NOMENCLATURE
LATINSYMBOLS
A shapefactorinShaw’sequationforheatpartition
Aa apparentareaofcontactbetweentwosurface;averagevalueofshape factor A
Ac cross-sectionalareaoftheuncutchip,i.e.,thecross-sectionalareaof thelayerofmaterialbeingremovedbyonecuttingedgemeasured normaltotheresultantcuttingdirection;contactarea
Am maximumvalueofshapefactor A
Ar realareaofcontactbetweentwosurfaces
Ash areaofshearplane
Aα toolflank,i.e.,thesurfaceoverwhichthesurfaceproducedonthe workpiecepasses
Aγ toolface,i.e.,thesurfaceoverwhichthechipflows
ae workingengagement,i.e.,theinstantaneousengagementofthe completetoolwiththeworkpiece,measuredintheworkingplane Pfe andperpendiculartothedirectionoffeedmotion(previously knownasdepthofcutinaslab-millingoperation)
af feedengagement,i.e.,theinstantaneousengagementofthetool cuttingedgewiththeworkpiece,measuredintheworkingplane Pfe andinthedirectionoffeedmotion(insingle-pointmachining operationsitisequaltothefeed f;inmultipointtooloperations,it isequaltothefeedpertooth)
ap backengagement,i.e.,theinstantaneousengagementofthecompletetoolwiththeworkpiece,measuredperpendiculartotheworkingplane Pfe (previouslyknownasdepthofcutinasingle-point tooloperationandwidthofcutinaslab-millingoperation)
apl lowerlimitofdepthofcut(doc)
apu upperlimitofdoc
av amplitudeofvibration
B groovewidthinagroovetool;zonewheretheflankisregularly worn
Be equivalentgroovewidthinagroovetool
BL lengthofgroovebackwallwear
BW widthofgroovebackwallwear
b widthofcut;widthofthecuttingedge
bcr thelowest blim obtainedforthephasingmostfavourableforchatter generation
blim limitingstableaxialdepthofcut
C constantinupperboundarypredictionfortheshearanglebyOxley, constantinShaw’sequation
CT1, CT2, CT3
constantingeneraltool-lifeequation
Cv cuttingspeedfor1minoftoollife(inm/min)
Cm costofmachining,neglectingnon-productivecosts
Cmat costofmaterialforoneworkpiece
Cmin minimumcostofproduction,i.e.,theminimumvalueof Cpr
Cmt totalmachiningcost
Cpr productioncost,i.e.,theaveragecostofproducingeachcomponent ononemachinetool
Cv constantintheinverseTaylorequationequaltothecuttingspeed for T 5 1min
Ct constantintheoriginalTaylortool-lifeequation
CT constantintheTaylorequationequalto T for vc 5 1m/min
c rigidityconstant
cd dampingforceperunitvelocity,i.e.,theviscousdampingconstant
cp specificheatcapacity
D tooldiameter(e.g.drillormillingcutter)
dF variationinthecuttingforce
E Young’smodulus;processactivationenergy
Ec cuttingenergy
Ef energyrequiredtoperformfeedmotion;frictionenergy
Ep energyrequiredtoperformplasticdeformation
Esh energyrequiredtoperformshearing
Efα energyrequiredtoovercomefrictionontheflankface
Efγ energyrequiredtoovercomefrictionontherakeface
e baseofnaturallogarithm
ec specificcuttingenergy
efγ specificfrictionenergyrelatedtotherakeface
esh specificcuttingenergyrelatedtoshearing
F resultantcuttingforce
F(t) periodicforce(infunctionoftime)
Fa activeforce
Fc cuttingcomponentoftheresultanttoolforce, Fr
Fc N anasymptoticvalueofthecuttingforce Fc
Fdyn forcecomponentduetochipdeformationinHSC
Ff feedforce
Fm momentumforce
Fo Fouriernumber
Fo objectivefunction
Fp ploughingforce
Fr resultanttoolforce
Fsh forcerequiredtosheartheworkmaterialontheshearplane
FshN forceperpendiculartotheshearplane
Fsu resultantshearforceinHSC
Fα tangentialforceontheflankface
FαN forceperpendiculartoflankface
F
γ frictionalforceonthetoolface;frictionalforcebetweensliding chipandtool
Fγ N forceperpendiculartotherakeface
f feedrate,i.e.,thedisplacementofthetoolrelativetotheworkpiece, inthedirectionoffeedmotion,perrevolutionoftheworkpieceor tool
fm feedperminute
fmax maximumavailablemachinefeed
fl lowerlimitoffeed
fn resonanceoffrequency
fnd naturaldampedfrequencyofthesystem
fopt optimumvalueoffeed
fu upperlimitoffeed
fz feedpertooth
HT hardnessofthetoolmaterial
HW hardnessoftheworkpiecematerial
HRC Rockwellhardnessnumber(Cscale)
HSC highspotcount(count(s))(seealsoHighSpeedCutting)
h uncutchipthickness,i.e.,thethicknessofthelayerofmaterialbeing removedbyonecuttingedgeattheselectedpointmeasurednormal totheresultantcuttingforcedirection
hch chipthickness
hcmin meanuncutchipthickness,i.e.,themeanvalueof hc
hcmax maximumuncutchipthickness,i.e.,themaximumvalueof hc
Im[G] imaginarypartoftheFRF
K constantforamachiningoperation;canberegardedasthedistance travelledbythetoolinrelationtotheworkpieceduringthe machiningtime tm.
K1 K8 constantinLPM
[K] globalstiffnessmatrix
KB distancefromthecuttingedgetothebackcratercontour
KE radialdisplacementofthetoolcorner
KF widthofthelandbetweenthecraterandcuttingedge
KM distancefromthecuttingedgetothedeepestcraterpoint
KT craterdepth;depthofgroovebackwallwear
K1C fracturetoughness
k shearstressintheslip-linefield;constantintheStabler’sformula; dampingratio;negativeslopeofthetool-lifecurve
kc specificcuttingpressure
kh chipthicknesscompressionratio(also Λh)
L toollength;cuttinglength;lay(surfacetexture)
l landlengthinagroovedtool
lc naturaltool-chipcontactlength
lca lengthoftheactivecuttingedge
lcr restrictedtool-chipcontactlength
le equivalentrestrictedcontactlength
lm lengthofmachinedsurface
lnc naturalcontactlength
lp lengthoftheplasticcontact
lsh lengthofshearplane(also lAB)
lsl sliding-contactlength
lst sticking-contactlength
lt lengthoftool
lw lengthofworkpieceorholetobemachined;lengthofcutpathor cutsurface
M totalmachineandoperatorrate(costperunittime),including machinedepreciation
Mt operator’s Wo andmachineandoperatoroverheads;meanline(M) system
MR machinabilityrating
Mr1 uppermaterialratio(%)
Mr2 lowermaterialratio(%)
Mt machine-tooldepreciationrate(costperunittime)
M 0 t machine-toolrateincludingoverheads(costunittime)
MT1 MT5 extremefinishing;finishing;semi-roughing,roughingandheavy roughingmachiningoperations
m slopeoflinearplasticstress strainrelation;relativeshearstressin RoweandSpick’smodel;massofthevibrationsystem;widthofthe contactzone
mavg averagenumberofteethinthecut
mch massofchipspecimen
m1 strainratesensitivityexponent
N numberofteethonthecuttingtool;numberoffullwaves;nose wear
Nb batchsize,i.e.,thenumberofcomponentsinthebatchtobe machined
Nt numberoftoolsusedinmachiningthebatchofcomponents
NL1 notchwearlengthonmaincuttingedge
NL2 notchwearlengthonsecondarycuttingedge
NW1 notchwearwidthonmaincuttingedge
NW2 notchwearwidthonsecondarycuttingedge
NT thermalnumber;numberoftoolchangesnecessaryduringthe machiningofabatchofcomponents
n strain-hardeningindexorexponent;constantinTaylor’stool-life equation;spindlerotationspeed
nopt optimumvalueofrotationalspeed
ns rotationalfrequencyofamachine-toolspindle
nsc rotationalfrequencyofamachine-toolspindleforminimum productioncost
nsef rotationalfrequencyofamachine-toolspindleforminimum efficiency(maximumprofitrate)
nsp rotationalfrequencyofamachine-toolspindlefoeminimum productiontime
nt rotationalfrequencyofthecuttingtoolorabrasivewheel
nw rotationalfrequencyofworkpiece
P power
{P} vectorofallappliedloads
Pc localpeakcount(count/cm)(alsocuttingpower)
Pe electricalpowerconsumedbythemachinetoolduringamachining operation
Pec Pecletnumber
Pf assumedworkingplane
Pfe workingplane
Pg tool-faceorthogonalplane
Pm powerrequiredtoperformthemachiningoperation
Pn cuttingedgenormalplane
Po toolorthogonalplane
Pp toolbackplane
Ppe workingbackplane
Pr toolreferenceplane,therateofproduction
Pre workingreferenceplane
Ps toolcuttingedgeplane
Pse workingcuttingedgeplane
Psh shearplane
pA hydrostaticpressureinpoint A atthefreesurface
ps specificcuttingpower,i.e.,theworkrequiredtoremoveaunit volumeofmaterial
Q totalamountofheatgeneratedinmachining
Q1 heatsourceduetoplasticdeformation
Q2 frictionalheatsource
Q3 heatsourceatthecontactbetweentheworkpieceandtheflank
Q4 heatsourcefromwhichasmallpartofheatistransferredtothe sub-surfacelayer
QW volumetricmaterialremovalrate
qc heatfluxflowingtothechip
qt heatfluxflowingtothetool
qw heatfluxflowingtotheworkpiece
q heatflowrate
R thermalnumber;universalgasconstant;surfaceroughness
{R} loadvector
Ra arithmeticalmeanvalueofsurfaceroughness(CLA)
Rc Rockwellhardnessnumber(Cscale)
Rch heatpartitioncoefficient,i.e.,percentageofheatenteringthechip
Rk coreroughnessdepth
Rku kurtosis
RKF heatpartitioncoefficientdefinedbyKatoandFujii
Rmin(τ ) minimumradiusofup-curling
Rmr(c) materialratioatdepth‘c ’
Ro grooveradius
Rp maximumheightofpeaks
Rpk reducedpeakheight
Rq rootmeansquare(RMS)average
RR heatpartitioncoefficientdefinedbyReznikov
Rsk skew(skewness)
Rsm averagepeakspacing
RSH heatpartitioncoefficientdefinedbyShaw
Rt totalheightoftheprofile(obsolete Rmax)
Rv maximumdepthofvalleys
Rvk reducedvalleydepth
Rz maximumheightoftheprofile
Rzt theoreticalvalueofP Vparameter
RΔa centrelineaverage(CLA)slope(deg)
RΔq RMSslope(deg)
Rλa CLAwavelength
Rλq RMSwavelength
r min radiusofthecuttingedgeatwhichcuttingistakingplace
rc cuttingratio
rchip radiusofthechipcurvature
r n radiusofthecuttingedge
rs side-curlingradius
ru up-curlingradius;chipcurvature
rui radiusofinitialchipcurl
ruf radiusoffinalchipcurl
rε cornerradius,i.e.,theradiusofaroundedtoolcorner
S toolmajorcuttingedge;incomepercomponent
Sa activecuttingedge
S ’ toolminorcuttingedge
SD depthofsecondaryfacewear
SL samplinglength
SW widthofsecondaryfacewear
s lamellarspacing
T temperature;absolutetemperature;toollife
T averagetoollife
Te economictoollife(also TE)
Tm meltingtemperature
To referencetemperature
Tmod velocitymodifiedtemperature
Tp toollifeformaximumproductionrate(also TQ)
TR referencetoollife
Tr room(ambient)temperature;toollifeforacuttingspeedof vr
t time
ta accelerationtime
tc toolchangingtime,i.e.,theaveragemachinetimetochangea worntoolortoindex(and,ifnecessary,replace)aworninsert
tcs interchangetime
te magazineindexing(travelling)time
td decelerationtime
tl non-productivetime,i.e.,theaveragemachinetimetoloadand unloadacomponentandtoreturnthecuttingtooltothebeginning ofthecut
tl loadingandunloadingtime
tm machiningtime,i.e.,machinetimetomachineacomponent
tmax maximumoperationtime
tpr productiontime,i.e.,theaveragetimetoproduceonecomponent ononemachinetool
tr transportation(approach)timeperworkpiece
tx rapidtravellocationtime
{U} matrixofnodalvelocities
{
u} displacementvector
Vw volumeoftoolmateriallostduetowear
VBB averagewidthofflankwearlandinthecentralportionoftheactive cuttingedge
VBBmax maximumwidthofflankwearlandinthecentralportionofthe activecuttingedge
VBC widthofflankwearattoolcorner
VBN widthofnotchwear
Vm. volumeofmaterialremovedinmachining
VN widthoftheflankwearlandatthewearnotch
VB 0 wearofminorflankface
vac meancuttingspeed,i.e.,theaveragevalueof v alongthemajor cuttingedge
vc cuttingspeed,i.e.,theinstantaneousvelocityoftheprimarymotion oftheselectedpointonthecuttingedgerelativetotheworkpiece
vcc optimumcuttingspeedforminimumproductioncost
vce cuttingspeedatminimumcost
vch chipvelocity
vcp optimumcuttingspeedforminimumproductiontime
vcR referencecuttingspeedintool-lifeequationforgroovedtool
vcT cuttingspeedcorrespondingtodefinedtoollife T
vcTmax cuttingspeedcorrespondingtomaximumtoollife Tmax
ve resultantcuttingspeed,i.e.,theinstantaneousvelocityofthe resultantcuttingmotionoftheselectedpointonthecuttingedge relativetotheworkpiece
vef cuttingspeedformaximumefficiency(maximumrateofprofit)
vf feedvelocity
vHSC UTS-dependingcuttingspeedinHSC
vmax maximumcuttingspeed,i.e.,maximumof vc
vmin minimumcuttingspeed,i.e.,minimumof vc
vp cuttingspeedforminimumproductiontime
vpo cuttingspeedwhenmaximumpowerisused
vr cuttingspeedgivingareferencetoollifeof Tr vs shearingvelocity;slidingvelocity
v sl ch chipvelocityalongtheslidingregion
v st ch chipvelocityalongthestickingregion
W weightofworkpiece;waviness
Wc toolcoatingeffectfactor
Wg chip-grooveeffectfactor
w widthofcut
X1
codedvalueofspeedinLPM
X2 codedvalueoffeedinLPM
x distancefromthepointofchipseparation
GREEKSYMBOLS
α alpha-phase,thermaldiffusivity
αe thermalexpansioncoefficient
αn toolnormalclearance
αne workingnormalclearance
αT thermaldiffusivityofthetoolmaterial
αW thermaldiffusivityoftheworkpiecematerial
β proportionofheatconductedintotheworkpiece;beta-phase
χ characteristicofcontactlengthinRoweandSpick’smodel
Γ proportionofheatgeneratedinprimarydeformationzone conductedintoworkpiece
γ gamma-phase
γ AB strainonshearplaneinOxley’smodel
γ EF shearstrainalongtheexitboundary EF inOxley’smodel
γ c catastrophicshearstrain
γ e effectiverakeangle(also γ ef and γ eff)
γ f toolsiderakeangle
γ f1 toolsiderakeangleintheland
γ f2 toolsiderakeangleinthegroove
γ g toolgeometricrakeangle(directionofthemaximumslopeofthe rake)
γ h homogenousshearstrain
γ n toolnormalrake
γ ne workingnormalrake
γ o toolorthogonalrake
γ p toolbackrake
γ sb totalshearstrainintheshearband(sb)
γ sh shearstrain
γ sh shearstrainrate
r T localtemperaturegradient(Hamilton’svectoraloperator-nabla)in Km 1
Δx thicknessoftheshearzone(band)
Δt timeelapsedformaterialelementtotraveladistance Δs
Δs distancealongtheshearplane
Δs2 thicknessoftheshearzoneinOxley’smodel
ΔΘf meantemperatureriseduetofriction
δ u response(deflection)inthe u direction
δ v response(deflection)inthe v direction
ε uniaxialtruestrain;fractionofwaves
εb chipstraincausedbybending
εmax chipstrainatfracture
εp theequivalentstrain
εp accumulatedplasticstrain
εp eff effectiveplasticstrain
εp o referenceplasticstrain
_
εp equivalentstrainrate
_
εp o referenceplasticstrainrate
_
ε0 p strainrateequalto1.0s 1
εr tool-includedangle
εre workingincludedangle
η resultantcuttingspeedangle,i.e.,theanglebetweenthedirectionof primarymotionandtheresultantcuttingdirection;anglebetween thetexturelineandtheshearplane;contactlengthfactor
ηb chipback-flowangle
ηc chipflowangle;angleofmaximumslopeoftherakeangle
ηs chipside-flowangle
θ temperature,meanangleoffrictionontoolface;groovetangent angle
θint temperatureattool-chipinterface
θfmax maximumtemperatureriseofmaterialpassingthroughthe secondarydeformationzone
θmax maximuminterfacetemperaturealongtherakeface(also tmax)
θn meanangleoffrictionmeasuredinthenormalplane
θsmax maximumshear-planetemperature(maximumtemperatureriseof materialpassingthroughtheprimarydeformationzone)
θo initialworkpiecetemperature
Θ(T) thermalsofteningfactor
Θs meanshear-planetemperature
Θt averageinterfacetemperature
κr toolcuttingedgeangle
κ 0 r toolminorcuttingedgeangle
κre workingcuttingedgeangle
κ0 re workingminorcuttingedgeangle
λ thermalconductivity
λT thermalconductivityofthetoolmaterial
λW thermalconductivityoftheworkpiecematerial
λs toolcuttingedgeinclination
λse workingcuttingedgeinclination
μ coefficientoffriction,viscosity
μa adhesioncomponentofcoefficientoffriction
μc equivalentcoefficientoffriction
μcmax maximumcoefficientoffriction
μm mechanicalcomponentofcoefficientoffriction
μRe[G] realpartoftheFRF
ν coefficientoftool-lifevariability
ρ densityofworkmaterial
σ uniaxialtruestress
1 σ tensileresidualstress
σ compressiveresidualstress
σ effectivevonMissesstress
σ c normalcontactstressactingonthetool chipinterface
σ cmax maximumnormalcontactstressactingonthetool chipinterface
σ c meanvalueofnormalcontactstress
σ f flowstress;fracturestress
σ n normalstressonthetoolface
σ nmax maximumnormalstressonthetoolface
σ o initialyieldstressatthereferencetemperature To;constantin uniaxialtruestrainrelationship
σ sh normalstressontheshearplane(also σ s)
σ T standarddeviation
τ chipflowangle
τ c shearcontactstressactingonthetool chipinterface
τ c meanvalueofshearcontactstress
τ o shearflowstressatzeroplasticstraininOxley’smodel
τ s shearstressontheshearplane
τ sh shearflowstressoftheworkmaterial
τ st shearstressonthetoolfaceinthestickingregion
τ so shearstressintheshearplanewithzeronormalstressapplied
Φ shearangle
Φn shearangleinthenormalplane Pn
Φo shearangleforunstrained(softer)material
ΦT shearanglecalculatedfrommechanicalpropertiesoftheworkpiece material
ω angularfrequencyofvibration;anglebetweentheresultantcutting forceandtheshearplane
ω f angularfrequencyofexternalharmonicforce
ω n naturalangularfrequency
ABBREVIATIONS
AC Adaptivecontrol;aircooled
ACC Adaptivecontrolconstraint
ACO Adaptivecontroloptimization
A/D Analog-to-digitalconverter
ADF Amplitudedistributionfunction
ADI Austemperedductileiron
AE Acousticemission
AFM Abrasive-flowmachining;atomicforcemicroscopy
AFRP Aramidfibrereinforcedplastic
AGV Automatedguidedvehicle
AI Artificialintelligence
AJM Abrasive-jetmachining
ALE ArbitraryLagrangian Eulerianformulation
Al2O3 Aluminiumoxide,whiteceramics
AMPR AdvancedManufacturingResearchProgram
AMZ Alteredmaterialzone
ANN Artificialneuralnetwork
ANSI AmericanNationalStandardsInstitute
APL Aprogramminglanguage
APS Advancedprocesssystem
AR
ARMD
ASM
Autoregression
Area-restrictedmoleculardynamics
AmericanSocietyforMetals(nowASMInternational)
ATC Automatictoolchanger
BAC
BEM
BHN
BUE
bcc
CAD
CAE
CAM
CAPP
CAT
CAVE
CBGF
Bearingareacurve
Boundaryelementmethod
Brinellhardnessnumber(seeHB)
Built-up-edge
Body-centredcubic
Computer-aideddesign
Computer-aidedengineering
Computer-aidedmanufacturing
Computer-aidedprocessplanning
Computer-aidedtesting
ComputerAutomatedVisualizationEnvironment
Circularthread-millingtool
CBN Cubicboronnitride
CBN-HT
CCD
CCI
CE
CBNhardturning
Charge-coupleddevice(camera)
Coherencecorrelationinterferometry
Concurrentengineering;controlemulator
CF Cuttingfluid
CFEST
CFRP
CGI
CIM
CIRP
CuttingFluidEvaluationSoftwareTestbed
Carbon-fibrereinforcedplastic
Compactedgraphiteiron
Computer-integratedmanufacturing
InternationalInstitutionforProductionEngineeringResearch
CLA Centre-lineaverage
CM Communicationmedium
CMM
CNC
COS
Coordinatemeasuringmachine
Computernumericalcontrol
Computerizedoptimizationsystem
CT Cermet
CVD
CVL
DARPA
DBGF
DBTT
Dc
Chemicalvapourdeposition
Coppervapourlaser
DefenceAdvancedResearchProjectAgency
Directcircularthread-millingtool
Ductile-to-brittletransitiontemperature
Diameterofcutter
DLC Diamond-likecoating
DLL
Dynamiclinklibrary
DM Digitalmanufacturing
DN Productofthespindlediameterinmmandthespindlespeedin rpm
DNC Directnumericalcontrol;distributednumericalcontrol
DPU Dataprocessingunit
DRIE Deepreactiveionetching
DSC Differentialscanningcalorimeter
DSP Digitalsignalprocessing
DUV Deepultravioletlithography
DVA Dynamicvibrationabsorber
EBM Electron-beammachining
ECG
Electrochemicalgrinding
ECM Electrochemicalmachining
ECT Effectivechipthickness
EDM Electricaldischargemachining
EDG Electro-dischargegrinding
EDX EnergydispersionX-ray
EL Evaluatinglength
ELACM Eximerlaser-assistedchemicalmachining
ELID Electrolyticin-processdressing
EMF Electromotiveforce(alsoemf)
EP Extremepressure
Ew1;Ew2 Offsetsinturn-millingoperations
e-manufacturing Electronic-manufacturing
e-work Electronic-work
FDA Finitedifferentapproach
FDM Finitedifferentmethod
FEA Finiteelementapproach(analysis)
FEM Finiteelementmethod
FES Fuzzyexpertsystem
FFT FastFouriertransform
FIB Focusedionbeam(micromachining)
FMS Flexiblemanufacturingsystem;FederationofMaterialsSocieties
FOF Factoryofthefuture
FRF Frequencyresponsefunction
FRP
Fiberglass-reinforcedplastic
FTP Filetransferprotocol
fcc Face-centredcubic
GAC Geometricadaptivecontrol
GFRP
GGG
Graphite-fibrereinforcedplastic;glass-fiberreinforcedplastic
Nodularcastiron(GermanequivalenttoCGI;seeCGI)
HB Brinellhardnessnumber
HEM
Hi-E
Highefficiencymachining
Highefficiencymachining(range)
HK Knoophardnessnumber
HK100
Knoophardnessusing100gload
HM Hardmachining,hardmilling
HMC
HMI
HPC
H-PCBN
HPC
HPDL
HPM
HPMA
HPPA
HPRA
HR
HSM
HSC
HSS
HSS-Co
Horizontalmachiningcentre
Human machineinterface
Highpressurecoolant(supply)
HighcontentPCBN
Highperformancecutting
Highpowerdiodelaser
Highperformancemachining;hardpartmachining
Highprecisionmotorisedarm
Highprecisionpull-downarm
Highprecisionremovablearm
Rockwellhardnessnumber,includingscalessuchasHRA,HRB, HRC,etc.;hotrolled
Highspeedmachining
Highspeedcutting
Highspeedsteel
Cobaltenrichedhighspeedsteels
HT Hardturning
HTML
HyperTextMarkupLanguage
HV Vickershardnessnumber
HVM
hcp
ICM
Highvelocitymachining
Hexagonalclose-packed
Iterativeconvergencemethod
ID Insidediameter
IMM
IMS
Intelligentmachiningmodule
Intelligentmanufacturingsystem,intelligentmaintenancesystem
I/O Input/output
IPM Inductiveprobemodule
IR Infrared(e.g.camera,pyrometer)
IT
ITC
Informationtechnology;intelligenttool
Intelligentthermalcontrol
JC Johnson Cookmaterialmodel
JIT
KHN
LAM
Just-in-time
Knoophardnessnumber(obsolete;seeHK)
Laser-assistedmachining
LAN Localareanetwork
LASER Lightamplificationbystimulatedemissionofradiation
LBM Laser-beammachining
LCD Liquidcrystaldisplay
LFM Laserflashmethod
LDF Lineardiscriminantfunction
LIGA Photo-lithographyandelectroplatingmethod
LN Liquidnitrogen
LODTM Largeopticsdiamondturningmachine
LPM Linearprogrammingmethod
L-PCBN Low-contentPCBN
MCD Machinecodedata
MC-HT Mixedceramicshardturning
MCU Machinecontrolunit
MD Moleculardynamics
MDB Machinabilitydatabase
MDC MachinabilityDataCentre
MDI Manualdatainput
MEMS Micro-electromechanicalsystem
MES Manufacturingexecutionsystem
MMC Metalmatrixcomposite
MO Mineraloil
MQC
Minimumquantitycooling
MQL Minimum(minimal)quantitylubrication
MQCL Minimumquantitycoolinglubrication
MRP Materialrequirementsplanning
MRR Materialremovalrate
MST Microsystemstechnology
MTM Multitaskingmachining
MVL Minimumvolumelubrication
mMT Micro/mezzo-scalemachinetool
NC Numericalcontrol
NEMS Nano-electromechanicalsystem
NDT Non-destructivetesting;nilductilitytransition
NGM Newgenerationmanufacturing
NNI NationalNanotechnologyInitiative
NPT
Non-productivetimes
OD Outsidediameter
OFHC
PAC
PACVD
PAM
PC
Oxygen-free,highconductivity(forcopper)
Plasma-arccutting
Plasma-assistedCVD(coatingdepositiontechnique)
Plasma-assistedmachining
Personalcomputer;printedcircuit;polycarbonate
PCB Printedcircuitboard
PCBN
PCD
PDZ
PGI
PH
PKM
PLC
PLM
P/M
PSZ
PVD
QA
QC
RCF
RCT
Polycrystallinecubicboronnitride
Polycrystallinediamond
Primarydeformationzone
Phasegratinginterferometer
Precipitationhardenable(steel)
Parallelkinematicmachine
Programmablelogiccontroller
Productlifecyclemanagement
Powdermetallurgy
Partially-stabilizedzirconia
Physicalvapourdeposition
Qualityassurance
Qualitycontrol
Rollingcontactfatigue
Restricted-contacttool
RF Radiofrequency
RMI
RMS
RNS
RP
SDZ
Radiomachineinterface
Root-mean-square(alsorms)
Remotenotificationsystem
Rapidprototyping
Secondarydeformationzone
SiC Siliconcarbide
Si3N4
SLorSLA
SLF
SLS
Siliconnitride,nitrideceramics
Stereolithographytechnique;samplinglength
Slip-linefield
Selectivelasedsintering
SMS Shortmessageservice
SMART
SPDT
SPM
STM
TAM
SmartAssistanttoMachinists
Single-pointdiamondturning
Scanningprobemicroscopy
Scanningtunnellingmicroscope
Thermallyassistedmachining
TAHMP
TCM
TDZ
TFTs
TiAlN
Thermallyassistedhybridmachiningprocess
Toolconditionmonitoring
Tertiarydeformationzone
Thinfilmthermocouplesensor
Titanium aluminiumnitride
TiC Titaniumcarbide
Ti(C,N) Titaniumcarbo-nitride
TiN Titaniumnitride
TMP
Totalmachiningperformance
TMS Toolmonitoringsystem
TQC
TQM
Totalqualitycontrol
Totalqualitymanagement
TRS Tensilerupturestrength
UAM Ultrasonic-assistedmachining
UCL Uppercontrollimit
UCT Uncut/undeformedchipthickness
UF Ultrafine(e.g.,carbidegrade)
UHSM Ultra-highspeedmachining
UM Ultrasonicmachining
UR Unitremoval
UTS
Ultimatetensilestrength(also Rm)
UV Ultraviolet
UVC
Ultrasonicvibrationcutting
VED Videoedgedetection
VLSI Verylarge-scaleintegration
VM Virtualmanufacturing
VMC Verticalmachiningcentre
VR Virtualreality
WAP WirelessApplicationProtocol
WC Sinteredtungstencarbide(equivalenttoHMinGerman)
WEDG Wireelectro-dischargegrinding
WIP Workinprogress
WWW WorldWideWeb
XML ExtensiveMarkupLanguage
Y Yieldstrength
ZD Zerodefect(manufacturing)
Thebestwaytopredictthefutureistocreateit.
Contents
References 5
DuringthedecadesincethemanuscriptofthefirsteditionofAdvancedMachining ProcessesofMetallicMaterialswaspreparedandpublished,academiaandindustryhave seenmanyvisiblechanges.Scientistshavedevelopedmodellingandsimulationtechniques ofmachiningprocessesand,togetherwithR&Dcentres,moderncuttingtoolmaterials, cuttingtools,Computernumericalcontrol(CNC)machinetoolsandnewmachiningprocessesthatsubstantiallyenhancetheproductivityandqualityofmachiningprocesseshave beenimplementedinthemanufacturingsector.Byprovidingstate-of-the-artmachining theoryandpractice, AdvancedMachiningProcessesofMetallicMaterials,SecondEdition seems tobeagoodreferenceforallspecialistswhoareworkinginthefieldofmachining.
Manufacturingconstitutestheeconomicbackboneofanindustrializednationand, ingeneral,theeconomicpositionofacountryisbasedonthelevelofmanufacturing activity.Itisevidentthatthepressuresofinternationalcompetitionserveasacatalyst forchangesinmanufacturingtechnologiesandsystems.Thefollowingdefinitionof advancedmanufacturingisproposedtomeetallthesechallenges [1]:
Advanced21st-centurymanufacturingisthecreationofintegratedsolutionsthatrequirethe productionofphysicalartifactscoupledwithvalue-addedservicesandsoftware,whileexploitingcustom-designedandrecycledmaterialsandusingultra-efficientprocesses.
Basedonthisdefinition, Fig.1.1 presentsseveralgroupsofleadingtechnologiesthat createadvancedmanufacturing.First,therearetechnologies,suchasadditiveorhybrid processes,thatcreatemanufacturingprocessinnovations [2].Theseinnovationsimprove, enhanceorreplaceexistingprocesses.Thesecondgroupidentifiestechnologiesthatproducenewmaterialsandenablemulti-scalemanufacturingandaresubsequentlyimplementedintomanufacturingprocesses.Thethirdgroupcoverstechnologiesthatimprove theperformanceofmeasurementandtestingduringoraftermanufacturing.Thefourth
PeterDrucker