Advanced nanomaterials for catalysis and energy: synthesis, characterization and applications sadyko

Page 1


https://ebookmass.com/product/advanced-nanomaterials-forcatalysis-and-energy-synthesis-characterization-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

2D Functional Nanomaterials: Synthesis, Characterization and Applications Ganesh S. Kamble (Ed.)

https://ebookmass.com/product/2d-functional-nanomaterials-synthesischaracterization-and-applications-ganesh-s-kamble-ed/

ebookmass.com

Nanowire Energy Storage Devices: Synthesis, Characterization and Applications Liqiang Mai

https://ebookmass.com/product/nanowire-energy-storage-devicessynthesis-characterization-and-applications-liqiang-mai/

ebookmass.com

Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis Qidong Zhao

https://ebookmass.com/product/advanced-nanomaterials-for-pollutantsensing-and-environmental-catalysis-qidong-zhao/

ebookmass.com

PFIN 6: Personal Finance 6th Edition Randall S. Billingsley

https://ebookmass.com/product/pfin-6-personal-finance-6th-editionrandall-s-billingsley/

ebookmass.com

Understanding Administrative Law in the Common Law World

https://ebookmass.com/product/understanding-administrative-law-in-thecommon-law-world-paul-daly/

ebookmass.com

A Duke Too Far Jane Ashford

https://ebookmass.com/product/a-duke-too-far-jane-ashford/

ebookmass.com

Introduction to Bioplastics Engineering 1st Edition Ashter

https://ebookmass.com/product/introduction-to-bioplasticsengineering-1st-edition-ashter/

ebookmass.com

Sicurezza dei computer e delle reti 1st Edition W. Stalling

https://ebookmass.com/product/sicurezza-dei-computer-e-delle-reti-1stedition-w-stalling/

ebookmass.com

Curriculum Reform in the European Schools 1st ed. Edition

Sandra Leaton Gray

https://ebookmass.com/product/curriculum-reform-in-the-europeanschools-1st-ed-edition-sandra-leaton-gray/

ebookmass.com

https://ebookmass.com/product/existence-theory-for-generalizednewtonian-fluids-1st-edition-breit/

ebookmass.com

AdvancedNanomaterialsfor CatalysisandEnergy

Synthesis,CharacterizationandApplications

VladislavA.Sadykov

BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

NovosibirskStateUniversity,Novosibirsk,Russia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright # 2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814807-5

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: KostasKIMarinakis

EditorialProjectManager: SerenaCastelnovo

ProductionProjectManager: JoyChristelNeumarinHonestThangiah

CoverDesigner: GregHarris

TypesetbySPiGlobal,India

Chapter1:SynthesisofNano-CatalystsinFlowConditionsUsingMillimixers...........1

ChangdongLi,MaoshuaiLi,AndreC.vanVeen

CaseStudyOne:DesignandOptimizationofMultistageFlowSynthesis ConfigurationstoPrepareZn-CrHydrotalcites......................................................2

1.1.1SynthesisMethodology.......................................................................................3

1.1.1.1Materials.......................................................................................................3

1.1.1.2FlowSynthesisConfiguration......................................................................4

1.1.1.3ComparativeCo-PrecipitationMethod........................................................7

1.1.1.4CharacterizationMethods............................................................................8

1.1.1.5PropertiesofCo-PrecipitationMadeasComparativeMaterials.... ............8

1.1.2PropertiesofMaterialsMadebyFlowSynthesis..............................................9

1.1.2.1EffectofTotalAgingTime(CoilTime).....................................................9

1.1.2.2EffectsofTemperatureandBoreSizeofMillimixer...............................13 1.1.3Conclusions.......................................................................................................18

CaseStudyTwo:PreparationofthePrecursorforBa0.5Sr0.5Co0.2Fe0.8O3 δ PerovskitesandComparisonofPerformanceinaMembraneApplication................20

1.2.1SynthesisandCharacterizationofMaterials....................................................21

1.2.2ComparisonofOxygenPermeationPerformances..........................................25

Chapter2:InfluenceofHydrodynamicsonWetSynthesesofNanomaterials...........29 NicholasJose,AlexeiLapkin

2.2.2ExperimentalStudies........................................................................................36

2.3Flow-InducedStructuring....................................................................................41

2.3.1Theory...............................................................................................................41

2.3.2ExperimentalStudies........................................................................................46

2.4MolecularClustering:Nucleation,Crystallization,andPolymorphism.............50

2.5Conclusions..........................................................................................................53

Chapter3:AdvancedSize-SelectedCatalystsPreparedbyLaserElectrodispersion...61 TatianaN.Rostovshchikova,EkaterinaS.Lokteva,ElenaV.Golubina,KonstantinI.Maslakov, SergeyA.Gurevich,DenisA.Yavsin,VladimirM.Kozhevin

3.1Introduction..........................................................................................................61

3.2PrinciplesofLEDMethodfortheSynthesisofMetalNanoparticles................62

3.3LEDMetal-ContainingSystemsinCatalysis......................................................70

3.3.1CopperCatalysts...............................................................................................70

3.3.2NickelCatalystsonCarbonandOxideSupports............................................75

3.3.3Palladium-ContainingCatalysts.......................................................................82

3.3.4BimetallicMaterials.........................................................................................86

3.4Discussion:TheReasonsofHighCatalyticEfficiencyofLEDSystems.... ......89

Chapter4:RutheniumNanomaterials:AnOverviewofRecentDevelopments inColloidalSynthesis,Properties, andPotentialApplications ................................99 IrinaL.Simakova,DmitryYu.Murzin

4.1Introduction........................................................................................................100

4.2Surfactant-AssistedRoutesforNPsPreparation...............................................101

4.2.1MicroemulsionTechnique..............................................................................101

4.2.2 СolloidalMethod............................................................................................103

4.3PreparationofSupportedMetalCatalystsontheBasisofColloidalNPs.......110

4.3.1DepositionofNPsFromME.........................................................................110

4.3.2ImmobilizationofNPsFromColloids..........................................................111

4.4RoleofaProtectingAgent................................................................................111

4.5RuNPsApplicationinCatalysis.......................................................................114

4.5.1CatalyticApplicationofRuNPsPreparedbytheME.................................116

4.5.2CatalyticApplicationofRuNPsPreparedbyColloidalSynthesis..............117

4.5.3CatalyticApplicationsofRuNPs..................................................................118

4.5.4ExamplesofCatalyticApplicationsofSupportedColloidal RuNPs............................................................................................................125

4.6ConcludingRemarksandOutlook.....................................................................133 Acknowledgments.....................................................................................................134 References.................................................................................................................135

Chapter5:Ag-ContainingNanomaterialsinHeterogeneousCatalysis: AdvancesandRecentTrends............................................................................143

OlgaV.Vodyankina,GrigoryV.Mamontov,ValeryV.Dutov,TamaraS.Kharlamova, MikhailA.Salaev

5.1Introduction........................................................................................................143

5.2SurfaceChemistryofAg-BasedMaterialsinOxidationCatalysis..................145

5.2.1Silver-OxygenInteractions.............................................................................145

5.2.2EffectofPromotersonReactivityofActiveSpeciesonAgSurface...........148

5.2.3Silver-SupportInteractions.............................................................................149

5.2.4Structure-ActivityRelationship......................................................................159

5.3ConcludingRemarksandOutlook.....................................................................164 Acknowledgment.......................................................................................................165 References.................................................................................................................165

Chapter6:HowDoestheSurfaceStructureofNi-FeNanoalloysControl CarbonFormationDuringMethaneSteam/DryReforming?................................177 StavrosAlexandrosTheofanidis,HildePoelman,GuyB.Marin,VladimirV.Galvita

6.1Introduction........................................................................................................177

6.1.1MethaneReformingProcesses.......................................................................177

6.1.2CarbonFormation...........................................................................................180

6.2SynthesisofNi-FeCatalysts..............................................................................181

6.3RoleofFe...........................................................................................................181

6.3.1StructuralFeaturesofNi-FeNanoalloys.......................................................183

6.3.2ActivityDuringMethaneDecomposition......................................................184

6.3.3ActivityDuringMethaneReforming.............................................................188

6.3.4RegenerationAbility......................................................................................191

6.3.5ControlofCarbonFormationonNi-FeNanoalloyCatalysts.......................193

6.3.6CarbonRemovalFromNi-FeNanoalloyCatalysts.......................................196

6.4NovelFe-ModifiedMagnesiumAluminateSupportforControlof CarbonFormation..............................................................................................209

6.4.1MgFexAl2 xO4 Synthesis...............................................................................209

6.4.2StructuralandTexturalFeaturesofMgFexAl2 xO4 Support.......................209

6.4.3Ni-FeNanoalloySupportedonMgFexAl2 xO4 ............................................212

6.4.4StabilityandCarbonFormationofNi-FeNanoalloySupportedon MgFexAl2 xO4 ...............................................................................................215

6.5ConcludingRemarksandOutlook.....................................................................217 References.................................................................................................................218

Chapter7:RecentApplicationsofNanometalOxideCatalystsinOxidation Reactions.......................................................................................................227 V.CortesCorbera´n,V.Rives,V.Stathopoulos

7.1Introduction........................................................................................................228

7.1.1OxideCatalysts:SpecificFeatures................................................................228

7.1.2ScopeoftheChapter......................................................................................229

7.2SynthesisMethodsforNanoscaleandMorphology..........................................230

7.3Ceria-BasedSystems..........................................................................................231

7.3.1PureCeria.......................................................................................................231

7.3.2BinaryCe ZrOxides...................................................................................233

7.3.3BinaryCuO CeO2 Catalysts........................................................................236

7.3.4BinaryMn CeOxides..................................................................................240

7.3.5BinaryCo CeOxideCatalysts....................................................................242

7.3.6OtherMixedOxideCatalysts.........................................................................244

7.4Co,Mn,andFeOxide-BasedSystems..............................................................247

7.4.1Cobalt-BasedSystems....................................................................................247

7.4.2Iron-BasedSystems........................................................................................255

7.4.3Manganese-BasedCatalysts...........................................................................258

7.5OtherOxide-BasedSystems..............................................................................265

7.5.1VanadiumOxide-BasedCatalysts..................................................................265

7.5.2MolybdenumOxide-BasedCatalysts.............................................................268

7.5.3Titania-BasedCatalysts..................................................................................271

7.5.4NickelOxide-BasedCatalysts........................................................................273

7.5.5CopperOxide-BasedCatalysts......................................................................274

7.5.6ChromiumOxide-BasedCatalysts.................................................................276

7.5.7MiscellaneousOxideCatalysts......................................................................277

7.6ConcludingRemarksandOutlook.....................................................................279 References.................................................................................................................281

Chapter8:Particle-SizeEffectinCatalyticOxidationOverPtNanoparticles........295 AlexandrYu.Stakheev,DmitryA.Bokarev,IgorP.Prosvirin,ValeriiI.Bukhtiyarov

8.1Introduction........................................................................................................295

8.2TotalAlkaneOxidation......................................................................................296

8.2.1ParticleSizeEffectandOxygenCoverage...................................................296

8.2.2OxidationofPtNanoparticles........................................................................302

8.2.3EffectofPtOx FormationonCatalyticActivity............................................304

8.2.4PtOx FormationUponReactionConditions..................................................305

8.3ParticleSizeEffectinCOOxidation................................................................308

8.4ParticleSizeEffectinNOOxidation................................................................310

8.5Conclusions........................................................................................................314

Chapter9:NovelZeoliteCatalystsforMethanoltoHydrocarbon Transformation..............................................................................................321 EvgenyRebrov,GuannanHu

9.1Introduction........................................................................................................321

9.2ReactionMechanism..........................................................................................323

9.3SynthesisofZSM-5CoatingsonStructuredSubstrates...................................327

9.3.1SynthesisofMicroporousZeolites................................................................327

9.3.2CatalystStability............................................................................................333

9.3.3Ion-Exchange..................................................................................................337

9.3.4HierarchicalH-ZSM-5Structure....................................................................340

9.4MTHProcess......................................................................................................346

9.5ConcludingRemarksandOutlook.....................................................................348

Chapter10:SemiconductorPhotocatalystsBasedonNanostructured

Cd1 xZnxSSolidSolutionsintheReactionofHydrogenEvolutionFrom AqueousSolutionsofInorganicElectronDonorsUnderVisibleLight.... ...............

10.1Introduction......................................................................................................357

10.2SynthesisandPhotocatalyticPropertiesofCd1 xZnxSSolidSolutions........360

10.2.1CharacteristicsoftheCd1 xZnxSSamples...............................................361

10.2.2TheKineticsofPhotocatalyticHydrogenEvolution................................364

10.3TheSynthesisofCompositeMaterialsContainingCdSorCd1 xZnxSand ConductorsWithaWiderBandGap...............................................................366

10.4DepositionofCocatalystsontheCadmiumSulfideSurface..........................371

10.4.1DepositionofCopperSulfideontheCd0.3Zn0.7SSurface.......................373

10.4.2SynthesisandStudyofCu/Cd0.3Zn0.7SandCu(OH)2/Cd0.3Zn0.7S Photocatalysts.............................................................................................378

10.4.3SynthesisofNiS/Cd0.3Zn0.7S,NizCd0.3Zn0.7S1+ z,Ni/Cd0.3Zn0.7S,and Ni(OH)2/Cd0.3Zn0.7SPhotocatalysts..........................................................379

10.4.4SynthesisandStudyofAu,Pt,Pd/Cd0.3Zn0.7SPhotocatalysts.... .382

10.5SynthesisofCatalystsWithCadmiumSulfideDepositedonaPorous SupportWiththe3DStructure........................................................................383

Сhapter11:NanocompositeAlkali-IonSolidElectrolytes....................................393 NikolaiF.Uvarov,ArtemS.Ulihin,YuliaG.Mateyshina

11.1Introduction......................................................................................................393

11.2InterfacePhenomenainCSE...........................................................................394

11.2.1PointDefectsonSurfacesorGrainBoundariesofIonicCrystals....... ....394

11.2.2PointDefectsonInterfacesandInterfaceInteraction...............................396

11.2.3SizeEffectsinNanocompositeSolidElectrolytes....................................400 11.3MolecularDynamicsSimulations....................................................................404

11.4EstimationofTransportPropertiesofCSE.....................................................406

11.4.1GeneralApproaches...................................................................................406

11.4.2GeneralizedMixingEquation....................................................................407

11.4.3EstimationofConductivityofCompositesofOtherTypes......................410

11.5TransportPropertiesofAlkaliIonCSE..........................................................412

11.5.1LithiumHalideBasedCSE........................................................................412

11.5.2CSEBasedonOtherAlkaliHalideSalts..................................................414

11.5.3CSEBasedonLi2SO4,Li2CO3,andLi2O................................................415

11.5.4AlkaliNitrateCSE.....................................................................................417

11.5.5CompositesBasedonAlkaliPerchlorates.................................................420

11.5.6CompositesBasedonAlkaliNitrites.........................................................423

11.5.7PolymerandGlass-CeramicComposite Lithium-IonElectrolytes...........426 11.6ApplicationsofAlkali-IonNanocomposteSolidElectrolytes........................426 11.7Conclusions......................................................................................................428

Chapter12:AdvancedMaterialsforSolidOxideFuelCellsandMembrane CatalyticReactors..........................................................................................435

VladislavA.Sadykov,NataliaV.Mezentseva,LyudmilaN.Bobrova,OlegL.Smorygo, NikitaF.Eremeev,YuliaE.Fedorova,YuliaN.Bespalko,PavelI.Skriabin,AlexeyV.Krasnov, AntonI.Lukashevich,TamaraA.Krieger,EkaterinaM.Sadovskaya,VladimirD.Belyaev, AlexanderN.Shmakov,ZakharS.Vinokurov,VladimirA.Bolotov,YuriYu.Tanashev, MikhailV.Korobeynikov,MikhailA.Mikhailenko

12.1Introduction......................................................................................................436

12.2SynthesisandDepositionTechniques.............................................................440

12.2.1MethodsfortheMaterialSynthesis...........................................................440

12.2.2SinteringTechniques..................................................................................442

12.3NovelMethodsofStudyingFunctionalCharacteristicsofMaterials.............444

12.3.1RelaxationTechniques...............................................................................444

12.3.2IsotopeExchangeTechniques....................................................................446

12.3.3TemperatureProgrammedDesorptionofOxygen....................................448

12.4AnodeMaterialsforITSOFCandOxygen/HydrogenSeparation Membranes.......................................................................................................449

12.4.1ExternalReformingforSOFC.CatalystsandReformingChemistry.......452

12.4.2StructuredSubstrates,CatalystsandReactors...........................................458

12.4.3PerformanceofStructuredCatalystsandReactorsinReforming ofRealFeeds..............................................................................................459

12.4.4OxygenSeparationMembranesTests.......................................................465

12.4.5Start-UpCharacteristicsandModeling......................................................470

12.4.6EffectofFuelExternalReforming/PrereformingonSOFCPerformance...472

12.4.7InternalReformingforSOFC.ScreeningTestsofPromoted Ni/YSZCompositesinFuelsSteamReforming.......................................473

12.4.8LayersofPromotedNi/YSZCompositesonAnode/Structured Substrates:PerformanceandStability.......................................................475

12.4.9KineticsofMethaneSteamReforming.....................................................476

12.4.10SOFCTestsWithInternalReforming.....................................................478

12.5CathodeMaterialsforITSOFC......................................................................480

12.5.1PerovskitesandNanocompositesBasedonThem....................................481

12.5.2Ruddlesden—PopperPhases......................................................................490

12.6SolidElectrolytesandOxidesWithaHighIonicConductivityforIT SOFCandPermselectiveMembranes.............................................................492

12.6.1Apatites.......................................................................................................494

12.6.2Ceria—ZirconiaMixedOxides..................................................................495

12.7ConcludingRemarksandOutlook...................................................................499 Acknowledgments.....................................................................................................501

References.................................................................................................................502

Chapter13:MixedIonic-ElectronicConductingPerovskitesasNanostructured Ferroelastics..................................................................................................515

13.1Introduction......................................................................................................515

13.2MIECPerovskitesasFerroelastics..................................................................518

13.3StudyoftheDomainStructureofBrownmilleriteSrCo0.8Fe0.2O2.5 ..............520

13.3.1TheoreticalConsideration..........................................................................520

13.3.2ElectronMicroscopyStudy........................................................................522

13.3.3DomainReorientationUnderMechanicalLoad........................................526

13.3.4InSituHigh-TemperatureX-RayDiffractionStudiesofthe Dynamicsof“Perovskite-Brownmillerite”PhaseTransitionin SrCo0.8Fe0.2O2.5 ..........................................................................................528

13.4EffectofDopingWithFerroactiveHighlyChargedCationsonthe Structure,PhaseTransitions,andMicrostructureofSrCo0.8 xFe0.2MxO3 δ (M ¼ Nb,Ta,W,Mo).......................................................................................530

13.4.1StudiesoftheStructureandMicrostructureoftheLow-Temperature PhasesSrCo0.8-xFe0.2MxO2.5+ y (M ¼ Nb,Ta;0 < x 0.1)........................531

13.4.2StudyofthePhaseTransition“Perovskite-Brownmillerite”and theStructureoftheHigh-TemperaturePhasesSrCo0.8 xFe0.2MxO3 δ (M ¼ Nb,Ta;0 < x < 0.1)..........................................................................535

13.4.3StudyoftheStructureoftheHTPhaseSrCo0.77Fe0.2Ta0.03O2.5 y WiththeHelpofInSituHigh-TemperatureM€ ossbauerSpectroscopy....539

13.4.4StudyoftheStructureandMicrostructureofSrCo0.8-xFe0.2MxO2.5+ y (M ¼ W,Mo;0 < x 0.2)..........................................................................540

13.4.5NanostructuredFerroelasticsasElectrodeandMembraneMaterialsfor SOFC/CMRWithHighTransportandOperationalProperties...... ......... .544

13.5ConcludingRemarksandOutlook...................................................................548

Contributors

IrinaV.Belenkaya InstituteofSolidStateChemistryandMechanochemistry,SiberianBranchof RussianAcademyofSciences,Novosibirsk,Russia

VladimirD.Belyaev BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

YuliaN.Bespalko BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

LyudmilaN.Bobrova BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

DmitryA.Bokarev ZelinskyInstituteofOrganicChemistryRAS,Moscow,Russia

VladimirA.Bolotov BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

OlgaA.Bragina InstituteofSolidStateChemistryandMechanochemistry,SiberianBranchof RussianAcademyofSciences,Novosibirsk,Russia

ValeriiI.Bukhtiyarov BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

V.CortesCorbera ´ n InstituteofCatalysisandPetroleumchemistry(ICP),CSC,Madrid,Spain

ValeryV.Dutov LaboratoryofCatalyticResearch,TomskStateUniversity,Tomsk,Russia

NikitaF.Eremeev BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

YuliaE.Fedorova BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

VladimirV.Galvita LaboratoryforChemicalTechnology,GhentUniversity,Ghent,Belgium

ElenaV.Golubina ChemistryDepartment,LomonosovMoscowStateUniversity,Moscow,Russia

SergeyA.Gurevich IoffePhysical-TechnicalInstituteoftheRussianAcademyofSciences,St. Petersburg,Russia

GuannanHu SchoolofEngineering,UniversityofWarwick,Coventry,UnitedKingdom

NicholasJose DepartmentofChemicalEngineeringandBiotechnology,UniversityofCambridge, Cambridge,UnitedKingdom;CambridgeCentreforAdvancedResearchandEducationinSingapore Ltd.,Singapore,Singapore

TamaraS.Kharlamova LaboratoryofCatalyticResearch,TomskStateUniversity,Tomsk,Russia

MikhailV.Korobeynikov BudkerInstituteofNuclearPhysicsSBRAS,Novosibirsk,Russian Federation

VladimirM.Kozhevin IoffePhysical-TechnicalInstituteoftheRussianAcademyofSciences,St. Petersburg,Russia

EkaterinaA.Kozlova BoreskovInstituteofCatalysis,Novosibirsk,RussianFederation

AlexeyV.Krasnov BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

TamaraA.Krieger BoreskovInstituteofCatalysisSBRAS;NovosibirskStateUniversity, Novosibirsk,Russia

AlexeiLapkin DepartmentofChemicalEngineeringandBiotechnology,UniversityofCambridge, Cambridge,UnitedKingdom;CambridgeCentreforAdvancedResearchandEducationinSingapore Ltd.,Singapore,Singapore

ChangdongLi UniversityofWarwick,Warwick,UnitedKingdom

MaoshuaiLi UniversityofWarwick,Warwick,UnitedKingdom

EkaterinaS.Lokteva ChemistryDepartment,LomonosovMoscowStateUniversity,Moscow, Russia

AntonI.Lukashevich BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

GrigoryV.Mamontov LaboratoryofCatalyticResearch,TomskStateUniversity,Tomsk,Russia

GuyB.Marin LaboratoryforChemicalTechnology,GhentUniversity,Ghent,Belgium

KonstantinI.Maslakov ChemistryDepartment,LomonosovMoscowStateUniversity,Moscow, Russia

YuliaG.Mateyshina InstituteofSolidStateChemistryandMechanochemistry,SiberianBranchof theRussianAcademyofSciences,Novosibirsk,Russia

NataliaV.Mezentseva BoreskovInstituteofCatalysisSBRAS;NovosibirskStateUniversity, Novosibirsk,Russia

MikhailA.Mikhailenko BudkerInstituteofNuclearPhysicsSBRAS,Novosibirsk,Russian Federation

DmitryYu.Murzin ProcessChemistryCentre,A ˚ boAkademiUniversity,Turku,Finland

AlexanderP.Nemudry InstituteofSolidStateChemistryandMechanochemistry,SiberianBranchof RussianAcademyofSciences,Novosibirsk,Russia

ValentinN.Parmon BoreskovInstituteofCatalysis,Novosibirsk,RussianFederation

HildePoelman LaboratoryforChemicalTechnology,GhentUniversity,Ghent,Belgium

IgorP.Prosvirin BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

EvgenyRebrov SchoolofEngineering,UniversityofWarwick,Coventry,UnitedKingdom; DepartmentofBiotechnologyandChemistry,TverStateTechnicalUniversity,Tver,Russia

V.Rives GIR-QUESCAT,DepartmentofInorganicChemistry,UniversityofSalamanca, Salamanca,Spain

TatianaN.Rostovshchikova ChemistryDepartment,LomonosovMoscowStateUniversity, Moscow,Russia

EkaterinaM.Sadovskaya BoreskovInstituteofCatalysisSBRAS;NovosibirskStateUniversity, Novosibirsk,Russia

VladislavA.Sadykov BoreskovInstituteofCatalysisSBRAS;NovosibirskStateUniversity, Novosibirsk,Russia

MikhailA.Salaev LaboratoryofCatalyticResearch,TomskStateUniversity,Tomsk,Russia

AlexanderN.Shmakov BoreskovInstituteofCatalysisSBRAS;NovosibirskStateUniversity, Novosibirsk,Russia;BudkerInstituteofNuclearPhysicsSBRAS,Novosibirsk,RussianFederation

IrinaL.Simakova BoreskovInstituteofCatalysis,Novosibirsk,Russia

PavelI.Skriabin BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

OlegL.Smorygo PowderMetallurgyInstitute,Minsk,Belarus

AlexandrYu.Stakheev ZelinskyInstituteofOrganicChemistryRAS,Moscow,Russia

V.Stathopoulos LaboratoryofChemistryandMaterialsTechnology,SchoolofTechnological Applications,TechnologicalEducationalInstituteofStereaEllada,Greece

YuriYu.Tanashev BoreskovInstituteofCatalysisSBRAS,Novosibirsk,Russia

StavrosAlexandrosTheofanidis LaboratoryforChemicalTechnology,GhentUniversity,Ghent, Belgium

ArtemS.Ulihin InstituteofSolidStateChemistryandMechanochemistry,SiberianBranchofthe RussianAcademyofSciences,Novosibirsk,Russia

NikolaiF.Uvarov InstituteofSolidStateChemistryandMechanochemistry,SiberianBranchofthe RussianAcademyofSciences,Novosibirsk,Russia

AndreC.vanVeen UniversityofWarwick,Warwick,UnitedKingdom

ZakharS.Vinokurov BoreskovInstituteofCatalysisSBRAS;NovosibirskStateUniversity, Novosibirsk,Russia

OlgaV.Vodyankina LaboratoryofCatalyticResearch,TomskStateUniversity,Tomsk,Russia

DenisA.Yavsin IoffePhysical-TechnicalInstituteoftheRussianAcademyofSciences,St. Petersburg,Russia

Preface

Nanomaterialsnowplaytremendousroleindealingwiththeproblemsofrenewableenergy generationandenvironmentprotectionbeingusedinthedesignofcatalystsforavarietyof relatedchemical/photochemicalprocesses,solidoxidefuelcells,membranesforoxygen/ hydrogenseparation,rechargeablepowersources,solarpanels,etc.Anyprogressinthesefields isbaseduponunderstandingfundamentalfactorscontrollingfunctionalpropertiesofthese materialsdeterminedbytheirchemicalcompositionandreal/atomicstructuredependingon theirgenesisandevolutionduetointeractionwithenvironment.Hence,approaches,methods, andtechniquesofmaterialsscience,surfacescience,reactionkinetics,andengineeringaretobe combinedtodealwiththeseproblemsandachieveapracticalsuccessinthedesignofefficient devises.Mainaspectsofthisconceptareillustratedinpresentedbookbaseduponthe experienceoftheteamofauthorsinframesofabroadinternationalcollaborationpromotedby ECFP6andFP7programs,RussianMinistryofEducationandScience,RussianFundofBasic Research,andRussianScientificFoundation.

AbroadrangeofnanomaterialsconsideredinthisbookincludesRucolloidnanoparticles;Ag, Pt,Pd,Ru,andNinanoparticlesandnanoalloysonavarietyofsupports;simpleoxides(Co3O4, Mn3O4,Fe3O4 andFe2O3,TiO2,CeO2,ZrO2,Cu2O,andrare-earthoxides);mixedoxides (ZrO2-CeO2,dopedceria,dopedzirconia,dopedceria-zirconia,Fe-V-dopedtitania,Zn-Cr hydrotalcites,spinels,perovskites,dopedLasilicateswithapatitestructure,andzeolite H-ZSM-5);supportedoxides(MnO/CeO2,NiO/YSZ,V2O5-WO3 overTiO2 nanotubes,etc.); andnanocomposites(V2O5-WO3 overTiO2 nanotubes,Cd1 xZnxSloadedwithCuSorNiS, perovskite-dopedceriaorzirconiananocompositesforSOFCcathodesandoxygenseparation membranes,alkali-ionconductingcompositesCsCl-Al2O3,etc.).

Advantagesofnewapproachestosynthesisofnanomaterialswerediscussedwithadueregard forsynthesisinflowconditions(includingsupercriticalalcohols);laserelectrodispersionof singlemetalsoralloysoncarbon,silicon,oroxidesupports;mechanochemistry;sonochemical procedures;microwaveorradiation-thermaltreatment;sol-gelroutes;selectiveadsorption ofsilvercationsonoxidesupportsinspecificconditions,etc.Theseproceduresallowtoobtain systemswithanarrowparticlesizedistribution,controlledmetal-supportinteraction,and nanocompositeswithuniformspatialdistributionofdomainsofdifferentphasesevenindense sinteredmaterials.

Specificityoftherealstructureandsurfacepropertiesofnanomaterialscharacterizedby advancedmethods(X-raysynchrotronradiationdiffraction,neutronography,transmission/ scanningelectronmicroscopywithelementalanalysis,solid-statenuclearmagneticresonance, insituhigh-temperatureMossbauerspectroscopy,X-rayphotoelectronspectroscopy, infraredandelectronspinresonancespectroscopiesofadsorbedtestmolecules,etc.)aswell asoftheirtransportpropertiescharacterizedbyimpedancespectroscopyandoxygenisotope heteroexchangewereconsidered.Effectsofnanosystemcomposition,bulkandsurface properties,metal-supportinteraction,redistributionofelementsbetweennanodomainsin metal-oxideandoxide-oxidenanocomposites,particlesizeandmorphology,deposition density,etc.ontheirfunctionalproperties(reactivity,transportcharacteristics,catalytic activity,andreactionmechanism)withadueregardforthehigh-temperaturesintering,catalyst interactionwiththereactionmedialeadingtochangeofthephasecomposition,aging,etc. wereanalyzed.

Thescopeofconsideredcatalyticreactionsincludestransformationoffuelsintosyngasand hydrogen;photocatalyticreactionsofhydrogenevolutionfromaqueoussolutionsofinorganic electrondonorsundervisiblelight;methanol-to-hydrocarbontransformationonzeolite catalysts;totaloxidationofhydrocarbons,formaldehyde,ethanol,CO,andNO;andoxidative dehydrogenationandselectiveoxidationoflightalkanesandoxygenates.Uniquecatalytic propertiesofextremelylow-loaded(lessthan0.01mass%)monometallic(Cu,Ni,andPd)and bimetallic(NiPdandNiAu)systemspreparedbylaserelectrodispersionmethodin isomerization,hydrogenation,hydrodechlorinationreactionsweredemonstrated.For colloid-derivedRuNPs,suchreactionsasCO2 hydrogenationtoformicacid;selective hydrogenationofunsaturatedaldehydes(citral);asymmetricalhydrogenationofaromatic ketonestosecondaryalcohols;hydrogenationofaketogroupofpyruvicacid;hydrogenationof C]OorC]Cbondsinsubstitutedacetophenones,ethylpyruvate,methyl-2acetamidoacrylateand m-methylanisole,andgalactoseandglucosetocorrespondinggalactitol andsorbitol;anddirecthydrogenolysisofcellobioseintopolyolswereshowntobeefficiently catalyzedaswell.

Nanocompositescomposedofcomplexoxides(La-orPr-dopedceria-zirconiasolidsolutions, complexperovskiteLa0.8Pr0.2Mn0.2Cr0.8O3,andtheircombinationswithYSZorNiO/YSZ) promotedbyPt,Ru,Ni,ortheircombination,selectedbyresultsofshort-termscreeningtestsin dilutedfeedsaspromisingcatalystsforthetransformationofgasandliquidfuelsintosyngas, wereshowntoretaintheiractivityandcoking/sinteringstabilitywhensupportedonstructured substrates(metallic,cermet,andceramic)andtestedinrealfeedsathightemperaturesand reagentconcentrationsinpilot-scaleinstallations.Thisisprovidedbytheoptimizationoftheir compositionandpreparationproceduresensuringdevelopedinterfacesbetweencomponents activatingfuelmolecules(NiandNi-Pt/Rualloys)andoxidant(O2,H2O,andCO2)molecules (complexoxideswithperovskiteandfluoritestructures).Nocrackingordetachmentoflayers fromsubstratesafterreactionwasobserved.Forsteamreformingofmethane,themost

promisingresultswereobtainedfornanocompositeactivecomponent La0.8Pr0.2Mn0.2Cr0.8O3 +NiO+YSZpromotedbyRuandsupportedoncompressedNi-Alfoam substrateandcorundumlayerprotectedFecralloygauzes.ForthetransformationofCH4 and liquidfossilfuels(decaneandgasoline)intosyngasviafastselectiveoxidationatshort contacttimesandforoxysteamreformingofbiofuels(ethanolandacetone),themostpromising typeofactivecomponentiscomposedofPr-dopedceria-zirconiasolidsolutionpromotedby LaNi(Pt)O3.Aradial-typereactorcombininglayerscomposedofstructuredheat-conducting catalyticelementsandhigh-surface-areamicrosphericalcatalystsappearstobethemost attractiveforselectiveoxidationoffuelsintosyngasduetointernalheatrecuperation.Basic kineticfeaturesofmethanepartialoxidationandsteamreformingonnanocompositeactive componentswereelucidatedandappliedformodelingofstructuredcatalystperformance inpilotreactors.PerformanceofstructuredcatalystsinCH4 internalreformingmodemeetsthe targetsofSOFCdesignbyarea-specificresistance,activity,andpowerdensity.

FormaterialsusedinthedesignofSOFC,membranes,batteries,etc.,importantroleplayedby domainboundaries/interfaceswasreliablydemonstrated.Thus,foralkali-ionconducting composites,themoststronginterfaceinteractionwasobservedforlithiumsaltsresultinginthe highestionicconductivity,makingthempromisingforthepracticalapplicationsinsolid-state batteriesandsupercapacitors.

ForferroelasticperovskiteswithmixedconductivitysuchasSrCo0.8 xFe0.2MxO3 δ (M ¼ Nb, Ta,W,andMo),promisingaselectrodematerialsforSOFCsandmembranematerials,an increaseinthecompositionaldisorderduetodopingwithferroactivecationsNb/Ta(V)and Mo/W(VI)wasaccompaniedbydiffusingoftheperovskite-brownmilleritephasetransition duetolocaltransformationsintheperovskitematrixwiththeformationofrandomly oriented90° nanosizeddomains.AsignificantdifferenceinthechargeofBcationsupon dopingwithMo/W(VI)resultsinthelocalorderingwiththeformationofdomainswitha doubleperovskitestructure.Nanostructuringresultedinthesuppressionofundesirablephase transitionsandahighdensityofinterfacesbetweencoherentlyjoineddomainsfavorably affectsthethermomechanicalandoxygentransportpropertiesofdopedmaterials.

Innanocompositesofperovskites(dopedmanganites,nickelates,cobaltites,etc.)withsolid electrolytes(dopedceria,zirconia,etc.),enhancedoxygenmobilityalongperovskite-fluorite interfacesandgenerationofnewactivesitesforoxygenexchangeonthesurfaceofthe electrolytedomainsduetocationredistributionmakesuchmaterialspromisingforusinginIT SOFCcathodesandoxygenseparationmembranes.

Ahighpowerdensityofsinglethin-filmfuelcellsintheintermediatetemperaturerangewith nanocompositecathodeswasreached.Asymmetricalsupportedoxygenandhydrogen separationmembraneswithnanocompositepermselectivelayersonNi-Alfoamsubstrate demonstratedpromisingandstableperformance/highpermeationflaxesduetofastionic transportandhighcatalyticactivityofthematerialsconcerned.

SynthesisofNano-CatalystsinFlow ConditionsUsingMillimixers

Avastnumberoffunctionalmaterialsaresynthesizedbyprecipitationwithprominent examplesincludingsorbents,catalystsupports,andbulkcatalystsortheirdirectprecursors. Ahighsensitivityofprecipitatepropertieslikespecificsurfacearea,grainsize,and structuralhomogeneitymakesrepeatablepreparationbyprecipitationamajorchallenge. Theoutcomesofaprecipitationaregovernedbylocalnucleationandgraingrowthrates,which themselvesdependonthedelicateinterplayofcationsolutionandprecipitationagentmixing andreactionconditionsliketemperatureandconcentrationlevel.Localphenomena,for example,reactioninvorticesleadingtotinyandvirtuallyisolatedcells,maydeterminethe overallprocessmakingpropertiesobservedaveragedoveranentirereactiondevicebeingan imprecisedescriptionofactualconditions.Frequentlyobservedupscalingissuesof precipitationsoralimitedcontrolinlargerconventionalvesselswellpossiblyoriginatesfrom thelatterstrongsegregationeffects.

Asaconsequence,manyobservationsusingconventionalprecipitationequipmentmayhave beenbiased.Asaconsequenceweidentifiedtheneedtoinvestigateprecipitationreactionsin microfluidicequipmentallowingpreciselocalcontrolofreactionconditions.Thischapter providesanoverviewofkeyresultsanalyzingtwocomplementarycasestudiesfollowing differentscientificobjectives.Thefirstcasetargetsonthefinalpreparationofawell-defined hydrotalcitematerialrequiringpriortouseonlyconventionalsolidworkup.Itturnedoutthat theprecipitationratehadtobelimitedsuchthattheformationofthethermodynamically favoredbutstructurallydemandinghydrotalcitephasewasfavoredovertherapidprecipitation ofunregularlycomposedsolidmatter.Elevatedprecipitationtemperaturesandlongeraging timesindelayingcoilswerefoundbeingappropriatereactionengineeringmeasuresto implementasuitableflowsynthesismethod.Thesecondexampleconcernstheprecipitationof asolidprecursorfortheefficientsynthesisofperovskitesavoidingtheneedforchelatingand/or gelationagentsusuallyemployedduringsynthesis.Althoughtheconventionalroutes,thatis, thecitricacidgelationortheso-calledPechinimethods,yieldhighlyefficientperovskites upscaletoindustrialproductionvolumeswouldbedifficultsincesafetyconcernsandthe

batchwiseoperationmodewouldlimitcapacity.Furthermore,theremaybeconcernsarising fromthemodestenergyefficiencyandtheenormousCO2 rejectionwhenreasonablycomplex organicmoleculesusedinexcessquantityarecombustedduringsynthesis.Clearly,any perspectivetointroducemembranetechnologyusingoxygenpermeableperovskitesat industrialscaledependsondevelopingasuitablesynthesismethodforthemembranematerial. Theexampleincasestudytwopresentedheresuggestsacontinuousroute,andcapacity canbescalednumberinguptheflowsynthesischannels.Itwasfoundthataveryrapid precipitationofasolutioncontainingcationintheappropriateratioallowedfreezingthe moleculardispersionintheobtainedsolid.Theuseoflowprecipitationtemperaturesanda combinationofsuitableprecipitationagentswereidentifiedassuitablereactionengineering methodstoimplementthesynthesismethod.

CaseStudyOne:DesignandOptimization ofMultistageFlowSynthesisConfigurations toPrepareZn-CrHydrotalcites

Thiscasestudyreportsontheeffectofreactionengineeringmeasuresonthequalityof synthesisofadefinedsolidphasebytheso-calledflowsynthesismethod.Theconsidered examplewasthesynthesisZn-Crhydrotalcitesbeingstructurallymoredifficulttoformthan conventionalMg-Alhydrotalcitematerials.Twokindsofmultistageflowsynthesis configurations,“decreasingpHroute”and“increasingpHroute,”aredesignedand implementedintotheproductionofZn-Crhydrotalcites.Bothflowsynthesisconfigurations showmuchbettercapacitythancoprecipitationmethodatoptimizedproductionconditionsto producethebetterhydrotalciteprecursorshavinghigheryieldandBETsurfacearea,better crystalliteproperties,andmoredesirablepracticalmolarratioofZn/Cr.Theoptimization ofbothconfigurationsisundertakentoconfirmitsappropriateproductionconditionsincluding coilresidencetimeoffluid,precipitationtemperature,andboresizeofmillimixertoachieve betterpropertiesoffinalproducedhydrotalciteprecursors.Theresultsofoptimizationtests showclearlythatahighprecipitationtemperature,arelativelargerboreofmillimixer,and alongercoilresidencetimearerecommendedtobeappliedintotheproductionofhydrotalcite precursorswithbetterproperties.Furthermore,“increasingpHroute”isprovedasthemore appropriatemultistageflowsynthesisconfigurationthan“decreasingpHroute”tobe implementedintothesynthesisofhydrotalciteprecursorsachievingthebetterproperties. Hydrotalcitesshowalayereddoublehydroxidestructure(LDHs)andpresentaclassof importantmaterialswidelyusedinpracticalapplications,forexample,ascatalyst,catalyst support,polymerstabilizers,andanionexchangers [1–4].Thelaboratoryusedpreparation

methodstoproducehydrotalciteprecursorsincludecoprecipitation [5–7],ureahydrolysis [8,9], hydrothermaltreatmentandsynthesis [10,11],combustionsynthesis [12],solgel [13–15], microwaveirradiation [16,17],steamactivation [18],andsolvothermalmethod [19] according toliteratureresearches.Hydrotalcitesanditsderivedmixedoxidesaregenerallyacceptedas suitablecatalystprecursorstoenablehighercatalyticperformancerelatedtoanincreased numberofactivesitesresultingfromhighersurfaceareas.Toachievethedevelopmentof hydrotalciteoncatalyticactivity,thecommonpreparationtechniqueslistedabovenormally requireheavyandvastinvestmentofenergy,time,andresourcetoimproveproductivityand controlledsynthesisprocess.Andlowcapacityofscaling-upisalsoafragiletaskforthose preparationtechniques.Toamelioratefaceddilemmaswithconventionalpreparation techniques,thenovelmultistageflowsynthesisconfigurationsshowingbetterenergyand environmentallyefficiencyandimprovedmaterialpropertyandproductivityaredesigned,and theoptimizationsarealsocompleted.

Theconventionalapplicationsofflowsynthesisthatisoneofthehottopicsofmaterial preparationinrecentyearscouldbesummarizedassemicontinuousflowsynthesisand continuousflowsynthesis.Semicontinuousflowsynthesisisregardedasthecombinationof bothbatchandcontinuousoperations [20].Continuousflowsynthesisnormallyisdefinedasa continuouslymixingofstreamsinreactorsandacontinuouslyharvestunderthesteady-state conditions [21–23].Evenafterthedevelopmentoncontinuousflowsynthesisinrecent years,thecontinuousflowsynthesisisstillappliedasthecombinationofonereactorandone narrow-boretube [24,25].Differentwiththecommonunderstandingandapplicationof continuousflowsynthesis,thenovelflowsynthesisconfigurationspresentedinthispaperare builtwithmultistagecontinuousflowsynthesisandprecipitationprocesswithimplementation ofmillimixerforallstagestoachievedesirablematerialandpropertiesofhighyieldand surfacearea.Withthisnoveldesign,theapplicabilityofcontinuousflowsynthesisisgreatly expanded,theprecipitationconditionsaretightlycontrolled,theprecipitationprocessisfacile adjustableintegrallyorpartly,theproductivityofmaterialisimprovedby“numbering-up” approach,andthedesiredmaterialqualityisachieved.

1.1.1SynthesisMethodology

1.1.1.1Materials

Thechemicalsusedinthisworkincludezinc(II)nitratehexahydrateandchromium(III)nitrate nonahydratethatarecalledasmetalreactant,ammoniahydroxidesolution(35%,wt%), andammoniumcarbonatethatarecalledasprecipitationagent.Thedeterminationoftheusage ofeachcompoundisbasedontheprincipleofproducingmorematerialsbutavoiding potentialcloggingissues.Accordingtoseveraltests,thetotalmolesofmetalreactantsare determinedas0.02mol,andtherewouldhavecloggingissuesiftheusageofmetalreactantis

higher.Toformtheclassichydrotalciteprecursorstructure,themolarratioofZn2+/Cr3+ applied inthisworkis6:2.Therefore,themolarofzinc(II)nitratehexahydrateusedintopreparation is0.015molandchromium(III)nitratenonahydrateis0.005mol.Inordertoinsurethefinal pHofprecipitationis9–10thatisregardedasthemostproperprecipitationpH,themolarof ammoniahydroxideusedintopreparationis0.05mol,andammoniumcarbonateis0.0025mol.

1.1.1.2FlowSynthesisConfiguration

Atypicalpreparationbenchwithflowsynthesisconfigurationsdesignedinthisworkincludes oneinjectionpump,threemillimixers,threecoiltubes,andnecessarysupportingequipment.

TheinjectionpumpusedinthisworkisWatson-Marlow323Duperistalticpumpwith318MC eight-rollerpumphead,andtheinjectionflowrateiscontrolledbyadjustingthepumprate ofrpm.ThemillimixerusedinthisworkisThamesRestek’s1/800 PEEKT-mixer,andthebore sizeofthemillimixeris2.0and1.5mm,respectively.ThecoiltubeisFEPtubing(1/800 OD, 2.4mmID),andthelengthofeachcoilisadjustedtoensureanequalresidencetimeofliquid ineachstageofcoil.Thefulldetailsofmodifiedinjectionflowrateandcoillengthare presentedin Section1.1.1.4.Furthermore,anElmasonicwaterbathisusedtocontrolthe precipitationtemperaturefromroomtemperaturetoamaximumof80°C.

TwoconfigurationsofflowsynthesisaredesignedaccordingtothepHchangingroutethrough thecoils.Twoconfigurationsarenamedas“decreasingpHroute”and“increasingpHroute,” andtheschemeispresentedin Fig.1.1.1 and Fig.1.1.2,respectively.

Fig.1.1.1 Flowschemeof“decreasingpHroute.”

Flowschemeof“increasingpHroute.”

Generallyspeaking,“decreasingpHroute”istheconfigurationwherelow-concentrationmetal reactantsolutionsareinjectedgraduallyintothemainflowofprecipitationagentsolutionand pHoftheliquidthroughthecoilwilldecreasefromveryhighvalueandthefinalpHinthe collectingbeakeris9–10.But“increasingpHroute”representsthatlow-concentration precipitationagentsolutionsareinjectedgraduallyintothemainflowofmetalreactantsolution andpHofliquidthroughthecoilwillincreasefromverylowvalueandthefinalpHinthe collectingbeakerisalso9–10.

Forbothconfigurations,theprecipitationoccurswithinthreemillimixers,andthereactionis ongoingoverallthreecoils.Itisunderstoodthatthepropertiesoffinalprecipitatesaredetermined bytheprecipitationphenomenonwithinthemillimixersandthecoilsthatismainlycontrolledby themixingspeedofinjectedliquidswithinmillimixers,temperatureofreactionwithinboth millimixersandcoils,andreactionresidencetimewithinthecoils.Toinvestigateandoptimize thesekeyfactorsontheperformanceofbothconfigurations,twokindsofboresizeofmillimixer representingtheperformanceofmixingspeedofliquids,threedifferentcoiltimes(fluid residencetimethroughallcoils),andsixdifferentreactiontemperaturesaretestedonboth configurations.Thedetailedoperationproceduresarestatedbelow.

Forbothflowsynthesisconfigurations,twokindsofmillimixerswithdifferentboresizeare usedinthisworkthatincludes2.0and1.5mm-boremillimixer.Allmillimixersandcoilsare connectedfollowingtheschemeshownin Fig.1.1.1 and Fig.1.1.2 andthenplacedinthe waterbath.Inthisway,theprecipitationreactiontemperaturewithinthemillimixersandcoils canbethuscontrolledtightlybythewaterbath.Thetestedprecipitationreaction temperaturesinclude23,35,45,60,70,and80°C.

Fig.1.1.2

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Advanced nanomaterials for catalysis and energy: synthesis, characterization and applications sadyko by Education Libraries - Issuu