistryand Technologyin2018fromtheSouthChinaUniversityofTechnology.She iscurrentlyaLecturerintheDepartmentofPhysicsatJiangxiScienceand TechnologyNormalUniversity.Dr.Liu’sresearchinterestscenteronthe preparationanddesignofmetaloxidesandconductingpolymers-based materials,andtheirapplicationsinthermoelectricconversionandsupercapacitoruse.Hercurrentresearchworkaimstoprepareanddesignmetal oxidesandconductingpolymers-basedmaterialswithhighperformancefor thermoelectricconversionandsupercapacitors.

ShouliMing receivedhisPhDdegreeinPolymerChemistryand Physicsin2019fromBeijingNormalUniversity.HeisaLectureratthe CollegeofChemistryandChemicalEngineering,LiaochengUniversity. Dr.Ming’sresearchinterestsarecenteredonthedesignandsynthesisof newconductingpolymersandtheirapplicationsinelectrochromism, supercapacitor,andphotoelectric/thermoelectricconversion.Hisprimary goalistodevelopnewhigh-performanceconductingpolymersfororganic electronicdevices.

HuiShi receivedherPhDdegreeinMaterialsPhysicsandChemistryin 2018fromSouthChinaUniversityofTechnology.Sheiscurrentlya LecturerattheSchoolofEnviromentalandChemicalEngineering, NanchangHangkongUniversity.Herresearchinterestsareconjugated polymersforthermoelectricproperties,photovoltaicdevices,andwastewatertreatment.

HaijunSong receivedhisPhDdegreeinMaterialsScienceand Engineeringin2017fromTongjiUniversityunderthesupervisionofProf. KefengCai.HeiscurrentlyaLecturerattheCollegeofMechanicaland ElectricalEngineering,JiaxingUniversity.Hisresearchisfocusedon improvingthethermoelectricpropertiesofPEDOT-basedmaterialsand theirapplicationsin flexiblethermoelectricgenerators.

LeiWang isaProfessorattheShenzhenKeyLaboratoryofPolymer ScienceandTechnologyandCollegeofMaterialsScienceandEngineering inShenzhenUniversity.WangreceivedhisPhDdegreeinPolymer ChemistryandPhysicsfromGuangzhouInstituteofChemistry,Chinese AcademyofSciences,in2006.Dr.Wang’sresearchinterestsarefocusedon thedesign,preparation,andpropertiesofnewconductingpolymersas thermoelectricmaterialsandtheprotonexchangemembraneinfuelcells. Hisprimarygoalistodeterminetherelationshipbetweenpolymerstructureandproperties.

XiaodongWang receivedhisbachelor’sdegreesfromNortheastern University(China)andhisPhDdegree(2018)fromJilinUniversityin China.Now,heworksasaPostdoctoralScholarinProf.QianZhang’ s groupattheSchoolofMaterialsScienceandEngineering,HarbinInstitute ofTechnology,Shenzhen,China.Hiscurrentresearchinterestisinthe studyofnovelhigh-performanceorganic/inorganiccomposite filmsand theirapplicationinwearablethermoelectricdevices.

JingkunXu isaProfessorattheJiangxiKeyLaboratoryofOrganic ChemistryatJiangxiScienceandTechnologyNormalUniversity.Dr.Xu receivedhisPhDdegreeinPolymerChemistryandPhysicsfromTsinghua Universityin2003.Dr.Xu’sresearchinterestsarecenteredonthepreparationofnewconductingpolymerswithhighperformanceandtheir applicationsinthermoelectricconversion,electrochromic,supercapacitor, biochemicalsensor,andfuelcells.Hisprimarygoalistodesignnewhighqualityconductingpolymer-basedmaterialsforvariousenergystorageand conversiondevices.

GeZhang receivedherPhDdegreefromtheShandongUniversityin 2017.SheisnowaLecturerattheJiangxiScienceandTechnologyNormal University.Dr.Zhang’sresearchinterestscenteronthedesignandsynthesis ofnewconjugatedpolymersandtheirapplicationsinthermoelectric conversion,supercapacitors,andchemicalsensors.Herprimarygoalisto developnovelconjugatedpolymerswithgoodphotoelectricproperties.

ShijieZhen receivedhisPhDdegreefromtheSouthChinaUniversity ofTechnologyin2018andconductedhispostdoctoralworkunderthe supervisionofProf.BenZhongTangattheStateKeyLaboratoryof LuminescentMaterialsandDevicesfrom2018to2021.Heiscurrentlyan AssociateProfessorintheGuangxiKeyLaboratoryofElectrochemicaland MagnetochemicalFunctionalMaterials,GuilinUniversityofTechnology. Hisresearchfocusesondevelopingnovelfunctionalorganicmaterialsand exploringtheiroptoelectronicandbiologicalapplications,suchassinglemoleculewiresand fluorescentdiagnosisandtreatment.

ZhengyouZhu receivedhisPhDdegreein2019fromtheCollegeof ElectronicInformationandOpticalEngineeringinNankaiUniversity.He iscurrentlyaPostdoctoralFellowatShenzhenUniversity.Hisresearch interestsarefocusedonthethermoelectricsofPEDOT-based films,design andsynthesisofmetaloxidesemiconductors(MOS)-basednanomaterials, andtheirapplicationsingassensors.Nowheisfocusingonthedevelopmentofhigh-performance,low-power,and flexiblesensingelectronics.

CHAPTER1

Shorthistoryofthermoelectric conjugatedPEDOTdevelopment

1.1Introduction

Thediscoveryofconjugated(conducting)polymershascompletely changedpeople’sunderstandingofplasticsthatarenotconductive.Atthe sametime,theyhavequicklyattractedtheattentionofresearchersdueto theiruniquephysicalandchemicalpropertiesaswellaseasyprocessing. Sincethediscoveryofconjugatedpolymers,inthenearlyhalfacenturyof development,ithasbenefitedfromthegreateffortsofcountlessscientific researchersinthis field,whetheritisinthesynthesisandmodificationof conjugatedpolymers,ortheprinciplesandapplications.Ontheonehand, onlythenhastheimportantpositionoftoday’sconjugatedpolymersbeen developedinthedevelopmentofscienceandtechnology.Inthefuture development,conjugatedpolymerswillleadhumanlife,especiallyinthe fieldof flexiblemicroelectronics,andwillleaveanindeliblemarkonthe developmentofhumankind.

Conjugatedpolymersaretypicalsemiconductormaterialsandhave shownpotentialapplicationsinthe fieldsofsemiconductorlight,electricity, heat,andmagnetism.Thethermoelectriceffectisoneoftheimportant propertiesofsemiconductormaterialsandplaysanimportantroleinenergy conversion.Researchonthethermoelectricpropertiesofconjugated polymershasbecomeanimportantpartofthis field.Comparedwith inorganicthermoelectricmaterials,theresearchhistoryofconjugated polymersasthermoelectricmaterialsisrelativelyshort.Attheearlieststages ofresearchonconjugatedpolymersattheendofthe20thcentury,thermopower(alsocalledSeebeckcoefficient),themostimportantparameterin thermoelectricmaterials,wasmainlyusedtostudytheproblemofcharge transportinorganicsemiconductors.Becauseofitsstabilityandotherissues, ithasnotbeenstudiedasathermoelectricmaterial.Ofcourse,thisdoesnot

AdvancedPEDOTThermoelectricMaterials

ISBN978-0-12-821550-0

https://doi.org/10.1016/B978-0-12-821550-0.00008-1

meanthatthethermoelectriceffectofconjugatedpolymershasnotaroused theinterestofresearchers,andmoreattentionisfocusedonthestudyof charge-transportmechanisms.

Withthedevelopmentofsynthesisandpreparationtechnologiesand processes,conjugatedpolymershavebeenrapidlydevelopedinmany research fields,includingthermoelectrics.Amongalargenumberof conjugatedpolymers,poly(3,4-ethylenedioxythiophene)(PEDOT)is predominantinthe fieldoforganicsemiconductormaterialswithits outstandingphoto/electricproperties.Thisisinlinewithcountlessresearchersinitssynthesis,microstructurecontrol,preparationprocess, charge-transportmechanism,andcharacterization.Itisinseparablefromthe investmentandeffortintestingtechnologyandotheraspects.Inthe fieldof organicthermoelectric(OTE)materials,PEDOThasalsobecomealeader withitsexcellentelectricalconductivity(s), film-formingpropertiesand processability.AlthoughPEDOTstillhasmanyproblemsintheresearchof thermoelectricmaterials,therapiddevelopmentofitsthermoelectric propertiesindecadeshasmadeitoneofthemostpromisingorganic thermoelectricmaterials.

Inthischapter,wewillmakeabriefreviewofconjugatedpolymer thermoelectricmaterials,focusingonthedevelopmenthistoryofconductivePEDOTasapromisingthermoelectricmaterial.Wehopethatthe knowledgeinthispartcangivereadersacleareranddeeperunderstanding ofthermoelectricconjugatedpolymers.

1.2Evolutionofthermoelectricconjugatedpolymers

Thethermoelectriceffectscanrealizethedirectconversionofheatinto electricvoltage,andviceversa.Thismainlydependsonthedirectional movementofcarriersinsidethematerialunderthermalexcitation.The thermoelectriceffectiscomposedofthreeseparatelydeterminedeffects: Seebeckeffect,Peltiereffect,andThomsoneffect.Here,wewillnotgive theintroductiontothethreeeffectsonebyone,pleaserefertotherelevant referencebooks.Asweknow,thedimensionless figure-of-meritisusedto evaluatethermoelectricperformancebasedoninorganicthermoelectric materials,definedas

where, s, S (alsoas a), k,and T aretheelectricalconductivity,Seebeckcoefficient(thermopower),thermalconductivity,andabsolutetemperature, respectively.Thehigherthethermoelectric ZT value,thebetterthethermoelectricperformanceofmaterialsordevices.Observedfromtheabove equation,ahigh-performancethermoelectricmaterialshouldhavethe highelectricalconductivityandSeebeckcoefficientaswellasthelow thermalconductivity.

Conjugatedpolymershaveauniqueinherentadvantagethatislower thermalconductivity,whichisonetotwoordersofmagnitudelowerthan inorganicthermoelectricmaterials,1,2 whichimpliesthatconjugatedpolymerasthermoelectricmaterialsinthemiddleandlow-temperatureregions areexpectedtobecomparabletoinorganicthermoelectricmaterialseven better.Therefore,manyeffortsonconjugatedpolymershavebeendevoted toachievingahighthermoelectricpowerfactor(sS2)oftenusedinsteadof ZT toevaluatetheirthermoelectricperformance.Comparedwithelectrical conductivity,Seebeckcoefficientcontributesmoretothepowerfactor,but thisdoesnotmeanthatitcansacrificeoneofthem.Generally,itisnoteasy toobtainahighpowerfactor,becauseelectricalconductivityandSeebeck coefficienthaveanoppositecorrelationwiththecarrierconcentrationin polymers.Currently,mostofthisworkistomaximizethepowerfactorby seekingacompromisebetweenthem,whichhastosacrificeonepartyto meettheimprovementoftheotherparty.Therefore, findingasuitable material,usinganeffectivecontrolstrategy,andadoptingafeasiblepreparationprocessisthedirectionforcurrentresearcherstopursueandexplore high-performancethermoelectricpolymers.

Asearlyas1969,Barnes etal.discoveredthethermoelectriccurrentsin nonconjugatedpolymethylmethacrylate(PMMA),polyvinylchloride (PVC),andpolystyrene(PS)byestablishingatemperaturegradientafter irradiation.3 Theyfoundthatthechargecarriersinducedinthepresenceof atemperaturegradientwereobservedtobepositiveduetoaddedimpurities.Moreimportantly,theirinvestigationshowedthatatemperature gradientcanbeusedeffectivelytogeneratethermoelectriccurrentsforthe studyofchargetrappingincertainorganicpolymers,althoughtheinduced currentissmall.Thisisveryobviousintheearlystudiesontheelectrical propertiesofpolymers.Becausethermoelectricmaterialsrequiregood electricalconductivity,theearlystudiesofpolymersasthermoelectric materialsdidnotreceiveenoughattentionuntilconjugatedconducting polymersweredevelopedtoagreaterextent.

Conjugatedpolymerisconsistentwith sp 2 hybridizationbetweentwo neighboringcarbonatomsresultinginthe p electronsinchainskeleton thereforeavailabletodelocalizeintoabandwhichwouldgiveriseto metallicbehavior.TheNobelPrizeinChemistry2000wasawardedjointly toAlanJ.Heeger,AlanG.MacDiarmid,andHidekiShirakawa “forthe discoveryanddevelopmentofconductivepolymers.” Afterthat,the investigationonthethermoelectricpropertiesofconjugatedpolymers begantoenterthe fieldofvisionofresearchers,suchasdopedandundoped polyacetylene(PAc),polypyrrole(PPy),polyaniline(PANi),polythiophene (PTh),andtheirderivatives.MacDiarmidandHeeger etal. 4 devotedalotof effortsintotheconductivityandthermopowerofconjugatedpolymers. Thethermopowerisusedasazero-currenttransportcoefficient,allowing evaluationoftheintrinsicproperties,andasameasureofentropypercarrier. Later,theconductivityandthermopowerofhavebeenstudiedinmanynew conjugatedpolymers,andtheseworkshavemadeoutstandingcontributions tothesubsequentdevelopmentofthermoelectricpolymers.Forexample, UenoandYoshinoperformeddetailedelectricalconductivityandthermopowermeasurementsinthegraphitizedpoly(p-phenylenevinylene)(PPV) filmsforthevariousheat-treatmenttemperatures.5 Kaiseranalyzedthe thermopowerofconductingpolymersinheterogeneousmedia.6 Forsome highlyconductingpolymers,thethermopowershowstypicalmetallic temperaturedependencesimilartothediffusionthermopowerofmetals whereakneeisproducedatlowtemperaturesbytheelectron-phonon interaction,whichwasconsideredasprovidingagoodbasisforsubsequent researchonthethermoelectricpropertiesofconjugatedpolymers.

1.3Typicalthermoelectricconjugatedpolymers

Asweknow,akeypropertyofaconjugatedpolymerisdopingbyanalogy withthedopingofsemiconductorsresultinginasemiconductor-metal transition.Moreimportantly,conjugatedsysteminpolymersallowsa dedopingprocessenablinganeasilycontrolledbychemical,electrochemical orothermeanstooptimizeconductivebehavior.Inthisregard,inorganic semiconductormaterialsareincomparable.Moreover,thetypesofdopants aresoabundantthatithasgreatselectivityandoperabilityintheregulation spaceofcharge-transportproperty.Inaddition,conjugatedsystemin polymershasadesiredmolecularstructurethroughfunctionalgroup modificationandsynthesistechniques,therebyrealizinggoodelectron transportproperties.Therefore,conjugatedpolymershaveconsiderable potentialregardedasapromisingthermoelectricmaterial.Thefollowing brieflyintroducesseveralcommonthermoelectricconjugatedpolymers.

1.3.1Polyacetylene

In1974,polyacetylene(PAc)asasilverycrystalline filmwaspreparedfrom acetylenebyShirakawaandcoworkers,alreadyknownasblackpowder. Fordopedpolyacetylene film,itselectricalconductivityisallowedto systematicallyandcontinuouslyincreaseover11ordersofmagnitudefrom pristinetodopedstate,forminganewclassofconductingpolymers.The polyacetyleneservedasthesimplestconjugatedpolymerismorenearly analogoustothetraditionalinorganicsemiconductorandisthereforeof specialfundamentalinterestinorganicelectrontransport.Also,itsthermoelectricperformancehasgainedgreatattention.

Kwak etal 7 firstinvestigatedtheresistanceandthermopowerbetween 10and300Konboth cis-and trans-richpolyacetylene filmsdopedwith 10%AsF5 in Fig.1.1.Thechangeinresistancewithtemperatureshows threeobviousstagesincludingapositive(metallic)temperaturecoefficient above250K,anegative(nonmetallic)onebelow250K,anda flatone becomingessentiallytemperatureindependentbelow30K.Theelectrical conductivitycanachievealargevalue sRT w1000Scm 1.Forheavy doping,themetallicpolymercanberegardedascomposedofdiscontinuous metallicstrandswithdctransportowingtobarrierpenetrationand/or phonon-assistedhopping.Notethatthedisordermayplayakeyrolein dopedpolyacetylenecrystalline films.Generally,theplotsoflns versus1/T donotshowastraight-linebehavior,butamorenearlystraight-linetrend forlns versus T 1/4 (or T 1/2)atalowdopantconcentrationrange, indicatingthetypicaloftransportindisorderedandamorphoussystems.8 TheMottvariablerange-hopping(VRH)betweenlocalizedstateshasbeen foundtobeconsistentwiththelaw:

Figure1.1 (A)Dcresistanceversusthelogoftemperatureand(B)thermopower versustemperatureforpolyacetylenedopedwith10%AsF5 7 (Copyright1985,Elsevier Ltd.)

Here d isthedimensionalityofthetransport.Forpolyacetylene,its polymerstructureshowsstrong p overlapalongthechainwithweaker interchaincoupling.Thecarriermobilityofpolyacetylenedoped14%AsF5 wasestimatedtobe1cm2 V 1 s 1 from

where n isthecarrierdensity, e istheelectroniccharge,and m isthe mobility.Itisworthmentioningthatitisstillachallengetodatetoretain themobilitybasedontheHallmeasurements.Becausealow-dopedconjugatedpolymerhasahighcontactresistanceduetothehoppingnature ofsystemcausingtooexcessivenoisetosuccessfullymeasureasmallHall voltage.Incontrast,ahighercarrierdensityinheavilydopedpolymers probablyleadstoasmallerHallvoltageduetotheirinversedependence.9 Itisexpectedtowardthedevelopmentofanewtechnologysuitableforthe measurementofmobilityinconjugatedpolymersinthefuture.Insubsequentchapters,wewillfurtherdiscussthetestmethodsofmobilityfocused onPEDOT:PSS,suchasorganic fieldeffecttransistor(OFET)andelectrochemicaltransistor(OECT).

Thermopowerusuallyservesasameasureoftheentropypercarrier(a functionofdopantconcentration)tostudythesemiconductor-metal transition.Ingeneral,alargethermopowerisdesiredforsemiconductors (fewcarrierswithmanypossiblestatespercarrier)whereastheentropyof degenerateelectrongasissmallinthemetallicstate(oforder kB (kBT/EF) percarrier).10

Asshownin Fig.1.1B,both cis and trans filmsshowedafairly smallmagnitudeofthermopower SRTw10 mVK 1 (metal-like),andthe positivevalueindicatedpolyacetylenedopedAsF5 belongedtoholeconduction(p-typedoping).Thelinear S versus T indicatesageneralresultfor adegenerateFermigas,independentofthedimensionality.Park etal 10,11 alsoobservedthesimilarlineartemperaturedependenceandthehighly anisotropicdcconductivityconsistentwithquasi-one-dimensional behaviorinpolyacetylenewithheavyiodineorferricchloridedoping.A nonlinear S versus T observedinheavilydopedpolyacetyleneissimilarto thecharacteristicoftheelectron-phononeffectinmetallicdiffusionthermopower.Notethatthethermopoweroftheundopedpolyacetylenefor different filmsvariesintherangefrom800to1000 mVK 1 owingto variationsinpurityoroxygenintroducedinsamples.Inaddition,the thermopowerunderpure,lowconcentrationdoping,ortheadditional sp 3 defectsistemperatureindependentsuggestiveoflocalizedchargecarriers withhoppingtransport.Unfortunately,duetothepoorenvironmental stabilityinair,polyacetyleneisnotanidealorganicthermoelectricmaterial, soitgraduallyfadedoutofthe fieldofinvestigation.

1.3.2Polythiophenes

Unlikepolyacetylene,polythiophene(PTh)anditsderivativescanbe synthesizeddirectlyinthedopedformandhaveexcellentenvironmental stabilityin(un)dopedstates,andeaseofstructuralmodificationaswellas solutionprocessability.Despitealowelectricalconductivity(<200Scm 1), thebandgapinpolythiophenescanbealteredfrom3to1eVthrough changingdopantlevelorside-chaingroup,therebytheyarestillextensively studiedformanypracticalapplicationsinelectronicdevicessuchaslightemittingdiodes,biosensors,andenergystorageandconversion.12

Undoubtedly,theemergenceofpolythiopheneprovidesagood (optional)objectforfurtherresearchonthethermoelectricpropertiesof conjugatedpolymers.Initially,studiesonpolythiophenewithvariousdoping levelfocusedontheelectricalconductivityandthermopowertogainthe clearerunderstandingonelectrontransportproperties.Kaneto etal 13 found thattheactivationenergyof s in Fig.1.2A decreasesfrom0.8to0.1eVwith theincreaseindopinglevel.Polythiopheneshowsarelativelylargeand temperatureinsensitivethermopowerof1.7mVK 1 atneutralstatein Fig.1.2B.At25%dopinglevel,thethermopoweratroomtemperature(SRT) dropsto20 mVK 1 withalinearslopeon T andzerointerception.

Figure1.2 (A)Activationenergyof s and(B) S versusdopantconcentration(y)inBF4 dopedpolythiophene filmswiththeinsetof S versus T in25%dopinglevel.13 (Copyright 1985,ThePhysicalSocietyofJapan.)

Themolecularstructurealsohasagreaterimpactontheelectrical transportpropertiesofbulkpolythiophenes.Althoughthethermopoweris almostthesame(w20 mVK 1),theelectricalconductivityofpolythiophene (smax w 94Scm 1)apparentlydiffersfrompoly(3-methylthiophene) (P3MTh, smax w 230Scm 1)withPF6 - doped filmsatroomtemperature (RT).Notethatbelow w20Kthescatterof S forpolythiophene obviouslydifferentfrom s isanorderofmagnitudelargerthanpoly(3methylthiophene),indicatingthelowerconductiveregionsinpolythiophene.14 Thisimpliesthatthemethylsidegroupcanleadtoadifferent transportpropertyinthecrystallizedregionslikelyduetoahighercrystallinityinpoly(3-methylthiophene).Asshownin Fig.1.3,Hiraishi etal 15 studiedthethermoelectricpropertiesofpoly(3-alkylthiphene)obtainedby electrodepositionindetail.Theyfoundthatthepoly(3-alkylthiphene) films exhibitedthehigherSeebeckcoefficientthanpolyacetyleneandpolyaniline inahighelectricalconductivityregion.Moreover,ashorterside-chain probablyleadstoabetterthermoelectricpropertyinregioregularpoly(3alkylthiophene).Thethermoelectricpowerfactorofpolythiophene film was10.3 mWm 1 K 2 at S w23 mVK 1 and sw201Scm 1 resultingin ZT w 0.03(300K).Althoughthisvalueisone30againstBi-Tesystem,itis expectedtobeapromisingcandidateforanext-generationthermoelectric

Figure1.3 (A)TheSeebeckcoefficientversuselectricalconductivityofpolythiophene films(M),poly(3-dodecylthiophene)(M),poly(3-octylthiophene)(;),poly(3hexylthiophene)(6),polyacetylene(-),polyaniline(:),andBi-Tesystem( ).(B) Thermoelectricpowerfactor(TPF)versuselectricalconductivityofpolythiophene films.15 (Copyright2009,TheJapansocietyofAppliedPhysics.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.