Advanced machining processes of metallic materials : theory, modelling and applications 2nd edition

Page 1


https://ebookmass.com/product/advanced-machining-processes-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Plasticity of Metallic Materials 1st Edition Oana Cazacu

https://ebookmass.com/product/plasticity-of-metallic-materials-1stedition-oana-cazacu/

ebookmass.com

Tribology and Fundamentals of Abrasive Machining Processes 3rd Edition Bahman Azarhoushang

https://ebookmass.com/product/tribology-and-fundamentals-of-abrasivemachining-processes-3rd-edition-bahman-azarhoushang/

ebookmass.com

Carbon

Dioxide Capture and Conversion: Advanced Materials and Processes Nanda S.

https://ebookmass.com/product/carbon-dioxide-capture-and-conversionadvanced-materials-and-processes-nanda-s/ ebookmass.com

Doing Business in Africa: From Economic Growth to Societal Development 1st ed. Edition Suzanne M. Apitsa

https://ebookmass.com/product/doing-business-in-africa-from-economicgrowth-to-societal-development-1st-ed-edition-suzanne-m-apitsa/

ebookmass.com

Introduction to Ansible Network Automation: A Practical Primer Brendan Choi

https://ebookmass.com/product/introduction-to-ansible-networkautomation-a-practical-primer-brendan-choi-2/

ebookmass.com

Biblical Servant Leadership 1st ed. Edition Steven Crowther

https://ebookmass.com/product/biblical-servant-leadership-1st-ededition-steven-crowther/

ebookmass.com

Game Theory, Diplomatic History and Security Studies Frank C. Zagare

https://ebookmass.com/product/game-theory-diplomatic-history-andsecurity-studies-frank-c-zagare/

ebookmass.com

Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Preparation, Modelling, Application, and Commercialization Angelo Basile (Editor)

https://ebookmass.com/product/current-trends-and-future-developmentson-bio-membranes-silica-membranes-preparation-modelling-applicationand-commercialization-angelo-basile-editor/

ebookmass.com

International Fire Code (International Code Council Series) 2021 1st Edition International Code Council

https://ebookmass.com/product/international-fire-code-internationalcode-council-series-2021-1st-edition-international-code-council/

ebookmass.com

https://ebookmass.com/product/practical-psychiatry-for-students-andtrainees-a-m-odwyer/

ebookmass.com

ADVANCEDMACHINING PROCESSESOFMETALLIC MATERIALS

ADVANCEDMACHINING PROCESSESOFMETALLIC MATERIALS

Theory,Modelling,andApplications

SecondEdition

WITGRZESIK

ProfessorofMechanicalEngineering,FacultyofMechanical Engineering,OpoleUniversityofTechnoloy,Poland

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright r 2017ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfrom anyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-444-63711-6

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com

Publisher: JoeHayton

AcquisitionEditor: ChristinaGifford

EditorialProjectManager: HeatherCain

ProductionProjectManager: KiruthikaGovindaraju

Designer: MariaInesCruz

TypesetbyMPSLimited,Chennai,India

PREFACE

Thebroadsubjectofmanufacturingengineeringandtechnology,includingmachining technology,continuestoberecognizedasanimportantanddistinctareaofstudyat mechanicalengineeringfacultiesofuniversitiesandvarioustechnicalandresearch institutes.Afteracoupleofdecadesofneglect,thisproductionsubjecthasfinally acquiredthedistinctacademicstatureandsignificance.Engineersandstudentshave cometotheconclusionthatwithoutasoundmanufacturingbase,nonationcanhope foreconomicsurvivalinanincreasinglycompetitiveinternationalmarketplace.

Thisbookisanexplorationinmodernmachiningtechnology.Inadditiontoprovidingbasicinformationonmetalcuttingprocessesandoperations,thisbookalsodescribes thelevelofmodernmachiningtechnology,adopted,tovaryingdegrees,bydifferentsectorsofindustryingeneral.Metalmachining/cuttingisadynamictechnology,involving therangeofdisciplinesofscience,whichmustbemasteredtobecomeapractitionerof advancedmachiningtechnology.Someofthesedisciplinesaretheprovinceofmachining technologists,othersconcernbothcuttingtoolandmachinetoolmanufacturers,and machinetoolbuildersandusers.Nonetheless,itcanbehelpfulforallmachining-related businessestohaveagoodgraspoftherelevantissuesineacharea.Theeightdisciplines areasfollows,eachofwhichiscoveredinrelevantclustersofchapters:

•Materialsengineering(seechapters:CuttingToolMaterials;Machinabilityof EngineeringMaterials)

•Engineeringmechanicsandrelateddisciplines(seechapters:Orthogonaland ObliqueCuttingMechanics;ChipFormationandControl;CuttingVibrations)

•Thermodynamics(seechapters:HeatinMetalCutting;ToolWearandDamage; andpartiallychapter:CuttingFluids)

•Tribology(seechapters:TribologyofMetalCutting;ToolWearandDamage;and partiallychapter:CuttingFluids)

•Modellingtechniques(basicallychapters:ModellingandSimulationofMachining ProcessesandOperationsandsuccessivelychapters:OrthogonalandObliqueCutting Mechanics;ChipFormationandControl;CuttingVibrations;HeatinMetalCutting; CuttingFluids;TribologyofMetalCutting;ToolWearandDamage;Machinabilityof EngineeringMaterials;MachiningEconomicsandOptimization)

•Manufacturingengineering(seechapter:AdvancedMachiningProcessesand appropriatesectionsinvolved)

•Processandmotioncontrol(seechapters:ChipFormationandControl;SensorAssistedMachining;Virtual/DigitalandInternet-BasedMachining;andpartially chapter:AdvancedMachiningProcesses)

•Surfaceengineering(seechapter:SurfaceIntegrity)

Ingeneral,thisbookisstructuredintothreeparts:thefirst,includingChapter:2, MetalCuttingOperationsandTerminology;Chapter3:TrendsinMetalCutting TheoryandPractice;Chapter4,CuttingToolMaterials;Chapter5,Modellingand SimulationofMachiningProcessesandOperations;Chapter6,Orthogonaland ObliqueCuttingMechanics;Chapter7,ChipFormationandControl;Chapter8, CuttingVibrations;Chapter9,HeatinMetalCutting;Chapter10,CuttingFluids; Chapter11,TribologyofMetalCutting;Chapter12,ToolWearandDamage; Chapter13,MachinabilityofEngineeringMaterials;Chapter14,Machining EconomicsandOptimization,providesfundamentalsofthemachiningprocess;the second,includingChapter15,AdvancedMachiningProcesses;Chapter16, Micro-Machining;Chapter17,Nanomanufacturing/Nanotechnology;Chapter18, Sensor-AssistedMachining;Chapter19,Virtual/DigitalandInternet-Based Machining,overviewstheeffectsofthetheoreticalandexperimentalconsiderationsin high-levelmachiningtechnology;andthethirdChapter20,SurfaceIntegrity, summarizesproductionoutputsrelatedtosurfaceintegrityandpartquality. Numerouscolourimagesareprovidedtofacilitatethecomprehensionofthephysical phenomenoninvolvedandthedevelopmentsofcuttingtools,machinetoolsand machinecontrolsystems.

Numerousreferencesareprovidedformoredetailedormoreextensiveinformationonvariousaspectsofmetalcuttinganditseffectiveapplicationsrangingfrom mezo-tonano-scale.

Inparticular,Ihaverecommendedthefollowingbooks(inalphabeticorder)tobe goodsourcesofadditionalinformationformetalcuttingprocessandtheiroptimal applications:

G.Boothroyd,W.A.Knight,FundamentalsofMachiningandMachineTools, CRCPress,BocaRaton,2006,isanexceptionalsourceofdescriptionsofvarious cutting-orientedphenomenaanrecentadvancesinconventionalandnonconventional machiningprocesses.

T.H.C.Childs,K.Maekawa,T.Obikawa,Y.Yamane,MetalMachining.Theoryand Applications,Arnold,London,2000,isagoodsourceforreliableexperimentaldataand modellingtechniques(slip-line,FEM,AI-based)developedmainlyinUKandJapan.

M.C.Shaw,MetalCuttingPrinciples,ClarendonPress,Oxford,1989,isagood sourceforscientificinterpretationofphysicalprinciplesofconventionalmachining processesbasedonclassicalmechanics,strengthofmaterialsandtribology.

H.K.Tonshoff,B.Denkena,BasicofCuttingandAbrasiveProcesses,Springer, Heidelberg,2013,isanewreferencedevotedtoavailabletechnologyofmetalcutting andabrasiveprocessesandtheireffectiveimplementationinthecontemporaryindustrialpractice.

E.M.Trent,P.K.Wright,MetalCutting,ButterworthHeinemann,Boston,2000, isauniquesourceforbothtraditionalmaterial-basedapproachtothemetalcutting phenomenaandessentialaspectsof21st-centurymanufacturing.

Accordingtotheauthor’sintention,thisbookisaddressedtothosestudyingand teachingtheprinciplesofmachiningprocessesandoperationsatuniversities,aswellas providinganupdatedtheoreticalandappliedknowledgeforthoseinvolvedinthe machining/manufacturingindustry.

Iamverygratefultoallofthosecompanies(citedbynameorreferencenumber inthefigurelegendsandtablefootnotes)thatgrantedpermissionforreproductionof numerousfiguresandtables.

IexpressmygratitudetomycoworkerDr.K. ˙ Zakforhisinvaluablehelpin preparationillustrationsandgraphics.Finallyandmostimportantly,Ithankmyfamily foritspatienceduringthemanytimeswhenmypreoccupationwiththisbook inconveniencedthem.

July2016

NOMENCLATURE

LATINSYMBOLS

A shapefactorinShaw’sequationforheatpartition

Aa apparentareaofcontactbetweentwosurface;averagevalueofshape factor A

Ac cross-sectionalareaoftheuncutchip,i.e.,thecross-sectionalareaof thelayerofmaterialbeingremovedbyonecuttingedgemeasured normaltotheresultantcuttingdirection;contactarea

Am maximumvalueofshapefactor A

Ar realareaofcontactbetweentwosurfaces

Ash areaofshearplane

Aα toolflank,i.e.,thesurfaceoverwhichthesurfaceproducedonthe workpiecepasses

Aγ toolface,i.e.,thesurfaceoverwhichthechipflows

ae workingengagement,i.e.,theinstantaneousengagementofthe completetoolwiththeworkpiece,measuredintheworkingplane Pfe andperpendiculartothedirectionoffeedmotion(previously knownasdepthofcutinaslab-millingoperation)

af feedengagement,i.e.,theinstantaneousengagementofthetool cuttingedgewiththeworkpiece,measuredintheworkingplane Pfe andinthedirectionoffeedmotion(insingle-pointmachining operationsitisequaltothefeed f;inmultipointtooloperations,it isequaltothefeedpertooth)

ap backengagement,i.e.,theinstantaneousengagementofthecompletetoolwiththeworkpiece,measuredperpendiculartotheworkingplane Pfe (previouslyknownasdepthofcutinasingle-point tooloperationandwidthofcutinaslab-millingoperation)

apl lowerlimitofdepthofcut(doc)

apu upperlimitofdoc

av amplitudeofvibration

B groovewidthinagroovetool;zonewheretheflankisregularly worn

Be equivalentgroovewidthinagroovetool

BL lengthofgroovebackwallwear

BW widthofgroovebackwallwear

b widthofcut;widthofthecuttingedge

bcr thelowest blim obtainedforthephasingmostfavourableforchatter generation

blim limitingstableaxialdepthofcut

C constantinupperboundarypredictionfortheshearanglebyOxley, constantinShaw’sequation

CT1, CT2, CT3

constantingeneraltool-lifeequation

Cv cuttingspeedfor1minoftoollife(inm/min)

Cm costofmachining,neglectingnon-productivecosts

Cmat costofmaterialforoneworkpiece

Cmin minimumcostofproduction,i.e.,theminimumvalueof Cpr

Cmt totalmachiningcost

Cpr productioncost,i.e.,theaveragecostofproducingeachcomponent ononemachinetool

Cv constantintheinverseTaylorequationequaltothecuttingspeed for T 5 1min

Ct constantintheoriginalTaylortool-lifeequation

CT constantintheTaylorequationequalto T for vc 5 1m/min

c rigidityconstant

cd dampingforceperunitvelocity,i.e.,theviscousdampingconstant

cp specificheatcapacity

D tooldiameter(e.g.drillormillingcutter)

dF variationinthecuttingforce

E Young’smodulus;processactivationenergy

Ec cuttingenergy

Ef energyrequiredtoperformfeedmotion;frictionenergy

Ep energyrequiredtoperformplasticdeformation

Esh energyrequiredtoperformshearing

Efα energyrequiredtoovercomefrictionontheflankface

Efγ energyrequiredtoovercomefrictionontherakeface

e baseofnaturallogarithm

ec specificcuttingenergy

efγ specificfrictionenergyrelatedtotherakeface

esh specificcuttingenergyrelatedtoshearing

F resultantcuttingforce

F(t) periodicforce(infunctionoftime)

Fa activeforce

Fc cuttingcomponentoftheresultanttoolforce, Fr

Fc N anasymptoticvalueofthecuttingforce Fc

Fdyn forcecomponentduetochipdeformationinHSC

Ff feedforce

Fm momentumforce

Fo Fouriernumber

Fo objectivefunction

Fp ploughingforce

Fr resultanttoolforce

Fsh forcerequiredtosheartheworkmaterialontheshearplane

FshN forceperpendiculartotheshearplane

Fsu resultantshearforceinHSC

Fα tangentialforceontheflankface

FαN forceperpendiculartoflankface

F

γ frictionalforceonthetoolface;frictionalforcebetweensliding chipandtool

Fγ N forceperpendiculartotherakeface

f feedrate,i.e.,thedisplacementofthetoolrelativetotheworkpiece, inthedirectionoffeedmotion,perrevolutionoftheworkpieceor tool

fm feedperminute

fmax maximumavailablemachinefeed

fl lowerlimitoffeed

fn resonanceoffrequency

fnd naturaldampedfrequencyofthesystem

fopt optimumvalueoffeed

fu upperlimitoffeed

fz feedpertooth

HT hardnessofthetoolmaterial

HW hardnessoftheworkpiecematerial

HRC Rockwellhardnessnumber(Cscale)

HSC highspotcount(count(s))(seealsoHighSpeedCutting)

h uncutchipthickness,i.e.,thethicknessofthelayerofmaterialbeing removedbyonecuttingedgeattheselectedpointmeasurednormal totheresultantcuttingforcedirection

hch chipthickness

hcmin meanuncutchipthickness,i.e.,themeanvalueof hc

hcmax maximumuncutchipthickness,i.e.,themaximumvalueof hc

Im[G] imaginarypartoftheFRF

K constantforamachiningoperation;canberegardedasthedistance travelledbythetoolinrelationtotheworkpieceduringthe machiningtime tm.

K1 K8 constantinLPM

[K] globalstiffnessmatrix

KB distancefromthecuttingedgetothebackcratercontour

KE radialdisplacementofthetoolcorner

KF widthofthelandbetweenthecraterandcuttingedge

KM distancefromthecuttingedgetothedeepestcraterpoint

KT craterdepth;depthofgroovebackwallwear

K1C fracturetoughness

k shearstressintheslip-linefield;constantintheStabler’sformula; dampingratio;negativeslopeofthetool-lifecurve

kc specificcuttingpressure

kh chipthicknesscompressionratio(also Λh)

L toollength;cuttinglength;lay(surfacetexture)

l landlengthinagroovedtool

lc naturaltool-chipcontactlength

lca lengthoftheactivecuttingedge

lcr restrictedtool-chipcontactlength

le equivalentrestrictedcontactlength

lm lengthofmachinedsurface

lnc naturalcontactlength

lp lengthoftheplasticcontact

lsh lengthofshearplane(also lAB)

lsl sliding-contactlength

lst sticking-contactlength

lt lengthoftool

lw lengthofworkpieceorholetobemachined;lengthofcutpathor cutsurface

M totalmachineandoperatorrate(costperunittime),including machinedepreciation

Mt operator’s Wo andmachineandoperatoroverheads;meanline(M) system

MR machinabilityrating

Mr1 uppermaterialratio(%)

Mr2 lowermaterialratio(%)

Mt machine-tooldepreciationrate(costperunittime)

M 0 t machine-toolrateincludingoverheads(costunittime)

MT1 MT5 extremefinishing;finishing;semi-roughing,roughingandheavy roughingmachiningoperations

m slopeoflinearplasticstress strainrelation;relativeshearstressin RoweandSpick’smodel;massofthevibrationsystem;widthofthe contactzone

mavg averagenumberofteethinthecut

mch massofchipspecimen

m1 strainratesensitivityexponent

N numberofteethonthecuttingtool;numberoffullwaves;nose wear

Nb batchsize,i.e.,thenumberofcomponentsinthebatchtobe machined

Nt numberoftoolsusedinmachiningthebatchofcomponents

NL1 notchwearlengthonmaincuttingedge

NL2 notchwearlengthonsecondarycuttingedge

NW1 notchwearwidthonmaincuttingedge

NW2 notchwearwidthonsecondarycuttingedge

NT thermalnumber;numberoftoolchangesnecessaryduringthe machiningofabatchofcomponents

n strain-hardeningindexorexponent;constantinTaylor’stool-life equation;spindlerotationspeed

nopt optimumvalueofrotationalspeed

ns rotationalfrequencyofamachine-toolspindle

nsc rotationalfrequencyofamachine-toolspindleforminimum productioncost

nsef rotationalfrequencyofamachine-toolspindleforminimum efficiency(maximumprofitrate)

nsp rotationalfrequencyofamachine-toolspindlefoeminimum productiontime

nt rotationalfrequencyofthecuttingtoolorabrasivewheel

nw rotationalfrequencyofworkpiece

P power

{P} vectorofallappliedloads

Pc localpeakcount(count/cm)(alsocuttingpower)

Pe electricalpowerconsumedbythemachinetoolduringamachining operation

Pec Pecletnumber

Pf assumedworkingplane

Pfe workingplane

Pg tool-faceorthogonalplane

Pm powerrequiredtoperformthemachiningoperation

Pn cuttingedgenormalplane

Po toolorthogonalplane

Pp toolbackplane

Ppe workingbackplane

Pr toolreferenceplane,therateofproduction

Pre workingreferenceplane

Ps toolcuttingedgeplane

Pse workingcuttingedgeplane

Psh shearplane

pA hydrostaticpressureinpoint A atthefreesurface

ps specificcuttingpower,i.e.,theworkrequiredtoremoveaunit volumeofmaterial

Q totalamountofheatgeneratedinmachining

Q1 heatsourceduetoplasticdeformation

Q2 frictionalheatsource

Q3 heatsourceatthecontactbetweentheworkpieceandtheflank

Q4 heatsourcefromwhichasmallpartofheatistransferredtothe sub-surfacelayer

QW volumetricmaterialremovalrate

qc heatfluxflowingtothechip

qt heatfluxflowingtothetool

qw heatfluxflowingtotheworkpiece

q heatflowrate

R thermalnumber;universalgasconstant;surfaceroughness

{R} loadvector

Ra arithmeticalmeanvalueofsurfaceroughness(CLA)

Rc Rockwellhardnessnumber(Cscale)

Rch heatpartitioncoefficient,i.e.,percentageofheatenteringthechip

Rk coreroughnessdepth

Rku kurtosis

RKF heatpartitioncoefficientdefinedbyKatoandFujii

Rmin(τ ) minimumradiusofup-curling

Rmr(c) materialratioatdepth‘c ’

Ro grooveradius

Rp maximumheightofpeaks

Rpk reducedpeakheight

Rq rootmeansquare(RMS)average

RR heatpartitioncoefficientdefinedbyReznikov

Rsk skew(skewness)

Rsm averagepeakspacing

RSH heatpartitioncoefficientdefinedbyShaw

Rt totalheightoftheprofile(obsolete Rmax)

Rv maximumdepthofvalleys

Rvk reducedvalleydepth

Rz maximumheightoftheprofile

Rzt theoreticalvalueofP Vparameter

RΔa centrelineaverage(CLA)slope(deg)

RΔq RMSslope(deg)

Rλa CLAwavelength

Rλq RMSwavelength

r min radiusofthecuttingedgeatwhichcuttingistakingplace

rc cuttingratio

rchip radiusofthechipcurvature

r n radiusofthecuttingedge

rs side-curlingradius

ru up-curlingradius;chipcurvature

rui radiusofinitialchipcurl

ruf radiusoffinalchipcurl

rε cornerradius,i.e.,theradiusofaroundedtoolcorner

S toolmajorcuttingedge;incomepercomponent

Sa activecuttingedge

S ’ toolminorcuttingedge

SD depthofsecondaryfacewear

SL samplinglength

SW widthofsecondaryfacewear

s lamellarspacing

T temperature;absolutetemperature;toollife

T averagetoollife

Te economictoollife(also TE)

Tm meltingtemperature

To referencetemperature

Tmod velocitymodifiedtemperature

Tp toollifeformaximumproductionrate(also TQ)

TR referencetoollife

Tr room(ambient)temperature;toollifeforacuttingspeedof vr

t time

ta accelerationtime

tc toolchangingtime,i.e.,theaveragemachinetimetochangea worntoolortoindex(and,ifnecessary,replace)aworninsert

tcs interchangetime

te magazineindexing(travelling)time

td decelerationtime

tl non-productivetime,i.e.,theaveragemachinetimetoloadand unloadacomponentandtoreturnthecuttingtooltothebeginning ofthecut

tl loadingandunloadingtime

tm machiningtime,i.e.,machinetimetomachineacomponent

tmax maximumoperationtime

tpr productiontime,i.e.,theaveragetimetoproduceonecomponent ononemachinetool

tr transportation(approach)timeperworkpiece

tx rapidtravellocationtime

{U} matrixofnodalvelocities

{

u} displacementvector

Vw volumeoftoolmateriallostduetowear

VBB averagewidthofflankwearlandinthecentralportionoftheactive cuttingedge

VBBmax maximumwidthofflankwearlandinthecentralportionofthe activecuttingedge

VBC widthofflankwearattoolcorner

VBN widthofnotchwear

Vm. volumeofmaterialremovedinmachining

VN widthoftheflankwearlandatthewearnotch

VB 0 wearofminorflankface

vac meancuttingspeed,i.e.,theaveragevalueof v alongthemajor cuttingedge

vc cuttingspeed,i.e.,theinstantaneousvelocityoftheprimarymotion oftheselectedpointonthecuttingedgerelativetotheworkpiece

vcc optimumcuttingspeedforminimumproductioncost

vce cuttingspeedatminimumcost

vch chipvelocity

vcp optimumcuttingspeedforminimumproductiontime

vcR referencecuttingspeedintool-lifeequationforgroovedtool

vcT cuttingspeedcorrespondingtodefinedtoollife T

vcTmax cuttingspeedcorrespondingtomaximumtoollife Tmax

ve resultantcuttingspeed,i.e.,theinstantaneousvelocityofthe resultantcuttingmotionoftheselectedpointonthecuttingedge relativetotheworkpiece

vef cuttingspeedformaximumefficiency(maximumrateofprofit)

vf feedvelocity

vHSC UTS-dependingcuttingspeedinHSC

vmax maximumcuttingspeed,i.e.,maximumof vc

vmin minimumcuttingspeed,i.e.,minimumof vc

vp cuttingspeedforminimumproductiontime

vpo cuttingspeedwhenmaximumpowerisused

vr cuttingspeedgivingareferencetoollifeof Tr vs shearingvelocity;slidingvelocity

v sl ch chipvelocityalongtheslidingregion

v st ch chipvelocityalongthestickingregion

W weightofworkpiece;waviness

Wc toolcoatingeffectfactor

Wg chip-grooveeffectfactor

w widthofcut

X1

codedvalueofspeedinLPM

X2 codedvalueoffeedinLPM

x distancefromthepointofchipseparation

GREEKSYMBOLS

α alpha-phase,thermaldiffusivity

αe thermalexpansioncoefficient

αn toolnormalclearance

αne workingnormalclearance

αT thermaldiffusivityofthetoolmaterial

αW thermaldiffusivityoftheworkpiecematerial

β proportionofheatconductedintotheworkpiece;beta-phase

χ characteristicofcontactlengthinRoweandSpick’smodel

Γ proportionofheatgeneratedinprimarydeformationzone conductedintoworkpiece

γ gamma-phase

γ AB strainonshearplaneinOxley’smodel

γ EF shearstrainalongtheexitboundary EF inOxley’smodel

γ c catastrophicshearstrain

γ e effectiverakeangle(also γ ef and γ eff)

γ f toolsiderakeangle

γ f1 toolsiderakeangleintheland

γ f2 toolsiderakeangleinthegroove

γ g toolgeometricrakeangle(directionofthemaximumslopeofthe rake)

γ h homogenousshearstrain

γ n toolnormalrake

γ ne workingnormalrake

γ o toolorthogonalrake

γ p toolbackrake

γ sb totalshearstrainintheshearband(sb)

γ sh shearstrain

γ sh shearstrainrate

r T localtemperaturegradient(Hamilton’svectoraloperator-nabla)in Km 1

Δx thicknessoftheshearzone(band)

Δt timeelapsedformaterialelementtotraveladistance Δs

Δs distancealongtheshearplane

Δs2 thicknessoftheshearzoneinOxley’smodel

ΔΘf meantemperatureriseduetofriction

δ u response(deflection)inthe u direction

δ v response(deflection)inthe v direction

ε uniaxialtruestrain;fractionofwaves

εb chipstraincausedbybending

εmax chipstrainatfracture

εp theequivalentstrain

εp accumulatedplasticstrain

εp eff effectiveplasticstrain

εp o referenceplasticstrain

_

εp equivalentstrainrate

_

εp o referenceplasticstrainrate

_

ε0 p strainrateequalto1.0s 1

εr tool-includedangle

εre workingincludedangle

η resultantcuttingspeedangle,i.e.,theanglebetweenthedirectionof primarymotionandtheresultantcuttingdirection;anglebetween thetexturelineandtheshearplane;contactlengthfactor

ηb chipback-flowangle

ηc chipflowangle;angleofmaximumslopeoftherakeangle

ηs chipside-flowangle

θ temperature,meanangleoffrictionontoolface;groovetangent angle

θint temperatureattool-chipinterface

θfmax maximumtemperatureriseofmaterialpassingthroughthe secondarydeformationzone

θmax maximuminterfacetemperaturealongtherakeface(also tmax)

θn meanangleoffrictionmeasuredinthenormalplane

θsmax maximumshear-planetemperature(maximumtemperatureriseof materialpassingthroughtheprimarydeformationzone)

θo initialworkpiecetemperature

Θ(T) thermalsofteningfactor

Θs meanshear-planetemperature

Θt averageinterfacetemperature

κr toolcuttingedgeangle

κ 0 r toolminorcuttingedgeangle

κre workingcuttingedgeangle

κ0 re workingminorcuttingedgeangle

λ thermalconductivity

λT thermalconductivityofthetoolmaterial

λW thermalconductivityoftheworkpiecematerial

λs toolcuttingedgeinclination

λse workingcuttingedgeinclination

μ coefficientoffriction,viscosity

μa adhesioncomponentofcoefficientoffriction

μc equivalentcoefficientoffriction

μcmax maximumcoefficientoffriction

μm mechanicalcomponentofcoefficientoffriction

μRe[G] realpartoftheFRF

ν coefficientoftool-lifevariability

ρ densityofworkmaterial

σ uniaxialtruestress

1 σ tensileresidualstress

σ compressiveresidualstress

σ effectivevonMissesstress

σ c normalcontactstressactingonthetool chipinterface

σ cmax maximumnormalcontactstressactingonthetool chipinterface

σ c meanvalueofnormalcontactstress

σ f flowstress;fracturestress

σ n normalstressonthetoolface

σ nmax maximumnormalstressonthetoolface

σ o initialyieldstressatthereferencetemperature To;constantin uniaxialtruestrainrelationship

σ sh normalstressontheshearplane(also σ s)

σ T standarddeviation

τ chipflowangle

τ c shearcontactstressactingonthetool chipinterface

τ c meanvalueofshearcontactstress

τ o shearflowstressatzeroplasticstraininOxley’smodel

τ s shearstressontheshearplane

τ sh shearflowstressoftheworkmaterial

τ st shearstressonthetoolfaceinthestickingregion

τ so shearstressintheshearplanewithzeronormalstressapplied

Φ shearangle

Φn shearangleinthenormalplane Pn

Φo shearangleforunstrained(softer)material

ΦT shearanglecalculatedfrommechanicalpropertiesoftheworkpiece material

ω angularfrequencyofvibration;anglebetweentheresultantcutting forceandtheshearplane

ω f angularfrequencyofexternalharmonicforce

ω n naturalangularfrequency

ABBREVIATIONS

AC Adaptivecontrol;aircooled

ACC Adaptivecontrolconstraint

ACO Adaptivecontroloptimization

A/D Analog-to-digitalconverter

ADF Amplitudedistributionfunction

ADI Austemperedductileiron

AE Acousticemission

AFM Abrasive-flowmachining;atomicforcemicroscopy

AFRP Aramidfibrereinforcedplastic

AGV Automatedguidedvehicle

AI Artificialintelligence

AJM Abrasive-jetmachining

ALE ArbitraryLagrangian Eulerianformulation

Al2O3 Aluminiumoxide,whiteceramics

AMPR AdvancedManufacturingResearchProgram

AMZ Alteredmaterialzone

ANN Artificialneuralnetwork

ANSI AmericanNationalStandardsInstitute

APL Aprogramminglanguage

APS Advancedprocesssystem

AR

ARMD

ASM

Autoregression

Area-restrictedmoleculardynamics

AmericanSocietyforMetals(nowASMInternational)

ATC Automatictoolchanger

BAC

BEM

BHN

BUE

bcc

CAD

CAE

CAM

CAPP

CAT

CAVE

CBGF

Bearingareacurve

Boundaryelementmethod

Brinellhardnessnumber(seeHB)

Built-up-edge

Body-centredcubic

Computer-aideddesign

Computer-aidedengineering

Computer-aidedmanufacturing

Computer-aidedprocessplanning

Computer-aidedtesting

ComputerAutomatedVisualizationEnvironment

Circularthread-millingtool

CBN Cubicboronnitride

CBN-HT

CCD

CCI

CE

CBNhardturning

Charge-coupleddevice(camera)

Coherencecorrelationinterferometry

Concurrentengineering;controlemulator

CF Cuttingfluid

CFEST

CFRP

CGI

CIM

CIRP

CuttingFluidEvaluationSoftwareTestbed

Carbon-fibrereinforcedplastic

Compactedgraphiteiron

Computer-integratedmanufacturing

InternationalInstitutionforProductionEngineeringResearch

CLA Centre-lineaverage

CM Communicationmedium

CMM

CNC

COS

Coordinatemeasuringmachine

Computernumericalcontrol

Computerizedoptimizationsystem

CT Cermet

CVD

CVL

DARPA

DBGF

DBTT

Dc

Chemicalvapourdeposition

Coppervapourlaser

DefenceAdvancedResearchProjectAgency

Directcircularthread-millingtool

Ductile-to-brittletransitiontemperature

Diameterofcutter

DLC Diamond-likecoating

DLL

Dynamiclinklibrary

DM Digitalmanufacturing

DN Productofthespindlediameterinmmandthespindlespeedin rpm

DNC Directnumericalcontrol;distributednumericalcontrol

DPU Dataprocessingunit

DRIE Deepreactiveionetching

DSC Differentialscanningcalorimeter

DSP Digitalsignalprocessing

DUV Deepultravioletlithography

DVA Dynamicvibrationabsorber

EBM Electron-beammachining

ECG

Electrochemicalgrinding

ECM Electrochemicalmachining

ECT Effectivechipthickness

EDM Electricaldischargemachining

EDG Electro-dischargegrinding

EDX EnergydispersionX-ray

EL Evaluatinglength

ELACM Eximerlaser-assistedchemicalmachining

ELID Electrolyticin-processdressing

EMF Electromotiveforce(alsoemf)

EP Extremepressure

Ew1;Ew2 Offsetsinturn-millingoperations

e-manufacturing Electronic-manufacturing

e-work Electronic-work

FDA Finitedifferentapproach

FDM Finitedifferentmethod

FEA Finiteelementapproach(analysis)

FEM Finiteelementmethod

FES Fuzzyexpertsystem

FFT FastFouriertransform

FIB Focusedionbeam(micromachining)

FMS Flexiblemanufacturingsystem;FederationofMaterialsSocieties

FOF Factoryofthefuture

FRF Frequencyresponsefunction

FRP

Fiberglass-reinforcedplastic

FTP Filetransferprotocol

fcc Face-centredcubic

GAC Geometricadaptivecontrol

GFRP

GGG

Graphite-fibrereinforcedplastic;glass-fiberreinforcedplastic

Nodularcastiron(GermanequivalenttoCGI;seeCGI)

HB Brinellhardnessnumber

HEM

Hi-E

Highefficiencymachining

Highefficiencymachining(range)

HK Knoophardnessnumber

HK100

Knoophardnessusing100gload

HM Hardmachining,hardmilling

HMC

HMI

HPC

H-PCBN

HPC

HPDL

HPM

HPMA

HPPA

HPRA

HR

HSM

HSC

HSS

HSS-Co

Horizontalmachiningcentre

Human machineinterface

Highpressurecoolant(supply)

HighcontentPCBN

Highperformancecutting

Highpowerdiodelaser

Highperformancemachining;hardpartmachining

Highprecisionmotorisedarm

Highprecisionpull-downarm

Highprecisionremovablearm

Rockwellhardnessnumber,includingscalessuchasHRA,HRB, HRC,etc.;hotrolled

Highspeedmachining

Highspeedcutting

Highspeedsteel

Cobaltenrichedhighspeedsteels

HT Hardturning

HTML

HyperTextMarkupLanguage

HV Vickershardnessnumber

HVM

hcp

ICM

Highvelocitymachining

Hexagonalclose-packed

Iterativeconvergencemethod

ID Insidediameter

IMM

IMS

Intelligentmachiningmodule

Intelligentmanufacturingsystem,intelligentmaintenancesystem

I/O Input/output

IPM Inductiveprobemodule

IR Infrared(e.g.camera,pyrometer)

IT

ITC

Informationtechnology;intelligenttool

Intelligentthermalcontrol

JC Johnson Cookmaterialmodel

JIT

KHN

LAM

Just-in-time

Knoophardnessnumber(obsolete;seeHK)

Laser-assistedmachining

LAN Localareanetwork

LASER Lightamplificationbystimulatedemissionofradiation

LBM Laser-beammachining

LCD Liquidcrystaldisplay

LFM Laserflashmethod

LDF Lineardiscriminantfunction

LIGA Photo-lithographyandelectroplatingmethod

LN Liquidnitrogen

LODTM Largeopticsdiamondturningmachine

LPM Linearprogrammingmethod

L-PCBN Low-contentPCBN

MCD Machinecodedata

MC-HT Mixedceramicshardturning

MCU Machinecontrolunit

MD Moleculardynamics

MDB Machinabilitydatabase

MDC MachinabilityDataCentre

MDI Manualdatainput

MEMS Micro-electromechanicalsystem

MES Manufacturingexecutionsystem

MMC Metalmatrixcomposite

MO Mineraloil

MQC

Minimumquantitycooling

MQL Minimum(minimal)quantitylubrication

MQCL Minimumquantitycoolinglubrication

MRP Materialrequirementsplanning

MRR Materialremovalrate

MST Microsystemstechnology

MTM Multitaskingmachining

MVL Minimumvolumelubrication

mMT Micro/mezzo-scalemachinetool

NC Numericalcontrol

NEMS Nano-electromechanicalsystem

NDT Non-destructivetesting;nilductilitytransition

NGM Newgenerationmanufacturing

NNI NationalNanotechnologyInitiative

NPT

Non-productivetimes

OD Outsidediameter

OFHC

PAC

PACVD

PAM

PC

Oxygen-free,highconductivity(forcopper)

Plasma-arccutting

Plasma-assistedCVD(coatingdepositiontechnique)

Plasma-assistedmachining

Personalcomputer;printedcircuit;polycarbonate

PCB Printedcircuitboard

PCBN

PCD

PDZ

PGI

PH

PKM

PLC

PLM

P/M

PSZ

PVD

QA

QC

RCF

RCT

Polycrystallinecubicboronnitride

Polycrystallinediamond

Primarydeformationzone

Phasegratinginterferometer

Precipitationhardenable(steel)

Parallelkinematicmachine

Programmablelogiccontroller

Productlifecyclemanagement

Powdermetallurgy

Partially-stabilizedzirconia

Physicalvapourdeposition

Qualityassurance

Qualitycontrol

Rollingcontactfatigue

Restricted-contacttool

RF Radiofrequency

RMI

RMS

RNS

RP

SDZ

Radiomachineinterface

Root-mean-square(alsorms)

Remotenotificationsystem

Rapidprototyping

Secondarydeformationzone

SiC Siliconcarbide

Si3N4

SLorSLA

SLF

SLS

Siliconnitride,nitrideceramics

Stereolithographytechnique;samplinglength

Slip-linefield

Selectivelasedsintering

SMS Shortmessageservice

SMART

SPDT

SPM

STM

TAM

SmartAssistanttoMachinists

Single-pointdiamondturning

Scanningprobemicroscopy

Scanningtunnellingmicroscope

Thermallyassistedmachining

TAHMP

TCM

TDZ

TFTs

TiAlN

Thermallyassistedhybridmachiningprocess

Toolconditionmonitoring

Tertiarydeformationzone

Thinfilmthermocouplesensor

Titanium aluminiumnitride

TiC Titaniumcarbide

Ti(C,N) Titaniumcarbo-nitride

TiN Titaniumnitride

TMP

Totalmachiningperformance

TMS Toolmonitoringsystem

TQC

TQM

Totalqualitycontrol

Totalqualitymanagement

TRS Tensilerupturestrength

UAM Ultrasonic-assistedmachining

UCL Uppercontrollimit

UCT Uncut/undeformedchipthickness

UF Ultrafine(e.g.,carbidegrade)

UHSM Ultra-highspeedmachining

UM Ultrasonicmachining

UR Unitremoval

UTS

Ultimatetensilestrength(also Rm)

UV Ultraviolet

UVC

Ultrasonicvibrationcutting

VED Videoedgedetection

VLSI Verylarge-scaleintegration

VM Virtualmanufacturing

VMC Verticalmachiningcentre

VR Virtualreality

WAP WirelessApplicationProtocol

WC Sinteredtungstencarbide(equivalenttoHMinGerman)

WEDG Wireelectro-dischargegrinding

WIP Workinprogress

WWW WorldWideWeb

XML ExtensiveMarkupLanguage

Y Yieldstrength

ZD Zerodefect(manufacturing)

Thebestwaytopredictthefutureistocreateit.

Contents

References 5

DuringthedecadesincethemanuscriptofthefirsteditionofAdvancedMachining ProcessesofMetallicMaterialswaspreparedandpublished,academiaandindustryhave seenmanyvisiblechanges.Scientistshavedevelopedmodellingandsimulationtechniques ofmachiningprocessesand,togetherwithR&Dcentres,moderncuttingtoolmaterials, cuttingtools,Computernumericalcontrol(CNC)machinetoolsandnewmachiningprocessesthatsubstantiallyenhancetheproductivityandqualityofmachiningprocesseshave beenimplementedinthemanufacturingsector.Byprovidingstate-of-the-artmachining theoryandpractice, AdvancedMachiningProcessesofMetallicMaterials,SecondEdition seems tobeagoodreferenceforallspecialistswhoareworkinginthefieldofmachining.

Manufacturingconstitutestheeconomicbackboneofanindustrializednationand, ingeneral,theeconomicpositionofacountryisbasedonthelevelofmanufacturing activity.Itisevidentthatthepressuresofinternationalcompetitionserveasacatalyst forchangesinmanufacturingtechnologiesandsystems.Thefollowingdefinitionof advancedmanufacturingisproposedtomeetallthesechallenges [1]:

Advanced21st-centurymanufacturingisthecreationofintegratedsolutionsthatrequirethe productionofphysicalartifactscoupledwithvalue-addedservicesandsoftware,whileexploitingcustom-designedandrecycledmaterialsandusingultra-efficientprocesses.

Basedonthisdefinition, Fig.1.1 presentsseveralgroupsofleadingtechnologiesthat createadvancedmanufacturing.First,therearetechnologies,suchasadditiveorhybrid processes,thatcreatemanufacturingprocessinnovations [2].Theseinnovationsimprove, enhanceorreplaceexistingprocesses.Thesecondgroupidentifiestechnologiesthatproducenewmaterialsandenablemulti-scalemanufacturingandaresubsequentlyimplementedintomanufacturingprocesses.Thethirdgroupcoverstechnologiesthatimprove theperformanceofmeasurementandtestingduringoraftermanufacturing.Thefourth

PeterDrucker

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Advanced machining processes of metallic materials : theory, modelling and applications 2nd edition by Education Libraries - Issuu